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Abstract Shafer’s belief functions were introduced in the seventies of the previous
century as a mathematical tool in order to model epistemic probability. One of the
reasons that they were not picked up by mainstream probability was the lack of a
behavioral interpretation. In this paper, we provide such a behavioral interpretation
and re-derive Shafer’s belief functions via a betting interpretation reminiscent of the
classical Dutch Book Theorem for probability distributions. We relate our betting
interpretation of belief functions to the existing literature.
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1 Introduction

Modern mainstream probability theory, be it aleatory or epistemic, is almost exclu-
sively based on the axioms of Kolmogorov, and we start our exposition with quoting
these axioms. We fix a finite set � of outcomes.

Definition 1.1 (Kolmogorov axioms) A function P : 2� → [0, 1] is a probability
distribution if it satisfies:

(P1) P(�) = 1 and P(∅) = 0;

B Ronald Meester
r.w.j.meester@vu.nl

1 VU University Amsterdam, Amsterdam, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10959-017-0776-y&domain=pdf


J Theor Probab (2018) 31:2112–2128 2113

(P2) For every A, B ⊂ � we have

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (1.1)

From an aleatory point of view, the axioms are often justified via a frequentistic
interpretation of probabilities. In such a frequentistic interpretation, we take relative
frequencies in repeated experiments as the motivation and justification of the axioms.

From an epistemic point of view, the probability of an event A is often interpreted
as the degree of belief an agent has in a A. This degree of belief can be quantified as
the price for which the agent is willing to both buy and sell a bet that pays out 1 if A
turns out to be true. Using the Dutch Book argument, this interpretation also leads to
the Kolmogorov axiomatization, as is well known.

However, degrees of belief cannot always be satisfactorily described with the clas-
sical axioms of Kolmogorov, something which has been recognized and confirmed by
many researchers from such different disciplines as mathematics [1,11–13,16], legal
science [1], and philosophy (see [3,4,6,16] and references therein). These authors
have argued that the classical axioms of probability are too restrictive for at least two
reasons:

(1) It is impossible for an agent to distinguish between disbelief in A, by which we
mean P(Ac), and lack of belief, by which we mean 1 − P(A). Especially when
we interpret degree of belief in A as the degree to which an agent has supporting
evidence for A, lack of supporting evidence for A is not necessarily supporting
evidence for Ac.

(2) It is impossible for an agent to suspend all judgment, that is, assigning P(A) =
P(Ac) = 0 is impossible. But certainly it is possible to have no supporting
evidence at all for either A or Ac. As an example, consider a situation in which
a man claims to be the father of a certain child. A DNA test may or may not rule
out the man as a potential father of the child, but in any classical probabilistic
computation one has to start with a prior probability for the man to be the father.
Often one takes a fifty–fifty prior, but clearly this does not correspond to our
knowledge. Since we have no evidence for either fathership or non-fathership,
it would be more reasonable to assign zero prior belief to both possibilities,
something which is impossible under the Kolmogorov axioms. (Uniform prior
probabilities are also problematic from another point of view: lumping states
together or changing the scale does not preserve uniformity, as is well known,
see, e.g., [11].)

These and similar considerations motivated Glenn Shafer [11] to introduce belief
functions, which were supposed to better capture the nature of epistemic probability.
To see how belief functions differ from classical probability distributions, we note that
it is well known that (P2) can be expanded, for any collection of events A1, . . . , AN ,
into the well-known inclusion–exclusion formula

P

(
N⋃
i=1

Ai

)
=

∑
I⊆{1,...,N }

I �=∅

(−1)|I |+1P

(⋂
i∈I

Ai

)
. (1.2)
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In the Shafer axiomatization of belief functions, (1.2) is replaced by a corresponding
inequality.

Definition 1.2 (Shafer axioms ([11])) A function Bel : � → [0, 1] is a belief function
provided that

(B1) Bel(∅) = 0 and Bel(�) = 1;
(B2) For all A1, A2, . . . , AN ⊂ �, we have

Bel

(
N⋃
i=1

Ai

)
≥

∑
I⊆{1,...,N }

I �=∅

(−1)|I |+1Bel

(⋂
i∈I

Ai

)
. (1.3)

One may at this point already loosely argue that the Shafer axioms are indeed suit-
able for describing degrees of belief, as follows. Taking N = 2 in (1.3) for simplicity
gives Bel(A ∪ B) ≥ Bel(A) + Bel(B) − Bel(A ∩ B). A loose interpretation now is
as follows. If we have supporting evidence for either A or B, then of course we have
also supporting evidence of A∪ B. However, supporting evidence for both A and B is
then counted twice and must be subtracted on the right-hand side. Now notice that it
is possible that there is supporting evidence for A∪ B, but not for A or B individually,
leading to the inequality in the formula.

Shafer showed that belief functions have the following characterization.

Definition 1.3 A function m : 2� → [0, 1] is called a basic belief assignment if
m(∅) = 0 and ∑

C⊆�

m(C) = 1. (1.4)

Theorem 1.4 A function Bel : 2� → [0, 1] is a belief function if and only if there
exists a basic belief assignment m such that

Bel(A) =
∑
C⊆A

m(C). (1.5)

There is a one-to-one correspondence between belief functions and basic belief assign-
ments, andBel is a probability distribution if and only if m concentrates on singletons.

In many situations, there is a natural candidate for the basic belief assignment m,
especially when the latter is obtained through a classical probabilistic experiment.

Although belief functions are used in certain applied settings (see [2] for a recent
text), researchers in mainstream mathematics have essentially stayed away from it.
There are, roughly speaking, two reasons for this. First, there were many critics (see
the references in [12]) for which a theory about uncertainty without a behavioral
(betting) interpretation was unacceptable.

A second major point of concern is formulated in [10] and [5]. In both references,
the main reason to reject Shafer’s belief functions is that the calculus of these belief
functions, as put forward in the so-called Dempster rule of combination to combine
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two belief functions into a new one, would not bewell founded ormotivated andwould
lead to unacceptable results.

The main goal of the current paper is to show how belief functions arise from a
natural betting interpretation, thereby taking away the first major point of concern. We
already mentioned above that classically, the degree of belief an agent has in an event
A is interpreted as the price for which he or she is willing to both buy and sell a bet
that pays out 1 if A turns out to be true. We argue, however, that a degree of belief
an agent has in an event A should be interpreted as the maximum price for which
he or she is willing to buy (not necessarily sell) a bet that pays out 1 if A turns out
to be true. In our approach, the difference between buying and selling is interpreted
as the difference between disbelief and lack of believe that we mentioned above. The
distinction between buying and selling prices also appears in the theory of PeterWalley
[16], and below we comment on the relation between his general approach and our
theory.

We do not further comment onDempster’s rule of combination for the simple reason
that we have no need for this rule, and we develop the theory without it.

Other characterizations of belief functions exist in the literature, for instance in the
work of Smets [14]. We think our approach is more direct than his, and as a result
our characterization is much more concise (he has 10 requirements). Moreover, unlike
Smets, wework in a betting interpretation, so that our result can be seen as an analogue
of the Dutch Book Theorem.

The paper is built up as follows. In Sect. 2 we develop our betting theory, and in
Sect. 3 we state and prove the betting interpretation of belief functions. This section
contains our main result Theorem 3.10.

2 Betting Functions and Degrees of Belief

We approach belief behaviorally, working under the assumption that the degree to
which someone believes an event can be measured by his or her willingness to accept
bets. To go toward a definition that we can work with mathematically, we introduce
betting functions.

Definition 2.1 A bet (or gamble) on � is a function X : � → R. We write X = R
X

for the collection of all bets on �. A betting function is a function R : X → {0, 1}
such that for each X ∈ X , there is an α0 ∈ R such that R(X + α) = 0 for α < α0 and
R(X + α) = 1 for α ≥ α0.

We interpret R as a function that indicates, for each bet X ∈ X , whether or not an
agent is willing to accept X , where we interpret R(X) = 1 as ‘willing to accept the
bet’ and R(X) = 0 ‘not willing to accept the bet.’ The definition of a betting function
justifies the following definition.

Definition 2.2 Let R be a betting function. The buy function BuyR : X → R is given
by

BuyR(X) := max{α ∈ R : R(X − α) = 1}. (2.1)
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This is the maximum price an agent is willing to pay for a bet which pays out X . The
sell function SellR : X → R is given by

SellR(X) := min{α ∈ R : R(α − X) = 1}. (2.2)

This is the minimum price an agent is willing to sell the bet which pays out X .

The buy and sell function has the following relation:

BuyR(X) = max{α ∈ R : R(X − α) = 1}
= max{−α ∈ R : R(X + α) = 1}
= −min{α ∈ R : R(α − (−X)) = 1}
= −SellR(−X).

(2.3)

This shows how buy and sell functions are dual in the sense that BuyR is completely
determined by SellR and vice versa. This relation between Buy and Sell is precisely
the relation between lower and upper previsions in [16], but in our case the relation
follows from the underlying concept of a betting function. Note that we can recover
R from BuyR , since

R(X) =
{
1 if BuyR(X) ≥ 0,
0 if BuyR(X) < 0.

(2.4)

Definition 2.3 Let R : X → {0, 1} be a betting function. Then R is said to be coherent
if

(R1) If X > 0, then R(X) = 1;
(R2) R(λX) = R(X) for every λ > 0;
(R3) If R(X) = R(Y ) = 1, then R(X + Y ) = 1.

These conditions do not necessarily capture everything a reasonable agent should
adhere to, and for rational behavior more is needed as we will see. However, the
conditions formulate the very basics. Condition (R1) says that agents should bewilling
to accept bets with guaranteed positive results. Condition (R2) says that willingness
to accept bets should only depend on the relative sizes of the results, but not on
their absolute sizes. Condition (R3) says that if an agent is willing to accept two bet,
he/she should be willing to accept bets simultaneously. We want to point out that both
condition (R2) and (R3) have a debatable consequence: if an agent is willing to accept
a bet in which he/she wins 1 euro if A is true and loses 1 euro if A is false, then
he/she should be willing to accept a bet in which he/she wins 1 million euro if A is
true and loses 1 million euro if A is false. In the real world, one could think of all
kinds of reasons why an agent would not want to accept the second bet, even if he/she
is willing to accept the first one. By imposing coherence, we thus consider highly
idealized agents.

The following result says that BuyR is coherent as a lower prevision in the sense
of Walley [16] if and only if R is coherent in the sense of Definition 2.3.

Theorem 2.4 Let R : X → {0, 1} be a betting function. Then R is coherent if and
only if
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• BuyR(X) ≥ min X;
• BuyR(λX) = λBuyR(X) for every λ > 0;
• BuyR(X + Y ) ≥ BuyR(X) + BuyR(Y ).

Proof Suppose R is coherent. By (R1), we have that R(X −min X + ε) = 1 for every
ε > 0. Hence,

BuyR(X) = max{α ∈ R : R(X − α) = 1} ≥ min X − ε (2.5)

for every ε > 0, so BuyR(X) ≥ min X . By (R2), we have for every λ > 0 that

BuyR(λX) = max{α ∈ R : R(λX − α) = 1}
= max{α ∈ R : R(X − α

λ
) = 1}

= max{λα ∈ R : R(X − α) = 1}
= λmax{α ∈ R : R(X − α) = 1}
= λBuyR(X).

(2.6)

Suppose that, for some α, β ∈ R, we have R(X − α) = 1 and R(Y − β) = 1. Then,
by (R3), we have R(X + Y − α − β) = 1 and thus

BuyR(X + Y ) = max{γ ∈ R : R(X + Y − γ ) = 1} ≥ α + β. (2.7)

It follows that

BuyR(X + Y ) ≥ max{α : R(X − α) = 1} + max{β : R(X − β) = 1}
= BuyR(X) + BuyR(Y ).

(2.8)

For the converse, suppose thatBuyR has the listed properties.We setψ : R → {0, 1}
by

ψ(x) =
{
1 if x ≥ 0,
0 if x < 0,

(2.9)

and we note as before that
R(X) = ψ(BuyR(X)). (2.10)

If X > 0, then BuyR(X) ≥ 0 by the first property. Hence, R(X) = ψ(BuyR(X)) =
1. So (R1) holds.

The second property tells us that, for every λ > 0, we have

R(λX) = ψ(BuyR(λX)) = ψ(λBuyR(X)) = ψ(BuyR(X)) = R(X), (2.11)

so (R2) holds.
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By the third property, we have

R(X + Y ) = ψ(BuyR(X + Y ))

≥ ψ(BuyR(X) + BuyR(Y ))

≥ min{ψ(BuyR(X)), ψ(BuyR(Y ))}
= min{R(X), R(Y )}.

(2.12)

Hence, if R(X) = R(Y ) = 1, it follows that R(X + Y ) = 1, so (R3) holds. ��
The second and third property of Theorem 2.4 tell us that BuyR is a super-linear

functional if R is coherent. Coherence of R can of course also be captured in terms of
SellR :

Theorem 2.5 Let R : X → {0, 1} be a betting function. Then R is coherent if and
only if

• SellR(X) ≤ max X;
• SellR(λX) = λSellR(X) for every λ > 0;
• SellR(X + Y ) ≤ SellR(X) + SellR(Y ).

Proof This follows directly from Theorem 2.4 and the relation between BuyR and
SellR .

Wewant tomeasure the degree towhich an agent believes A ⊆ � by thewillingness
to accept a bet with a desirable result if A is true and an undesirable result if A is false.
The actions that have a desirable result if A is true and an undesirable result if A is
false, are buying the bet 1A and selling the bet 1Ac . It is willingness to buy 1A for a
high price and willingness to sell 1Ac for a low price that shows a high degree of belief
in A. This leads to our definition of degree of belief.

Definition 2.6 (Degree of belief) Let R be the coherent betting function of an agent.
We define the degree to which this agent believes an event A ⊆ � as BuyR(1A) =
1 − SellR(1Ac ).

3 Adding B-Consistency

In this section, we introduce an additional condition for betting functions and show
that this constraint precisely leads to buy functions which are belief functions when
restricted to bets of the form 1A, with A ⊂ �. Before we do this, however, we will
briefly discuss how our setup relates to the Dutch Book argument for probability
distributions.

The Dutch Book argument is centered around the principle that betting behavior of
agents should not lead to sure loss. The following theorem tells us that not having a
sure loss is already implied by coherence. This theorem is well known withinWalley’s
theory, but we give our version of the proof as a service to the reader.
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Theorem 3.1 If R is a coherent betting function, then

max
ω∈�

⎛
⎝ N∑

i=1

(
Xi − BuyR(Xi )

) +
M∑
j=1

(
SellR(Y j ) − Y j

)⎞⎠ ≥ 0 (3.1)

for all X1, . . . , XN ∈ X and Y1, . . . ,YM ∈ X .

Proof We first show that BuyR(X) ≤ max X for each X ∈ X . Suppose that
BuyR(X) > max X . This means there is an ε > 0 such that

R(X − max X − ε) = 1. (3.2)

Note that for every Y ∈ X , there is a λ > 0 such that λ(X − max X − ε) < Y . Since
R(λ(X − max X − ε)) = 1 by (R2) and R(Y − λ(X − max X − ε)) = 1 by (R1), it
follows with (R3) that R(Y ) = 1. Hence, R(Y ) = 1 for all Y ∈ X , but then there is
no maximum α ∈ R such that R(Y − α) = 1. This is a contradiction, and it follows
that BuyR(X) ≤ max X .

Now let X1, . . . , XN ∈ X and Y1, . . . ,YM ∈ X . By using Theorem 2.4 and the
property we just proved, we find

N∑
i=1

BuyR(Xi ) −
M∑
j=1

SellR(Y j ) =
N∑
i=1

BuyR(Xi ) +
M∑
j=1

BuyR(−Y j )

≤ BuyR

⎛
⎝ N∑

i=1

Xi +
M∑
j=1

−Y j

⎞
⎠

≤ max

⎛
⎝ N∑

i=1

Xi +
M∑
j=1

−Y j

⎞
⎠ .

(3.3)

��
Theorem 3.1 tells us that coherence is stronger than having no sure loss. At the

same time, even coherence does not imply that A �→ BuyR(1A) is a probability
distribution: it is clear that the collection of maps A �→ BuyR(1A) for coherent
R, is much richer than only probability distributions. This tells us that the property
that BuyR(1A) = SellR(1A) for every A ⊆ �, which is usually implicitly assumed
when the Dutch Book argument is laid out, is crucial for the restriction to probability
distributions. The next theorem confirms this.

Theorem 3.2 P is a probability distribution if and only if there exists a coherent
betting function R such that P(A) = BuyR(1A) = SellR(1A).

Proof Suppose there is a coherent R such that P(A) = BuyR(1A) = SellR(1A). We
have P(�) = BuyR(1�) = 1 and P(A) = BuyR(1A) ≥ 0 by coherence. Then for
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disjoint A, B ⊆ � we find

P(A ∪ B) = BuyR(1A + 1B) ≥ BuyR(1A) + BuyR(1B) = P(A) + P(B) (3.4)

and

P(A ∪ B) = SellR(1A + 1B) ≤ SellR(1A) + BuyR(1B) = P(A) + P(B). (3.5)

Hence, P is additive.
For the converse, suppose that P is a probability distribution. Then define

BuyR(X) =
∑
ω∈�

P({ω})X (ω). (3.6)

Clearly, R is coherent and we have BuyR(X) = SellR(X). ��
As we already mentioned, the constraint that BuyR(1A) = SellR(1A) for every

A ⊆ � is precisely one we do not want to impose. This property, however, is not
easily weakened in a reasonable way. Therefore, we will work toward another char-
acterization of probability distributions (Theorem 3.7), from which we can derive our
constraint. We start with the definition of a belief valuation.

Definition 3.3 A function B : 2� → {0, 1} is called a belief valuation provided that

• B(Ac) = 0 if B(A) = 1;
• If B(A) = 1 and A ⊆ B, then B(B) = 1;
• If B(A) = 1 and B(B) = 1, then B(A ∩ B) = 1;
• B(�) = 1.

A belief valuation is also called a categorical belief function or a 0-1 necessity
measure in the literature. In practice, we use the characterization that B is a belief
valuation if and only if there is a nonempty set EB ⊆ � such that

B(A) =
{
1 if EB ⊆ A
0 otherwise

. (3.7)

We can also describe belief valuations in terms of filters, since B is a belief valuation
if and only if

{A ⊆ � : B(A) = 1} ⊆ 2� (3.8)

is a proper filter of subsets of �. This filter can be interpreted as the collection of sets
in which an agent has full belief. The next result makes this precise. For R a coherent
betting function, we denote byBR : 2� → {0, 1} the function that satisfiesBR(A) = 1
if and only if BuyR(1A) = 1.

Theorem 3.4 A function B : 2� → {0, 1} is a belief valuation if and only if there is
a coherent betting function R such that B = BR.
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Proof Suppose first that B is a belief valuation. We define R by

BuyR(X) := min
ω∈EB

X (ω).

Clearly, R is coherent and it follows from the definition of BR that BR = B.
For the converse, suppose that R is a coherent betting function. We check that

BR is a belief valuation. Since BuyR(1�) = 1, we have BR(�) = 1. The second
property in Definition 3.3 follows immediately from the monotonicity of BuyR . If
BuyR(A) = BuyR(B) = 1, then

BuyR(1A∩B) = BuyR(1A + 1B − 1A∪B)

≥ BuyR(1A) + BuyR(1B) + BuyR(−1A∪B) ≥ 1,

so BuyR(1A∩B) = 1. Finally, if BR(A) = 1, then since

1 = BuyR(1A + 1Ac ) ≥ BuyR(1A) + BuyR(1Ac ),

it follows that BuyR(1Ac ) = 0. ��
Abelief valuation should be comparedwith the classical notion of a truth valuation.

The definition of a truth valuation T : 2� → {0, 1} is similar to the definition of a
belief valuation, the only difference being that in the first bullet, ‘if’ is replaced by
‘if and only if.’ Hence, a truth valuation is a special belief valuation, namely one that
corresponds to a proper ultrafilter of sets. Truth valuations are precisely those belief
valuations B for which EB is a singleton. A major difference between truth and belief
is that if an agent does not believe in A, this does not imply that he/she does believe in
Ac. As a result, the implication in the first bullet in the definition of a belief valuation
goes in one direction only.

Given a belief valuation B and a set S ⊆ � for which B(S) = 1, the agent fully
believes that a bet X ∈ X has a revenue of at least

min
ω∈S X (ω). (3.9)

Since this holds for all S for whichB(S) = 1, this leads to the definition of guaranteed
revenue.

Definition 3.5 For any belief valuation B, the guaranteed revenue GB : X → R is
defined as

GB(X) = max
A:B(A)=1

min
ω∈A

X (ω).

Since we have that B(A) = 1 if and only if EB ⊆ A, we can express the guaranteed
revenue as

GB(X) = min
ω∈EB

X (ω). (3.10)
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To benchmark and motivate our main result Theorem 3.10, we now first show how
classical probability distributions can be characterized with the notion of guaranteed
revenue.

Definition 3.6 A betting function R is P-consistent if and only if, for all X1, . . . , XN

and Y1, . . . ,YM such that

GB

(
N∑
i=1

Xi

)
≤ GB

⎛
⎝ M∑

j=1

Y j

⎞
⎠ (3.11)

for every belief valuation B, we have

N∑
i=1

BuyR(Xi ) ≤
M∑
j=1

BuyR(Y j ). (3.12)

Theorem 3.7 P is a probability distribution if and only if there exists a coherent and
P-consistent R such that P(A) = BuyR(1A).

In words, this result says that if the guaranteed revenue of one collection of bets
is larger than the guaranteed revenue of a second collection of bets, then the agent
should be willing to pay more for the second collection.

The proof of the theorem below reveals that the statement of the theorem is, strictly
speaking, overly complicated. Indeed, if we would leave out GB everywhere, the
ensuing result would still be true and probably easier to interpret: the theorem would
say that if one collection of bets always pays out more than a second collection, an
agent would be willing to pay more for the first collection. We have chosen for the
current formulation since this formulation points the way for the necessary changes.

Proof of Theorem 3.7. First suppose that R is coherent, P-consistent and that P(A) =
BuyR(1A). Suppose A ∩ B = ∅. Then

GB(1A + 1B) = GB(1A∪B) (3.13)

for every B, so by P-consistency we have

BuyR(1A + 1B) = BuyR(1A) + BuyR(1B). (3.14)

Hence, P(A∪B) = P(A)+P(B). Since R is coherent,we have P(�) = BuyR(1�) =
1 and it follows that P is a probability distribution.

Now suppose that P is a probability distribution. We define R by

BuyR(X) :=
∑
ω∈�

X (ω)P({ω}). (3.15)
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Clearly, BuyR(1A) = P(A), and it follows from Theorem 2.4 that R is coherent. Now
suppose that

GB

(
N∑
i=1

Xi

)
≤ GB

⎛
⎝ M∑

j=1

Y j

⎞
⎠ (3.16)

for every belief valuation B. For every ω ∈ �, the map Bω(A) := 1A(ω) is a belief
valuation. Note that GBω(X) = X (ω), so (3.16) implies that

N∑
i=1

Xi ≤
M∑
j=1

Y j . (3.17)

Hence, by our definition of BuyR :

N∑
i=1

BuyR(Xi ) = BuyR

(
N∑
i=1

Xi

)

≤ BuyR

⎛
⎝ M∑

j=1

Y j

⎞
⎠

=
M∑
j=1

BuyR(Y j ).

(3.18)

So R is P-consistent. ��

Although we do not deny that the notion of P-consistency is in some sense a reason-
able requirement for collections of bets, there is, from the point of view of epistemic
probability, a problem with it. Whereas in (3.11) the guaranteed revenues of the com-
bined bets are compared, in (3.12) the sums of the buy prices of the individual bets
are compared. This observation goes back to the heart of the problem with the use of
classical probability distributions for epistemic purposes: the guaranteed revenue of
the combined bets 1A and 1cA is—of course—the same as the guaranteed revenue of
the bet 1, under any belief valuation. But this should not have any direct implication for
the maximum price for which an agent would be willing to buy 1A or 1cA individually.

This suggests that for epistemic purposes, we should change P-consistency in one of
the following twoways: in (3.11) the sums of the guaranteed revenues of the individual
bets should be compared, or in (3.12) the buy prices of the combined bets should be
compared. The first option leads to our definition of B-consistency.

Definition 3.8 A betting function R is B-consistent if for all X1, . . . , XN and
Y1, . . . ,YM such that

N∑
i=1

GB(Xi ) ≤
M∑
j=1

GB(Y j ) (3.19)

123



2124 J Theor Probab (2018) 31:2112–2128

for every belief valuation B, we have

N∑
i=1

BuyR(Xi ) ≤
M∑
j=1

BuyR(Y j ). (3.20)

There is a simple reason for this choice. Indeed, the alternative would result in
the constraint that if GB(

∑
i Xi ) ≤ GB(

∑
j Y j ) for every belief valuation B, then

BuyR(
∑

Xi ) ≤ BuyR(
∑

j Y j ). This constraint, however, is simply B-consistency for
N = M = 1.

Hence, the notion of B-consistency differs from P-consistency in the sense that we
compare the correct quantities: we compare sums of guaranteed revenues of individual
(collective) bets to sums of buy prices of individual (collective) bets.

The next example illustrates that not every coherent betting function is B-consistent.

Example 3.9 Suppose � = {1, 2, 3, 4} and that R is given by

BuyR(X) = min

{
1

2

2∑
i=1

X (i),
1

4

4∑
i=1

X (i)

}
. (3.21)

It is easy to check that R is coherent, and that for all belief valuations B we have

GB(1{2,3,4}) + GB(1{2}) ≥ GB(1{2,3}) + GB(1{2,4}), (3.22)

but

BuyR(1{2,3,4}) + BuyR(1{2}) = 3

4
< 1 = BuyR(1{2,3}) + BuyR(1{2,4}). (3.23)

With the notion of B-consistency we can now state and prove our main result.
The following theorem constitutes our behavioral interpretation of belief functions.
It shows that only B-consistency is needed to guarantee that a lower prevision in the
sense of Walley [16] is in fact a belief function and that every belief function can
be obtained this way. The result legitimizes the use of belief functions for modeling
epistemic probability.

Theorem 3.10 Bel is a belief function if and only if there exists a coherent and B-
consistent R such that Bel(A) = BuyR(1A).

This result follows immediately from the following theorem which is interesting in
its own right and characterizes B-consistency for coherent betting functions.

Theorem 3.11 Let R be a coherent betting function. Then R is B-consistent if and
only if there is a basic belief assignment m such that

BuyR(X) =
∑
S⊆�

m(S)min
ω∈S X (ω) (3.24)

for all X ∈ X .
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The expression in (3.24) is known as the Choquet integral of X with respect to the
belief function that corresponds tom (see for instance [7]), and is also called the lower
expectation of X (see for instance [13]). Hence, another way of phrasing Theorem
3.11 is that R is B-consistent if and only if Bel(A) := BuyR(1A) is a belief function
and BuyR(X) is given by the Choquet integral of X with respect to Bel. We now give
the proof.

Proof of Theorem 3.11 First suppose that there is a basic belief assignment m such
that

BuyR(X) =
∑
S⊆�

m(S)min
ω∈S X (ω)

for all X ∈ X . Also suppose that for X1, . . . , XN ,Y1, . . . ,YM ∈ X we have

N∑
i=1

min
ω∈S Xi (ω) ≤

M∑
j=1

min
ω∈S Y j (ω) (3.25)

for every nonempty S ⊆ �. Then

N∑
i=1

BuyR(Xi ) =
N∑
i=1

∑
S⊆�

m(S)min
ω∈S Xi (ω)

=
∑
S⊆�

m(S)

N∑
i=1

min
ω∈S Xi (ω)

≤
∑
S⊆�

m(S)

M∑
j=1

min
ω∈S Y j (ω)

=
M∑
j=1

BuyR(Y j ).

(3.26)

Hence, R is B-consistent.
For the converse of the theorem, suppose that R is B-consistent. First, we show that

Bel(A) := BuyR(1A) is a belief function. Clearly, we have

GB(1A) = B(A), (3.27)

and since B is a belief function, we have

B
(

N⋃
i=1

Ai

)
+

∑
I⊆{1,...,n}
I �=∅,|I | even

B
(⋂
i∈I

Ai

)
≥

∑
I⊆{1,...,n}
I �=∅,|I | odd

B
(⋂
i∈I

Ai

)
. (3.28)
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So by B-consistency, we have

Bel

(
N⋃
i=1

Ai

)
+

∑
I⊆{1,...,n}
I �=∅,|I | even

Bel

(⋂
i∈I

Ai

)
≥

∑
I⊆{1,...,n}
I �=∅,|I | odd

Bel

(⋂
i∈I

Ai

)
, (3.29)

and it follows that Bel is a belief function.
Since Bel is a belief function, there is a m : 2� → [0, 1] with m(∅) = 0 such that

Bel(A) =
∑
S⊆A

m(S). (3.30)

Now let X ∈ X . We write X (�) = {y1, . . . , yK } where y1 < yk < . . . < yK . Set
y0 := 0. It is well known that the Choquet integral of X can be expressed as

∑
S⊆�

m(S)min
ω∈S X (ω) =

K∑
j=1

(y j − y j−1)Bel({X ≥ y j }). (3.31)

We have

K∑
k=1

min
ω∈S(yk − yk−1)1{X≥yk }(ω) =

K∑
k=1

(yk − yk−1)1(S ⊆ {X ≥ yk})

= min
ω∈S X (ω).

(3.32)

So by B-consistency we find that

K∑
k=1

BuyR((yk − yk−1)1{X≥yk })) = BuyR(X). (3.33)

Now it follows with (3.31), (3.33) and coherence of R that

BuyR(X) =
∑
S⊆�

m(S)min
ω∈S X (ω). (3.34)

��

4 Discussion

We have first argued that the classical axioms of Kolmogorov are not suitable for
modeling epistemic probability. This has been known for a long time, and researchers
likeGlenn Shafer and PeterWalley have developed a general theory of belief functions,
respectively, lower provisions, as an alternative for classical probability theory in an
epistemological context.
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The theory of belief functions was never picked up in mainstream probability.
One of the reasons for this was the lack of a clear behavioral interpretation of belief
functions, analogous to the betting interpretation of probabilities. In this paper, we
have developed such a behavioral interpretation. We have embedded belief functions
in a betting context, and we have shown that belief functions arise precisely when we
add B-consistency to the coherent lower previsions in the theory of Walley. In this
way, not only do we provide a behavioral interpretation of belief functions, but we
also make a natural connection between the theory of Walley and the theory of Shafer.

Of course adding B-consistency calls for an argument why a rational agent should
adhere to it. We think it is not controversial to say that no guaranteed losses (Theorem
3.1) are the bottom line for any reasonable constraint. Beyond that things are, of course,
debatable. Our argument to restrict the lower previsions of Walley to B-consistency
is derived from the way we obtained it, namely by altering P-consistency in a very
reasonable way. If a collection of bets is in some sense guaranteed to be better than
another collection of bets, then the total price should be higher. The point is now how
‘better’ should be formulated.When compared to P-consistency, B-consistency allows
for all the flexibility of epistemic probability that we asked for in the introduction.
Indeed, note that it is possible to set m(�) = 1, which corresponds to total ignorance
apart from the fact that the outcome is in�.We think it is rational to compare collection
of bets from the viewpoint of total guaranteed revenue, and to be willing to pay more
when this quantity increases. As such, we think that B-consistency is a very reasonable
constraint for a rational agent to adhere to.

But there is more than philosophy, of course. We also want a theory that is practical
and relatively easy to apply. Belief functions are close to classical probabilities since
they are determined by basic belief assignments. As such, we think they are much
more practical and easier to use than coherent lower previsions. Indeed, in practi-
cal situations, one does not directly use constraints as coherence or B-consistency to
construct a buy function. In case of belief functions, one typically proceeds by con-
structing a suitable basic belief assignment, see for instance our paper [8] in which we
apply belief functions in the classical forensic context of the so-called island problem,
precisely by setting up appropriate basic belief assignments. This is very much akin
the classical situation: not many people use characterizations like P-consistency (or
related characterizations) to set up a probability measure, but it is reassuring that such
characterizations exist. Hence, we should view B-consistency as a theoretical under-
pinning for why to use belief functions, but not as a tool that is used in practice to
construct belief functions.

Last but not least, we mention conditional belief functions, a notion which we have
not introduced in the current paper. Shafer originally based his notion of conditional
belief on the so-called Dempster rule of combination, a rule that has been criticized
fiercely, see, e.g., [4,9]. In a forthcoming paper, we will discuss conditional beliefs
from the perspective of the current betting interpretation. It turns out that there are
various ways to do this, depending on the precise epistemological situation, and this
fact adds to the suitableness of belief functions tomodel epistemic uncertainty.Another
natural line of research is to further develop the theory of belief functions in infinite
spaces, an enterprise that already has obtained some attention in, e.g., [15].
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