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Abstract The distributions of N-particle systems of Gaussian unitary ensembles
converge to Sine; point processes under bulk scaling limits. These scalings are param-
eterized by a macro-position 6 in the support of the semicircle distribution. The limits
are always Sine, point processes and independent of the macro-position 6 up to the
dilations of determinantal kernels. We prove a dynamical counterpart of this fact.
We prove that the solution to the N-particle system given by a stochastic differential
equation (SDE) converges to the solution of the infinite-dimensional Dyson model. We
prove that the limit infinite-dimensional SDE (ISDE), referred to as Dyson’s model, is
independent of the macro-position 6, whereas the N-particle SDEs depend on 6 and
are different from the ISDE in the limit whenever 6 # 0.
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1 Introduction

Gaussian unitary ensembles (GUE) are Gaussian ensembles defined on the space of
random matrices MY (N e N) with independent random variables, the matrices of
which are Hermitian. By definition, MV = [Ml.{vj ]f” =1 isthenan N x N matrix having
the form

MmN = §i ifi=j

nJ T /N2 +V=1G /N2 ifi <,
where (&, 7; j, &i ;172 j are i.i.d. Gaussian random variables with mean zero and half
variance. Then, the eigenvalues A, ..., Ay of M N are real and have distribution /lN

such that
1 N N 2
1N (dxy) = ﬁ]_[pc,» —xj* [Te ™" dxw, (1.1)
i<j k=1

wherexy = (x1, ..., xy) € RV and ZV is anormalizing constant [1]. Wigner’s cele-

brated semicircle law asserts that their empirical distributions converge in distribution
to a semicircle distribution:

1 !
lim N{(SM/«/N_'_ . +8)‘N/JN} = ;1(7ﬁ’ﬁ)(x)m®c.

N—o00
One may regard this convergence as a law of large numbers because the limit distri-
bution is a non-random probability measure.
We consider the scaling of the next order in such a way that the distribution is

supported on the set of configurations. That is, let 6 be the position of the macroscale
given by

—V2<6<V2 (1.2)

and take the scaling x — y such that

y
= —— +0+N. 1.3
X ~ + (1.3)

Let ué)\' be the point process for which the labeled density mg’ dxy is given by

N N
1 B 2
mév(xN) = _ZN | | |xi —x]'|2 | | € P +6N| /N. (14)
i<j k=1
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The position € in (1.2) is called the bulk and the scaling in (1.3) the bulk scaling (of
the point processes). It is well known that the rescaled point processes ué\' satisfy

lim pl =g in distribution, (1.5)
N—o0

where pg is the determinantal point process with sine kernel Ky:

sin{v/2 — 02(x — y)}

Ko(x,y) = oy —

By definition, ug is the point process on R for which the m-point correlation function
py' with respect to the Lebesgue measure is given by

Py (X1, ..., xm) = det[Kg (xi, x )Ty

We hence see that the limit is universal in the sense that it is the Sine, point process
and independent of the macro-position 6 up to the dilation of determinantal kernels
Ky. This may be regarded as a first step of the universality of the Sine, point process,
which has been extensively studied for general inverse temperature 8 and a wide class
of free potentials (see [2] and references therein).

Once a static universality is established, then it is natural to enquire of its dynamical
counterpart. Indeed, we shall prove the dynamical version of (1.5) and present a
phenomenon called stochastic differential equation (SDE) gaps for 6 # 0.

Two natural N-particle dynamics are known for GUE. One is Dyson’s Brownian
motion corresponding to time-inhomogeneous N-particle dynamics given by the time
evolution of eigenvalues of time-dependent Hermitian random matrices M™ (¢) for

which the coefficients are Brownian motions B,i J [10].
The other is a diffusion process XN = (X(”N’i)fv=1 = {(X] XN l)N 1}¢ given by
the SDE such thatfor1 <i < N

N
. . 1 1 ‘
O,N,i __ 0,N,i
Xm = dB; -+ mdt — NXI dr — Gdt, (16)
Zj# X0 xt

which has a unique strong solution for Xg’N e R\ and X%V never hits \V, where
={x= ()ck),](v 13 Xxi = x; for some i # j} [4].
The derivation of (1.6) is as follows: Let uév (dxy) = mév (xn)dxpy be the labeled
symmetric distribution of :“0 . Consider a Dirichlet form on LZ(RY, ,tlév ) such that

af d
M9 (f.) = f Z ! o il @xn).
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Then, using (1.4) and integration by parts, we specify the generator —A™ of £ 7 on
L2RY, /1 g Ny such that

FUEINE o i 9 XN:{X’Jre}a
2 izl i 1 i axi N N axi.

From this, we deduce that the associated diffusion X%V is given by (1.6).
Taking the limit N — 00 in (1.6), we intuitively obtain the infinite-dimensional
SDE (ISDE) of X? = (X?);cy such that

oo
: . 1
dX{" =dB] + Y —————dt — 0, (1.7)

0,j
i X=X

which was introduced in [22] with & = 0. For each 6, we have a unique, strong solution
X% of (1.7) such that Xg = s for iy o ["'-a.s.s, where [ is a labeling map. Although
only the & = 0 ISDE of X0 = X= (X")jen is studied in [17,23], the general 6 # 0
ISDE is nevertheless follows easily using the transformation

X% = x! — 1.

Let X9 .8 X0 be the associated delabeled process. Then, X? = {Xe} takes (g as
an invariant probablhty measure and is not pg-symmetric for 6 # 0.

The precise meaning of the drift term in (1.7) is the substitution of X9 (X{ 9, ’), eN
for the function b(x, y) given by the conditional sum

. 1 R

b(x.y) = lim Z p— — 6 inLj(1g ), (1.8)
lx—yil<r
wherey = )", 8, and u([;] is the one-Campbell measure of g (see (2.1)). We do this
in such a way that b(Xf’l, 3 i 1) P2 7). Because ug is translation invariant, it can be

easily checked that (1.8) is equivalent to (1.9):

. 1 ,
br,y) = lim § pamrel BelARL L (ulh. (1.9)
l

[yil<r

Let [ and [ be labeling maps. We denote by [y, and [, the first m-components
of [y and [, respectively. We assume that, for each m € N,

Jim nd oty =g ol weakly . (1.10)
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Let X*N = (X%N)N ‘and X = (X%);en be solutions of SDEs (1.6) and (1.11),
respectively, such that

N
; : 1 1 i
O.N,i _ qpi _ O.Ni 4.
dX; =dB; + E N 0N dr NX, dr —6dt, (1.6)
J#FL !
oo 1
i__ i : _
dX; =dB; +r11_¥101o E - - dr. (1.11)

J#ELXI=x] |<r
We now state the first main result of the present paper.

Theorem 1.1 Assume (1.2) and (1.10). Assume that Xg’N = ,u,g’ o [;]1 in distribution
and Xo = g o =1 in distribution. Then, foreachm € N,

Nlim (xON1 xON2 0 xONmy —(xl X2 X™ (1.12)
—00

weakly in C([0, 00), R™). In particular, the limit X = (X");en does not satisfy (1.7)
for any 6 other than 0 = 0.

We next consider non-reversible initial distributions. Let XV = (xV ’i)lN: , and

Y’ = (Y1), cn be solutions of (1.13) and (1.14), respectively, such that

N
. . 1 .
N,l _ 1 _ N,l
dx'=dB + ) T dr — =X, dr, (1.13)
A ‘
> 1
8.i i
dy/" = dB] + lim_ > mdr + 6 dr. (1.14)
J Yy e T '

Note that XV = X% and that X" is not reversible with respect to ,uév o [;1 for any
6 # 0. We remark that the delabeld process YO = {D iend yoi}of Y? has invariant

probability measure pg and is not symmetric with respect to pg for 6 # 0. We state
the second main theorem.

Theorem 1.2 Assume (1.2) and (1.10). Assume that X(])v = /,Lév o [;1 in distribution
and Yg = g o I~V in distribution. Then, for each m € N

Jim xNt xN2 o xNmy =y vyt (1.15)
—00

weakly in C ([0, c0), R™).

— We refer to the second claim in Theorem 1.1, and (1.15) as the SDE gaps. The
convergence in (1.15) of Theorem 1.2 resembles the “Propagation of Chaos” in the
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sense that the limit equation (1.14) depends on the initial distribution, although it
is a linear equation. Because the logarithmic potential is by its nature long-ranged,
the effect of initial distributions /Lg] still remains in the limit ISDE, and the rigidity
of the Sine; point process makes the residual effect a non-random drift term 6dr.
There is a result of dynamical universality of Dyson’s Brownian motion in [9]. This
result is proved in a fairy general situation, but is restricted to finite-particle sys-
tems. Our result derives the ISDE from a finite-particle system and is thus regarded
as a dynamical universality of Dyson’s Brownian motion in infinite dimensions
and clarifies that the ISDE of Dyson’s Brownian motion in infinite dimensions
plays a role of Brownian motion in invariance principle in finite dimensions.

— Let Sy be a Borel set such that 15(Sy) = 1, where —v/2 < 6 < +/2. In [7], the
first author proves that one can choose Sy such that Sy N Syr = B if & # 6" and
that for each s € Sy (1.11) has a strong solution X such that X = [(s) and that

oo
X = Z(SX;- €Sy forallr € [0, 00).

i=1

This implies that the state space of solutions of (1.11) can be decomposed into
uncountable disjoint components. We conjecture that the component Sy is ergodic
for each 0 € (—ﬁ, «/E).

— For 6 = 0, the convergence (1.12) is also proved in [16]. The proof in [16] is
algebraic and valid only for dimension d = 1 and inverse temperature f = 2
with the logarithmic potential. It relies on an explicit calculation of the space-
time correlation functions, the strong Markov property of the stochastic dynamics
given by the algebraic construction, the identity of the associated Dirichlet forms
constructed by two completely different methods, and the uniqueness of solutions
of ISDE (1.7).
Although one may prove (1.10) for & # 0 using the algebraic method in [16],
this requires a lot of work as mentioned above. We remark that, as a corollary and
an application, Theorem 1.1 proves the weak convergence of finite-dimensional
distributions explicitly given by the space-time correlation functions. We refer to
[5,16] for the representation of these correlation functions.

— Tsai proves the pathwise uniqueness and the existence of strong solutions of

ﬂ o0
dX; = dB] + 7 lim >
J#LXi=X] |<r

i

t t

;.dt (i eN) (1.16)
X]

for general B € [1, 00) in [23]. The proof uses the classical stochastic analysis and
crucially depends on a specific monotonicity of SDEs (1.16). For 8 = 1, 4, we
have a good control of the correlation functions as for 8 = 2. Hence, our method
can be applied to 8 = 1, 4 and the same result as for § = 2 in Theorem 1.1 holds.
We shall return to this point in future.

It would be an interesting problem to apply Tsai’s method to the present problem.
One may obtain a convergence at the non-equilibrium level. The difficulty is,
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however, Tsai’s method crucially depends on the translation invariance of the
stationary measure. As a result, it seems difficult at present to apply it to solve the
ISDE for the Airy interacting Brownian motion. It is thus not necessary obvious
that Tsai’s method is applicable for & # 0 because of lack of the translation
invariance.

The key point of the proof of Theorem 1.1 is to prove the convergence of the drift
coefficient bV (x, y) of the N-particle system to the drift coefficient b(x, y) of the limit
ISDE even if 6 # 0. That is, as N — o0,

N
i=1

X =y X — v
Y pit=r * T

Note that support of the coefficients bV (x, y) and b(x, y) are mutually disjoint and
that the sum in % is not neutral for any 6 # 0. We shall prove uniform bounds of the
tail of the coefficients using fine estimates of the correlation functions and cancel out
the deviation of the sum in "V with 6. Because of rigidity of the Sine, point process,
we justify this cancelation not only for static but also dynamical instances.

The organization of the paper is as follows: In Sect. 2, we prepare general theories
for interacting Brownian motion in infinite dimensions. In Sect. 3, we quote estimates
for the oscillator wave functions and determinantal kernels. In Sect. 4, we prove key
estimates (2.21)—(2.24). In Sect. 5, we complete the proof of Theorem 1.1. In Sect. 6,
we prove Theorem 1.2.

2 Preliminaries from General Theory

In this section, we present the general theory described in [8,12,13,17] in a reduced
form sufficient for the current purpose. In particular, we take the space where particles
move in R rather than R¢ as in the cited articles.

2.1 p-Reversible Diffusions

Let S, = {s € R;|s| < r}. The configuration space S over R is a Polish space
equipped with the vague topology such that

S= S=Z8si;s(S,)<oof0rallreN .

1

Eachelement s € Sis called a configuration regarded as countable delabeled particles.
A probability measure © on (S, B(S)) is called a point process (a random point field).
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A locally integrable symmetric function p" : R* — [0, co) is called the n-point
correlation function of © with respect to the Lebesgue measure if p" satisfies

s(A;)!
/Aflx...xwp (51 sn) s = /n<s(A)—k)' @)

for any sequence of disjoint bounded measurable subsets Ay, ..., A, C R and a
sequence of natural numbers ki, ..., k,, satisfying ky + --- + k,, = n. Here, we
assume that S(A;)!/(S(A;) —k;)! = 0fors(A;) —k; <O.

Let ® : R — Rand ¥ : R> - R U {oo} be measurable functions called free and
interaction potentials, respectively. Let 7, be the Hamiltonian on S, given by

Hr(X) = Z D(x;) + Z W(xj,x;) forx= Z(sz'-

X; €S, j;ék,xj,xkes, i

Foreachm, r € Nand pu-a.s.& € S, let /L;'?E denote the regular conditional probability
such that '

wyle = m(ms, (X) € - | w5 (X) = mwse (§), X(S;) = m).

Here, for a subset A, we set 4 : S — S by m4(S) = s(- N A).
Let A, denote the Poisson point process with intensity being a Lebesgue measure
on S,. We set A”(-) = A,(-NS), where S”" = {s € S; s(S,;) = m}.

Definition 1 ([13],[14]) A pointprocess u issaid tobe a (P, ¥)-quasi-Gibbs measure
if its regular conditional probabilities u:’,’g satisfy, for any r, m € N and p-a.s. &,

oy e T OIAT(dx) < e (dX) < e O AT (dX).

Here, ¢y is a positive constant depending on r, m, &.

The significance of the quasi-Gibbs property is to guarantee the existence of -
reversible diffusion process { Ps} on S given by the natural Dirichlet form associated
with p, in analogy with distorted Brownian motion in finite dimensions.

To introduce the Dirichlet form, we provide some notations. We say a function f on
Sislocalif fiso[mk]- measurable for some compact set K in R. For a local function
fonS,we >say fis smooth if f is smooth, where f (x1, ...) is the symmetric function
such that f (x1,...) = f(X) forx = ", 8y,. Let D, be the set of all bounded, locally
smooth functions on S.

Let D be the standard square field on S such that for f, g € D, and s = Zi Js;

1 .
DI/ g)(s) = 5 {Z(WW@} (®).

i
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We write s = (s;);. Because the function ), (V; f )(s)(V;g)(s) is symmetric in s =
(si)i, we regard it as a function of S. We set L2(,u) = L3S, ) and let

4 (frg) = fs DIf, gl®)uds), D' = {f € DN L2w); E*(f. f) < 0o}.

We quote:

Lemma 1 ([13]) Assume that i is a (P, ¥)-quasi-Gibbs measure with upper semi-
continuous (O, V). Assume that the correlation functions {p"} are locally bounded
foralln € N. Then, (E*, DY) is closable on Lz(u). Furthermore, there exists a ju-
reversible diffusion process { Ps} associate with the Dirichlet form (EV*, D*) on L ().
Here, (E*, D) is the closure of (E*, DY) on L?(1).

2.2 Infinite-Dimensional SDEs

Suppose that diffusion {Ps} in Lemma 1 is collision-free and that each tagged par-
ticle does not explode. Then, we can construct labeled dynamics X = (X');ez by
introducing the initial labeling [ = (I;);<z such that

Xo = [(Xp).

Indeed, once the label [ is given at time zero, then each particle retains the tag for all
time because of the collision-free and explosion-free property.

To specify the ISDEs satisfied by X above, we introduce the notion of the logarithmic
derivative of , which was introduced in [12].

A point process [, is called the reduced Palm measure of 1 conditioned at x € R
if u, is the regular conditional probability defined as

My = p(- = 8x|s({x}) = 1).
A Radon measure M on R x S is called the 1-Campbell measure of y if
M (dxds) = p' (x)px(ds)dx. @2.1)

We write f € LY (ut)if £ € LP(S, x S, ulll) forall r € N.

loc

Definition 2 A R-valued functiond” € Lj (u!") is called the logarithmic derivative
of p if, for all ¢ € C°(R) ® D,

/R (ot rdy) = - / Vo, Yyl (dxdy).

RxS

Under these assumptions, we obtain the following:
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Lemma 2 ([12]) Assume that X = (X!)jey is the collision-free and explosion-free.
Then, X is a solution of the following ISDE:

. 1 o
dX; =dB, + Ed”(X;, Xdr (i € N) 2.2)
with initial condition Xo = s for w o [~ '-a.s.s, where X?i = ij;l SX_/.

2.3 Finite-Particle Approximations

Let u be a point process with correlation functions {p"},en. Let {u" }nen be a
sequence of point processes on R such that MN ({s(R) = N}) = 1. We assume:
(A1) Each pV has correlation functions {p™"},en satisfying, for each r € N,

Nlim oV (x) = p"(x) uniformly onS}' for eachn € N, 2.3)
—00

sup sup p™N"(x) < chn", (2.4)
NeNxeS)

where 0 < ¢3(r) < oo and O < ¢3(r) < 1 are constants independent of n € N.

It is known that (2.3) and (2.4) imply the weak convergence of {u™} to w [13,
Lemma A.1]. As in Sect. 1, let [ and [y be labels of w1 and u”, respectively. We
assume:

(A2) Foreachm € N,

Jim o [y =mol,' weaklyin R™,

We shall later take u? o [;1 as an initial distribution of labeled finite-particle
system. Therefore, (A2) means the convergence of the initial distribution of the labeled
dynamics.

For a labeled process XN = (XN-HN

ir1» where N € N, we set

N
N,oi __ .
Xz - Z é XTN-./ ’
J#i

where Xiv’oi denotes the zero measure for N = 1. Let bV b : R x S — R be
measurable functions. We introduce the finite-dimensional SDE of X" = (XV-) lN: "
with these coefficients such thatfor 1 <i < N

dxM' = dB! + bV (XN, XN-*Ndr. (2.5)
We assume:

1

(A3) SDE (2.5) with initial condition Xf)v = s has a unique solution for uV o [y -a.s.
s for each N. This solution does not explode.
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Letu, u¥, w:R — Rand g: R2 — R be measurable functions. We set
9, (x.y) =D xr(x = y)gx. yi), (2.6)
i
wr(x,y) = (1= xr(x — yi))g(x. ), @7

1

where y = Zi dy; and x, € CSO(R) is a cut-off function such that 0 < x, < 1,
xr(x) =0for |x| > r+1,and x,(x) = 1 for |x| < r. We assume the following.
(A4) Each 1V has a logarithmic derivative d" such that

dV e, y) = u () + g, (x, y) + w,(x, y). (2.8)

Furthermore, we assume that

(1) u" are in C'(R). Furthermore, u™ and Vu® converge uniformly to u and Vu,
respectively, on each compact set in R.
(2) g € CY(R*> N {x # y}). There exists a p > 1 such that, for each R € N,

lim lim Sup/ X — Mg, MIP oM (ydxdy =0, (2.9)
X€ESR, lx—y|<27P

P N0

where ,o)lcv '1'is a one-correlation function of the reduced Palm measure /Lfcv .
(3) There exists a continuous function w : R — R such that for each R € N

lim limsupf lwy (x,y) — w(x)[PduN 1 = 0. (2.10)
SprxS

r—00 N—o00

Let p be such that 1 < p < p. Assume (A1) and (A4). Then, [12, Theorem 45]

deduces that the logarithmic derivative d* of u exists in Lf;c (u!y and is given by
d(x,y) = u(x) + g(x,y) + w(x). 2.11)
Here, g(x,y) = lim, ., g,(x,Yy) and the convergence of limg, takes place in

Lp

loc

(u!'). Taking (2.11) into account, we introduce the ISDE of X = (X%);cn:
. . 1 . . . .
dX; =dB, +E{u(X;)—l-g(X’,Xf’)jLw(X;)}dt. (2.12)

Under the assumptions of Lemma 2, ISDE (2.12) with Xy = s has a solution for
uo [~1-a.s.s. Moreover, the associated delabeled diffusion X = {X;} is u-reversible,
where X; = ),y 6 Xi for X; = (X f)ieN. As for uniqueness, we recall the notion of
u-absolute continuity solution introduced in [17].

Let X = (X');en be a family of solution of (2.12) satisfying Xo = s for o[ !-a.s.
s. Let u; be the distribution of the delabeled process X; = ZieN 1) Xi at time ¢ with
initial distribution w. That is, u, is given by
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M = / Ps(X; € -)du
S
We say that X satisfies the p-absolute continuity condition if

uy < pu forallt >0, (2.13)

where u; < p means that w, is absolutely continuous with respect to w. If X is
u-reversible, then (2.13) is satisfied.

We say ISDE (2.12) has p-uniqueness in law of solutions if X and X’ are solutions
with the same initial distributions satisfying the p-absolute continuity condition, then
they are equivalent in law. We assume:

(AS) ISDE (2.12) has p-uniqueness in law of solutions.

It is proved in [17] that ISDE (2.2) has a strong solution and a solution of (2.2) is
pathwise unique for almost sure staring points if, loosely speaking, w is tail trivial,
the logarithmic derivative d* has a sort of off-diagonal smoothness, and the one-
correlation function has sub-exponential growth at infinity. This results implies u-
uniqueness in law. We refer to Theorems 2.1 in [17] for details. The next result is a
special case of [8, Theorem 2.1].

Lemma 3 ([8, Theorem 2.1]) Make the same assumptions in Lemmas 1 and 2. Assume
(AD)~(A4). Assume that Xy = u™N o 1! in distribution. Then, {X"}yen is tight in
C ([0, 00); RN and each limit point X of {XN}yen is a solution of (2.12) with initial
distribution p o =Y. If, in addition, we assume (A5), then for any m € N

lim (XM, xNmy = (xt L X

N—o0

weakly in C([0, o0), R™). Here, XN = (}(N’i)f\/:1 and X = (X);en as before.

2.4 Reduction of Theorem 1.1 to (2.10)

In this subsection, we deduce Theorem 1.1 from Lemma 3 by assuming (2.10). We

N
take ué\' and wg as in Sect. 1. Then, the logarithmic derivative d*¢ of ,ugv is given by

N

2 2
d @y =Y i ﬁx — 20, (2.14)

i=1

where y = Zi dy,. From (2.14), we take coefficients in (A4) as follows:

W (x) = —%x —260. u(x)=—20, wix)="20, (2.15)
2
glx,y) = ——. (2.16)
x—y

Other functions are given by (2.6) and (2.7).
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Lemma 4 Assume (2.10) holds with p = 2 for the coefficients as above. Then, (1.12)
holds.

Proof To prove Lemma 4, we check the assumptions in Lemma 3, that is, the assump-
tions in Lemma 1, Lemma 2, and (A1)—(A5).

The assumptions in Lemma 1 are proved in [13]. The assumptions in Lemma 2 are
checked in [12]. (A1) is well known. (A2) is assumed by (1.10). (A3) is obvious as
the interaction is smooth outside the origin, and the capacity of the colliding set {x; =
xj forsome i # j} is zero (see [4,11]). Furthermore, the one-correlation functions
are bounded, which guarantees explosion-free of tagged particles. We take functions
in (A4) as (2.15) and (2.16). These satisfy (2.8), (2.9), and (1) of (A4). (2.10) is
satisfied by assumption. It is known that g is tail trivial [15]. Then, (AS) follows
from tail triviality of ©y and [17, Theorem 3.1]. All the assumptions in Lemma 3 are
thus satisfied and hence yield (1.12). O

2.5 A Sufficient Condition for (2.10)

The most crucial step to apply Lemma 3 is to check (2.10). Indeed, it only remains to
prove (2.10) for Theorem 1.1. We quote then a sufficient condition for (2.10) in terms
of correlation functions from [12]. Lemma 6 is a special case of [12, Lemma 53].

Let MQ{ . be the reduced Palm measure of ,uév conditioned at x. We denote the
supremum norm in x over Sg by || - ||g. Let E* and Var® denote the expectation and
variance with respect to -, respectively.

Lemma 5 Assume |0] < «/2. Let w, be as in (2.7) with g(x, y) given by (2.16). Let
w(x) = 20 as in (2.15). Then, (2.10) follows from (2.17)—(2.20).

lim lim sup |E# [w, (x, y)] — 26 H —0, 2.17)
=00 N oo R

lim Tim sup [E* [w, (x, y)] —E"g»X[wr(x,y)]H —0, (2.18)
= N R

lim lim sup || Var [w,(x,y)]” —0, (2.19)
= N R

lim lim sup || Var®® [w, (x, y)] — Var"é.s [w,(x,y)]H —0.  (220)
= Nooco R

Proof Lemma 5 follows from [12, Lemma 52]. Indeed, (2.17), (2.18), (2.19), and
(2.20) in the present paper correspond to (5.4), (5.2), (5.5), and (5.3) in [12], respec-
tively. We note that in [12] we use 1g, (x) instead of x, (x). This slight modification
yields no difficulty. O

Multiplying w,(x, y) by a half, we give a sufficient condition of (2.17)—(2.20) in

terms of correlation functions. Let pév " and pév " be the m-point correlation functions

of ugf , and MQI , respectively. Let

Sroo@) =S, ={yeR;r < |x —y| < oo}.
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Lemma 6 Assume 60| < V2. Then, (2.17)—(2.20) follow from (2.21)—(2.24).

o' ()
lim lim sup / 9—dy—9” —0, 2.21)
r=00 N_s 00 s, X —Y R
N,1 N,1
Por ) —pg  (¥)
lim lim sup / bx V07 Py T dyH —0, 2.22)
= Nsoo S¥, X =y R
N,1
lim lim sup / pg—(y)zdy
=% Nooo sy (x—y)
N2 N1 N1
+f Po (¥, 2) —pg Mpy " (2) ddeH _o. (2.23)
(552 x =y —2) R

o0 ) — oy ()
lim Tim sup H / B.x o dy+

r=>0 N0 (x — y)2
/ o (v.2) = op Mep @ — (o P (v 2) — oy ey (D))
(S5)? (x=y)x—2)

dydz H o 0.
(2.24)

Proof Lemma 6 follows immediately from a standard calculation of correlation func-
tions and the definitions of w, and ;. O

3 Subsidiary Estimates

Keeping Lemma 6 in mind, our task is to prove (2.21)—(2.24). To control the correlation
functions in Lemma 6, we prepare in this section estimates of the oscillator wave
functions and determinantal kernels. We shall use these estimates in Sect. 4.

3.1 Oscillator Wave Functions

Let H,(x) = (—1)"ex2(%)"e_"2 be Hermite polynomials. Let v, (x) denote the

oscillator wave functions defined by

1 _a2
Yn(x) = We 2 H,(x).

Note that {w,,}gio is an orthonormal system; fR Y ()Y (x) dx = 8y

The following estimates for these oscillator wave functions are essentially due to
Plancherel-Rotach [19]. We quote here a version from Katori—-Tanemura [6].
Lemma 7 ([6]) Let C,im, Crzlm, and D,llm be the constants introduced in [6] (see (A.1)
in[6,572pl). Let] = —1,0, 1 and N, L € N. Then, we have the following.
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(1) Let 0 < 7 < % Assume that N sin® 7 > CNF¢ for some C > 0 and ¢ > 0. Then,

o 1
YN (V2N cosT) = w(%y

Amsint
L-1 n N
cl (N +1,1)siny — (2t —sin2t) + D} (r) — (1 +1
x[rgmi_% om (N =+ r)sm{z( T —sin2t) + D,,,(v) — (1 + )r}

+O<Nslinr>}

(2) Let t > 0. Assume that N sinh® t > CN* for some C > 0 and ¢ > 0. Then,

YN+ (V2N cosh 1)
1

1+0(N—1)( 1 >4 <N+l+l> .

= ——| — ] ex ——— )2t —sinh2t) + (1 + Dt
2m sinht \2N p[ 2 ( )+ ( ) ]
L cosh? 7
[Zchm(r,NH)Jro(Nsmhr)].
n=0 m=0

Proof (1) and (2) follow from (5.5) and (5.10) in [6], respectively. ]

We next quote estimates from [6, 18].
Lemma 8 ([6], [18])

(1) Let y = v/2N cost with N € Nand 0 < t < 7. Assume that Nsin® 7 > CN¢
for some C > 0 and ¢ > 0. Then,

N—1
VN
,glﬂk(y)z \/2N y +O<m>-

(2) Let y = /2N cosh t with N € N and t > 0. Assume that N sinh® T > CN? for
some C > 0 and ¢ > 0. Then,

N—-1

> ()’ = ( N ) G.1)

= — 2N
(3) There is a positive constant c4 such that for all N € N

sup [N )] < N (3.2)

}E
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Proof (1) follows from Lemma 5.2 (i) in [6]. (2) follows from Lemma 5.2 (ii) in [6].
From Lemma 6.9 in [18], there exists a constant ¢4 such that

INTyYNy@VN + yN~8) < —2 e [<2N3, 00).

(Iviyh*
Hence, we have

c4

NI = —

s € [0, 00). (3.3)
NEQV NIy — 2V

Claim (3.2) is immediate from (3.3) and the well-known property such that Yy (y) =
Yy (—y) if N is even and that ¢n (y) = —y¥n(—y) if N is odd. O

3.2 Determinantal Kernels of N-Particle Systems

We recall the definition of determinantal point processes. Let K : R> — C be a
measurable kernel. A probability measure u on S is called a determinantal point
process with kernel K if, for each n, its n-point correlation function is given by

ot (x1, ..., xy) = det[ K (x;, xj)]ijl. (3.4)

If K is an Hermitian symmetric and of locally trace class such that 0 < Spec(K) < 1,
then there exists a unique determinantal point process with kernel K [20,21].

The distribution of the delabeled eigenvalues of GUE associated with (1.1) is a
determinantal point process with kernel KV such that

N-1

KNG, y) = ) g ()vn(y). (3.5)

k=0

The Christoffel-Darboux formula and a simple calculation yield the following.

KV (r. y) = ﬁ I U1 () — Py YN ()
, i |

(3.6)
xr=Yy
From the scaling (1.3), /Lg’ is a determinantal point process with kernel
1 x+ N6 y+ NO
KN (x,y) = —KN( , ) (3.7)
PEPEUNT UUN W
Letxy = \/Nx and yy = \/Ny. We set
1 1

LV (x, y) = =K (xn, yv) = —=KY (v Nx, V/Ny). 3.8)

y JN N» YN N y
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From (3.7) and (3.8), we then clearly see that
KN (x, =LN(5- 6,2 9),
g (X, ¥) vty T
LY (x, y) = KY (N (x — 6), N(y — 0)). (3.9)
From (3.6), we deduce
LV (e, x) = (/Y2 {Wn—1em) Wy (en) — Yy ) ¥y (en))- (3.10)
Using the Schwartz inequality to (3.5), we see from (3.6) and (3.8) that
LY (v, 2)? < LN (v, LY (2, 2). (3.11)
From here on, we assume
2 ! (3.12)
——<a<——. .
3972
We set
BY = (—v2 = N*, —vV2+ N*)U (V2 — N*, V2 + N%). (3.13)
The next lemma will be used in Sect. 4.
Lemma 9 We set UN = R\B". Then, the following holds.
(1) There exists a constant c5 such that for all N € N
sup |LY (x, )| < csN'S, (3.14)
x,yeR
sup |LN(x, y)| < cs. (3.15)
x,yeU¥N
(2) Assume (3.12). Then, there exists a constant cg such that
IV, ) <— foreachx,y e UN, N e N. (3.16)

T Nlx —yl
Proof Tt is well known that
V2 () = V1 (6) = Vi A+ T (0).
From this and (3.10), we see that with a simple calculation

LV (x. x) = L{WN—UV — YNV} (xn)
ﬁ N N—
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1
vl
- {{wﬁ_l 92— VT N Tyavn — V1 + N Ty 1t} ().
(3.17)

Combining this with (3.2), we obtain

1
N2 5¢3
LN()C,)C) < TSCZN_% T4Nl .

W)

From this and (3.11), we deduce (3.14). From Lemma 7 and (3.17), we see that

sup sup LY (y,y) < oo.
NENyeUN

We deduce (3.15) from this and (3.11). Taking a constant c¢s5 in (3.14) and (3.15) in
common completes the proof of (1).
Claim (3.16) follows from Lemma 7, (3.6), and (3.8). O

4 Proof of (2.21)—(2.24)

As we see in Sect. 2, the point of the proof of Theorem 1.1 is to check conditions
(2.21)—(2.24) in Lemma 6. The purpose of this section is to prove these equations. We
recall a property of the reduced Palm measures of determinantal point processes.

Lemma 10 ([20]) Let u be a determinantal point process with kernel K. Assume that
K(x,y) = K(y,x) and 0 < Spec(K) < 1. Then, the reduced Palm measure i is a
determinantal point process with kernel K, given by

Ky, x)K (x,
Ke(v.2) = K(y.2) — % @1

for x such that K (x, x) > 0.

Let Kév be the determinantal kernel of ,u(l,v given by (3.7). Let ,ugf . beasinLemma 6.

Recall that K} (y, z) = K}/ (z, y) by definition. Then, from this, (3.7), and (4.1), 11,
is a determinantal point process with kernel

KY (x, KLY (x, 2)

Ko (v, 2) =K (y,2) — K¥ e m)
9 k)

4.2)

From (3.4) and (4.2), we calculate correlation functions in (2.21)—(2.24) as follows.

Py () =K (v, y), 4.3)
Ky (x, y)?

- 44
Kév(x,x) ' “9

N,1 N,1
Py V) —pg  (¥) =
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e 2.2 =y ey @) = —KY (v, 2%, 4.5)
o (v.2) = pp Mea @ — (e (v 2) — £y (e ()
=-K).(0.2* +K) (v.2)*
LK K K0 KY 3K 2

= . 4.6
KY (x, x) K) (x, x)? *0
Using these and (3.9), we rewrite (2.21)—(2.24) as follows.
Lemma 11 7o simplify the notation, let
N _ X N _ T N
Xg =—+4+0, T, (x)=1yeR; =< |x3 —yl<oop. .7
N ’ N
Then, (2.21)—(2.24) are equivalent to (4.8)—(4.11) below, respectively.
LN
lim lim sup ’/ (y y) — GH =0, (4.8)
=00 Nosoo NJTN () X@ R
1 LN XN, )2
lim lim sup / LD, | =0 (4.9)
=0 N_o00 TNOO(X) Xg -y L (Xg s X9 )
1 LN LN , 2
lim lim sup ’/ (. 7) ————dy —/ N v ZI\)] dydz” =0,
r=>00 N_ oo N (%) N |X6 _y|2 TN (x)? (XG — y)(Xe —2) R
(4.10)
1 1 LN, y)?
lim Tim sup / — N(9 Gy
7% N—oo TN (x) N Xy — yI2L (Xg s Xy )
1
“
N2 (X)) — () —2)
5 { LYo LYo LY og o LY ogl N o) 2) }d dzH
LY (Y, x) LY (x), x))2 '
4.11)

Proof Recall that LN (x, y) = KéV(N(x —6), N(y — 0)) by (3.9). Then, Lemma 11
follows easily from (4.3)—(4.6). O

Let BY and U" be as in Lemma 9. Decompose U" into U{V and Uév such that
¥ =[-V2+ N V2N, U) =R\(—V2-N*V2+N%.

Then, clearly UN = UY UUY and R = UY U UY UBY. We begin by the integral
outside U{V .
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Lemma 12 Let 0 < g < 3/2. Then,

morlf Sl

Proof From (3.14), (4.7), and the definition of BY, we obtain that

imso] [, S0
im sup
BN |X9 -l R

N—o0
. ch3

< lim sup H H
N—o00 BN |X9 - R

< limsupcI N [log‘ﬁ 16— (W2 N9

N—o0

—log‘%—l—@—(ﬁ—i—N“)

|

+ c;’N%Hlog‘% 10— (=2 - N%

—1og‘%+@ — (—V2+ N%)

]

=ON$T*) =0 asN — . (4.13)

Here, we used ¢ < 3/2 and ¢ < —1/2 in the last line.
Note that |y| > /2 4+ N for y € Uév. Let y = +/2cosh 7. Then, we see that

Nsinh®7 = N(cosh2 T — 1)%
— N272(y2 —2)3 > N2 3 (2V/2N® + N2)3.

From this, ¢ > 0, and « > —2/3, we apply (3.1) to obtain c¢7 > 0 such that,

. LMy, y)4 . c7
lim sup ———dy|| <limsup i 5 dy| =0,
N—o00 uy |X9 yl R N—o0 Uy IXg — yIN9(y= —2)4 R

which combined with (4.13) yields (4.12). O
Lemma 13 (4.8) holds.

Proof Lety = 2 cosT. Then, N sind t > N2_% (2«/§N°‘ —Nz"‘) fory € UJIV. Then,
applying Lemma 8 (1) we deduce that for each r > 0

: LN (y y)
lim sup -0
N—o00 N, (x)mUN X -y R

N V2-N 1
=limsupH[/ / } 7 2 —y2dy — QH
N—o0 V2ne  Ix s )X —yJT

V2

1 1

:'P.V/ — —J2- y2dy—9‘—0
[9 ymw

Combining this with (4.12), we obtain (4.8). O
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It is well known that Kév (x, x) are positive and continuous in x, and {Kév (x, X)}NeN
converges to Ky (x, x) = /2 — 62 /7 uniformly on each compact set. Then, we see

1
sup sup ————
NeN xeSg K (x,x)
From this, (3.9), and (4.7), we see that the following constant cg is finite.

1
€g 1= SUp SUp ————— < O0. (4.14)
NeN xeSg L (Xg 1X(9)

Lemma 14 (4.15) and (4.16) below hold. In particular, (4.9) holds.

lim 1i / LR 0 (4.15)
im lim sup H yH =Y :
=00 N_ o0 TN (x) |X£] — y|LN (Xév, ng) R

lim lim sup H/ . LN(X]%V’y; . dyH —0. (4.16)
=% N TN, (x) |X9 —ylL (Xe ) R

Proof From (3.11) and (4.12), we deduce that as N — oo

Ly N’ 2
H /R\ugv X — yﬁﬁv()y(gv H /R\W I|_X0(y_ i)l yH — 0. (4.17)

From (3.16) and (4.14), foreach N € Nand r > 0

H / LV (x, )2 dy H <H /  cgesdy H
Nnuy (x5 — yILV o' xD TR T 1 conuy N2ixg" — y3 IR

CC
< %68

= }"2'

(4.18)

Hence, (4.15) follows from (4.17) and (4.18). This completes the proof of (4.15).
We next prove (4.16). From (3.11), (4.12), and (4.14), we see for each r > 0

i ”/ LY ), )
im sup yH
N»oo T cnuY XY — yILN (Y, xR

=0. (4.19)

From (3.16) and (4.14), we see that foreach N € Nandr > 0

I Lt od ) <) _cady |
75 conuy XY — yILV o sy IR = e conuy NixY — y2 1k
< 26‘668.

(4.20)

r

Combining (4.19) and (4.20), we obtain (4.16). O
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Lemma 15 (4.21) and (4.22) hold. In particular, (4.10) holds.

LN
lim lim sup H / Loy H -0, 4.21)
'=0% Nsoo TN (x) N|X9 _y|2 R
L 2
lim lim sup H / v, 2) s H —0. (4.22)
=% Nosoo TN (x)? |X9 _y”Xg R
Proof Note that Ly (y,y) < cs on UY by (3.15). Then, by the definition of T, C>Q(x)
LN(y, y) cs 2N 2c¢s
dy <228 _ 25 (4.23)

/Tr,Noo(xmuN NIxy —y2 " T N r o

By (3.14), we see LV (v, y) < csN% on R. Recall that |BY| = 4N by construction

Furthermore, cg := limsupy_, ., sup, gy |||Xév —y|72|lg < oo. Hence, for each

r>0
LN (y, N34N®
lim sup f M dy < limsup 22 ¢ 4.24)
N—oo JTN,(x)NBN N|X9 —Y|2 N—o0 N

Here, we used o« < —1/2. We thus obtain (4.21) from (4.23) and (4.24).
We proceed with the proof of (4.22). We first consider the integral away from the

diagonal line. By (3.16) and the Schwartz inequality, we see that

LY (v, 2)?
| e
(T )NUN2N{y—z= 4} [Xg — VIIXg — 2] R
2
Cs
1y A S—
(TN NUN2N{ly—zl= ) N2ly — 271Xy — ylIXy — 2] R
<[{ [, K %
dydz}
TN 2nlly—zlz 41 N2y — z2x) — y|?
¥ el |
ydz
TN 2nlly—zl= 41 N2y — z[2x) — z|? R
2
o |
2dydz R

” /;,Noo(x)zﬂ{y —zl=4) Nzly - Z|2|X£)V =yl
22N{2N} 4c6

_6N2 r r

The last line follows from a straightforward calculation. Indeed, first integrating z over

{ly —z| = %}, and then integrating y over T, _(x), we obtain the inequality in the
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last line. We therefore see that

lim lim

H/ LY (y, 2)2
r=>00 N—=oo Il J(T N ()nUN)20{|y—z|>

— ydzH =0. (425
Ly Ixg) — ylix) —z R

We next consider the integral near the diagonal. From (3.15), we see that

J ]
(TN nUN RNy —zi< by XY — ylIx) — 2 R

3
- | o]
(T )NUN 2N (|y—z|< & pIXY = ylix) —z] R
<

JASN R ———
< vz
Tmu)zmﬂyﬂ\ﬁ} 200x) =y Ix) —z)? R

2c 2c22N  4c?
i ” / H = 52N _ TS (4.26)
TN %) — yl2 N r r
From (4.25) and (4.26), we have

LN 2
r—>00 N—oo Il J(TN_(x)nUN)2 |X9 - )’||X9 -z R

We next consider the integral on BY x BV . Let

c1o = limsup  sup |X£’ -1
N—00 xeSg,yeBN

=yl

Then, we deduce from (3.14) and the definition of BV given by (3.13) that

LN 2
lim supr Ldydz”
Nooo 1SN nBvy2 XY _y“Xg —z| R

< lim c2c3)N3(AN)? = (4.28)
N—o00

Here, we used |BY| = 4N for the inequality and @ < —1/2 for the last equality
We finally consider the case UN x BY. Then, a similar argument yields

LN .z 2
| / #dydz” (4.29)
(T (NUN) x (T, ()NBY) [Xg — YIIXg — z] R
- H / LYy LYz, 2) dy dzH
~ i conumyxaooneyy X)) — ylix) —z| R
LY (y. ) LNz, 2)

= H N dy N dZH

T nUY Xy —y| "~ JrM By x5 —z| IR
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— O(og N)O(N3+%) 0 as N — oo.

Collecting (4.27), (4.28), and (4.29), we conclude (4.22). O
Lemma 16 (4.11) holds.

Proof We shall estimate the three terms in (4.11) beginning with the first. From (3.11)
and (4.21), we have

LY xY, y)2d
lim lim sup ”/ ( 92 i]) ) Y H (4.30)
r=00 Nooo TN 0 NIXY — yPLY o x)) IR

Ly d
< lim limsup ”f O, y)dy H
=00 Noo 1) NIXY — y2 1R

Next, using the Schwartz inequality, we have for the second term

” / LY (v, LY (Y, LY (X, 2) dydz H
N2 XY =yl — LYo X)) IR
1
2

_ H / LN (y, z)2dydz
Tz XY = ylIxY —z] IR

B H/ LN (y, 2)%dydz
T2 XY — ylIx) —z]

2

/ LY, 2LV (x), 2)%dydz
N2 XY — yxY — zILV (), x)2

R

1
2

/ LV (x), y)? o H
RSN 0o 1x) — yILV o) x)) IR

Applying (4.22) and (4.15) to the last line, we obtain

lim lim sup
r—00 N—o00

H/ . DL WL Ddydzy oy
TN (x)z

X |
XN — ylx) — LY oY xR

We finally estimate the third term. From (4.16), as N — oo, we have

(4.32)

H / LN (Xév, y)LN (Xév, z)dydz H
T2 XY — yIIxY — LV (Y, xV)2 I®

B LYo ndy 2
H[/Tocu) X — yILN(Xév,XéV)} HR

LY, »dy g2
ZH/ e X H 0 by (4.16).
7,00 (X) |X9 _Y|L (Xg 7X0) R

From (4.30), (4.31), and (4.32), we obtain (4.11). This completes the proof. O
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5 Proof of Theorem 1.1
From Lemmas 13-16, we deduce that all the assumptions (2.21)—(2.24) in Lemma 6

are satisfied. Hence, (2.10) is proved by Lemma 6. Then, Theorem 1.1 follows from
Lemmas 4, 5, and 6.

6 Proof of Theorem 1.2
In this section, we prove Theorem 1.2 using Theorem 1.1. It is sufficient for the proof

of Theorem 1.2 to prove (1.15)in C ([0, T]; R™) for each T' € N.Hence,we fix T € N.
Let XV = (XV)N  be as in (1.13). Let YN/ = {¥/""'} such that

R N2 6.1)

Then, from (1.13) we see that YV = (Y?V-))N | is a solution of
1
dy{"N' =dB! + dt——YeNldt—i-—dt 6.2
Z v v (62)
J#l
with the same initial condition as XV. Let P?*Y and Q- be the distributions of XV

and YOV on C([0, T]; RV), respectively. Then, applying the Girsanov theorem [3,
pp- 190-195] to (6.2), we see that

dofN T&o 1T 0
dPQN(W)_exp{/O X;NdBt—z/(; X;‘N‘ dr 6.3)
1= 1=
N 2

0 oeT
= —_ Bl—— s
oo | ¥ Lo 5

where we write W = (W') € C([0, T]; RY) and {Bl}N | under PN are independent
copies of Brownian motions starting at the origin.

Lemma 17 For each € > 0,

lim QG’N(’ apo W) — 1‘ > e) —0. (6.4)

N—oo dQQ’N

Proof 1t is sufficient for (6.4) to prove, for each € > 0,
dQG,N
I PQ’N(‘— W) — 1’ > ) —0.
Ngnoo dP@,N( ) =€

This follows from (6.3) immediately. O
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Proof of Theorem 1.2 We write W = (WL ..., W™ e C(0,T]; R™) for W =
(W’)ZN= 1» Where m < N < oo. Let Q0 be the distribution of the solution Y? with

initial distribution g o =1, From Theorem 1.1 and (6.1), we deduce that for each
meN

Jim Q"N (W™ e ) = Q"(W" € )

weakly in C([0, T]; R™). Then, from this, for each F € C,(C ([0, T]; R™)),

lim F(W™do?N :/ F(W™do?. (6.5)
N—co Je(o,71:RN) C([0.TLRY)
We obtain from (6.4) and (6.5) that
dpo-N
lim / FW™dPN? = lim FW™")———(W)dQ""
N—o0 Je(0,71;RN) N—o0 Je(o,T1:RN) (o
= lim F(W™do?N
N—=00 J([0,T]:RN)
= [ F(W™do°.
C(10.TI:RY)
This implies (1.15). We have thus completed the proof of Theorem 1.2. O
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