
J Theor Probab (2018) 31:2167–2193
https://doi.org/10.1007/s10959-017-0785-x

From Low- to High-Dimensional Moments Without
Magic

Bernhard G. Bodmann1 · Martin Ehler2 ·
Manuel Gräf3

Received: 26 September 2016 / Revised: 1 August 2017 / Published online: 14 September 2017
© The Author(s) 2017

Abstract We aim to compute the first few moments of a high-dimensional random
vector from the first few moments of a number of its low-dimensional projections. To
this end, we identify algebraic conditions on the set of low-dimensional projectors that
yield explicit reconstruction formulas. We also provide a computational framework,
with which suitable projectors can be derived by solving an optimization problem.
Finally, we show that randomized projections permit approximate recovery.
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1 Introduction

A central problem in dimension reduction, distributed sensing, and many statistical
applications is the identification of properties of a high-dimensional random vector
from knowledge of marginal distributions, i.e., the distributions of one or more lower-
dimensional projections of the random vector. A simple example in statistics is the
problem of computing its lowest moments. However, knowledge of some marginal
distributions may not be sufficient to identify the first few high-dimensional moments.
Here, we shall address the problem of designing low-dimensional projections of the
random vector, so that its high-dimensional moments can be computed from the lower-
dimensional ones by an explicit formula.

We consider a random vector X in Rd , distributed according to some Borel proba-
bility measure. In practice, X could be a random signal that is observed by distributed
sensors, each measuring a certain piece of information. Inspired by [8,20], each sen-
sor is modeled as a matrix Q j ∈ R

k×d with full rank k < d. Computing with
Pj := Q∗

j (Q j Q∗
j )

−1Q j instead of Q j , we can effectively turn our measurement
matrices into orthogonal projectors {Pj }nj=1 ⊂ Gk,d , where Gk,d denotes the set of

orthogonal projectors on R
d with rank k, i.e., Pj is the orthogonal projector onto the

row-space of Q j . A variant of the Cramér–Wold Theorem says that two random vec-
tors X,Y ∈ R

d are identically distributed if and only if, for all P ∈ Gk,d , the two
random vectors PX, PY are identically distributed, cf. [26]. For further related results
on projected distributions, we refer to [4,10,14,17]. Here, we do not wish to identify
the distribution of X , but restrict us to recover its first fewmoments. On the other hand,
we want to achieve this by observing the moments of a number of low-dimensional
projections and combining the information in a process we call moment fusion.

1.1 Moment Fusion

Suppose X is a random vector in R
d distributed according to some unknown Borel

probability measure on R
d . For a fixed integer p > 0, our goal is to determine the

low-order moments
EXs, s ∈ N

d , |s| ≤ p, (1)

from low-order moments of lower-dimensional projections. We use here multi-index
notation Xs = Xs1

1 · · · Xsd
d and |s| = ∑d

j=1 s j . More specifically, we suppose that
we have only access to the first p moments of low-dimensional linear measurements,
i.e., for certain matrices {Q j }nj=1 ⊂ R

k×d with fixed rank k < d, we suppose that we
know

E(Q j X)s, s ∈ N
k, |s| ≤ p. (2)

From knowledge of {Q j }nj=1 and the first p moments of the dimension reduced ran-
dom vectors Q j X , j = 1, . . . , n, in (2), we aim to reconstruct the high-dimensional
moments of X in (1).
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1.2 Special Examples

Suppose that x ∈ R
d is a vector of unknowns. If {Q j }nj=1 are chosen such that

{(Q j x)
s : j = 1, . . . , n, s ∈ N

k, |s| ≤ p}

spans the space of polynomials in x of degree at most p, then (1) can be computed
from (2) by expressing each expected value EXs , s ∈ N

d , |s| ≤ p, in a suitable linear
combination of the expected values of {E(Q j X)s

′ : j = 1, . . . , n, s′ ∈ N
k, |s′| ≤

p }nj=1. We provide an example for k = 1:

Example 1.1 (1) If p = 1, then we can simply choose Q j := e∗
j , j = 1, . . . , d, where

{e j }dj=1 is the standard orthonormal basis for Rd . So, reconstruction is possible
with d projectors.

(2) For p = 2, the {Q j }dj=1 together with Q+
i, j := e∗

i + e∗
j , i < j allow to reconstruct

(1) from (2) with
(d+1

2

)
many low-dimensional measurements.

(3) If p = 3, one can check that {Q j }nj=1 with Q+
i, j , Q

−
i, j := e∗

i − e∗
j , i < j , and

Qi, j,k := e∗
i + e∗

j + e∗
k , i < j < k, allow reconstruction, so that we use

(d+2
3

)

many linear measurements.
(4) For p = 4, we can choose {Q j }nj=1 with Q+

i, j , Q
−
i, j , Q̃

+
i, j := e∗

i + 2e∗
j , i < j ,

and Qi, j,k , Q
−
i, j,k := e∗

i − e∗
j + e∗

k , Q̃
−
i, j,k := e∗

i + e∗
j − e∗

k , i < j < k, and
Qi, j,k,� := e∗

i + e∗
j + e∗

k + e∗
� , i < j < k < �, allow reconstruction, so that we

use
(d+3

4

)
many linear measurements.

Note that the number of linear measurements in Example 1.1 is exactly the dimension
of the homogeneous polynomials of degree p in d variables. Similar examples can be
derived for more general situations, and the following example deals with k = 2:

Example 1.2 (1) If p = 1, then the choice
(e∗

1
e∗
2

)
,
(e∗

3
e∗
4

)
, . . ., up to

(e∗
d−1
e∗
d

)
, for d even or

up to
(e∗

d
e∗
1

)
, for d odd, enables us to reconstruct the high-dimensional mean from

the lower-dimensional means.
(2) For p = 2, moment reconstruction works with the

(d
2

)
projectors

(e∗
i
e∗
j

)
, for i < j .

1.3 Outline and Contribution of this Paper

The present paper is dedicated to go beyond the explicit Examples 1.1 and 1.2, and
instead, provide a general strategy for moment reconstruction. Our main contribution
is the identification of conditions on the projectors that yield explicit reconstruction
formulas.Moreover, such conditions are compatiblewith numerical schemes,meaning
that suitable projectors can be constructed explicitly by minimizing a certain potential
function as discussed in Sects. 4 and 5.We also discuss randomized constructions. Our
approach stems from applied harmonic analysis and relates to the concept of so-called
Grassmannian cubatures, see, for instance, [2,3].
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The remainder of the paper is organized as follows: The condition on the projec-
tions and the associated reconstruction formula are formulated in Sect. 2 for random
vectors X on the unit sphere Sd−1. In Sect. 3 we deal with X ∈ R

d and either limit
us to up to third moments or use rank one projections. Sections 4 and 5 are dedicated
to the construction of suitable projectors based on numerical optimization and on a
randomization strategy. The results in Sect. 6 imply that suitably randomized con-
structions can provide approximate moment recovery, with an error bound that holds
with overwhelming probability.

2 Main Reconstruction Results for X ∈ S
d−1

In this section,we focus on randomvectors X with values in the unit sphereSd−1 ofRd .
We will rely on some results on cubatures for polynomial spaces on the Grassmannian
manifold, see [1–3,12,13].

2.1 General Moment Reconstruction

We shall make use of the trace inner product 〈M1, M2〉 := tr(M1M2), for M1, M2 ∈
Hd := {M ∈ R

d×d : M	 = M}. The Grassmann space

Gk,d := {P ∈ Hd : P2 = P, tr(P) = k}

is the set of rank-k orthogonal projections on Rd . Note that {Q j }nj=1 ⊂ R
k×d with all

matrices having full rank k < d, and Pj := Q∗
j (Q j Q∗

j )
−1Q j , for j = 1, . . . , n, yield

{Pj }nj=1 ⊂ Gk,d . In place of {Q j }nj=1 we shall find conditions on {Pj }nj=1 that enable
moment reconstruction, i.e., conditions on the respective row-spaces of {Q j }nj=1.

The orthogonal groupO(d) acts transitively on Gk,d by conjugation P 
→ U PU∗,
for P ∈ Gk,d and U ∈ O(d). Thus, there is an orthogonally invariant probability
measure σk,d on Gk,d , which is induced by the Haar measure on O(d). This measure
leads to the trace moments

μk,d(M1, . . . , Mt ) :=
∫

Gk,d

〈P, M1〉 · · · 〈P, Mt 〉dσk,d(P), {Mi }ti=1 ⊂ Hd ,

which were introduced in [12,13]. In the present section, we can restrict ourselves to

μt
k,d(M) := μk,d(M, . . . , M),

where M occurs t times, and in Sect. 3 we shall make use of the more general case.
In the following result, we use the notation Ex,y := 1

2 (xy
∗ + yx∗), for x, y ∈ R

d .
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Theorem 2.1 For α ∈ N
d with |α| = t , there are yα

s,i ∈ S
d−1 and coefficients

f α
s,i ∈ R, such that

xα =
t∑

s=1

m∑

i=1

f α
s,iμ

s
k,d(Ex,yα

s,i
), for all x ∈ S

d−1.

Proof Note that [13, Lemma 7.1] yields

xi1 . . . xit = 1

t !
∑

∅=J⊂{1,...,t}
(−1)t+#J

⎛

⎝
∑

j∈J

xi j

⎞

⎠

t

, (3)

and
∑

j∈J xi j =∑ j∈J 〈x, ei j 〉 leads to

xi1 . . . xit = 1

t !
∑

∅=J⊂{1,...,t}
(−1)t+#J

⎛

⎝

〈

x,
∑

j∈J

ei j

〉⎞

⎠

t

. (4)

Thus, it is sufficient to check that each 〈x, y〉t , for x, y ∈ S
d−1, can be written as a

linear combination of terms μs
k,d(Ex,y), s = 1, . . . , t .

We shall prove the statement by an induction over t . The case t = 1 is covered by

〈x, y〉 = d

k
μ1
k,d(Ex,y),

see, for instance [3].
To consider general t , we need some preparations. A partition of t is an integer

vector π = (π1, . . . , πt ) whose entries are ordered by π1 ≥ . . . ≥ πt ≥ 0 and sum
up to t = ∑t

i=1 πi . We denote the number of nonzero entries by l(π), and the set of
partitions π of t with l(π) ≤ d is denoted by Pt,d .

According to invariant theory, cf. [25, Theorem 7.1], the expansion

μt
k,d(M) = 1

qt,d

∑

π∈Pt,d

απ tr(Mπ1) · · · tr(Mπl(π) ) (5)

holds with suitable real-valued coefficients qt,d and απ . For x, y ∈ S
d−1, we observe

that tr(Es
x,y) is a polynomial of degree s in 〈x, y〉 with leading coefficient ( 12 )s−1. The

latter yields, for x, y ∈ S
d−1, that μt

k,d(Ex,y) is a polynomial in 〈x, y〉 of degree t ,
i.e.,

μt
k,d(Ex,y) = 1

qt,d

∑

π∈Pt

απ

(

(
1

2
)t−l(π)〈x, y〉t +

t−1∑

s=1

cπ,s〈x, y〉s
)

= 〈x, y〉t
2t qt,d

⎛

⎝
∑

π∈Pt

απ2
l(π)

⎞

⎠+
∑

π∈Pt

t−1∑

s=1

cπ,s〈x, y〉s .
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One can check that its leading coefficient does not vanish. Indeed, denoting by D2 a
diagonal rank-2 projection matrix, we observe

1

2t qt,d

⎛

⎝
∑

π∈Pt

απ2
l(π)

⎞

⎠ = μt
k,d(D2) =

∫

Gk,d

〈P, D2〉t dσk,d(P)

and the right-hand side is positive since the function 〈·, D2〉t ≥ 0 does not vanish
entirely on Gk,d . Therefore, we can isolate 〈x, y〉t and write it as a linear combination
ofμt

k,d(Ex,y) and terms 〈x, y〉s , for s = 1, . . . , t −1. By induction, each term 〈x, y〉s ,
s = 1, . . . , t − 1 can be written as a linear combination of terms μs

k,d(Ex,y), s =
1, . . . , t − 1, which concludes the proof. ��
Theorem 2.1 represents monomials by linear combinations of μs

k,d(Ex,yα
s,i

), for some

yα
s,i ∈ S

d−1. Next, we shall aim to replace the latter with projected monomials. Let us
define a function space on Gk,d by

Pol�t (Gk,d) := span
{
〈M, ·〉s∣∣Gk,d

: M ∈ Hd , rank(M) ≤ �, s ≤ t
}

(6)

and introduce the concept of cubatures on Gk,d .
Definition 2.2 For {Pj }nj=1 ⊂ Gk,d and {ω j }nj=1 ⊂ R, we say that {(Pj , ω j )}nj=1 is a

cubature for Pol�t (Gk,d) if
n∑

j=1

ω j f (Pj ) =
∫

Gk,d

f (P)dσk,d(P), for all f ∈ Pol�t (Gk,d).

Note that the construction of cubatures for Pol�t (Gk,d) and the properties of the function
space Pol�t (Gk,d) are discussed inmore detail in the Sects. 4 and 5, respectively.We can
now formulate our first result onmoment reconstruction, which is a direct consequence
of Theorem 2.1.

Corollary 2.3 If {(Pj , ω j )}nj=1 is a cubature for Pol2t (Gk,d), then, for α ∈ N
d with

|α| = t , there are coefficients aα
β ∈ R, such that, for any random vector X ∈ S

d−1,

EXα =
∑

|β|≤t

aα
β

n∑

j=1

ω jE(Pj X)β . (7)

Proof We observe that 〈Pj x, y〉 = 〈Pj , Ex,y〉 holds, for all x, y ∈ R
d . According to

Theorem 2.1 and since 〈·, Ex,y〉t |Gk,d ∈ Pol2t (Gk,d), the cubature property yields

EXα =
t∑

s=1

m∑

i=1

f α
s,i

n∑

j=1

ω jE
〈
Pj X, yα

s,i

〉s
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and the assertion follows by observing that the terms E〈Pj X, yα
s,i 〉s are linear combi-

nations of moments of order s of Pj X . ��
Since we are originally given the moments of Q j X , we must still express E(Pj X)β ,
where Pj = Q∗

j (Q j Q∗
j )

−1Q j and β ∈ N
d , |β| ≤ t , by means of moments of Q j X .

If we suppress the index j , we obtain the multilinear relation

E(PX)i1 · · · (PX)it =
k∑

j1,..., jt=1

E
(
(QX) j1 · · · (QX) jt

)
z j1,i1 · · · z jt ,it ,

where zi,k = (Q∗(QQ∗)−1)i,k . Thus, the moments of Q j X enable us to apply (7).

2.2 Explicit Moment Reconstruction

This section is dedicated to explicitly compute the expansion in Corollary 2.3 for
t = 1, 2, 3 by using a very particular class of polynomial functions. Indeed, zonal
polynomials, cf. [9,16,18,19,24], are special multivariate homogeneous polynomials
on Hd . These polynomials Cπ are indexed by all partitions π of N and are invariant
under orthogonal conjugation. According to [18], see also [12,13], we obtain

μt
k,d(M) =

∑

π∈Pt,d

Cπ (M)Cπ (Dk)

Cπ (Dk)
, for all M ∈ Hd , (8)

where Dk is a diagonal matrix inRd×d with k ones and zeros elsewhere. Knowledge of
the zonal polynomials enabled us in [13] to compute the trace moments for arbitrarily
large t and with explicit expressions for t = 1, 2, 3:

Theorem 2.4 ([13]) For all d ≥ 3 and k < d, we have

μ1
k,d(M) = 1

q1,d
α(1) tr(M),

μ2
k,d(M) = 1

q2,d

(
α(1,1) tr

2(M) + α(2) tr(M
2)
)

,

μ3
k,d(M) = 1

q3,d

(
α(1,1,1) tr

3(M) + α(2,1) tr(M) tr(M2) + α(3) tr(M
3)
)

,

holds for all M ∈ Hd , where q1,d = d, α(1) = k, and

q2,d = (d − 1)d(d + 2),

α(1,1) = (d + 1)k2 − 2k

α(2) = 2k(d − k),

q3,d = (d − 2)(d − 1)d(d + 2)(d + 4),
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α(1,1,1) = (d2 + 3d − 2)k3 − 6(d + 2)k2 + 16k,

α(2,1) = −6(d + 2)k3 + 6(d2 + 2d + 4)k2 − 24dk,

α(3) = 16k3 − 24dk2 + 8d2k.

Ford = 2 and k = 1 inTheorem2.4, the constantq3,d would be zero, but so areα(1,1,1),
α(2,1), and α(3). The identity for μ3

1,2(M) still holds with the modified coefficients

q3,2 = 48, α(1,1,1) = 1, α(2,1) = 6, α(3) = 8.

Theorem 2.4 and the proof of Theorem 2.1 lead to the following explicit moment
recovery formulas.

Corollary 2.5 Let X ∈ S
d−1 be a random vector with d ≥ 3.

(i) If {(Pj , ω j )}nj=1 is a cubature for Pol
2
1(Gk,d), then, for i = 1, . . . , d,

EXi = A1

n∑

j=1

ω jE(Pj X)i , where A1 = d

k
. (9)

(ii) If {(Pj , ω j )}nj=1 is a cubature for Pol22(Gk,d), then (9) holds and, for i, � =
1, . . . , d,

EXi X� = A2

n∑

j=1

ω jE(Pj X)i (Pj X)� − B2
k

d
δi,�, (10)

where

A2 = (d − 1)d(d + 2)

k(dk + d − 2)
, B2 = (d − k)d

kd(k + 1) − 2k
.

(iii) If {(Pj , ω j )}nj=1 is a cubature for Pol23(Gk,d), then (9) and (10) hold and, for
i, �,m = 1, . . . , d,

EXi X�Xm = A3

n∑

j=1

ω jE(Pj X)i (Pj X)�(Pj X)m

− B3

3

n∑

j=1

ω j
(
E(Pj X)iδ�,m + E(Pj X)�δi,m + E(Pj X)mδi,�

) k

d
,

where

A3 = (d − 2)(d − 1)d(d + 2)(d + 4)

k(d2k2 + 3d2k + 2d2 − 6dk − 12d − 4k2)
,

B3 = 3d2(d2k + 2d2 − 5dk − 4d + 4k2 + 2k)

k2(d2k2 + 3d2k + 2d2 + 3dk2 − 9dk − 12d + 2k2 − 6k + 16)
.

Remark 2.6 Note that (9) is proved by monomial identities, so that it also holds when
the expectation is eliminated on both sides.
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Proof of Corollary 2.5 For x, y ∈ R
d , we obtain

tr(Ex,y) = 〈x, y〉,
tr(E2

x,y) = 1

2
(〈x, y〉2 + ‖x‖2‖y‖2),

tr(E3
x,y) = 1

4
(〈x, y〉3 + 3〈x, y〉‖x‖2‖y‖2),

so that Theorem 2.4 implies, for all d ≥ 3 and x, y ∈ R
d ,

μ1
k,d(Ex,y) = α(1)

q1,d
〈x, y〉, (11)

μ2
k,d(Ex,y) = 2α(1,1) + α(2)

2q2,d
〈x, y〉2 + α(2)

2q2,d
‖x‖2‖y‖2, (12)

μ3
k,d(Ex,y) = 4α(1,1,1) + 2α(2,1) + α(3)

4q3,d
〈x, y〉3 + 2α(2,1) + α(3)

4q3,d
〈x, y〉‖x‖2‖y‖2,

(13)

where the constants q1,d , q2,d , q3,d and α(1), α(2), α(3), α(1,1,1), α(2,1) are specified in
Theorem 2.4.

Suppose now that {(Pj , ω j )}nj=1 is a cubature of Pol
2
t (Gk,d), so that we obtain

μt
k,d(Ex,y) =

n∑

j=1

ω j 〈Pj , Ex,y〉t =
n∑

j=1

ω j 〈Pj x, y〉t ,

and the left-hand sides in (11), (12), and (13) can be replaced with
∑n

j=1 ω j 〈Pj x, y〉t ,
for t = 1, 2, 3, respectively. In the following, we assume x ∈ S

d−1 and y ∈ R
d .

Rearranging terms leads to the following formulas, respectively, and A1, A2, A3, and
B2, B3 are as in Corollary 2.5. If {(Pj , ω j )}nj=1 is a cubature for Pol

2
1(Gk,d), then

〈x, y〉 = A1

n∑

j=1

ω j 〈Pj x, y〉. (14)

If {(Pj , ω j )}nj=1 is a cubature for Pol
2
2(Gk,d), then (14) holds and

〈x, y〉2 = A2

n∑

j=1

ω j 〈Pj x, y〉2 − B2‖y‖2 k
d

. (15)

If {(Pj , ω j )}nj=1 is a cubature for Pol
2
3(Gk,d), then (14), (15) hold, so that

〈x, y〉3 = A3

n∑

j=1

ω j 〈Pj x, y〉3 − B3‖y‖2
n∑

j=1

ω j 〈Pj x, y〉 k
d

. (16)
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As at the beginning of the proof of Theorem 2.1, [13, Lemma 7.1] yields

xi1 · · · xit = 1

t !
∑

J⊂{1,...,t}
(−1)t+#J

⎛

⎝

〈

x,
∑

j∈J

ei j

〉⎞

⎠

t

.

In order to compute the term xi1 . . . xit , we can repeatedly apply (14), (15), (16), respec-
tively, with y = ∑

j∈J ei j . Such rearrangements yield the formulas and constants in
Corollary 2.5. ��
Remark 2.7 The framework thatwepresent in the present paper also allows the explicit
computations of higher-order moments beyond t = 1, 2, 3. Indeed, if {(Pj , ω j )}nj=1

is a cubature for Pol2t (Gk,d), then we can compute all moments of order t by using the
zonal polynomials. However, we do not have one closed formula incorporating t as a
variable, but we need to compute the expressions for each t separately. Note that the
formulas in Theorem 2.5 are merely based on identities between the corresponding
polynomials in the entries of a unit vector x ∈ R

d .

3 Moment Fusion for X ∈ R
d

3.1 The General Case for up to Cubic Moments

A homogeneity argument yields that (9) even holds for random X ∈ R
d . Analogously,

considering (10) as a monomial identity with B2
k
d δi,� = B2

k
d ‖x‖2δi,�, for x ∈ S

d−1,
a homogeneity argument yields that, for random X ∈ R

d ,

EXi X� = A2

n∑

j=1

ω jE(Pj X)i (Pj X)� − B2

d∑

r=1

n∑

j=1

ω jE(Pj X)2r δi,�,

provided that {(Pj , ω j )}nj=1 is a cubature for Pol
2
2(Gk,d).

In order to deal with X ∈ R
d for t = 3 as well, we observe that the formulas in

(11), (12), and (13) hold in more generality, see [13, Theorem 7.3],

μk,d(X1) = 1

q1,d
α(1) tr(X1),

μk,d(X1, X2) = 1

q2,d

(
α(1,1) tr(X1) tr(X2) + α(2) tr(X1X2)

)
,

μk,d(X1, X2, X3) = 1

q3,d

(
α(1,1,1) tr(X1) tr(X2) tr(X3)

+α(2,1)

3
(tr(X1) tr(X2X3)+tr(X2) tr(X1X3)+tr(X3) tr(X1X2))

+α(3) tr(X1X2X3)
)
.

For x ∈ R
d and y ∈ S

d−1, using the above relation gives
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μk,d(Ex,y, xx
∗) = α(1,1) + α(2)

q2,d
〈x, y〉‖x‖2 = k(k + 2)

d(d + 2)
〈x, y〉‖x‖2

and combined with identity (13), we obtain

〈x, y〉3 = C (1)
3,dμ

3
k,d(Ex,y) − C (2)

3,dμk,d(Ex,y, xx
∗) (17)

with C (1)
3,d = 4q3,d

4α(1,1,1)+2α(2,1)+α(3)
and C (2)

3,d = 2α(2,1)+α(3)

(4α(1,1,1)+2α(2,1)+α(3))
k(k+2)
d(d+2)

. Indeed, one

can check that the term 4α(1,1,1) + 2α(2,1) + α(3) is nonzero. If {(Pj , ω j )}nj=1 is a

cubature for Pol23(Gk,d), then we can apply

μ3
k,d(Ex,y) =

n∑

j=1

ω j 〈Pj x, y〉3, (18)

because the mapping P 
→ 〈P, Ex,y〉3 is contained in Pol23(Gk,d). In Proposition 5.1
we shall check that P 
→ 〈P, Ex,y〉〈P, xx∗〉 is also contained in Pol23(Gk,d), so that
also

μk,d(Ex,y, xx
∗) =

n∑

j=1

d∑

m=1

ω j 〈Pj x, y〉(Pj x)
2
m (19)

holds. The actual moments of order 3 can now be computed from (4) by observing
that 〈Pj x, y〉 yields a linear combination of the terms (Pj x)1, . . . , (Pj x)d .

We now collect the resulting expressions for all third moments:

Corollary 3.1 Let X ∈ R
d be a random vector with d ≥ 3, let the constants A1, A2

and B2 be as above, and let i, h, l ∈ {1, 2, . . . , d} with i = h = l = i .

(i) If {(Pj , ω j )}nj=1 is a cubature for Pol21(Gk,d), then

EXi = A1

n∑

j=1

ω jE(Pj X)i . (20)

(ii) If {(Pj , ω j )}nj=1 is a cubature for Pol22(Gk,d), then (20) holds and

EX2
i = A2

n∑

j=1

ω jE(Pj X)2i − B2

n∑

j=1

d∑

m=1

ω jE(Pj X)2m, (21)

EXi X� = A2

n∑

j=1

ω jE(Pj X)i (Pj X)�. (22)

(iii) If {(Pj , ω j )}nj=1 is a cubature for Pol23(Gk,d), then (20), (21), (22) hold and
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EX3
i = C (1)

3,d

n∑

j=1

ω jE(Pj X)3i − C (2)
3,d

n∑

j=1

d∑

m=1

ω jE(Pj X)i (Pj X)2m, (23)

EX2
i Xh =C (1)

3,d

n∑

j=1

ω jE(Pj X)2i (Pj Xh) − 1

3
C (2)
3,d

n∑

j=1

d∑

m=1

ω jE(Pj X)h(Pj X)2m,

(24)

EXi Xh X� = C (1)
3,d

n∑

j=1

ω jE(Pj X)i (Pj X)h(Pj X)�. (25)

Proof Thefirst and secondmoments have already been discussed prior to the statement
of the corollary. For the third moments, the expression for EX3

i results from choosing
y = ei in (17), (18), and (19), which yields (23).

Next, we address (24). The choices y+ = 1√
2
(ei + eh) and y− = 1√

2
(ei + eh) yield

x2i xh =
√
2

3
[〈x, y+〉3 − 〈x, y−〉3] − 1

3
〈x, eh〉3.

Applying (17), (18), and (19) leads to

EX2
i Xh =C (1)

3,d

n∑

j=1

ω j ((Pj X)2i (Pj X)h + 1

3
(Pj X)3h)

− 2

3
C (2)
3,d

n∑

j=1

d∑

m=1

ω j (Pj X)h(Pj X)2m − 1

3
EX3

h

and inserting the expression for EX3
h then reduces this to (24).

Finally, for EXi Xh X�, we observe

xi xhx� = 1

24
((xi + xh + x�)

3 + (xi − xh − x�)
3 − (xi + xh − x�)

3 − (xi − xh + x�)
3).

By using y+++ = 1√
3
(ei + eh + e�), y+−− = 1√

3
(ei − eh − e�), y−−+ = − 1√

3
(ei +

e j − e�), and y−+− = − 1√
3
(ei − eh + e�), we obtain

EXi Xh X� =
√
3

8
E[〈X, y+++〉3 + 〈X, y+−−〉3 + 〈X, y−−+〉3 + 〈X, y−+−〉3],

and a calculation using (17), (18), and (19) leads to (25). ��

3.2 All Moments from Projections onto One-Dimensional Subspaces

In the previous section, we have outlined the recovery of the moments for t = 1, 2, 3
and general k. To address all moments t > 3, we now restrict us to k = 1.

123



J Theor Probab (2018) 31:2167–2193 2179

Let us denote the permutation group of {1, . . . , t} by St . We say a permutation
s ∈ St is associated to a partition π and denote this by s ∼ π if there is a set of
cycles {ci }mi=1 such that s = (c1) · · · (cm) and the cardinality of ci equals πi , for
i = 1, . . . ,m. Note that we also use the standard notation ci ∈ s for a cycle ci
occurring in s. For {Mi }ti=1 ⊂ Hd , we use a cycle index Mci := Mci,1 · · · Mci,�i

,
where ci = (ci,1 . . . ci,�i ).

To clarify notation, we provide a simple example.

Example 3.2 For t = 4, let the permutation s be given by

(
1 2 3 4
3 1 2 4

)

, and suppose we

have a set ofmatrices {Mi }4i=1, then s has the cyclic representation (c1)(c2) = (132)(4)
and is associated to the partition (3, 1, 0, 0). This implies Mc1 = M1M3M2 and
Mc2 = M4.

Due to the orthogonal invariance of the Haar measure, the Grassmannian trace
moments are invariant under the orthogonal group Od , i.e.,

μk,d(UM1, . . . ,UMt ) = μk,d(M1, . . . , Mt ), for all U ∈ Od .

A general result in invariant theory, cf. [25], and the invariance of μk,d under permu-
tations yield

μk,d(M1, . . . , Mt ) =
∑

π∈Pt

απ

∑

s∈St
s∼π

∏

c∈s
tr(Mc), (26)

where απ ∈ R, see also (5) for M1 = . . . = Mt .

Proposition 3.3 For d ≥ t , t ∈ N0, and provided that k = 1, the expansion (26) of
the trace moments possesses only positive coefficients απ , π ∈ Pt .

Proof For any fixed permutation σ : {1, . . . , t} → {1, . . . , t}, we consider the matri-
ces

Mi =
{
ei e∗

σ(i) + eσ(i)e∗
i , i = σ(i)

ei e∗
i , i = σ(i),

, i = 1, . . . , t,

where {ei }di=1 ∈ R
d is the standard basis.

Now, let s ∈ St be another arbitrary permutation with some cycle c ∈ s. We denote
the cardinality of c by l. From

tr(Mc) = tr(Mc1 · · · Mcl ) =
d∑

k1,...,kl=1

(Mc1)k1,k2(Mc2)k2,k3 · · · (Mcl−1)kl−1,kl (Mcl )kl ,k1

we conclude by the definition of Mi that the indices ki contribute to the sum if and
only if ki , ki+1mod l ∈ {ci , σ (ci )} for all i = 1, . . . , l. Equivalently, it must hold
that ki ∈ {ci , σ (ci )} ∩ {ci−1mod l , σ (ci−1mod l)}, i = 1, . . . , l. Since ci = c j and
σ(ci ) = σ(c j ) for i = j , this can only happen if ci = σ(ci−1mod l) for all i = 1, . . . , l
or ci−1mod l = σ(ci ) for all i = 1, . . . , l. Hence, the trace of Mc vanishes if and only
if neither the cycle c nor its inverse c−1 are contained in σ . More precisely,
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tr(Mc) =
{
1, c ∈ σ or c−1 ∈ σ,

0, else.

Using these observations we obtain

μ1,d(M1, . . . , Mt ) =
∑

π∈Pt

απ

∑

s∈St
s∼π

∏

c∈s
tr(Mc)

= απσ #{s ∈ St : c or c−1 ∈ σ,∀c ∈ s},

where πσ is the partition associated to σ . Hence, πσ is a fraction of the trace moment
μ1,d(M1, . . . , Mt ). It remains to verify that the latter is positive.

Together with the definition of the trace moments μ1,d(M1, . . . , Mt ) and those of
Mi we arrive at

μ1,d(M1, . . . , Mt ) =
∫

Od

t∏

i=1

〈OD1O
∗, Mi 〉dO

=
∫

Od

t∏

i=1

〈Oe1(Oe1)
∗, Mi 〉dO

=
∫

Od

t∏

i=1

2#{i,σ (i)}O1,i O1,σ (i)dO

=
∫

Od

( t∏

i=1

2#{i,σ (i)}O1,i

)( t∏

i=1

O1,σ (i)

)
dO.

Since σ is a permutation, we obtain

μ1,d(M1, . . . , Mt ) =
∫

Od

( t∏

i=1

2#{i,σ (i)}O1,i

)( t∏

i=1

O1,i

)
dO

=
∫

Od

t∏

i=1

2#{i,σ (i)}(O1,i )
2dO > 0

and the assertion follows. ��
Proposition 3.4 For fixed m, � ∈ N0 and d ∈ N with d ≥ m+� there are coefficients
{ai }�m/2�

i=0 ∈ R such that, for all x ∈ R
d , y ∈ S

d−1, it holds

〈x, y〉m‖x‖2� =
�m/2�∑

i=0

aiμ
(m−2i,�+i)
1,d (Ex,y, xx

∗). (27)
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Proof Let us first note that by the identity (26) the trace moments μ
(m,�)
1,d (Ex,y, xx∗),

m, � ∈ N0, can be written as polynomials in 〈x, y〉, ‖x‖2 and ‖y‖2. Hence, together
with the homogeneity in x and y we infer the representation

μ
(m,�)
1,d (Ex,y, xx

∗) =
�m/2�∑

i=0

b(m,�)
i 〈x, y〉m−2i‖x‖2(i+�), x ∈ R

d , y ∈ S
d−1, (28)

for some coefficients b(m,�)
i ∈ R. Moreover, we have

b(m,�)
0 > 0, d ≥ m + �, (29)

which follows from Proposition 3.3 and the fact that the coefficients of 〈x, y〉m‖x‖2�
in any term of the form

r∏

i=1

tr
( si∏

j=1

(Ex,y)
mi, j (xx∗)�i, j

)
, with

r∑

i=1

si∑

j=1

mi, j = m,

r∑

i=1

si∑

j=1

�i, j = �

are positive.
Now, the statement (3.4) will follow by induction over m. Therefore, let m ≥ 2,

� ∈ N0 with d ≥ m + � be given and assume that the statement (3.4) holds for all
m′ = m − 2i , �′ = � + i , i = 1, . . . , �m/2�. Using equation (28) we obtain

μ
(m,�)
1,d (Ex,y, xx

∗) = b(m,�)
0 〈x, y〉m‖x‖2� +

�m/2�∑

i=1

b(m,�)
i 〈x, y〉m−2i‖x‖2(�+i).

Since d ≥ m + � > m′ + �′ = m + � − i , i = 1, . . . , �m/2�, we can expand
the sum on the right-hand side by the induction hypothesis into trace moments
μ

(m−2i,�+i)
1,d (Ex,y, xx∗), i = 1, . . . , �m/2�. Hence, using b(m,�)

0 = 0, see (29), we
can rearrange terms and arrive at the statement (27). It remains to show the induction
base with the cases m ∈ {0, 1}, � ∈ N0, d ≥ m + �.

For m = 0, � ∈ N0 and d ∈ N we observe by orthogonal invariance

μ
(0,�)
1,d (Ex,y, xx

∗) = μ�
1,d(xx

∗) = μ�
1,d(D1)‖x‖2�, x ∈ R

d .

The term μ�
1,d(D1) is positive and has been explicitly computed in [3]:

μ�
1,d(D1) = (1/2)�

(d/2)�
, (a)� := a(a + �) · · · (a + � − 1).

Hence, the assertion follows for m = 0, � ∈ N0.
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For m = 1, � ∈ N0 and d ∈ N we find by (26) that

μ
(1,�)
1,d (Ex,y, xx

∗) = 〈x, y〉‖x‖2�
∑

π∈P�+1

απ

∑

s∈S�+1
s∼π

1, x ∈ R
d , y ∈ S

d−1.

Moreover, we can check that the coefficient of 〈x, y〉‖x‖2� is nonzero by observing

∑

π∈Pt

απ

∑

s∈S�+1
s∼π

1 = μ�+1
1,d (I1) > 0,

which concludes the proof. ��

Corollary 3.5 If {(Pj , ω j )}nj=1 is a cubature for Pol3t (G1,d), then, for α ∈ N
d with

|α| = t ≤ d, there are coefficients aα
β ∈ R, such that, for any random vector X ∈ R

d ,

EXα =
∑

|β|=t

aα
β

n∑

j=1

ω jE(Pj X)β . (30)

Proof For any i = 0, . . . , �t/2�, the function F : G1,d → R defined by P 
→
〈P, Ex,y〉t−2i 〈P, xx∗〉2i is contained in Pol3t (G1,d), see part two of Proposition 4.1 in
the subsequent Sect. 4 for details. Thus, the cubature property yields

μ
(t−2i,i)
1,d (Ex,y j , xx

∗) =
n∑

j=1

ω j 〈Pj , Ex,y〉t−2i 〈Pj , xx
∗〉i

=
n∑

j=1

ω j 〈Pj x, y〉t−2i‖Pj x‖2i .

Note that 〈Pj x, y〉t−2i and ‖Pj x‖2i are linear combinations of monomials in Pj x of
degree t − 2i and 2i , respectively. Hence, their product is a linear combination of
monomials in Pj x of degree t . Applying (4) and invoking Proposition 3.4 for � = 0
concludes the proof. ��

4 Constructing Cubatures for Pol2t (Gk,d)

In this section,we shall derive a general framework for the construction of cubatures for
Pol2t (Gk,d) that are needed to apply our results in Theorem 2.5. For general existence
results of cubatures, we refer to [11], and explicit group theoretical constructions are
provided in [7]. In the following, we shall discuss random constructions as well as
deterministic constructions based on the solution of an optimization problem.
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4.1 Random Construction

For n,m ≥ dim(Pol�t (Gk,d)), it follows from classical arguments that there are
{Mi }mi=1 ⊂ H �

d and {Pj }nj=1 ⊂ Gk,d such that the matrix

(〈Mi , Pj 〉t ) i=1...,m
j=1,...,n

(31)

has rank dim(Pol�t (Gk,d)). We can now compute weights ω := {ω}nj=1 by solving the
linear system of equations

n∑

j=1

〈Mi , Pj 〉tω j = μt
k,d(Mi ), i = 1, . . . ,m,

which yields a cubature {(Pj , ω j )}nj=1. Note that the weights {ω j }nj=1 are not neces-
sarily nonnegative.

We claim thatMi and Pj can be chosen in a random fashion. Indeed, we observe that
both spaces, Gk,d and H �

d , can be parametrized analytically, so that there is D > 0
and a surjective analytic mapping F : R

D → (H �
d )m × (Gk,d)n . Let us assume

n = m = dim(Pol�t (Gk,d)) for simplicity. Otherwise, we can extract a submatrix. We
now define

G : (H �
d )n × (Gk,d)n → R

(
(Pi )

n
i=1, (Mj )

n
j=1

) 
→ det
(
(〈Pi , Mj 〉t )i, j

)
.

Since F is surjective, the mapping G ◦ F : RD → R is not identically zero. Moreover,
G ◦ F is analytic, so that (G ◦ F)−1({0}) ⊂ R

D has Lebesgue measure zero and,
hence, is a zero set with respect to any continuous probability measure ν on R

D .
Thus, the parametrization F enables a random choice in (H �

d )m × (Gk,d)n , so that
the matrix (31) has rank dim(Pol�t (Gk,d)) with probability one with respect to ν. In
other words, G−1({0}) is a zero set with respect to the induced probability measure
νF on (H �

d )m × (Gk,d)n . Thus, (31) has rank dim(Pol�t (Gk,d)) with probability one
and weights {ω j }nj=1 can be computed.

Let us also verify that (31) having rank dim(Pol�t (Gk,d)) is a generic property.
Indeed, both spaces, Gk,d and H �

d , are real algebraic varieties that are irreducible,
cf. [5,21], so that also (H �

d )m × (Gk,d)n is irreducible. Without loss of generality, we
can restrict us to n = m = dim(Pol�t (Gk,d)) again. Note that G is a polynomial map
and, hence, is Zariski continuous. Therefore, the set U := {u ∈ (H �

d )m × (Gk,d)n :
G(u) = 0} is Zariski open. Classical arguments yield that U cannot be empty, so
that irreducibility yields that U is Zariski dense. Thus, we have verified that, for
n,m ≥ dim(Pol�t (Gk,d)), there is a nonempty Zariski open and dense subset U in
(H �

d )m × (Gk,d)n such that the matrix
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(〈Mi , Pj 〉t ) i=1...,m
j=1,...,n

, where
(
(Mi )

m
i=1, (Pj )

n
j=1

) ∈ U,

has rank dim(Pol�t (Gk,d)).

4.2 Deterministic Construction

Here, we present the design of cubatures as the solution of an optimization problem.
As in [12], we shall apply the theory of reproducing kernel Hilbert spaces. We first
define a measure ν�,d on H �

d := {M ∈ Hd : rank(M) ≤ �} by

ν�,d(A) :=
∫

S�−1

∫

Od

1A(O∗ diag(λ1, . . . , λ�, 0, . . . , 0)O)dλdO ,

where 1A is the indicator function of the set A. It is not hard to see that the mapping

K �
t : Gk,d × Gk,d → R

(P1, P2) 
→
∫

H �
d

〈P1, M〉t 〈M, P2〉t dν�,d(M)

is a positive definite kernel on Gk,d . Next, we check that the function spaces under
consideration are spanned by the shifts of K �

t .

Proposition 4.1 If � and t are nonnegative integers, then

Pol�t (Gk,d) = span{〈M, ·〉t ∣∣Gk,d
: M ∈ Hd , rank(M) = �}

= span{K �
t (P, ·)|Gk,d : P ∈ Gk,d}.

If �1, �2 and t1, t2 are nonnegative integers, then

Pol�1t1 (Gk,d) · Pol�2t2 (Gk,d) ⊂ Pol�1+�2
t1+t2 (Gk,d).

Proof To verify the first equality, we must check that the left-hand side is contained
in the right-hand side. We first define

P̃ol
�
t (Gk,d) := span{〈M, ·〉t ∣∣Gk,d

: M ∈ H �
d }.

Since the rank � matrices are dense inH �
d , we obtain

P̃ol
�
t (Gk,d) = span{〈M, ·〉t ∣∣Gk,d

: M ∈ Hd , rank(M) = �}.
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Thus, thefirst equality holds ifwe canverify that the spaces P̃ol
�
t (Gk,d) are an ascending

sequence in t , i.e., P̃ol
�
t (Gk,d) ⊂ P̃ol

�
t+1(Gk,d). To do so, we first aim to verify

P̃ol
�
t (Gk,d) =

⊕

t1+...+t�=t

P̃ol
1
t1(Gk,d) · · · P̃ol1t� (Gk,d). (32)

The spectral decomposition yields that the left-hand side is contained in the right-hand
side. To verify the reverse set inclusion, we must check that

P 
→ 〈P, x1x
∗
1 〉t1 · · · 〈P, x�x

∗
� 〉t� ∈ P̃ol

�
t (Gk,d), for all t1 + . . . + t� = t. (33)

We now observe that [13, Lemma 7.1] as already used in (3) yields (33). Thus, (32)
is satisfied. It was checked in [3] that P̃ol

1
t (Gk,d) ⊂ P̃ol

1
t+1(Gk,d) holds, so that (32)

implies P̃ol
�
t (Gk,d) ⊂ P̃ol

�
t+1(Gk,d), which yields the first equality.

The second part of the proposition follows from the first equality and (32).
We now take care of the second equality. Since M := span{〈·, P1〉t 〈·, P2〉t |H �

d
:

P1, P2 ∈ Gk,d} is finite-dimensional, classical arguments let us infer that there are
{Mj }mj=1 ⊂ H �

d and numbers {ω j }mj=1 ∈ R such that, for all P1, P2 ∈ Gk,d ,

m∑

j=1

ω j 〈Mj , P1〉t 〈Mj , P2〉t =
∫

H �
d

〈M, P1〉t 〈M, P2〉t dν�,d(M), (34)

cf. [15, Theorem 6.1]. By applying (34), we derive

K �
t (P, ·) =

∫

H �
d

〈M, P〉t 〈M, ·〉t dν�,d(M)

=
m∑

j=1

ω j 〈Mj , P〉t 〈Mj , ·〉t ∈ Pol�t (Gk,d).

Thus, we have verified that span{K �
t (P, ·)|Gk,d : P ∈ Gk,d} ⊂ Pol�t (Gk,d). To verify

the reverse inclusion, we shall check that dim(span{K �
t (P, ·)|Gk,d : P ∈ Gk,d}) ≥

dim(Pol�t (Gk,d)).
We first observe that

dim(span{〈·, M〉t |Gk,d : M ∈ H �
d }) = dim(span{〈P, ·〉t |H �

d
: P ∈ Gk,d}), (35)

which is a general principle that holds in much more generality, see [13, Proof of
Lemma 5.5] for details. Note that the left-hand side of (35) is dim(Pol�t (Gk,d)), and we
shall denote this number by r here. Then according to (35), there are {Pj }rj=1 ⊂ Gk,d
such that {〈Pj , ·〉t |H �

d
}rj=1 is a basis for span{〈P, ·〉t |H �

d
: P ∈ Gk,d}. If we can verify

that the matrix K := (K �
t (Pi , Pj )

)r
i, j=1 is nonsingular, then {K �

t (Pj , ·)}rj=1 is linearly
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independent, which concludes the proof. Indeed, suppose that α∗Kα = 0, then we
obtain

0 =
∑

i, j

αiα j K
�
t (Pi , Pj )

=
∫

H �
d

∑

i, j

αiα j 〈Pi , M〉t 〈M, Pj 〉t dν�,d(M)

=
∫

H �
d

(∑

i

αi 〈Pi , M〉t)2dν�,d(M).

This implies
∑

i αi 〈Pi , M〉t = 0, for allM ∈ supp(ν�,d). Since 〈Pj , ·〉t |H �
d
are homo-

geneous polynomials, the latter also holds for all M ∈ H �
d . The linear independence

of {〈Pj , ·〉t |H �
d
}rj=1 implies that we must have α1, . . . , αr = 0. Thus, K is indeed

nonsingular, and this concludes the proof. ��
Remark 4.2 The end of the above proof shows that the special form of ν�,d is not
important, and any measure with sufficiently large support would work.

The kernel K �
t induces an inner product (and hence also a norm ‖·‖K �

t
) onPol�t (Gk,d)

by
〈 f, g〉Pol�t :=

∑

i, j

αiβ j K
�
t (Pi , P̃j ), (36)

where f = ∑
i αi K �

t (Pi , ·) and g = ∑
j β j K �

t (P̃i , ·). Note that the expression (36)

does not depend on the special choice of Pi and P̃j . The induced norm enables us to
introduce approximate cubatures:

Definition 4.3 We say that {(Pj , ω j )}nj=1 is an ε-approximate cubature for Pol�t (Gk,d)
with respect to K �

t if

sup
f ∈Pol�t (Gk,d ), ‖ f ‖

K�
t
=1

|
n∑

j=1

ω j f (Pj ) −
∫

Gk,d

f (P)dσk,d(P)| ≤ ε. (37)

Apparently, an ε-approximate cubature for Pol�t (Gk,d) yields
∣
∣
∣
∣
∣
∣

n∑

j=1

ω j f (Pj ) −
∫

Gk,d

f (P)dσk,d(P)

∣
∣
∣
∣
∣
∣
≤ ε‖ f ‖K �

t
, for all f ∈ Pol�t (Gk,d).

In order to numerically find ε-approximate cubatures, we consider the modified
fusion frame potential ∑

i, j

ωiω j K
�
t (Pi , Pj ). (38)

123



J Theor Probab (2018) 31:2167–2193 2187

By following the lines in [12] for the standard fusion frame potential, see also [3], we
derive that

c�
t :=

∫

Gk,d

∫

Gk,d

K �
t (P, Q)dσk,d(P)dσk,d(Q) (39)

is a lower bound on (38), and the gap

∑

i, j

ωiω j K
�
t (Pi , Pj ) − c�

t ≥ 0

is exactly the squared cubature error, i.e.,

∑

i, j

ωiω j K
�
t (Pi , Pj ) − c�t = sup

f ∈Pol�t (Gk,d ), ‖ f ‖
K�
t
=1

∣
∣
∣
∣
∣
∣

n∑

j=1

ω j f (Pj ) −
∫

Gk,d

f (P)dσk,d (P)

∣
∣
∣
∣
∣
∣

2

.

Indeed, if (38) can be minimized numerically, then a proper cubature or at least
an ε-approximate cubature can be obtained, where ε relates to machine precision
provided there exists a corresponding cubature for this choice of n. However, numerical
evaluation of the kernel K �

t may be difficult in practice. In the subsequent section, we
shall circumvent such difficulties by considering cubatures for larger spaces that enable
us to work with a simpler kernel.

5 Construction of Cubatures for Polt(Gk,d)

5.1 Cubatures from Optimization Procedures

This section is dedicated to derive cubatures from a numerical scheme that is indeed
easy to implement. We define polynomials of degree at most t on Gk,d by

Polt (Gk,d) := {polynomials of degree at most t on Hd restricted to Gk,d}. (40)

Note that Polt (Gk,d) satisfies the product property that is usually associated with
polynomial spaces, i.e.,

span
(
Polt1(Gk,d) · Polt2(Gk,d)

) = Polt1+t2(Gk,d),

see, for instance, [12]. It is known that these spaces can be rewritten as

Polt (Gk,d) = span{〈M, ·〉t ∣∣Gk,d
: M ∈ Hd},

see, for instance, [3,12]. Obviously, Pol�t (Gk,d) is contained in Polt (Gk,d). In the fol-
lowing proposition, we explore when equality holds:

Proposition 5.1 For 0 ≤ � < d and 0 ≤ t , we have

Pol�t (Gk,d) = Polt (Gk,d), for � ≥ min{k, t}.
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Proof For � ≥ k, the equality is standard cf. [12]. We derive from (32) that

Poltt (Gk,d) = span
(
Pol11(Gk,d) · · · Pol11(Gk,d)

)
,

where the product has t terms, holds, and the findings in [3] yield that the right-hand
side equals Polt (Gk,d). Therefore, � ≥ t also yields Pol�t (Gk,d) = Polt (Gk,d).
Note that {(Pj , ω j )}nj=1 being a cubature for Pol23(Gk,d) as used in Corollary 2.5

already implies that it is also a cubature for Pol2(Gk,d) = Pol22(Gk,d) and for
Pol1(Gk,d) = Pol21(Gk,d). It should also be mentioned that the space Pol2t (G1,d) in
Corollary 3.5 is the same as Polt (G1,d). Hence, for k = 1, we were dealing with the
space (40) all along.

A computational approach for cubatures for Polt (Gk,d) is discussed in [12]. Since
Pol2t (Gk,d) is a subset, this approach yields also cubatures for Pol2t (Gk,d). By refining
some ideas in [12], we shall introduce ε-approximate cubatures for the kernel

Kt : Gk,d × Gk,d → R

(P1, P2) 
→ 〈P1, P2〉t .

Indeed, Kt is a positive definite kernel on Gk,d and its shifts generate Polt (Gk,d), i.e.,

Polt (Gk,d) = span{Kt (P, ·) : P ∈ Gk,d}.

The kernel Kt induces an inner product on Polt (Gk,d) analogously to (36) and, in turn,
also a norm ‖ · ‖Kt .

Definition 5.2 We say that {(Pj , ω j )}nj=1 is an ε-approximate cubature for Polt (Gk,d)
with respect to Kt if

sup
f ∈Polt (Gk,d ), ‖ f ‖Kt =1

∣
∣
∣
∣
∣
∣

n∑

j=1

ω j f (Pj ) −
∫

Gk,d

f (P)dσk,d(P)

∣
∣
∣
∣
∣
∣
≤ ε.

In the following, we shall describe that ε-approximate cubatures for Polt (Gk,d) can
be computed by numerical schemes as at the end of Sect. 4.2. Indeed, the potential

∑

i, j

ωiω j Kt (Pi , Pj ) (41)

can be bounded from below by

λt :=
∫

Gk,d

∫

Gk,d

Kt (P, P ′)dσk,d(P)dσk,d(P
′), (42)

so that ∑

i, j

ωiω j Kt (Pi , Pj ) − λt ≥ 0.
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As in the previous section, this gap is exactly the squared cubature error, i.e.,

∑

i, j

ωiω j Kt (Pi , Pj ) − λt = sup
f ∈Polt (Gk,d ), ‖ f ‖Kt =1

∣
∣
∣
∣
∣
∣

n∑

j=1

ω j f (Pj ) −
∫

Gk,d

f (P)dσk,d (P)

∣
∣
∣
∣
∣
∣

2

.

It is remarkable that (42) can be computed exactly by analytical tools, so that the
outcome of numerical optimization schemes minimizing (41) can be compared with
λt , see [12] for further details and examples of successful minimization outcomes.
Indeed, the easier structure of the kernel Kt generating Polt (Gk,d)makes this approach
more amenable to numerical optimization than the setting of Pol�t (Gk,d) presented in
the previous section.

5.2 Approximate Cubatures from Randomized Projections

We now examine to what extent a random choice of projections gives an approximate
cubature. Let us call a (Borel)-probabilitymeasure νk,d onGk,d aprobabilistic cubature
for Polt (Gk,d) if

∫

Gk,d

f (P)dνk,d(P) =
∫

Gk,d

f (P)dσk,d(P), for all f ∈ Polt (Gk,d). (43)

Note that any cubature for Polt (Gk,d) can be considered as a finitely supported prob-
abilistic cubature, provided that the weights are nonnegative. Another example, of
course, is σk,d itself.

In the remainder of this section, we let each ω j = 1
n and choose each Pj according

to a probabilistic cubature νk,d . In that case, {Pj }nj=1 is a collection of randommatrices
and the expected value of the gap, that is, the squared cubature error, can be computed
explicitly. Denoting the expectation with respect to the random choice of {Pj }nj=1 by
EP , and using that EP Kt (Pi , Pi ) = kt and EP Kt (Pi , Pj ) = λt if i = j , we get

EP

⎡

⎣ 1

n2

n∑

i, j=1

Kt (Pi , Pj ) − λt

⎤

⎦ = kt

n
+ n(n − 1)

n2
λt − λt = 1

n
(kt − λt ).

Thus, letting n grow faster than kt ensures that the expected value of the gap becomes
arbitrarily small. In the following theorem, we show that this expected behavior hap-
pens with overwhelming probability.

Theorem 5.3 If {Pj }nj=1 are chosen independently identically distributedwith respect
to a probabilistic cubature νk,d for Polt (Gk,d) and τ > 0, then

P

⎛

⎝ 1

n2

n∑

i, j=1

Kt (Pi , Pj ) − λt − 1

n
(kt − λt ) ≥ τ 2kt

n

⎞

⎠ ≤ 4e−τ (n)rτ (n),
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where

τ (n) = τ 2/2

(1 − λt/kt ) + τ
3
√
n

, rτ (n) = 1 + 6

nτ 2 ln2(1 + τ√
n(1−λt/kt )

)
.

Proof First, we note that 〈Pi , Pj 〉t = 〈P⊗t
i , P⊗t

j 〉, where the Hilbert–Schmidt inner

product on the right-hand side is on the Hilbert space (Rd×d)⊗t � R
d2t . Thus,∑

i, j Kt (Pi , Pj ) = ‖∑ j P
⊗t
j ‖2HS holds.

We define the averaged tensor power�t = EP P
⊗t
1 . For P0 ∈ Gk,d , we can compute

〈P⊗t
0 ,�t 〉 =

〈

P⊗t
0 ,

∫

Gk,d

P⊗t dνk,d(P)

〉

=
∫

Gk,d

〈P0, P〉t dνk,d(P).

Since νk,d is a probabilistic cubature and 〈P0, ·〉s ∈ Polt (Gk,d), we obtain

〈P⊗t
0 ,�t 〉 =

∫

Gk,d

〈P0, P〉t dσk,d(P).

Let U ∈ Od be such that U∗DkU = P0, where Dk denotes the diagonal matrix
with k ones and zeros elsewhere. The commutativity of the trace and the orthogonal
invariance of σk,d yield

〈P⊗t
0 ,�t 〉 =

∫

Gk,d

〈U∗DkU, P〉t dσk,d(P)

=
∫

Gk,d

〈Dk,U PU∗〉t dσk,d(P)

=
∫

Gk,d

〈Dk, P〉t dσk,d(P).

By applying the probabilistic cubature property once more, we derive

〈P⊗t
0 ,�t 〉 =

∫

Gk,d

〈Dk, P〉t dνk,d(P) = 〈D⊗t
k ,�t 〉.

Thus, the term 〈P⊗t
0 ,�t 〉 does not depend on the particular choice of P0 ∈ Gk,d .

Averaging over all P0 with respect to σk,d then implies that for each i ,

〈P⊗t
i ,�t 〉 =

∫

Gk,d

〈P⊗t
0 ,�t 〉dσk,d(P0) = ‖�t‖2HS . (44)

Similarly to the above computations, the probabilistic cubature property also yields

‖�t‖2HS = λt . (45)

By applying (44) and (45), taking Y j = (P⊗t
j − �t )/kt/2 then gives

‖Y j‖2HS = 1 − λt/k
t .
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Hence, ‖Y j‖HS ≤ 1 and EPY j = 0, so that Minsker’s vector-valued Bernstein
inequality [23, Corollary 5.1] provides, for all τ > 0,

P

⎛

⎜
⎝

∥
∥
∥
∥
∥
∥

1

n

n∑

j=1

Y j

∥
∥
∥
∥
∥
∥

2

HS

> τ 2/n

⎞

⎟
⎠ ≤ 4e−τ (n)rτ (n),

where τ and rτ are as stated. To finish the proof, we observe that

kt

∥
∥
∥
∥
∥
∥

1

n

n∑

j=1

Y j

∥
∥
∥
∥
∥
∥

2

HS

= 1

n2

n∑

i, j=1

Kt (Pi , Pj ) − λt − 1

n
(kt − λt ).

��
When n tends to infinity, then rτ (n) → 1 + 6(1−λt/kt )2

τ 4
and τ (n) → τ 2/2

1−λt/kt
.

Thus, for large n, the distribution of the gap concentrates near zero at the same rate
as the expected value. Since the gap is the square of the maximal cubature error, we
conclude a probabilistic construction of approximate cubatures.

Corollary 5.4 If {Pj }nj=1 are chosen independently from a probabilistic cubature for

Polt (Gk,d) and τ > 0, then a
√

(1+τ 2)kt−λt
n -approximate cubature for Polt (Gk,d) with

respect to Kt is obtained with probability bounded below by 1 − 4e−τ (n)rτ (n).

For related results on random matrices, we refer to [6,22,27,28].

6 Error Propagation for ε-Approximate Cubatures

The numerical optimization approach in general can provide cubatures up to machine
precision only. Therefore, we are dealing with ε-approximate cubatures and this is also
what we obtain from the random constructions. In these cases, the moment reconstruc-
tion formulas in Corollary 2.5 hold up to some error term:

Theorem 6.1 Let X ∈ S
d−1 be a random vector and {(Pj , ω j )}nj=1 be an ε-

approximate cubature for Polt (Gk,d) with respect to Kt . Then (7) in Corollary 2.3
holds up to a constant cα times ε, i.e., for α ∈ N

d , |α| = t ,

∣
∣
∣
∣
∣
∣
EXα −

∑

|β|≤t

aα
β

n∑

j=1

ω jE(Pj X)β

∣
∣
∣
∣
∣
∣
≤ εcα. (46)

If k = 1 and X is random vector in R
d , then (30) in Corollary 3.5 holds up to a

constant times εE‖X‖t .
The above theorem verifies that the cubature error propagates in a linear fashion when
it comes to the moment reconstruction formulas. It should be mentioned though that
the constant cα depends on k and d.

123



2192 J Theor Probab (2018) 31:2167–2193

Proof According to Theorem 2.1, we derive, for x ∈ S
d−1

xα =
t∑

s=1

m∑

i=1

fs,iμ
s
k,d(Ex,yi )

=
t∑

s=1

m∑

i=1

fs,i

∫

Gk,d

〈P, Ex,yi 〉sdσk,d(P)

Since the function Fα
x = ∑t

s=1
∑m

i=1 f α
s,i 〈·, Ex,yα

s,i
〉s is an element in Polt (Gk,d), the

cubature property yields

∣
∣
∣
∣
∣
∣
xα −

t∑

s=1

m∑

i=1

f α
s,i

n∑

j=1

ω j 〈Pj , Ex,yα
s,i

〉s
∣
∣
∣
∣
∣
∣
≤ ε‖Fx‖Kt .

The coefficients aα
β in Corollary 2.3 are used with cα := supx∈Sd−1 ‖Fα

x ‖Kt to derive
(46).

The second part of the theorem can be verified in an analogous fashion, so we omit
the details. ��

7 Concluding Remarks

Our results appear to match reasonable characteristics in distributed sensing. We
require a rather large set of sensors (projectors) and we assume that the high-
dimensional signal is modeled by means of a probability distribution. The sensors
are deterministic and can even be given by the experimental setup as long as we are
able to find weights such that projectors and weights altogether form a cubature. Each
sensor must reconstruct the first few moments of the projection marginal distribution,
which may allow in practice for fewer data samples than for estimating the marginal
distribution itself. In the end, the first few moments of the high-dimensional random
signal can be computed with low costs by a closed formula.

As far as we know, the present paper is a first attempt to address this type of
moment recovery problem with tools from harmonic analysis. Further investigations
are necessary to combine those ideas with proper statistical estimation techniques,
in which the low-dimensional moments are estimated from acquired data. This is
intended to be addressed in forthcoming work.
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