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Abstract
We consider an n-dimensional Brownian motion trapped inside a bounded convex
set by normally reflecting boundaries. It is well known that this process is uniformly
ergodic. However, the rates of this ergodicity are not well understood, especially in
the regime of very high-dimensional sets. Here we present new bounds on these rates
for convex sets with a given diameter. Our bounds do not depend upon the smoothness
of the boundary nor the value of the ambient dimension, n.
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1 Introduction

Let Ω be an open, convex set with diameter d < ∞. We will consider a Brown-
ian motion, {Xt }t≥0, trapped inside Ω by normally reflecting boundaries, initialized
at some point X0 = x . We will give a more precise definition of this process
momentarily; intuitively, X is a homogeneous Markov process which behaves like
a Brownian motion on Ω , spends essentially no time at the boundary (which we
will denote ∂Ω), and is always contained in the closure (which we will denote
Ω̄). Let {p (t, x, dy)}t≥0,x∈Ω̄ denote the transition measures of the process, i.e.,
P(Xt ∈ A|X0 = x) = ∫

A p (t, x, dy). It is well known that the process X is ergodic,
with stationary distribution σ , where σ(dy) � dy/Vol(Ω) (cf. [4]). Thus, for every x
we must have that

p (t, x, ·) → σ as t → ∞
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in various modes of convergence. The rate and exact nature of this convergence has
been investigated in a number of ways. For example, consider the case thatΩ is a con-
vex polytope which can be contained inside a cube of diameter d, such as [0, d/

√
n]n .

In this special case, it has long been known that

sup
x

‖p (t, x, ·) − σ‖TV ≤
√

d2

2π t
(1)

where ‖μ‖TV � supA |μ(A)| (cf. [16]). Another important result follows from a
certain Poincare constant on arbitrary bounded convex domains, first rigorously shown
by Bebendorf in [3]. Using this result one may readily show that
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∣
∣
∣

∫
g(x)

(∫
f (y)p (t, x, dy)

)
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∫

f (y)σ (dy)

∣
∣
∣
∣

≤ exp

(

−1

2

(π

d

)2
t

)∥
∥
∥
∥g − 1

Vol(Ω)

∥
∥
∥
∥
L 2

‖ f ‖L 2 (2)

where we define ‖ f ‖2
L 2 �

∫
f 2dx and take g to be any density (i.e., g ≥ 0 and∫

g = 1).Oneway to see the significanceof this formula is to takeY to be somevariable
with Y ∼ σ , and ρ(dx) = g(x)dx to be some initial distribution. Equation (2) can
then be understood as a bound on the rate at which E [ f (Xt )|X0 ∼ ρ] → E [ f (Y )].
Comparing Bebendorf’s result with Eq. (1), we see that Bebendorf’s result has several
advantages:

1. Equation (1) becomes less powerful as n → ∞, but Eq. (2) does not suffer from
this deficit. To see how Eq. (1) fails in high dimensions, consider what it says about
a convex polytope of diameter d which is roughly spherical. Such a polytope gen-
erally cannot fit inside a cube of diameter d. Indeed, to enclose an n-dimensional
ball of diameter d, one needs a cube with diameter d

√
n. Thus, as n → ∞, Eq. (1)

becomes quite weak for certain kinds of diameter-d sets. Equation (2) does not
suffer from this problem.

2. Equation (2) has exponential decay instead of polynomial decay.
3. Equation (2) does not require Ω to be a convex polytope.

However, Bebendorf’s result also has some problems: it is not directly applicablewhen
the initial distribution on X0 isn’t absolutely continuous with respect to Lebesgue
measure. For example, let δx denote the degenerate initial distribution defined by
δx (A) = Ix∈A. If we try applying Eq. (2) to the limiting case as g(x)dx → δx (dx),
the right-hand side of the bound must become infinite (and thus quite useless).

More generally, a rich understanding of the rate of ergodicity remains elusive, even
in this simple convex case. How does it depend upon the dimension? How does it
depend upon the initial condition?

It turns out that a simple one-dimensional diffusion can shed some light on
these questions. Let {Wt }t≥0 denote a one-dimensional Brownian motion. Let τ̃d =
inf {t : Wt /∈ (−d, d)}. Note that the distribution of this object is straightforward to
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calculate and analyze. For example, in [11] it is shown that the survival function of τ̃d
is given by

P(t ≤ τ̃d |Wt = k) = Fd (t, k) �
∞∑

n=0

e− π2

8d2
(2n+1)2t 4 (−1)n

π (2n + 1)
cos

(
2n + 1

2
× πk

d

)

Numerical estimation of this sum is straightforward and effective in practice. Indeed,
Fd (t, k) is simply the solution to the heat equation on [−d, d] with homogeneous
Dirichlet boundary conditions and initial condition Fd (0, k) = Ik∈(−d,d); this partial
differential equation is well understood (cf. [5]). It is also easy to bound Fd using
the moment-generating function of τ̃ and a Chernoff bound; the moment-generating
function can be deduced by an application of the Kac moment formula, yielding
E

[
eγ τ̃d |Wt = k

] = cos(
√
2γ k)/ cos(

√
2γ d) for any γ ≤ π2/8d2 (cf. [8,12]).

We can use the distribution of τ̃d to help us understand the rate of ergodicity for
convex domains:

Theorem 1 Let Ω ⊂ R
n bounded, open, convex, with diameter d. Let

{p (t, x, dy)}t≥0,x∈Ω denote the transition measures of Brownian motion trapped
inside Ω by normally reflecting barriers. Then

‖p (t, x, ·) − p (t, y, ·)‖TV ≤ Fd (4t, d − |x − y|)
‖p (t, x, ·) − σ‖TV ≤

∫
Fd (4t, d − |x − y|) σ (dy) ≤ Fd (4t, 0)

This very last bound cannot be improved by more than a factor of 2. In particular,
taking the special case that Ω = [−d/2, d/2] × [0, ε]n−1 ⊂ R

n for any ε > 0, we
have that ‖p (t, d/2, ·) − σ‖TV ≥ Fd (4t, 0) /2.

We will defer the proof to Sect. 3.
Notice that the leading exp

(−π2t/2d2
)
rate in Fd (4t, ·) is the same as the rate

given by Bebendorf in Eq. (2). This is no accident. Both quantities reflect the spectral
gap for the Neumann Laplacian on the interval [0, d], namely π/d.

The author’s particular interest in this problem arose from a question about
hitting probabilities. Let A, B denote two open disjoint subsets of Ω . Let T =
inf {t : Xt ∈ A ∪ B}, and consider the problem of estimating u(x) = P(XT ∈
∂A|X0 = x). In general it can be quite tricky to analyze u. However, there are some
circumstances in which it simplifies considerably. Let x ∈ Ω denote some point such
that P(T > t |X0 = x) ≈ 1 and ‖p (t, x, ·) − σ‖TV ≈ 0. Then it is easy to show that
u(x) ≈ ∫

u(y)σ (dy). This quantity is of course independent of x and can be estimated
efficiently. Unfortunately, it is not immediately obvious how to tell whether a given
point x satisfies these criteria. In particular, exact computation of ‖p (t, x, ·) − σ‖TV
is nontrivial, and so we turned to finding accurate rates of the uniform ergodicity as a
way to bound this quantity.

The remainder of this article is divided into three sections:

1. Known results We give a rigorous definition for reflecting Brownian motion in a
convex set and formalize some aspects of our introductory exposition.We summa-
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rize known results, look at the equations governing p (t, x, dy), and see how the
work by Bebendorf yields the rate of convergence found in Eq. (2). We will exam-
ine a coupling idea whose first rigorous construction is due to Atar and Burdzy
(cf. [1]). Finally, we will give some remarks on the function Fd (t, k) and begin to
see why it will appear in our main theorem.

2. Application of known results Here we prove our main theorem, using the coupling
construction of Atar and Burdzy.

3. Conclusions We will consider possible directions for future research.

2 Known Results

The theory of reflected Brownian motion in convex sets is fairly well developed. To
get a sense of this history, we will here recall Tanaka’s early work on the subject:

Definition 1 Let Ω ∈ R
n any set. A plane {x : 〈x, y〉 = c} is said to be a supporting

hyperplane ofΩ ifΩ ⊂ {x : 〈x, y〉 ≥ c}. The vector y is said to be the inward-facing
normal vector.

Definition 2 Let Ω ⊂ R
n denote an open set. Let {Wt }t≥0 denote an n-dimensional

Brownian motion adapted to {Ft }t≥0. Let us say there exists

– a continuous process {Xt }t≥0 ⊂ Ω̄ which is adapted to {Ft }t≥0
– a positive locally finite random measure μ on [0,∞)

– a random function n : R
+ → R

n

such that

Xt = Wt +
∫ t

0
n(s)μ(ds)

μ ({t : Xt /∈ ∂Ω}) = 0

for every t and n(t) is the inward-facing normal vector of a supporting hyperplane
of Ω at the point Xt for μ almost every value of t . Then we will call X a reflecting
Brownian motion in Ω driven by W .

It is worth taking a moment to consider the case n = 1, in which case much of the
complexity of the definition above evaporates. To make it as simple as possible, say
Ω is simply the interval [0,∞). Then it is easy to see that

Xt � Wt − 0 ∧ inf
s≤t

Ws

is a reflecting Brownian motion onΩ . We refer the reader to [7] for a useful exposition
on this point. The correspondingmeasureμ is simply the local time of X on the bound-
ary, and the vector n is simply the number 1. That is, −0 ∧ infs≤t Ws = ∫ t

0 1μ(ds).
This formulation will be useful to us later, as we will see that the general problem for
n > 1 can be approximated by looking at a much simpler problem with n = 1.

For the general case n > 1, Tanaka showed that as long asΩ is convex and bounded,
we can always find a unique reflecting Brownian motion:
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Theorem 2 (Tanaka [18]) Let W denote any n-dimensional Brownian motion with
W0 ∈ Ω . If Ω ⊂ R

n is bounded and convex then there is a pathwise-unique reflecting
Brownian motion in Ω driven by W.

Proof Cf. [18]. ��
Here we summarize some well-known facts about the process X .

Lemma 1 (Properties of reflected Brownian motion in a convex set Ω) Let W denote
an {Ft }t≥0-adapted Brownian motion and let X denote a reflecting Brownian motion
in Ω driven by W. If Ω is convex, then

1. {Xt }t≥0 is a strongly {Ft }t≥0-adapted homogeneous Markov process. Let
{p (t, x, dy)}t≥0,x∈Ω̄ denote the transition measures of this process. The pro-
cess X is reversible with respect to σ , i.e.,

∫
x∈A

∫
y∈B σ(dx)p (t, x, dy) =

∫
x∈B

∫
y∈A σ(dx)p (t, x, dy). In particular, σ is a stationary distribution of X.

2. X is uniformly ergodic with stationary distribution σ , i.e.,

lim
t→∞ sup

x
‖p (t, x, ·) − σ‖TV = 0

3. Let λ ≥ 0 denote any constant such that

∫
f dx = 0 �⇒ λ ‖ f ‖L 2 ≤

√∫
|∇ f (x)|2 dx

for weakly differentiable functions f : Ω → R. Then for any density g ∈ L 2

(i.e., g ≥ 0 and
∫
g(x)dx = 1), we have that

|E [ f (Xt )|X0 ∼ ρ] − E [ f (Y )]| ≤ exp

(

−1

2
λ2t

) ∥
∥
∥
∥g − 1

Vol(Ω)

∥
∥
∥
∥
L 2

‖ f ‖L 2

where Y ∼ σ and ρ(dx) = g(x)dx.

Proof These results are well known. We relate them at a high level here for the con-
venience of the reader.

The key is to grasp the connection between X and a certain so-called Dirichlet
form,

E ( f , g) = 1

2

∫

Ω

〈∇ f ,∇g〉 dx

which is understood as a bilinear form on the Sobolev space H1 of weakly differ-
entiable functions on Ω . The arc of this connection is the content of the treatise
[9]. We will only sketch it briefly in this paragraph. Let L 2(Ω) denote the space
of square-integrable measurable functions on Ω , equipped with the inner product
〈 f , g〉L 2 = ∫

f (x)g(x)dx . One can find a unique nonnegative definite operator
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A : H1 → L 2 such that E ( f , g) = ∫
(A f ) (Ag) dx . It turns out that A is self-

adjoint. One can thus obtain a family of operators of the form Tt : L 2 → L 2,
uniquely defined as

Tt = e−A2t

Note that e−A2t is defined on all of L 2 even though A is only defined on H1; we
refer the reader to [17] for a very clear introduction to these considerations. If Ω has
Lipschitz boundary (i.e., the boundary can locally be represented as the epigraph of a
Lipschitz function), one can then (not necessarily uniquely) define a strong Markov
process {Yt }t≥0 such that

E
[
f (Yt+s)|Yt = y

] = (Tt f ) (y)

almost surely with respect to Lebesgue measure, for every f ∈ L 2. In this case we
may say that Y is “weakly determined” by E .

It is shown in [2] that if Ω is bounded with Lipschitz boundary, then any process
which is weakly determined by E will be a reflecting Brownianmotion driven by some
Brownian motion W . It is also shown that at least one such process exists. Since a
bounded convex set automatically has a Lipschitz boundary (cf. Corollary 1.2.2.3 of
[10]) and Tanaka showed that reflecting Brownian motion on a convex set is uniquely
defined, it follows that the process X must be weakly determined by E .

This allows us to prove all three of our claims:

1. Since [9] shows that every process with Lipschitz boundary that is weakly deter-
mined by E is a strong Markov process, it follows that X is a strong Markov
process. The reversibility of X with respect to σ then follows from the fact that
Tt is self-adjoint as an operator onL 2(Ω, σ) (this, in turns follows from the fact
that A is self-adjoint).

2. In [4] it is shown that if a process {Yt }t≥0 is weakly determined by E and Ω is
convex, then

lim
t→∞ sup

y
sup
A

|P(Yt ∈ A|Y0 = y) − σ(A)| = 0

Thus, the same follows for our process, X .
3. Let λ denote any constant so that

∫
f dx = 0 �⇒ λ2 ‖ f ‖2

L 2 ≤ E ( f , f ). Recall
that we have said there is a unique operator A : H1 → L 2 such that E ( f , g) =∫

(A f ) (Ag) dx . In particular, E ( f , f ) = ‖A f ‖2
L 2 . We may thus rephrase our

understanding of λ by saying that
∫

f dx = 0 �⇒ λ ‖ f ‖L 2 ≤ ‖A f ‖L 2 . Using
spectral methods it is thus straightforward to show that

∫
f dx = 0 �⇒

∥
∥
∥e−A2t f

∥
∥
∥
2

L 2
≤ e−λ2t ‖ f ‖2L 2 (3)
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Using this and Cauchy–Schwarz, one can readily show that

|E [ f (Xt )|X0 ∼ ρ] − E [ f (Y )]| ≤ e− 1
2λ2

∥
∥
∥
∥g − 1

Vol(Ω)

∥
∥
∥
∥
L 2

‖ f ‖L 2

��
Corollary 1 Let Y ∼ σ , ρ(dx) = g(x)dx, g ≥ 0 and ρ(Ω) = 1. Then

|E [ f (Xt )|X0 ∼ ρ] − E [ f (Y )]| ≤ exp

(

−1

2

(π

d

)2
t

)

‖g − σ‖L 2 ‖ f ‖L 2

Proof The work in [3] shows that λ = π/d fills the required role for statement 3 of
Lemma 1. ��
This last corollary gives a satisfying grip on theL 2 ergodic convergence for Brownian
motion in convex domains. Our endeavor here is to complement this with a comparable
analysis of the total variation convergence.

Toward this end, we will employ a coupling construction. That is, we will construct
a joint process {Xt ,Yt }t≥0 so that X and Y both carry the law of reflecting Brownian
motion, but each has a different initial condition. We will construct them in such a
way that τ = inf {t : Xt = Yt } is almost surely finite:

Theorem 3 (Atar and Burdzy [1]) Fix any bounded convex set Ω . Let {Wt }t≥0 denote
a Brownian motion. Then there exists a pathwise-unique solution to the equations

Xt = x + Wt + Lt ∈ Ω̄

Yt = y + Zt + Mt ∈ Ω̄

Zt = Wt − ∫ t
0 2ηs 〈ηs, dWs〉

ηt = Xt−Yt|Xt−Yt |

|L|t = ∫ t
0 IXs∈∂Ωd |L|s < ∞

Lt = − ∫ t
0 nL(s)d |L|s

|M |t = ∫ t
0 IYs∈∂Ωd |M |s < ∞

Mt = − ∫ t
0 nM (s)d |M |s

(4)

Here d |L|s plays the role of the measure μ in Definition 2; we require that nL(s) is
a normal vector of supporting hyperplanes of Ω at Xs, d |L|s -almost surely. Likewise
for nM ,Ys, d |M |s . Let τ = inf {t : Xt = Yt } and

Ỹt =
{
Yt t ≤ τ

Xt t ≥ τ

Then
{(

Xt , Ỹt
)}

t≥0
constitute a strongly Markovian process, and both X and Y are

reflecting Brownian motions.

Proof We refer the reader to the work of Atar and Burdzy in [1]. Note that although
this article focuses on the case that ∂Ω is smooth, it also mentions that all of the
reasoning goes through for any set which is “admissible” according to the lights of
work by Lions and Sznitman [15]. Convex sets are indeed “admissible” according to
Remark 3.1 of the work by Lions and Sznitman. ��

123



Journal of Theoretical Probability (2020) 33:22–35 29

We emphasize that even though X and Y in this theorem are profoundly coupled,
individually they both behave like Brownian motions trapped inside Ω by reflect-
ing boundaries. It is also worth emphasizing that there are two completely different
conceptual “reflections” at play here:

1. The normally reflecting boundaries keep X ,Y inside Ω

2. The mirror coupling causes Y to generally behave like the mirror image of X ,
reflected over a plane halfway between X and Y .

These two kinds of reflections may interact when X or Y hits a point in ∂Ω . In this
case the direction of reflection (which is mathematically expressed as ηt ) may rotate.

Finally, we turn to the function Fd (t, k). This function comes up several times for
different reasons; here we hope to clarify the relationships between these different
forms.

Lemma 2 (Connections between Fd (t, k) and one-dimensional Brownianmotion)Let
Wt denote a one-dimensional reflected Brownian motion trapped inside [−d, d]. Let
τd = inf{t : Wt /∈ (−d, d) and τ0 = inf{t : Wt = 0}. Let

Fd (t, k) �
∞∑

n=0

e− π2

8d2
(2n+1)2t 4 (−1)n

π (2n + 1)
cos

(
2n + 1

2
× πk

d

)

Then

1. P(t ≤ τd |W0 = w) = Fd (t, w).
2. P(t ≤ τ0|W0 = w ≥ 0) = Fd (t, d − w).
3. P(Wt ≤ 0|W0 = w ≥ 0) = 1

2 + 1
2 Fd (t, d − w).

Proof The foundations of these results may be found in [14]; the particular function
Fd (t, k) can be found in [11], Equations (3.8) and (3.9). Here we give a sketch.

1. Let Xt denote the process Wt killed at −d and d. That is, Xt = Wt for t ≤ τd but
Xt =⊥ for t ≥ τd , where ⊥ designates a graveyard state. Then for any function
f on (−d, d), we may define f (⊥) = f (−d) = f (d) = 0 and consider

φ(w, t) = E[ f (Xt )|W0 = w]

We can make a slight extension to the Dirichlet form arguments used in Lemma
1 to account for this kind of killed Brownian motion. In brief, we replace the
Sobolev space H1 with the Sobolev space H1

0 of functions which vanish at the
boundary. The operator A of Lemma 1 turns out to be the derivative, so the equation
φ(w, t) = (e−A2t f )(w) from that Lemma actually corresponds to the differential
equation

φt = −1

2
φww φ(w, 0) = f (w) f (−d, t) = f (d, t) = 0
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(Here we have adopted the notation that subscripts indicate derivatives.) We can
easily solve this function for special trigonometric functions of the form f (x) =
cos(nπx/2d). Indeed, in this case we have φ(w, t) = cos(nπw/2d)e−tn2π2/8d2 .
Now our primary interest is in P(t ≤ τd |W0 = w), which can be articulated as
E[ f (Xt )|W0 = w] in the case f (x) = 1 for all x ∈ (−d, d) and f (x) = 0
otherwise. Thus, we can obtain our object of interest if we can write this f in a
spectral representation, i.e., in terms of the nice trigonometric functions. This is
easily done:

f (x) =
∞∑

n=0

4(−1)n

π(2n + 1)
cos

(
2n + 1

2
× πx

d

)

=
{
1 x ∈ (−d, d)

0 x ∈ {−d, d}

Using linearity (and checking to make sure nothing goes wrong in taking the limits
(cf. [9,14]), we conclude thatE[ f (Xt )|W0 = w] is given by Fd (t, w), so the same
must be true of P(t ≤ τd |W0 = w).

2. This is nearly the same problem. Only the boundary conditions are slightly differ-
ent. In particular, we have a graveyard state at W = 0 and a reflection at W = d.
These translate into the boundary conditions φ(0, t) = 0 and φw(d, t) = 0.
However, applying the symmetry of the problem, we can readily show that this
is equivalent to the boundary conditions φ(0, t) = 0 and φ(2d, t) = 0, which
reduces to the same problem we just handled, only offset by d and reflected.
Equivalently, one may consider that the time it takes W to hit −d or d starting
from w must be the same as the time it takes a simple (unreflected) Brownian
motion to hit 0 or 2d starting at d − w, and by symmetry this must be the same as
the time it takes the reflected Brownian motion to hit 0 starting from d − w.

3. This problem carries the reflecting boundary conditions φw(−d, t) = φw(d, t) =
0 and the initial condition φ(w, t) = 1 for w < 0 and φ(w, t) = 0 for w > 0.
This is just our first problem, vertically scaled by 1/2, vertically shifted by +1/2
and a horizontally shifted by d.

��

3 Application of Known Results

To show our main theorem, we must understand the distribution of the coupling time
in the mirror construction from Theorem 3. Exact calculation of this distribution may
be impossible, but some bounds are straightforward to obtain:

Lemma 3 LetΩ, X ,Y , Ỹ , τ be as in Theorem 3. Let d denote the diameter ofΩ . Then

Px (t ≤ τ) ≤ Fd (4t, d − |x − y|)

Proof Let us consider

Rt = |Xt − Yt |

123



Journal of Theoretical Probability (2020) 33:22–35 31

The key question is how long it takes before Rt = 0. Ito’s Lemma yields that

Rt = |x − y| +
∫ t

0

〈
ηs, nM (s)d |M |s − nL(s)d |L|s

〉 + 2 〈ηs, dWs〉

Dambis–Dubins–Schwarz then yields that we can find some one-dimensional Brow-
nian motion B such that

Rt = |x − y| +
∫ t

0

〈
ηs, nM (s)d |M |s − nL(s)d |L|s

〉 + B4t

Let us now inspect

Φt =
∫ t

0

〈
ηs, nM (s)d |M |s − nL(s)d |L|s

〉

Let us focus on three properties of this object:

1. t �→ Φt is monotone decreasing. Indeed, recall that nM (s) is a supporting hyper-
plane of Ω at Xs , d |M |s almost surely. That is,

Ω ⊂ {y : 〈nM (s), y − Xt 〉 ≥ 0}

So certainly

〈ηs, nM (s)〉 =
〈
Xs − Ys

|Xs − Ys | , nM (s)

〉

≤ 0

The same arguments apply to −〈ηs, nL(s)〉.
2. Since the diameter of Ω is d, we have that Rt ≤ d for all t . Put another way,

Φt ≤ d − B4t − |x − y|.
3. Φ0 = 0.

Putting these facts together, we obtain the overall bound of

Φt ≤ inf
s≤t

(d − B4t − |x − y|) ∧ 0

And thus,

Rt ≤ |x − y| + B4t + inf
s≤t

(d − B4t − |x − y|) ∧ 0 � R̃4t

This is useful because the law of R̃t is well understood. It is that of a one-dimensional
Brownian motion with reflection at the point d, initialized at R̃0 = |x − y|. (Indeed, it
is easy to see that it satisfies Definition 2.) Intuitively, this signifies that the amount of
time it takes R to go to zero is shorter than the amount of time it takes a (time-rescaled)
reflected one-dimensional Brownian motion to hit zero.
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In particular, let τ̃ = inf
{
t : R̃t = 0

}
. Since Rt ≤ R̃4t for every t , it follows that

τ̃ ≥ 4τ . On the other hand, Lemma 2 yields

Px (t ≤ τ̃ ) = Fd (t, d − |x − y|)

Our result follows immediately. ��
This leads to our main theorem, which we here restate here the convenience of the
reader:

Theorem 4 Let Ω ⊂ R
n bounded, open, convex, with diameter d. Let

{p (t, x, dy)}t≥0,x∈Ω denote the transition measures of Brownian motion trapped
inside Ω by normally reflecting barriers. Then

‖p (t, x, ·) − p (t, y, ·)‖TV ≤ Fd (4t, d − |x − y|)
‖p (t, x, ·) − σ‖TV ≤

∫
Fd (4t, d − |x − y|) σ (dy) ≤ Fd (4t, 0)

This very last bound cannot be improved by more than a factor of 2. In particular,
taking the special case that Ω = [−d/2, d/2] × [0, ε]n−1 ⊂ R

n for any ε > 0, we
have that ‖p (t, d/2, ·) − σ‖TV ≥ Fd (4t, 0) /2.

Proof The total variation distance between p (t, x, ·) − p (t, y, ·) is easy to bound
using Lemma 3. Recall that Xt , Ỹt were both reflecting Brownian motions, with
X0 = x , Ỹ0 = y, and Xt = Ỹt for t ≥ τ . The lemma then shows that P (t < τ) ≤
Fd (4t, d − |x − y|). We thus obtain our first total variation bound:

‖p (t, x, ·) − p (t, y, ·)‖TV = sup
A

∣
∣
∣P (Xt ∈ A) − P

(
Ỹt ∈ A

)∣
∣
∣

≤ P

(
Xt �= Ỹt

)
≤ P (t < τ) ≤ Fd (4t, d − |x − y|)

The second total variation bound then follows immediately from the fact that σ is the
stationary distribution of the process, i.e.,

∫
p (t, x, A) σ (dx) = σ(A). The second

total variation bound is thus a kind of “average” of the first variation bound:

‖p (t, x, ·) − σ‖TV = sup
A

∣
∣
∣
∣p (t, x, A) −

∫
p (t, y, A) σ (dy)

∣
∣
∣
∣

≤
∫

‖p (t, x, ·) − p (t, y, ·)‖TV σ(dy)

≤
∫

Fd (t, d − |x − y|) σ (dy)

Finally, it is well known that supk Fd (t, k) = Fd (t, 0), so we obtain the overall bound
of ‖p (t, x, ·) − σ‖TV ≤ Fd (t, 0).

Finally we turn to how much this bound could be further improved: any upper
bound on the rate of uniform ergodicity which relies only on diameter and dimension

123



Journal of Theoretical Probability (2020) 33:22–35 33

cannot be smaller than the bound given here by more than a factor of two. Indeed,
consider any pipe Ω = [−d/2, d/2] × [0, ε]n−1 ⊂ R

n for ε > 0. Notice that the
law of X can be decomposed into n independent one-dimensional reflecting Brownian
motions, and so the total variation can likewise be decomposed. The total variation
distance may therefore be lower bounded by the total variation distance along any
dimension. Thus, since we seek a lower bound, without loss of generality, let us
assume Ω = [−d/2, d/2]. Then ‖p (t, x, ·) − σ‖TV may further be lower bounded
by |P(Xt ≤ 0|X0 = d/2) − 1/2|. The relevant probability is given by the third result
of Lemma 2:

P(Xt ≤ 0|X0 = d/2) = 1

2
+ 1

2
Fd/2 (t, d/2 − d/2) = 1

2
+ 1

2
Fd (4t, 0)

which yields the desired result. ��

4 Conclusions

Among all convex sets with diameter d, this work begins to suggest that the one-
dimensional interval (e.g., Ω = [0, d]) may provide a kind of worst-case scenario for
mixing rates. This is helpful because the one-dimensional interval is easy to analyze.

However, “typical” high-dimensional sets of diameter d may mix much faster than
our bounds would suggest. Thus, Eq. (1) from [16] seemed to imply that mixing might
get slower in high dimensions, our theorem suggests that the mixing does not depend
upon the dimension, but the reality may be that mixing typically gets faster as in higher
dimensions. For example, preliminary analysis suggests that n-dimensional Brownian
motion in the unit n-dimensional ball mixes quite a bit faster than one-dimensional
Brownianmotion on [0, d], especially as n → ∞. On the other hand,we are simply not
sure about the total variation mixing rate for Brownian motion in a high-dimensional
cube. Are there simple ways to improve our bounds when we know more about Ω?
This is a possible direction of future research.

In another direction, it should be possible to extend this basic method of proof to
accommodate a wide variety of Ito diffusions, beyond Brownian motion. Mirror cou-
plings are available for many such diffusions; we refer the reader to [13] and the many
papers which have cited it. For every such mirror coupling process, {Xt ,Yt }t≥0, one
can analyze the one-dimensional process Rt = |Xt − Yt |. By applying Ito’s lemma,
Dambis–Dubins–Schwarz, and taking bounds, one can often obtain a stochastic dif-
ferential inequality of the form dRt ≤ dR̃t , where R̃t is some semimartingale that
is better understood. Applying stochastic differential inequality results such as those
found in [6], one can then obtain bounds for the high-dimensional process with some
simple one-dimensional process.

For example, consider the stochastic differential equation dXt = μ(Xt )dt + Wt

where μ is some Lipschitz vector field. Similar to the technique we used, let dYt =
μ(Yt )dt − dWt − 2ηt 〈ηt , dWt 〉, where η is a normalized version of X − Y . As in our
case, if we define B4t = ∫ t

0 2 〈ηs, dWs〉 then we can show that B is a one-dimensional
Brownian motion. Finally, let Γ denote some Lipschitz function satisfying Γ (r) ≥
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sup|x−y|=r 〈x − y, μ(x) − μ(y)〉, and consider the simple one-dimensional stochastic
differential equation

Zt = |x − y| +
∫ t

0

Γ (Zs)

Zs
ds + B4t

Using the results from [6], one can readily show that Rt ≤ Zt . Thus,

inf {t : Xt = Yt } ≤ inf {t : Zt = 0}

In short, by analyzing the simple one-dimensional diffusion Z , one can estimate
coupling times for extremely complex and high-dimensional processes. These cou-
pling times can then be used to estimate rates of ergodicity. Of course, these kinds
of estimates may be quite poor in some cases (e.g., consider the catastrophic case
that sup|x−y|=r 〈x − y, μ(x) − μ(y)〉 = ∞). This difficulty is related to the problem
with which we began these conclusions: in some cases it may be very difficult to get
high-quality bounds using only a one-dimensional diffusion.

We have seen that one-dimensional diffusions can be used to analyze very high-
dimensional diffusions, although the bounds may not be ideal in certain cases. Might
it be possible to improve this basic technique to allow two or three-dimensional dif-
fusions to give rigorous bounds on high-dimensional processes? This is an intriguing
question for future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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