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Abstract We use random spanning forests to find, for any Markov process on a finite
set of size n and any positive integer m ≤ n, a probability law on the subsets of size
m such that the mean hitting time of a random target that is drawn from this law does
not depend on the starting point of the process. We use the same random forests to
give probabilistic insights into the proof of an algebraic result due to Micchelli and
Willoughby and used by Fill and by Miclo to study absorption times and convergence
to equilibrium of reversible Markov chains. We also introduce a related coalescence
and fragmentation process that leads to a number of open questions.
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1 Well-Distributed Points, Local Equilibria and Coupled Spanning
Forests

1.1 Well-Distributed Points and Random Spanning Forests

Let X = (X (t) : t ≥ 0) be an irreducible continuous-time Markov process on a finite
set X with size |X | = n. It is known, see, for example, Lemma 10.8 in [9], that if
R ∈ X is chosen according to the equilibriummeasureμ of the process, then the mean
value of the hitting timeE[Ex [TR]]—where Ex [·] stands for the mean value according
to the law of the process started at x and E[·] stands for the mean value according
to the law of R—does not depend on the starting point x ∈ X . More generally, if a
random subset R ⊂ X of any (possibly random) size has such a property, then we say
that the law of R provides well-distributed points. One of our motivations for building
such random sets was to find appropriate subsampling points for signal processing on
arbitrary networks, in connectionwith intertwining equations andmetastability studies
(cf. [2]). In this paper, we build such a law on the subsets of any given sizem ≤ n. This
is a trivial problem for m = n, and for m = 1, this property actually characterizes the
lawof R: in this case, the singleton R has to be chosen according to the equilibrium law.

To solve this problem in the general case, we use random rooted spanning forests,
a standard variation—introduced, for example, in [13]—on the well-known uniform
spanning tree theme. Let us first denote by w(x, y) the jump rate of X from x to y in
X and by G = (X , w) the weighted and oriented graph for which

E = {(x, y) ∈ X × X : x �= y and w(x, y) > 0}

is the edge set andw(e) = w(x, y) is the weight of e = (x, y) in E . A rooted spanning
forest φ is a subgraph of G without cycle, with X as set of vertices and such that, for
each x ∈ X , there is at most one y ∈ X such that (x, y) is an edge of φ. The root set
ρ(φ) of the forest φ is the set of points x ∈ X for which there is no edge (x, y) in φ;
the connected component of φ are trees, each of them having edges that are oriented
towards its own root. We call F the set of all rooted spanning forests, we see each
forest φ in F as a subset of E , and we associate with it the weight

w(φ) =
∏

e∈φ

w(e).

In particular, ∅ ∈ F is the spanning forest made of n degenerate trees reduced to
simple roots and w(∅) = 1. We can now define our random forests: for each q > 0,
the random spanning forest �q is a random variable in F with law

P
(
�q = φ

) = w(φ)q |ρ(φ)|

Z(q)
, φ ∈ F ,

where the normalizing partition function is

Z(q) =
∑

φ∈F
w(φ)q |ρ(φ)|.
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We can include the case q = +∞ in our definition by setting �∞ = ∅ ∈ F in a
deterministic way.

It turns out that both the law of ρ(�q) and the law of ρ(�q) conditioned on the
event

{|ρ(�q)| = m
}
, for any 1 ≤ m ≤ n, provide well-distributed points. And we

can compute the common value of the mean hitting time in both cases in terms of the
eigenvalues of the generator L given by

(L f )(x) =
∑

y∈X
w(x, y)

[
f (y) − f (x)

]
, f : X → C, x ∈ X ,

To this end, let us denote by λ0, λ1, . . . , λn−1 the eigenvalues of −L and (ak : 0 ≤
k ≤ n) the coefficients of the characteristic polynomial of L , which computed in q is

det(q − L) =
∏

j<n

(q + λ j ) =
∑

k≤n

akq
k .

In this formula and all along the paper, we identify scalars with the appropriate multi-
ples of the identity matrix. Recalling that X is irreducible and ordering the eigenvalue
by non-decreasing real part, λ0 is the only one zero eigenvalue, we have a0 = 0 and
we can set an+1 = 0.

Theorem 1 For all x ∈ X and all positive integer m ≤ n it holds

E

[
Ex

[
Tρ(�q )

]] = 1

q

⎛

⎝1 −
∏

j>0

λ j

q + λ j

⎞

⎠ and E

[
Ex

[
Tρ(�q )

] ∣∣∣ |ρ(�q)| = m
]

= am+1

am
.

We prove this theorem in Sect. 3, in which we also compute, in both cases, as a
consequence of it and as needed in [2], mean return times to ρ(�q) from a uniformly
chosen point inρ(�q). In doing so,wewill see that the problemoffinding a distribution
that provides exactly m well-distributed points has infinitely many solutions as soon
as 2 ≤ m ≤ n − 2 and Theorem 1 simply provides one of them. The only cases when
the convex set of solutions reduces to a singleton are the known case m = 1, the easy
case m = n − 1 and the trivial one m = n.

1.2 Local Equilibria and Random Forests in the Reversible Case

For B ⊂ X we identify the signed measures onX \B with the row vectors ν = (
ν(x) :

x ∈ X \B). For A ⊂ X and any matrix M = (
M(x, y) : x, y ∈ X

)
, we write [M]A

for the submatrix

[M]A =(
M(x, y) : x, y ∈ A

)
.

We identify L with its matrix representation with diagonal coefficients −w(x), where

w(x) =
∑

y �=x

w(x, y), x ∈ X , (1)
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and we set
α = max

x∈X
w(x). (2)

The sub-Markovian generator [L]X \B is associated with the process killed in “the
boundary” B. We will assume in this section that L is reversible with respect to μ and
we write

λ0,B < λ1,B ≤ · · · ≤ λl−1,B

for the ordered eigenvalues of −[L]X \B, with l = |X \B|. We can then inductively
define from any probability measure ν = νl−1 on X \B the a priori signed measures
νk , with k < l, by

νk[L]X \B = λk,B
[
νk − νk−1

]
. (3)

To avoid ambiguity, we set νk−1 = 0 if λk,B = 0. The following result is due to
Micchelli and Willoughby (see Theorem 3.2 in [11]).

Micchelli and Willoughby’s Theorem If L is reversible, then νk is a non-negative
measure for all non-negative k < l and any probability measure ν on X \B.

Since Eq. (3) can also be written (for k > 0 or B �= ∅, so that λk,B > 0) as

νk−1 = νk
[L]X \B + λk,B

λk,B
,

we have

∑

x∈B
νk−1(x) ≤

∑

x∈B
νk(x) ≤ · · · ≤

∑

x∈B
ν(x) = 1

and we can identify each νk with a probability measure on the quotient spaceX /B for
the equivalence relation ∼B such that x ∼B y if and only if x = y or x, y ∈ B: we
simply put the missing mass on B. Equation (3) has then the following probabilistic
interpretation. Starting from νk , the system decays into νk−1 after an exponential time
of parameter λk,B, and, more precisely, starting from νk(·|B), the system remains in
this state for an exponential time of parameter λk,B before decaying into νk−1(·|B)

or reaching B. This is rigorously established by Fill and Miclo (see [7] and [12]) to
control convergence to equilibrium and absorption times of reversible processes, and
this is the reason why the νks can be described as local equilibria.

The previous probabilistic interpretation makes sense only once the non-negativity
of the νks is guaranteed by Micchelli and Willoughby’s theorem, which is crucial in
Fill’s and Miclo’s analysis. The fully algebraic proof by Micchelli and Willoughby
describes the νks in terms of some divided differences and uses Cauchy’s interlacement
theorem in an inductive argument to conclude to positivity. We will show in Sect. 4, on
the one hand, that computing the probability of certain events related to our random
forests�q leads naturally to the divided difference representation of the νks, when one
has in mind their local equilibria interpretation. This will be done by using Wilson’s
algorithm, which gives an alternative description of our random forests (see Sect. 2).
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On the other hand, our random forest original description will lead to the key formula
of the inductive step: from the random forest point of view, this algebraic formula
is nothing but a straightforward connection between the previous event probabilities.
Section 4 contains the full derivation of Micchelli and Willoughby’s theorem.

1.3 Coupling Random Forests, Coalescence and Fragmentation

In dealing with practical sampling issues in the next section, we will couple all the
�qs together in such a way that we will obtain the following side result.

Theorem 2 There exists a (non-homogeneous) continuous-time Markov process
(F(s) ∈ F : s ≥ 0) that couples together all our random forests �q for q > 0
as follows: for all s ≥ 0 and φ ∈ F , it holds

P(F(s) = φ) = P(�1/t = φ) = P(�q = φ)

with t = 1/q, s = ln(1 + αt) and α as in Eq. (2).

With each spanning forest φ, we can associate a partition P(φ) of X , for which x
and y in X belong to the same class when they are in the same tree. We will see in
Sect. 2.3 that the coupling t �→ �1/t = F(ln(1 + αt)) is then associated with a frag-
mentation and coalescence process, for which coalescence is strongly predominant,
and at each jump time, one component of the partition is fragmented into pieces that
possibly coalesce with the other components. This coupling will lead to a number of
open questions: (1) Is it possible to use this process to sample efficiently �q with a
prescribed number of roots? (2) Can we use it to estimate the spectrum of L? (3) How
to characterize the law of the associated partition process? (See Sect. 2.3 for more
details.)

2 Preliminary Remarks and Sampling Issues

2.1 Wilson Algorithm, Partition Function and the Root Process

Let us first slightly extend our notion of random forests. For any B ⊂ X , we denote
by �q,B a random variable in F with the law of �q conditioned on the event

{
B ⊂

ρ(�q)
}
. We then have, for any φ in F ,

P
(
�q,B = φ

) = w(φ)q |ρ(φ)|−|B|

ZB(q)
1{B⊂ρ(φ)}

with
ZB(q) =

∑

φ:ρ(φ)⊃B
w(φ)q |ρ(φ)|−|B|. (4)

This law is non-degenerate even for q = 0, provided that B is non-empty. And if B is
a singleton {r}, then �0,{r} is the usual random spanning tree with a prescribed root r ,
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which can be sampled withWilson’s algorithm (cf. [14]). For q > 0,�q = �q,∅ itself
is also a special case of the usual random spanning tree on an extended weighted graph
Ḡ = (X̄ , w̄) obtained by addition of an extra point r toX—to form X̄ = X ∪{r}—and
by setting w̄(x, r) = q and w̄(r, x) = 0 for all x in X . Indeed, to get �q from the
usual random spanning tree on X̄ , with the root in r , one only needs to remove all
the edges going from X to r . Following Propp and Wilson (cf. [13]), we can then use
Wilson’s algorithm to sample �q,B for q > 0 or B �= ∅:
a. start from B0 = B and φ0 = ∅, choose x in X \B0 and set i = 0;
b. run the Markov process starting at x up to time Tq ∧ TBi with Tq an independent

exponential random variable with parameter q (so that Tq = +∞ if q = 0) and
TBi the hitting time of Bi ;

c. with

�x
q,Bi

= (x0, x1, . . . , xk) ∈ {x} × (
X \(Bi ∪ {x}))k−1 × (

X \{x})

the loop-erased trajectory obtained from X : [0, Tq ∧ TBi ] → X , set Bi+1 =
Bi ∪ {x0, x1, . . . , xk} and φi+1 = φi ∪ {(x0, x1), (x1, x2), . . . , (xk−1, xk)} (so that
φi+1 = φi if k = 0);

d. if Bi+1 �= X , choose x in X \Bi+1 and repeat b–d with i + 1 in place of i , and, if
Bi+1 = X , set �q,B = φi+1.

This algorithm is not only a practical algorithm to sample �q , but also a powerful tool
to analyse its law, one of its main strength points being the fact that the order of the
chosen starting points x does not matter.

There are at least two ways to prove that this algorithm indeed samples �q,B with
the desired law,whatever theway inwhich the starting points x are chosen. One can, on
the one hand, followWilson’s original proof in [14], which makes use of the so-called
Diaconis–Fulton stack representation of Markov chains (see Sect. 2.3). One can, on
the other hand, follow Marchal who first computes in [10] the law of the loop-erased
trajectory �x

q,B obtained from the random trajectory X : [0, Tq ∧ TB] → X started
at x ∈ X \B and stopped in B or at an exponential time Tq if Tq is smaller than the
hitting time TB. One has indeed:

Theorem [Marchal] For any self-avoiding path (x0, x1, . . . , xk) ∈ X k+1 such that
x0 = x ∈ X \B, it holds

P
(
�x
q,B = (x0, x1, . . . , xk)

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∏

j<k

w(x j , x j+1)
det[q − L]X \(B∪{x0,...,xk−1})

det[q − L]X \B
if xk ∈ B,

q
∏

j<k

w(x j , x j+1)
det[q − L]X \(B∪{x0,...,xk })

det[q − L]X \B
if xk /∈ B.

From this result, one can compute the law of�q,B defined by the previous algorithm
to find, after telescopic cancellation,

P
(
�q,B = φ

) = w(φ)q |ρ(φ)|−|B|

det[q − L]X \B
1{B⊂ρ(φ)}, φ ∈ F . (5)
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We can then identify the law of |ρ(�q,B)| in terms of the eigenvalues λ0,B,
λ1,B, . . . , λl−1,B, with l = |X \B|, of −[L]X \B. Let us write to this end

J = {0, 1, 2, . . . , l − 1} = J0 ∪ J+ ∪ J−

with

J0 = {
j ∈ J : λ j,B ∈ R

}
, J+ = {

j ∈ J : Im(λ j,B) > 0
}
,

J− = {
j ∈ J : Im(λ j,B) < 0

}
,

let us set

p j = q

q + λ j,B
, j ∈ J,

and define independent random variables Bj , with j in J0, and C j , with j in J+, such
that the Bj s follow Bernoulli laws and the C j s follow convolutions of conjugated
“complex Bernoulli laws”:

P(Bj = 1) = p j , P(Bj = 0) = 1 − p j , j ∈ J0
P(C j = 2) = p j p̄ j , P(C j = 1) = p j (1 − p̄ j ) + p̄ j (1 − p j ),

P(C j = 0) = (1 − p j )(1 − p̄ j ), i.e.

P(C j = 2) = |p j |2, P(C j = 1) = 2Re(p j ) − 2|p j |2,
P(C j = 0) = 1 − 2Re(p j ) + |p j |2, j ∈ J+.

Note that the previous equations indeed define probability laws for the C j s as soon as
2Re(p j ) ≥ 2|p j |2 for j in J+. This is equivalent to

q

q + λ j,B
+ q

q + λ̄ j,B
≥ 2q2

|q + λ j,B|2 ⇔ 2q2 + 2qRe(λ j,B) ≥ 2q2

and ensured by the fact that the eigenvalues have non-negative real part. We eventually
set

Sq,B = |B| +
∑

j∈J0

Bj +
∑

j∈J+
C j . (6)

Proposition 2.1 ZB is the characteristic polynomial of [L]X \B, i.e.

∑

φ:ρ(φ)⊃B
w(φ)q |ρ(φ)|−|B| = det(q − [L]X \B) =

∏

j∈J

(q + λ j,B), q ∈ R, (7)

and |ρ(�q,B)| has the same law as Sq,B for q > 0 or B �= ∅.
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Proof Equation (5) allows to identify ZB by summing on φ in F . The identity in law
is obtained by identifying monomials with equal degree in Eq. (7) and by dividing
each identity by ZB(q) to get, for any k ≤ l = |X \B|,

P
(|ρ(�q,B)| = |B| + k

) =
∑

I⊂J :|I |=k

∏

i∈I

q

q + λi,B

∏

i∈J\I

λi,B
q + λi,B

=
∑

I⊂J :|I |=k

∏

i∈I
p j

∏

i∈J\I

(
1 − p j

)
.

Since for each j in J+ there is j ′ in J− such that λ j ′,B = λ̄ j,B and p j ′ = p̄ j , the proof
is complete. ��

The fact that �q is the usual random spanning tree on an extended graph implies,
through the (non-reversible) transfer current theorem (cf. [4] and [5]), that �q,B ⊂ E
is a determinantal process and so is ρ(�q,B) ⊂ X . (In the reversible case at least, the
fact that the law of |ρ(�q,B)| is a convolution of Bernoulli laws is also a consequence
of this determinantality property.) Let us give a direct and short proof of the fact that
ρ(�q,B) is a determinantal process associated with a remarkable kernel.

Proposition 2.2 For any A ⊂ X

P
(
A ⊂ ρ(�q,B)

) = det[Kq,B]A

with

Kq,B(x, y) = Px
(
X (Tq ∧ TB) = y

)
, x, y ∈ X .

Proof Since for any x ∈ B we have Kq,B(x, ·) = δx , it holds det[Kq,B]A =
det[Kq,B]A\B and we can assume without loss of generality that A ⊂ X \B. By
sampling �q,B with Wilson’s algorithm and choosing as first starting points for the
loop-erased random walks the elements ofA, we have by Marchal’s formula and after
telescopic cancellation

P
(
A ⊂ ρ(�q,B)

) = q |A| det[q − L](X \B)\A
det[q − L]X \B

= q |A| det
[[q − L]−1

X \B
]
A

= det
[
q[q − L]−1

X \B
]
A.

The last but one equality, sometimes referred as Jacobi’s equality, is obtained from
standard manipulations of the Schur complement

S = A − BD−1C

of the block D in a 2 × 2 block matrix

M =
(
A B
C D

)
=

(
1 BD−1

0 1

)(
S 0
0 D

)(
1 0

D−1C 1

)
.

123



J Theor Probab (2018) 31:1975–2004 1983

This formula gives det M = det S det D and identifies S−1 as one block of

M−1 =
(

S−1 −S−1BD−1

−D−1CS−1 D−1 + D−1CS−1BD−1

)
,

the determinant of which is det S−1 = det D/ det M . The previous equality was
obtained by taking M = [q − L]X \B and D = [q − L](X \B)\A (so that S is the
sub-Markovian generator of the trace on A of the original process killed in B and at
rate q outside B, while S−1 is the associated Green’s kernel).

Let us express Kq,B in terms of L to conclude this proof. The trajectory of X can be
built by updating at each time of a Poisson process of intensity α, defined in Eq. (2),
the current position x ∈ X to y ∈ X with probability

P(x, y) = w(x, y)/α, (8)

with the convention
w(x, x) = α − w(x). (9)

Since the probability of reaching the time Tq between two successive updating is
q/(q + α), we get for any x and y in X \B

Px
(
X (Tq ∧ TB) = y

) =
∑

k≥0

q

q + α

(
1 − q

q + α

)k

[P]kX \B(x, y)

= q

q + α

(
1 − α

q + α
[P]X \B

)−1

(x, y)

= q
(
q − α[P − 1]X \B

)−1
(x, y) = q[q − L]−1

X \B(x, y).

And for any A ⊂ X \B it holds [Kq,B]A = [
q[q − L]−1

X \B
]
A. ��

We conclude this section by observing that the Markov chain tree theorem (see, for
example, [1]) allows to compute the root distribution when conditioning on P(�q),
the partition of X that is associated with �q . We write P(�q) = [X1, . . . ,Xm] if �q

is made of m trees, each of them spanning one of the Xi s. For each i ≤ m, we denote
by Li the generator of X restricted to Xi , which is defined by

(Li f )(x) =
∑

y∈Xi

w(x, y)
[
f (y) − f (x)

]
, x ∈ Xi , f : Xi → C,

and by Xi this restricted process. Since, by construction, the root of the spanning
tree of Xi is reachable by Xi from any point in Xi , this process admits only one
invariant measure μi , which is equal to μ(·|Xi ) (recall that μ is the invariant measure
of X ) when X is reversible. If [X1, . . . ,Xm] is an admissible partition of X , that is
if P(�q) = [X1, . . . ,Xm] with nonzero probability, then, denoting by Ti the set of
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Fig. 1 A sample of P(�q ) and ρ(�q ) with 50 roots on the 987 × 610 rectangular grid and for the
Metropolis random walk at inverse temperature β = .06 in a Brownian sheet potential V , i.e. such that
nearest-neighbours rates are given byw(x, y) = exp{−β[V (y)−V (x)]+}with V being the grid restriction
of a Brownian sheet with 0 value on the north and west sides of the box. This random walk is reversible
with respect to exp{−βV }. The cyan lines separate neighbouring trees, the roots are at the centre of the red
diamonds, and blue levels depend on the potential: the darker the blue, the lower the potential (Color figure
online)

spanning trees of Xi and by ρ(τi ) the root xi ∈ Xi of τi ∈ Ti , we can compute for any
(x1, . . . , xm) in X1 × · · · × Xm

P

(
ρ(�q) = {x1, . . . , xm}

∣∣∣ P(�q) = [X1, . . . ,Xm]
)

= qm
∑

τ1∈T1 · · ·∑τm∈Tm
∏m

i=1 w(τi )1{ρ(τi )=xi }
qm

∑
τ1∈T1 · · ·∑τm∈Tm

∏m
i=1 w(τi )

=
m∏

i=1

∑
τi∈Ti w(τi )1{ρ(τi )=xi }∑

τi∈Ti w(τi )
.

The Markov chain tree theorem gives then

Proposition 2.3 For any admissible partition [X1, . . . ,Xm] and any (x1, . . . , xm) in
X1 × · · · × Xm, it holds

P

(
ρ(�q) = {x1, . . . , xm}

∣∣∣ P(�q) = [X1, . . . ,Xm]
)

=
m∏

i=1

μi (xi ).

See Fig. 1 for an illustration with the two-dimensional nearest-neighbour random
walk in a Brownian sheet potential, which is easy to sample and gives rise to a rich
and anisotropic energy landscape.
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2.2 Sampling Approximately m Roots

While Wilson’s algorithm provides a practical way to sample �q , we do not have
such an algorithm for �q conditioned on

{|ρ(�q)| = m
}
. In this section, we explain

how to get �q with approximately m roots, with an error of order
√
m at most. By

Proposition 2.1, it suffices to choose q solution of

∑

j<n

q

q + λ j
= m. (10)

Indeed,

E
[|ρ(�q)|

] =
∑

j∈J0

E[Bj ] +
∑

j∈J+
E[C j ] =

∑

j∈J

q

q + λ j
,

while

Var(Bj ) = p j (1 − p j ) ≤ p j = E[Bj ], j ∈ J0

Var(C j ) = 2Re(p j ) + 2|p j |2 − 4Re(p j )
2 ≤ 4Re(p j ) = 2E[C j ], j ∈ J+,

so thatVar
(|ρ(�q)|

) ≤ 2E
[|ρ(�q)|

]
. Butwedonotwant to solveEq. (10) analytically,

and we do not want to compute the eigenvalues λ j . One way to find an approximate
value of the solution q∗ of Eq. (10) is to use, on the one hand, the fact that q∗ is the
only one stable attractor of the recursive sequence defined by qk+1 = f (qk) with

f : q > 0 �→ q × m∑
j<n

q
q+λ j

= m
∑

j<n
1

q+λ j

,

on the other hand, the fact that |ρ(�q)| and E
[|ρ(�q)|

] = ∑
j<n q/(q + λ j ) are

typically of the same order, at least when E
[|ρ(�q)|

]
, i.e. q, is large enough, since

Var
(|ρ(�q)|

)
/E2

[|ρ(�q)|
] ≤ 2/E

[|ρ(�q)|
]
. We then propose the following algo-

rithm to sample �q with m ± 2
√
m roots.

a. Start from any q0 > 0, for example q0 = α = maxx∈X w(x), and set i = 0.
b. Sample �qi with Wilson’s algorithm.
c. If |ρ(�qi )| /∈ [

m − 2
√
m,m + 2

√
m
]
, set qi+1 = mqi/|ρ(�qi )| and repeat b–c

with i + 1 instead of i , if |ρ(�qi )| ∈ [
m − 2

√
m,m + 2

√
m
]
, then return �qi .

To see that this algorithm rapidly produces the desired result, it is convenient to write
γ = ln q and introduce the global contraction

g : γ ∈ R �→ ln f (eγ ).
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While f is a contraction in a neighbourhood of q∗ only, let us show that g is indeed a
global contraction. For all γ ∈ R, it holds

g′(γ ) =
∑

j<n

(
q

q+λ j

)2

∑
j<n

q
q+λ j

=
∑

j∈J0

(
q

q+λ j

)2 + 2
∑

j∈J+ Re2
(

q
q+λ j

)
− Im2

(
q

q+λ j

)

∑
j∈J0

q
q+λ j

+ 2
∑

j∈J+ Re
(

q
q+λ j

) .

With α j = Re(λ j ) > 0 and β j = Im(λ j ) > 0 for j in J+, we have

0 < Re

(
q

q + λ j

)
= q(q + α j )

(q + α j )2 + β2
j

< 1 and Im

(
q

q + λ j

)
= −qβ j

(q + α j )2 + β2
j

,

so that

Re2
(

q

q + λ j

)
∨ Im2

(
q

q + λ j

)
< Re

(
q

q + λ j

)
,

since 0 < Re(q/(q + λ j )) < 1 and

Im2
(

q
q+λ j

)

Re
(

q
q+λ j

) = qβ2
j

(q + α j )((q + α j )2 + β2
j )

< 1.

Then, g′(γ ) being the difference between two non-negative terms that are strictly
smaller than 1, we have |g′(γ )| < 1, for all γ in R. Now, writing for k ≥ 0

εk = ∣∣ln(1 + δk)
∣∣ =

∣∣∣∣∣ln
(

|ρ(�qk )|
E
[|ρ(�qk )|

]
)∣∣∣∣∣ and γk+1 = ln qk+1 = g(γk) − ln(1 + δk),

there are some non-negative θk < 1 such that, with γ ∗ = ln q∗ = g(γ ∗),
∣∣γk+1 − γ ∗∣∣ ≤ θk

∣∣γk − γ ∗∣∣ + εk,

and, by induction on k > 0,

∣∣γk − γ ∗∣∣ ≤ θk−1 · · · θ0
∣∣γ0 − γ ∗∣∣ + θk−1 · · · θ1ε0 + θk−1 · · · θ2ε1

+ · · · + θk−1εk−2 + εk−1.

Since Chebyshev’s inequality gives for all δ > 0

P
(|δk | > δ

) ≤ Var
(|ρ(�qk )|

)

δ2E2
[|ρ(�qk )|

] ≤ 2

δ2E
[|ρ(�qk )|

] ,

after “a few iterations” (we cannot be more precise in absence of extra information on
the spectrum of L that would be needed to give uniform bounds on |g′| and the θks)
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the approximation error for γ ∗ is of the same order as εk−1—itself of order 1/
√
m at

most—and we get m roots for �q within an error of order
√
m.

2.3 Coupled Forests

Instead of stopping the iterations of the previous algorithm when reaching a forest
with m ± 2

√
m roots, one can proceed up to reaching exactly m roots. This typically

requires order
√
m extra iterations at most, and this is what we have done to obtain the

exactly 50 roots of Fig. 1. Starting with q = q0 larger than the solution q∗ of Eq. (10),
it takes generallymuchmore time to reach exactlym roots than to decrease q down to a
good approximation of q∗ according to the updating procedure q ← q ×m/|ρ(�q)|.
For example, starting from q = 4 for the Metropolis random walk in Brownian
sheet potential of Fig. 1, we got 361,782 roots at the first iteration, 51 roots and
q = 5.26×10−6 at the tenth iteration, and we needed 55 extra iterations to get exactly
50 roots with q = 4.92 × 10−6, getting in the mean time root numbers oscillating
between 43 and 59 for q between 3.96× 10−6 and 6.07× 10−6. While decreasing q,
we produce a number of forests with a larger root number than desired, and, sampling
for large q being less time-consuming than sampling for small q, the total running
time of the iterations to decrease q to the correct order is essentially of the same order
as the running time of one iteration for q of this correct order. This suggests that if we
could continuously decrease q in such a way that �q would cross all the manifolds

Fm = {
φ ∈ F : |ρ(φ)| = m

}
, m ≤ n, (11)

thenwemight be able to find amore efficient algorithm to sample�q with a prescribed
root number. It turns out that we are able to implement such a “continuously decreasing
q algorithm,” building in this way the coupling of Theorem 2. But this is not sufficient
to improve our sampling algorithm for a prescribed root number.

In this section, we prove Theorem 2, characterize the associated root process and
describe the associated coalescence and fragmentation process, which leads to further
open questions. This coupling is the natural extension of Wilson’s algorithm based on
Diaconis and Fulton’s stack representation of random walk (cf. [6]) as used byWilson
and Propp in [14] and [13].
Stack representationsAssume that an infinite list or collection or arrows is attached to
each site of the graph, each arrow pointing towards one of its neighbour. Assume in
addition that these arrows are distributed according to the probability kernel P of the
discrete-time skeleton of X which is defined by Eqs. (8)–(9). Assume in other words
that these arrows are independently distributed at each level of the stacks and that
an arrow pointing towards the neighbour y of a given site x appears with probability
P(x, y), considering in this context x itself as one of its neighbours. Imagine finally
that each list of arrows attached to any site is piled down in such a way that it makes
sense to talk of an infinite stack with an arrow on the top of this stack. By using this
representation, one can generate the Markov process as follows: at each jump time of
a Poisson process with intensity α, our walker steps to the neighbour pointed by the
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arrow at the top of the stack where it was sitting, and the top arrow is erased from this
stack.

To describe Wilson’s algorithm for sampling �q , one has to introduce a further
ingredient: pointers to an absorbing state r in each stack. Such a pointer should inde-
pendently appear with probability q/(q + α) at each level in the different stacks. One
way to introduce it is by generating independent uniform random variablesU together
with each original arrow in the stacks. We can then replace the latter by a pointer to
the absorbing state whenever U < q/(q + α). A possible description of Wilson’s
algorithm is then the following.

a. Start with a particle on each site. Both particles and sites will be declared either
active or frozen. At the beginning, all sites and particles are declared to be active.

b. Choose an arbitrary particle among all the active ones and look at the arrow at the
top of the stack it is seated on. Call x the site where the particle is seated.
– If the arrow is the pointer to r , declare the particle to be frozen and site x as
well.

– If the arrow points towards another site y �= x , remove the particle and keep
the arrow. We say that this arrow is uncovered.

– If the arrow points to x itself, remove the arrow.
c. Once again, choose an arbitrary particle among all the active ones, look at the

arrow on the top of the stack it is seated on, and call x the site where the particle
is seated.
– If the arrow points to r , the particle is declared to be frozen, and so are declared

x and all the sites eventually leading to x by following uncovered top pile arrow
paths.

– If the arrow points to a frozen site, remove the chosen particle at x , keep the
(now uncovered) arrow, and freeze the site x as well as any site eventually
leading to x by following uncovered top pile arrow paths.

– If the arrowpoints to an active site, then there are twopossibilities.By following
from this site the uncovered arrows at the top of the stacks, we either reach a
different active particle or run in a loop back to x . In the former case, remove
the chosen particle from site x and keep the discovered arrow. In the latter case,
erase all the arrows along the loop and put an active particle on each site of the
loop. Note that this last case includes the possibility for the discovered arrow
of pointing to x itself, in which case we just have to remove the discovered
arrow.

d. Repeat the previous step up to exhaustion of the active particles.

The crucial observation, which is due to Propp andWilson, is that whatever the choice
of active particles all along the algorithm, at the end of the day the same arrows are
erased and the same spanning forest of uncovered arrows, with a frozen particle at
each root, is obtained. In particular, by choosing at each step the last encountered
active particle, or the same as in the previous step when we just erased a loop, we
perform a simple loop-erased random walk up to freezing.

Proof of Theorem 2. Since �q is sampled for any q by the previously described algo-
rithm and the same uniform variablesU can be used for each q, this provides a global
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coupling for all the �q . We first note that this coupling allows to sample �q2 from
a sampled �q1 for q2 < q1. Indeed, by running this algorithm for sampling �q2 ,
one can reach at some point the spanning forest of uncovered arrows �q1 with this
difference that the frozen particles of the final configuration obtained with parameter
q1 can be still active at this intermediate step of the algorithm run with q2: it suffices
to choose the sequence of active particles in the same way with both parameters, and
this is possible since each pointer to r in the stacks with parameter q2 is associated
with a pointer to r at the same level in the stacks with parameter q1. Thus, to sample
�q2 from a sampled �q1 , we just have to replace some frozen particles in ρ(�q1) and
continue the algorithm with parameter q2. To decide which particle has to be unfrozen
we can proceed as follows. With probability

p = P

(
U <

q2
q2 + α

∣∣∣∣ U <
q1

q1 + α

)
= q2(q1 + α)

q1(q2 + α)
(12)

each particle inρ(�q1), independently fromeach other, is kept frozen.With probability
1 − p a particle in a site x of ρ(�q1) is declared active and we set at the top of the
pile in x an arrow that points towards y with probability P(x, y) = w(x, y)/α.

When q = 1/t continuously decreases, we obtain a right-continuous process
t �→ �1/t , for which we can practically sample not only the “finite dimensional
distributions”—i.e. the law of (�1/t1 , . . . , �1/tk ) for any choice of t1 < · · · < tk—
but the whole trajectories (�1/t : t ≤ t∗) too, for any finite t∗. Indeed, at each time
t = 1/q, the next frozen particle to become active is uniformly distributed among the
m roots at time t , and the next jump time T when it will “wake up” is such that the
random variable

V = 1/T

α + 1/T
= 1

1 + αT
(13)

has the law of the maximum of m independent uniform variables on
[
0, q/(q + α)

)=[
0, 1/(1 + αt)

)
. Since

P(V < v) =(
v(1 + αt)

)m
, v <

1

1 + αt
,

V has the same law as U 1/m/(1 + αt) with U uniform on [0, 1). Using Eq. (13), we
can then sample the next jump time T by solving

1 + αT

1 + αt
= U−1/m . (14)

Setting s = ln(1 + αt) and S = ln(1 + αT ), the random variable S − s has the same
law as the minimum of m independent exponential random variables of rate 1.

Our Markov process (F(s) ∈ F : s ≥ 0) is then built in the following way. We
associatem independent exponential random clocks of rate 1 with them roots of F(s)
at time s. At the first ring time S ≥ s at some root x , we define F(S) by declaring
active the particle at x , putting an arrow to y with probability P(x, y) = w(x, y)/α
and restarting our algorithm with parameter q = 1/T = α/(eS − 1). ��
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A determinantal formula for the associated root process. Proposition 2.2, from which
we recall the definition of the probability kernel Kq,B, can be extended to characterize
the law of the coupled root process t �→ ρ(�1/t ).

Proposition 2.4 For all 0 < t1 < · · · < tk < tk+1 = 1/qk+1 and all A1, . . . ,Ak ,
Ak+1 contained in X , it holds

P
(
Ak+1 ⊂ ρ(�1/tk+1)

∣∣ Ak ⊂ ρ(�1/tk ), . . . ,A1 ⊂ ρ(�1/t1)
)

=
∑

Bk⊂A′
k

∑

Bk−1⊂A′
k−1

· · ·
∑

B1⊂A′
1

k∏

i=1

(
ti

tk+1

)|Bi |(
1 − ti

tk+1

)|A′
i\Bi |

det
[
Kqk+1,B

]
Ak+1

with A′
k = Ak, A′

k−1 = Ak−1\Ak, · · · A′
1 = A1\(Ak ∪ Ak−1 ∪ · · · ∪ A2)

and B =
k⋃

i=1

Bi . (15)

Proof Let us first consider the case k = 1, so thatA′
1 = A1.As far as�1/t is concerned

for t > t1, conditioning on
{
A1 ⊂ ρ(�1)

}
is nothing but a conditioning on the value of

the uniform random variables at the top of the stacks inA1.With q1 = 1/t1, we cannot
sample �q2 conditioned on

{
A1 ⊂ ρ(�1)

}
by keeping “frozen” each site in A1 with

probability p defined by Eq. (12), calling B the set of the remaining frozen sites and
sampling�q2,B with this randomB ⊂ X , so that the root set would be a determinantal
process with kernel Kq2,B. The walking up procedure we defined after Eq. (12) indeed
introduces a bias in the distribution at the top of the pile for the unfrozen sites: top pile
arrows cannot be replaced by pointers to r . To recover a determinantal process with
random kernel Kq2,B for the conditional root process, the random set B has to be built
by keeping frozen each site in A1 with a smaller probability p′ solving

p = p′ + (1 − p′) q2
q2 + α

.

Top pile arrows of unfrozen sites can then still be replaced by pointers to r with
probability q2/(q2 + α), and this equation makes that we recover the correct biased
probability. Solving it, we get p′ = q2/q1 = t1/t2 and Eq. (15).

When k is larger than 1, the formula is simply obtained by keeping frozen each site
x in

⋃
i≤k Ak with a probability that depends on the largest i such that x ∈ Ai . This

is the reason why we introduced the setsA′
i : i

∗ is the largest i such that x ∈ Ai if and
only if x ∈ A′

i∗ . ��
Fragmentation, coalescence and open questions. At each jump time S = Sk+1 of F
and in the proof of Theorem 2, there is only one root x to “wake up,” which means that
there is only one piece of the associated partition into m pieces at the previous jump
time Sk that can be fragmented into different trees, the other pieces of the previous
partition remaining contained in different pieces of the new partition at time Sk+1. At
time Sk+1 we can have both fragmentation, produced by the loop-erasure procedure,
and coalescence: the trees covering the possibly fragmented piece can be eventually
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grafted to the other m − 1 non-fragmented frozen trees, when their associated loop-
erased random walk freezes by running into these frozen trees.

Fragmentation can increase the total number of pieces up to m + k − 1, with
k the number of sites in the tree that is rooted at x : this happens when this tree
is completely fragmented and no coalescence occurs. Coalescence can decrease the
number of pieces by 1 at most: when each tree of the possibly fragmented piece is
eventually grafted to the other pieces. But coalescence strongly dominates the process:
as q = 1/t decreases, so doesE

[|ρ(�q)|
]
, with limited fluctuations, as a consequence

of Proposition 2.1 (cf. Figs. 2, 3, 4). And the fact that when |ρ(�q)| decreases, it does
so by one unit at most, implies that the process t �→ �1/t crosses all the manifolds
Fm defined by Eq. (11).

It is then easy to sample �1/Tm with Tm the first time when t �→ �1/t reaches Fm .
Unfortunately,�1/Tm has not the same law as�q conditioned on

{|ρ(�q)| = m
}
. One

has indeed a counterexample already for n = 2 and m = 1. The random set ρ(�Tm )

is, generally, not even well distributed: for m = n − 1, there is only one distribution
on the subsets of size m that produces well-distributed points. We then get to our first
open question

Q1: Is there a way to use the process t �→ �1/t to sample the measure P
(
�q ∈ · ∣∣

|ρ(�q)| = m
)
?

One can also use this process to estimate t ≥ 0 �→ ∑
j 1/(1+ tλ j ) since this sum is

the expected value of |ρ(�1/t )|, which presents limited fluctuations only (see Fig. 4).
This leads to our second open question

Q2: Is there a way to use the process t �→ �1/t to estimate in an efficient way the
spectrum of −L , or its higher part at least?

Our third open question concerns the law of the “rooted partition” associated with
the forest process t �→ �1/t . (We call it rooted since a special vertex, the root, is
associated with each piece of the partition.) Figures 3 and 4 and Wilson’s algorithm
show that as q = 1/t decreases, the partition process naturally tends to break the space
into larger and larger valleys in which the process is trapped on time scale t = 1/q
(note that the difference of 12 = 27−15 between the extreme values of s = ln(1+αt)
in the right picture of Fig. 4 corresponds to a ratio of order 1.6 × 105 between the
associated times t). But, while we could characterize in Proposition 2.4 the law of
the associated root process, we are far from obtaining a similar result for the rooted
partition.

Q3: Which characterization can be given of the rooted partition associated with t �→
�1/t?

We actually knowvery little beyond Proposition 2.3 on this partition for a fixed value of
q and an easier question would be that of characterizing the law of the forest process
itself. Even though Fig. 2 echoes Figure 5 of [3], which illustrates a coalescence
process that is also associated with random spanning forests, the two processes are
quite different andwedonot know the scaling limit of our process, even for afixedvalue
of q. The process considered in [3] is a pure coalescence process, while fragmentation
is also involved in our case; at a fixed time t , the tree number in that case of the
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Fig. 2 Snapshots at times s = ln(1+αt)with t = 1/q equal to 0, .5., 2, 8, 32, 128, 512, …, 524,288 of the
coalescence and fragmentation process s �→ F(s) for the simple random walk on the torus with uniform
nearest-neighbours rates w(x, y) = 1. Roots are red, non-root leaves are cyan, and other vertices are blue,
different shades of blue being used for different trees (Color figure online)

uniformly cut uniform spanning tree follows a binomial distribution, while the tree
number of our process is distributed as a sum of Bernoulli random variables with non-
homogeneous parameters; and, even conditioned on a same tree number, if the weights
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Fig. 3 Snapshots at times s = ln(1+αt)with t = 1/q equal to 0, .5., 2, 8, 32, 128, 512, …, 524,288 of the
coalescence and fragmentation process s �→ F(s) on the square grid for the random walk in a Brownian
sheet potential with inverse temperature β = .16. The colour conventions are the same as in Fig. 2 (Color
figure online)

of the associated partitions share the same product of unrooted spanning tree number
for each piece of the partition, the extra entropic factor depends in that case of these
pieces’ boundaries, while in our case it is simply given by the product of their size.
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Fig. 4 The left picture shows the tree number as a function of time for the coalescence and fragmentation
processes s �→ F(s) of Figs. 2 and 3 in semi-logarithmic scale. The right picture shows the same quantity
in natural scale from time 15 to 27 for the coalescence and fragmentation process of Fig. 3 only

3 Hitting Times

3.1 Forest Formulas for Hitting Distributions, Green’s Kernels and Mean
Hitting Time

In order to prove Theorem 1, we first use Wilson’s algorithm to give forest represen-
tations of hitting distributions, Green’s kernels and mean hitting times. Two at least
of these formulas, Formula (16) and Formula (17), already appeared in the work of
Freidlin and Wentzell (see Lemma 3.2 and Lemma 3.3 in [8]).

We recall that TB stands for the hitting time of B ⊂ X , we denote by τx (φ) the
unique maximal tree in φ ∈ F that covers x ∈ X , and we recall that ρ(τx (φ)) ∈ ρ(φ)

is the root of τx (φ) and recall Eq. (4). By consideringWilson’s algorithm for sampling
�0,B and choosing x as first starting point for the loop-erased random walk, we first
note that for all y ∈ B, it holds

Px
(
X (TB) = y

) = 1

ZB(0)

∑

φ:ρ(φ)=B,
ρ(τx (φ))=y

w(φ). (16)

We then get the following forest representation of the Green’s kernel

GB(x, z) = Ex

[∫ TB

0
1{X (t)=z} dt

]
, x, z ∈ X .

Lemma 3.1 For any B ⊂ X , x ∈ X and z /∈ B, it holds

GB(x, z) = 1

ZB(0)

∑

φ:ρ(φ)=B∪{z},
ρ(τx (φ))=z

w(φ).

123



J Theor Probab (2018) 31:1975–2004 1995

We finally get Freidlin and Wentzell’s forest representation for mean hitting times:

Ex
[
TB

] =
∑

z /∈B
GB(x, z) = 1

ZB(0)

∑

z /∈B

∑

φ:ρ(φ)=B∪{z}
ρ(τx (φ))=z

w(φ). (17)

Proof of Lemma 3.1: We introduce once again the discrete skeleton of X—that is the
Markov chain X̂ with transition kernel P defined by Eqs. (8)–(9)—and we call ĜB
the Green’s kernel of X̂ stopped in B. Let us denote by T̂z , T̂+

z and T̂B the hitting
time of z, the return time to z and the hitting time of B for the Markov chain X̂ . Since
ĜB(x, z) = Px

(
T̂z < T̂B

)
ĜB(z, z) = Px

(
T̂z < T̂B

)
/Pz

(
T̂+
z > T̂B

)
, it holds

GB(x, z) = 1

α
ĜB(x, z) = Px

(
T̂z < T̂B

)

αPz
(
T̂+
z > T̂B

) = Px
(
T̂z < T̂B

)

α
∑

y �=z P(z, y)Py
(
T̂z > T̂B

)

= Px
(
Tz < TB

)
∑

y �=z w(z, y)
[
1 − Py

(
Tz < TB

)] .

Then, since Py
(
Tz < TB

) = Py
(
X
(
TB∪{z}

) = z
)
for z /∈ B, it holds, using For-

mula (16),

GB(x, z) =
Px
(
X
(
TB∪{z}

) = z
)

∑
y �=z

[
1 − Py

(
X
(
TB∪{z}

) = z
)]

w(z, y)

=
1

ZB∪{z}(0)
∑

φ w(φ)1{ρ(φ)=B∪{z},ρ(τx (φ))=z}
∑

y �=z
1

ZB∪{z}(0)
∑

φ w(φ)1{ρ(φ)=B∪{z},ρ(τy(φ)) �=z}w(z, y)

=
∑

φ w(φ)1{ρ(φ)=B∪{z},ρ(τx (φ))=z}∑
φ w(φ)1{ρ(φ)=B∪{z}}

∑
y �=z 1{ρ(τy(φ)) �=z}w(z, y)

.

If we associate with each forest φ′ such that ρ(φ′) = B the forest φ = φ′\{(z, y)}
with (z, y) the only edge in φ′ that is issued from z, then we have ρ(φ) = B ∪ {z},
ρ(τy(φ)) �= z, w(φ′) = w(φ)w(z, y) and we recognize

∑
φ′ w(φ′)1{ρ(φ′)=B} =

ZB(0) in the last denominator. ��

3.2 Well-Distributed Roots

Proof of Theorem 1. We first note that for any B ⊂ X , it holds [recall Eq. (4)]

P
(
ρ(�q) = B

) = ZB(0)q |B|

Z(q)
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and, for 0 < m ≤ n,

P
(|ρ(�q)| = m

) = amqm

Z(q)
. (18)

Then, by using Formula (17),

E

[
Ex

[
Tρ(�q )

]∣∣∣|ρ(�q)| = m
]

=
∑

B⊂X :|B|=m

ZB(0)qm

amqm
1

ZB(0)

∑

z /∈B

∑

φ:ρ(φ)=B∪{z}
ρ(τx (φ))=z

w(φ)

= 1

amqm
∑

φ:|ρ(φ)|=m+1

w(φ)q |ρ(φ)|

q

∑

z∈ρ(φ)

1{ρ(τx (φ))=z}

= am+1qm+1

amqm+1 = am+1

am
.

By using again Eq. (18) and Proposition 2.1 with Sq = Sq,∅, it follows

E

[
Ex

[
Tρ(�q )

]] =
∑

m>0

am+1qm

Z(q)
=

∑
k≥2 akq

k

qZ(q)
= P(Sq ≥ 2)

q
= 1 − P(Sq = 1)

q

= 1

q

⎛

⎝1 −
∏

j>0

λ j

q + λ j

⎞

⎠ .

��
We conclude this section by computing the mean return time

T++
R = inf

{
t ≥ 0 : ∃s > 0, X (s) �= X (0), s ≤ t, X (t) ∈ R

}

to R = ρ(�q) starting from a uniformly distributed point in R. The reasonwhywe use
this heavy double + notation is that we will also consider the maybe less natural but
often more useful randomized or skeleton return time T+

R , which is defined as follows.
Assuming that X is built by updating its current position at each time of a Poisson
process of intensity α according to the probability kernel P defined by Eqs. (8)–(9),
the skeleton return time is

T+
R = inf

{
t ≥ τ1 : X (t) ∈ R

}
,

with τ1 the first updating time in thePoisson process.One always has TR ≤ T+
R ≤ T++

R
and, for any x ∈ R, it holds

Ex
[
T++
R

] = Ex
[
T+
R

] + Px
(
X (τ1) = x

)
Ex

[
T++
R

]
,

so that

Ex
[
T++
R

] = α

w(x)
Ex

[
T+
R

]
,
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with w(x) defined by Eq. (1). Like in the previous proof, we write Sq for Sq,∅ defined
in Eq. (6), and we stress that its law depends on the spectrum of L only.

Proposition 3.2 For all m ≤ n and all q > 0, it holds

E

[
EU (ρ(�q ))

[
T+

ρ(�q )

] ∣∣∣∣ |ρ(�q)| = m

]
= n/m

α

and

E

[
EU (ρ(�q ))

[
T++

ρ(�q )

] ∣∣∣∣ |ρ(�q)| = m

]
=

(
1

n

∑

x∈X

1

w(x)

)
n

m
,

so that

E

[
EU (ρ(�q ))

[
T+

ρ(�q )

]]
= 1

α
E

[
n

Sq

]
and E

[
EU (ρ(�q ))

[
T++

ρ(�q )

]]

=
(
1

n

∑

x∈X

1

w(x)

)
E

[
n

Sq

]
,

where U (ρ(�q)) stands for a random point uniformly distributed in ρ(�q).

Proof We work in discrete time, and we use the same notation as in the proof of
Lemma 3.1. For any B ⊂ X and x ∈ X , we set

hB(x) = Ex
[
T̂B

] = αEx [TB].

When x belongs to B, it holds hB(x) = 0 and, when x /∈ B,

hB(x) =
∑

y∈X
P(x, y)Ex

[
T̂B

∣∣ X̂(1) = y
] =

∑

y∈X
P(x, y)

(
1 + hB(y)

)

= 1 + (
PhB

)
(x).

Setting

gB(x) = 1{x∈B}Ex
[
T̂+
B
] = 1{x∈B}αEx

[
T+
B
] = 1{x∈B}w(x)Ex

[
T++
B

]
, (19)

we also have, when x ∈ B,

gB(x) = 1 + (
PhB

)
(x).

Let us denote by ν any probability measure on the subsets of X that produces
well-distributed points. By setting h(x) = ∑

B⊂X ν(B)hB(x) for all x ∈ X , we then
get
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(
Ph

)
(x) =

∑

B⊂X
ν(B)

(
PhB

)
(x) =

∑

B ��x
ν(B)

(
hB − 1

)
(x) +

∑

B�x
ν(B)

(
gB − 1

)
(x)

= −
∑

B⊂X
ν(B) +

∑

B ��x
ν(B)hB(x) +

∑

B�x
ν(B)gB(x)

= −1 + h(x) +
∑

B⊂X
ν(B)gB(x),

where we used
∑

B ν(B) = 1, hB(x) = 0 if x ∈ B, and gB(x) = 0 if x /∈ B.
Since ν produces well-distributed point, the function h is constant on X , so that(
Ph

)
(x) = h(x) for all x in X , which implies, together with the previous equality,

∑

B⊂X
ν(B)gB(x) = 1, x ∈ X . (20)

Since by Theorem 1 we can choose for ν the distribution of ρ(�q) conditioned on{|ρ(�q)| = m
}
, this proves, together with Eq. (19), after dividing by αm or w(x)m

and summing on x ∈ X , the first part of the proposition. The last two equalities simply
follow from Proposition 2.1.

Since a function h is harmonic on X if and only if it is constant, the previous
arguments actually show that any distribution ν on the subsets B of X provides well-
distributed points if and only if it satisfies Eq. (20), which is actually a list of n = |X |
equations the ν(B)s have to satisfy, together with the positivity constraints ν(B) ≥ 0
for all B ⊂ X and the additional equation

∑
B ν(B) = 1. If we restrict ourselves to

distributions supported by sets of a fixed size m, these are n + 1 linear equations for(n
m

)
unknown variables. Since

(n
m

)
> n+1 for 2 ≤ m ≤ n−2 and Theorem 1 provides

a solution ν with positive mass ν(B) > 0 for each subset B of size m, this shows that
there are infinitely many solutions in this case. When m = 1 or m = n − 1, we have
more equations than variables. If m = 1, then solving Eq. (20) is straightforward and
we have a unique solution. If m = n − 1, then it is more convenient to solve directly
the equation set

∑

|B|=n−1

ν(B) = 1,
∑

|B|=n−1

ν(B)hB(x) = t, x ∈ X ,

with the additional unknown variable t , to see that the solution is unique.

4 Re-reading Micchelli and Willoughby’s Proof

Before following in Sects. 4.1–4.3 the three main steps of Micchelli andWilloughby’s
proof, we give some heuristic on the divided difference representation of the νk = νxk
in the case ν = δx for any x in X \B. (In the general case, ν is a convex combination
of such Dirac masses and we just need to prove the theorem in this special case of a
generic Dirac mass.) For 0 ≤ k < l, we have
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νxk = δx
∏

j>k

[L]X \B + λ j,B
λ j,B

,

and, if B �= ∅, the same formula gives νx−1 = 0 by Hamilton–Cayley theorem, while,
if B = ∅, λ0,B = 0. Having in mind that each νk should be interpreted as a local
equilibrium from which the system decays into νk−1 at rate λk , this means that the
system leaves the state ν0 only to be absorbed in B when B �= ∅ (the probability
measure on the quotient set X /B that is associated with ν−1 is fully concentrated
on B), while ν0 is the non-decaying global equilibrium μ when B = ∅. Now, by
considering Wilson’s algorithm with a first loop-erased random walk started from x
to sample �q,B and by comparing the successive decay times with the exponential
random time Tq , we get for any y in X \B, using the notation of Proposition 2.2 and
the notation recalled before Eq. (16),

P
(
ρ(τx (�q)) = y

) = Px
(
X (Tq ∧ TB) = y

) = Kq,B(x, y)

= q

q + λl−1,B
νxl−1(y) + λl−1,B

q + λl−1,B

q

q + λl−2,B
νxl−2(y)

+ · · · + λl−1,B
q + λl−1,B

· · · λ2,B
q + λ2,B

q

q + λ1,B
νx1 (y)

+ λl−1,B
q + λl−1,B

· · · λ1,B
q + λ1,B

q

q + λ0,B
νx0 (y).

(21)

Let us divide by q and multiply by ZB(q) = det
(
q − [L]X \B

)
both sides of this

equation to have a simpler polynomial right-hand side.WithWB(q) the matrix defined
by

WB(q)(x, y) = ZB(q)

q
P
(
ρ(τx (�q )) = y

)= 1

q

∑

φ:ρ(τx (φ))=y,
ρ(φ)⊃B

w(φ)q |ρ(φ)\B|, x, y ∈ X \B,

(22)
or equivalently, since we have seen in the proof of Proposition 2.2 that Kq,B =
q[q − L]−1

X \B,
WB(q) = ZB(q)[q − L]−1

X \B, (23)

Equation (21) now reads

WB(q)(x, y)

= (q + λ0,B) · · · (q + λl−2,B) νxl−1(y) + (q + λ0,B) · · · (q + λl−3,B) λl−1,B νxl−2(y)

+ · · · + (q + λ0,B) λl−1,Bλl−2,B · · · λ2,B νx1 (y) + λl−1,B · · · λ1,B νx0 (y). (24)

and suggests a divided difference representation for the νks according to the following
definition.

Definition 4.1 For any function f defined on R and with values in a real vector
space, if x0, x1, . . . , xl−1 are distinct real numbers, the divided differences f [x0],
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f [x0, x1], . . . , f [x0, . . . , xl−1] are the coefficients of the unique polynomial Q of
degree less than l such that

Q(x) = f [x0] + f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1) + · · ·
+ f [x0, . . . , xl−1](x − x0) · · · (x − xl−2)

for all x in R and Q(xk) = f (xk) for k < l.

Remark These divided differences f [x0, x1, . . . , xk] are given by Lagrange interpo-
lation formula

f [x0, x1, . . . , xk] =
k∑

j=0

f (x j )∏
i≤k,i �= j (x j − xi )

, k < l, (25)

which shows that divided differences are permutation invariant, and one can also
compute them inductively with Newton interpolation formulas

f [x0] = f (x0),

f [x0, . . . , xk] = f [x1, . . . , xk] − f [x0, . . . , xk−1]
xk − x0

,
(26)

which explain the terminology. See, for example, Chapter II of [15] for more details.

To prove that our νxk s are non-negative measures, we can assume without loss of
generality that the eigenvalues λk,B are all distinct (we can modify them slightly and
use the continuity of the νxk s). Equation (24) suggests in this case that for all k < l
and x in X

WB[−λ0,B, . . . ,−λk,B](x, ·) = λl−1,B · · · λk+1,B νxk = δx
∏

j>k

([L]X \B + λ j,B
)
,

i.e.

νxk = WB[−λ0,B, . . . ,−λk,B]
λl−1,B · · · λk+1,B

(x, ·), (27)

or, equivalently,

WB[−λ0,B, . . . ,−λk,B] =
∏

j>k

([L]X \B + λ j,B
)
. (28)

It is worth noting at this point that Eq. (28) would be a consequence of the theorem
by Micchelli and Willoughby (the local equilibrium interpretation of each νk makes
sense only once its non-negativity is established), but our goal is to prove this theorem.
This is what we are ready to do now.
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4.1 Checking Eq. (28)

We simply check that the right-hand side and the left-hand side of Eq. (28) act in the
same way on each left-eigenvector μr of [L]X \B, with μr [L]X \B = −λr,Bμr . Recall
that WB(q) is equivalently defined by Eq. (22) or Eq. (23). By using the latter and
Formula (25), it holds, for each r < l and k < l,

μrWB[−λ0,B, . . . ,−λk,B] =
k∑

j=0

μrWB(−λ j,B)
∏

i≤k,i �= j (−λ j,B + λi,B)

=
k∑

j=0

∏
i<l,i �=r (−λ j,B + λi,B)

∏
i≤k,i �= j (−λ j,B + λi,B)

μr .

Since each numerator in the right-hand side is equal to 0 unless j = r , which can
happen only if r ≤ k, we get

μrWB[−λ0,B, . . . ,−λk,B] = 1{r≤k}
∏

i<l,i �=r (−λr,B + λi,B)
∏

i≤k,i �=r (−λr,B + λi,B)
μr

= 1{r≤k}

(
∏

i>k

(−λr,B + λi,B)

)
μr

=
(
∏

i>k

(−λr,B + λi,B)

)
μr = μr

∏

j>k

([L]X \B + λ j,B
)
.

4.2 A Combinatorial Identity

The key point of the proof lies in the following lemma.

Lemma 4.2 For any x �= y in X \B, it holds

WB(q)(x, x) = ZB∪{x}(q) (29)

and

WB(q)(x, y) = w(x, y)ZB∪{x,y}(q)

+
∑

z,z′∈X \(B∪{x,y})
w(x, z)WB∪{x,y}(q)(z, z′)w(z′, y). (30)

Proof Equation (22) can be rewritten as

WB(q)(x, y) =
∑

φ:ρ(τx (φ))=y,
ρ(φ)⊃B

w(φ)q |ρ(φ)|−1−|B|, (31)
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for x �= y we have

ZB∪{x,y}(q) =
∑

φ′:ρ(φ′)⊃B∪{x,y}
w(φ′)q |ρ(φ′)|−2−|B|, (32)

and it holds

WB∪{x,y}(q)(z, z′) = 1

q

∑

φ′′:ρ(τz(φ
′′))=z′,

ρ(φ′′)⊃B∪{x,y}

w(φ′′)q |ρ(φ′′)|−2−|B|

=
∑

φ′′:ρ(τz(φ
′′))=z′,

ρ(φ′′)⊃B∪{x,y}

w(φ′′)q |ρ(φ′′)|−3−|B|. (33)

Nowwe can define, for each φ appearing in Eq. (31), φ′ = φ\{(x, y)} if (x, y) belongs
to φ, and φ′′ = φ\{(x, z), (z′, y)} if x is connected in φ to y through (x, z) ∈ φ and
(z′, y) ∈ φ, possiblywith z = z′. Since |ρ(φ′)| = |ρ(φ)|+1 and |ρ(φ′′)| = |ρ(φ)|+2,
Eq. (30) follows from Eqs. (31)–(33). Equation (29) is given by Eq. (31) with y in
place of x . ��

4.3 Conclusion with Cauchy Interlacement Theorem

Wewill use the following lemma from [11] and for which we give an alternative proof.

Lemma [Micchelli and Willoughby] Let f : x ∈ R �→ ∏
j<l(x − α j ) ∈ R be a

polynomial of degree l with l distinct zeros α0 > α1 > · · · > αl−1. Let β0 > β1 >

· · · > βL−1 be L ≥ l real numbers such that β j ≥ α j for each j < l. Then, for any
k ≤ L, f [β0, β1, . . . , βk] ≥ 0.

Proof We prove the lemma by induction on r = l−k. First, since f is a polynomial of
degree l with a dominant coefficient equal to 1, Definition 4.1 gives f [β0, . . . , βk] = 0
if k > l—that is r < 0— f [β0, . . . , βk] = 1 if k = l—that is r = 0—and the claim
is established for r ≤ 0.

Now, for r > 0, we first show that f [β0, α1, . . . , αk] ≥ 0. In the case β0 = α0,
this is obvious by Formula (25), which gives f [α0, . . . , αk] = 0, while, if β0 > α0,
we have by permutation invariance, Formula (26), and induction hypothesis,

f [β0, α1, . . . , αk] = (β0 − α0)
f [β0, α1, . . . , αk] − f [α0, α1, . . . , αk]

β0 − α0

= (β0 − α0)
f [β0, α1, . . . , αk] − f [α1, . . . , αk, α0]

β0 − α0

= (β0 − α0) f [β0, α1, . . . , αk, α0] = (β0 − α0) f [β0, α0, . . . , αk]
≥ 0.
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We then show that f [β0, β1, α2, . . . , αk] ≥ 0. In the case β1 = α1, this is what we
have just proved, while, if β1 > α1, we have in the same way

f [β0, β1, α2, . . . , αk] = f [β0, α1, . . . , αk] + (β1 − α1)

f [β0, β1, α2, . . . , αk] − f [β0, α1, α2, . . . , αk]
β1 − α1

= f [β0, α1, . . . , αk] + (β1 − α1) f [β0, β1, α1, . . . , αk] ≥ 0.

Proceeding similarly we eventually get to f [β0, β1, . . . , βk] ≥ 0.

The theorem is eventually proven by showing by induction on l = |X \B| the
stronger statement (recall Formula (27)):

WB[ξ0, . . . , ξk](x, y) ≥ 0, k ≤ L , x, y ∈ X \B,

for all ξ0 > ξ1 > · · · > ξL−1 with L ≥ l and such that ξ j ≥ −λ j,B for j < l. The
claim is obvious for l = 1, and we distinguish to cases for l > 1. If x = y, we do not
need the inductive hypothesis: it follows from Formula (29) that

WB[ξ0, . . . , ξk](x, x) = ZB∪{x}[ξ0, . . . , ξk],

byCauchy interlacement theorem—this iswhere the reversibility hypothesismatters—
ξ j ≥ λ j,B implies ξ j ≥ λ j,B∪{x} and the non-negativity follows from the lemma. If
x �= y, the claim follows in the same way from Formula (30) and the inductive
hypothesis.
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