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Abstract Dealing with finite Markov chains in discrete time, the focus often lies on
convergence behavior and one tries tomake different copies of the chainmeet as fast as
possible and then stick together. There are, however, discrete finite (reducible)Markov
chains, for which two copies started in different states can be coupled to meet almost
surely in finite time, yet their distributions keep a total variation distance bounded
away from 0, even in the limit as time tends to infinity. We show that the supremum
of total variation distance kept in this context is 1

2 .

Keywords Markov chain · Non-Markovian coupling · Total variation distance ·
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1 Introduction

When the long-time behavior of Markov chains is analyzed, one of the most common
strategies is to couple several copies of the chain started in different states. In doing so,
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one standard approach is to define two copies of a Markov chain (started in different
states) on a common probability space, correlated in such a way that they are likely to
meet within some moderate time, and glue them together as soon as this happens.

This idea is so predominant that little attention was directed away from such cou-
plings; in the standard reference [6], it was even claimed erroneously that any coupling
of two Markov chains with the same transition probabilities can be modified so that
the two chains stay together at all times after their first simultaneous visit to a single
state. A counterexample to this statement was in fact given in [8]: If a coupling of
two copies of the same Markov chain is changed in such a way that the second copy
mimics the behavior of the first one once they meet, the altered individual process
might no longer be a copy of the given chain.

For the sake of simplicity, we want to restrict our considerations to time-
homogeneous Markov chains evolving in discrete time and on countable state
spaces—except for Remark 1 and Theorem 4.3, where we discuss how the argu-
ment used to derive Theorem 4.1 applies to more general settings as well. So let
X = (Xn)n∈N0 denote a Markov chain on a countable state space S with transition
probabilities {P(r, s) = P(Xn+1 = s | Xn = r); r, s ∈ S, n ∈ N0}. While L(Xn)

will be used as shorthand notation for the distribution of Xn in general, we will denote
the distribution of Xn given X0 = x , i.e., for a copy of the chain started in x ∈ S, by
Pn(x, .).

In what follows, we want to describe and investigate the kind of Markov chain,
that was first introduced and analyzed by Häggström [3]: a chain in which two copies
started in different states can be coupled such that they almost surely meet, but their
distributions do not come arbitrarily close to one another with respect to total variation
distance (cf. Definition 1). This phenomenon—that is somewhat counterintuitive in
the light of the usual coupling constructions—will be referred to as segregation of two
states. Further, we consider the constant

κ := sup lim
n→∞‖Pn(x, .) − Pn(y, .)‖TV, (1)

where the supremum is taken over finiteMarkov chain transition matrices P and states
x and y, such that two copies of the chain corresponding to P , one started in x and the
other in y, can be coupled to meet a.s. in finite time. To put it briefly, the main result
of this paper is that κ equals 1

2 .
As a preparation, the second section deals with the concept of couplings in general

and convergence ofMarkov chains.Much of this is standard, but there is also the lesser
known but crucial distinction between Markovian and faithful couplings. Section 3
presents Häggström’s result (κ ≥ 3 − 2

√
2) and puts the idea of segregating Markov

chains into a broader context.
In Sect. 4, more precisely in Theorem 4.1, we prove that the value 1

2 is an upper
bound on κ .

In Sect. 5, a constructive and intuitively accessible example of a Markov chain
is given, that segregates two states such that the total variation distance kept can be
pushed arbitrarily close to 1

e . This improves on the example in [3] and serves as a
warm up for the more technical and implicit construction in the last section.
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Finally, in Sect. 6 we introduce and employ the idea of separation to show that for
any ε > 0, there exist Markov chains segregating two states x and y such that copies
started in these states can be coupled to meet almost surely while their distributions
Pn(x, .) and Pn(y, .) have a total variation distance of at least 1

2 − ε for all n ∈ N, see
Theorem 6.2. Together with the upper bound from Sect. 4, this establishes our main
result, Theorem 6.1, stating that κ = 1

2 .

2 Preliminaries: Convergence and Couplings

In order to quantify the difference between two probability measures (such as the
distributions of two copies of a Markov chain at a fixed time), there are quite a few
distance measures. The so-called total variation distance is among the most common
ones.

Definition 1 Let μ and ν be two probability distributions on a countable set S. The
total variation distance between the two measures is then defined as

‖μ − ν‖TV := sup
A⊆S

|μ(A) − ν(A)|.

This notion of distance is used in most of the standard convergence theorems on
finite Markov chains as well (e.g., see Thm. 4.9 in [6]):

Theorem 2.1 Suppose (Xn)n∈N0 is an irreducible and aperiodic Markov chain on a
finite state space S. Then, there exists a unique limiting distribution π on S, called the
stationary distribution, as well as constants α ∈ (0, 1) and C > 0 such that

‖Pn(x, .) − π‖TV ≤ C αn,

for all x ∈ S, n > 0.

If the distribution of a Markov chain at time n converges to the same distribution π

as n tends to infinity, irrespective of its starting distribution, a standard way to measure
the speed of convergence is the variation distance

d(n) := sup
x∈S

‖Pn(x, .) − π‖TV.

Sometimes it is more convenient, however, to consider the related function

d(n) := sup
x,y∈S

‖Pn(x, .) − Pn(y, .)‖TV.

Both these functions, d and d, are non-increasing in n and d is in addition submulti-
plicative, i.e., d(m + n) ≤ d(m) · d(n). Submultiplicativity need not hold for d, but
can be verified for 2 d instead. Furthermore, it holds that d(n) ≤ d(n) ≤ 2 d(n). For
proofs of the elementary facts just stated, we refer to Lemma 2.20 in [1]. Note that
there S is assumed to be finite, but the arguments immediately transfer to countable S.
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On the basis of the notion of distanced, the central concept ofmixing time is defined,
loosely speaking, as the time it takes until the effect of the starting distribution has
begun to disappear substantially.

Definition 2 Given a Markov chain, for which the distribution of Xn converges to a
fixed distribution π (irrespective of the distribution of X0), define its mixing time by

tmix := min
{
n ∈ N0; d(n) ≤ 1

4

}
.

As already mentioned, the tool that often makes proofs about convergence of
Markov chains both short and elegant is the coupling approach. Let us therefore prop-
erly define this standard concept and then highlight which additional properties a
coupling can have.

Definition 3 We define a coupling of two copies of a Markov chain on S to be a
process ((Xn,Yn))n∈N0 on S × S, with the property that both (Xn)n∈N0 and (Yn)n∈N0

are Markov chains on S with the same transition probabilities (but possibly different
starting distributions).

If the process ((Xn,Yn))n∈N0 is itself a Markov chain (not necessarily time-
homogeneous), it is called aMarkovian coupling.

In order to get good estimates on mixing times, it is often of importance to bring
into line the long-term behavior of the chain started in different states. In order to
do so, one wants to make sure that the two coupled chains stay together once they
meet, more precisely: if Xm = Ym, then Xn = Yn, for all n ≥ m. Couplings with this
property are sometimes called “sticky” couplings. As noted in the introduction, it is
however not possible to modify every coupling in such a way that it becomes sticky
by simply glueing together the two copies once they meet, see Prop. 3 in [8] for an
example. The crucial property is the following:

Definition 4 AMarkovian coupling ((Xn,Yn))n∈N0 of two copies of a Markov chain
is called faithful if for all xn, yn, xn+1, yn+1 ∈ S, n ∈ N0:

P (Xn+1 = xn+1 | (Xn,Yn) = (xn, yn)) = P(Xn+1 = xn+1 | Xn = xn)

= P(xn, xn+1)

and

P (Yn+1 = yn+1 | (Xn,Yn) = (xn, yn)) = P(Yn+1 = yn+1 | Yn = yn)

= P(yn, yn+1).

It should bementioned that the term “Markovian coupling” is used in [6] to describe
what we just defined as faithful coupling. However, since we actually want to focus on
couplings that are not faithful (but may still be Markov chains—as both the example
in Sect. 5 and the one in [3] are), we want to make this distinction by adopting the
definitions in [8] and deviate from the notions in [6].
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In order to understand what makes faithful couplings special, note that in general
a coupling of two copies X and Y of a Markov chain with transition probabilities
{P(r, s); r, s ∈ S} fulfills

∑

yn∈S
P (Xn+1 = xn+1 | (Xn,Yn) = (xn, yn)) · P(Yn = yn | Xn = xn)

= P(xn, xn+1),

for all xn, xn+1 ∈ S, n ∈ N0, and likewise

∑

xn∈S
P (Yn+1 = yn+1 | (Xn,Yn) = (xn, yn)) · P(Xn = xn | Yn = yn)

= P(yn, yn+1),

for all yn, yn+1 ∈ S, n ∈ N0. So the extra condition on a faithful cou-
pling amounts to P (Xn+1 = xn+1 | (Xn,Yn) = (xn, yn)) being constant in yn and
P (Yn+1 = yn+1 | (Xn,Yn) = (xn, yn)) being constant in xn .

It is immediate to check that any faithful coupling can indeed be transformed into a
sticky coupling by just letting the chains run according to the given coupling until they
meet and then run them together as two identical copies of the same chain, without
affecting the marginals. Exploiting this fact leads to the estimate

‖Pn(x, .) − Pn(y, .)‖TV ≤ P(τ > n) = 1 − P(τ ≤ n) (2)

for any faithful coupling of two copies, X started in x and Y started in y, where

τ := inf{n ≥ 0; Xn = Yn}

is the first meeting time of the coupled chains (cf. Thm. 1 in [8]).

3 Chains that Meet and Separate

If two copies of a Markov chain are coupled, but the coupling is not sticky, clearly
they can meet in one state and separate afterward. As mentioned above, if the coupling
is not faithful (i.e., violates the conditions given in Definition 4), in some cases it
cannot be transformed into a sticky coupling by simply letting the two copies coalesce
once they meet. As a by-product, Häggström [3] observed an even stronger form of
incompatibility of two coupled copies of a chain that meet. He gives an example of a
finite reducible Markov chain with the following property: Two copies of the chain,
started in different states x and y, can be coupled in such a way that they meet almost
surely in finite time, while the total variation distance of their distributions never drops
below a fixed positive value. More precisely, he shows (see Prop. 4.1 in [3]):
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Fig. 1 A first example of a segregating Markov chain—provided p ∈ [1 − 1
2

√
2, 1

2

√
2]\{ 12 }

Proposition 3.1 There exists a finite state Markov chain such that for two of its states
x and y we have that

lim
n→∞‖Pn(x, .) − Pn(y, .)‖TV > 0,

while on the other hand there exists aMarkovian coupling of the chainsX = (Xn)n∈N0

and Y = (Yn)n∈N0 , starting at X0 = x and Y0 = y, with the property that their first
meeting time τ = inf{n ≥ 0; Xn = Yn} is finite with probability 1.

Note that for any Markov chain and any two states x and y, the sequence
(‖Pn(x, .) − Pn(y, .)‖TV)n∈N0 is non-increasing. This, together with the fact that
the total variation distance is always nonnegative, guarantees the existence of
limn→∞‖Pn(x, .) − Pn(y, .)‖TV.

In fact, the reducible Markov chain in the example given in [3] comprises only 6
states (see Fig. 1 below). For p ∈ [1 − 1

2

√
2, 1

2

√
2], two copies started in x and y

can be coupled such that their first meeting time is a.s. less than or equal to 2 (for
the explicit calculations, see Prop. 4.1 in [3]). The copies will reach one of the two
absorbing states (a and b) after two steps and the probability that the chain started in
x lands in a is 1 − 2p (1 − p), in b accordingly 2p (1 − p). By symmetry, for the
chain started in y it is precisely reversed.

So for n ≥ 2, Pn(x, .) and Pn(y, .) are unchanging and different if p 
= 1
2 .

Choosing p = 1
2

√
2 (or p = 1 − 1

2

√
2) maximizes their total variation distance at

3 − 2
√
2 ≈ 0.17153.

Asmentioned in the introduction, we will call Markov chains that have the property
described in Proposition 3.1 to be segregating the states x and y. From the convergence
theorem, we know that such things cannot happen for irreducible finite Markov chains
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(not even periodic ones). In addition to that, even if the chain is either reducible or
infinite, a coupling that lets two copies started in different states meet almost surely,
while the total variation distance of their distributions stays bounded away from 0 for
all time, cannot be faithful due to the coupling inequality (2).

4 The Upper Bound

From the previous section, we know that there exist finite reducible Markov chains
that segregate two states x and y. A natural question in this respect is how large a total
variation distance between Pn(x, .) and Pn(y, .) can be kept, under the condition that
two copies started in x and y, respectively, can be coupled to meet in finite time almost
surely—in other words, the value of κ as defined in (1). The example in [3] shows
κ ≥ 3 − 2

√
2; the following theorem establishes 1

2 as an upper bound.

Theorem 4.1 Consider a Markov chain on the countable state space S and two fixed
states x and y. Further, we denote by X = (Xn)n∈N0 and Y = (Yn)n∈N0 two coupled
copies of the chain, started in x and y, respectively, and their first meeting time by τ .
If X and Y can be coupled in such a way that P(τ < ∞) = 1, it holds that

lim
n→∞‖Pn(x, .) − Pn(y, .)‖TV ≤ 1

2 .

This result is an immediate implication of the following proposition:

Proposition 4.2 Consider X = (Xn)n∈N0 , Y = (Yn)n∈N0 and τ as above. Then, it
follows that

‖Pn(x, .) − Pn(y, .)‖TV ≤ 1 − 1
2 · P(τ ≤ n) for all n ∈ N0.

Proof Fix n ∈ N0 and a subset A ⊆ S by means of which we define the processes
(Mt )

n
t=0 and (Nt )

n
t=0 given by

Mt := P (Xn ∈ A | Xt ) = Pn−t (Xt , A),

and

Nt := P (Yn ∈ A | Yt ) = Pn−t (Yt , A).

It is easily checked that these processes are martingales (with respect to the filtrations
generated by X and Y respectively). Further let Bx and By denote the events that
Mt ≥ 1

2 and Nt < 1
2 , respectively, for all 0 ≤ t ≤ n. As the event Bx ∩ By implies

Mt 
= Nt and with that Xt 
= Yt for all 0 ≤ t ≤ n (almost surely), it follows that
{τ ≤ n} is (up to a nullset) contained in the union of B c

x and B c
y .

Next, we define

τx := inf
{
0 ≤ t ≤ n; Mt < 1

2

}
and τy := inf

{
0 ≤ t ≤ n; Nt ≥ 1

2

}
,
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where the infimum is understood to be n if the corresponding set is empty. Note that
τx and τy are stopping times for Mt and Nt , respectively. Since (Mt )

n
t=0 and (Nt )

n
t=0

are bounded martingales, the Optional Stopping Theorem (see for example Cor. 17.7
in [6]) gives the estimates

Pn(x, A) = EM0 = EMτx ≤ 1
2 · P (

B c
x

) + 1 · P(Bx ) = 1 − 1
2 · P (

B c
x

)

and Pn(y, A) = E N0 = E Nτy ≥ 1
2 · P

(
B c
y

)
. (3)

Combining these two inequalities, we get

Pn(x, A) − Pn(y, A) ≤ 1 − 1
2

(
P

(
B c
x

) + P

(
B c
y

))
≤ 1 − 1

2 · P(τ ≤ n).

Finally, maximizing the left-hand side over all subsets A ⊆ S yields

‖Pn(x, ·) − Pn(y, ·)‖T V ≤ 1 − 1
2 · P(τ ≤ n),

as claimed. �
Remark 1 Reading carefully through the proof of Proposition 4.2, one may notice
that the martingale argument used essentially does not require our general assump-
tions of time-homogeneity and countable state space. For time-inhomogeneous
chains, Mt := P (Xn ∈ A | Xt ), can no longer be written as Pn−t (Xt , A) (like-
wise for Nt ), but this does not impair the argument and we can again conclude
limn→∞‖L(Xn) − L(Yn)‖TV ≤ 1

2 , where L(Xn) denotes the distribution of Xn .
Given an uncountable state space, the first meeting time τ is no longer measurable
by default. If we add this as an extra condition, however, the above proof (with the
minor modification that only measurable sets A are considered) extends to this setting
as well.

To fully exhaust the range of validity of this argument, let us leave the default
preconditions for a moment and consider continuous-time Markov processes in full
generality (as e.g., Kallenberg [5] defines them). In this case, we have to add further
technical assumptions to save the line of reasoning and result of Proposition 4.2. For
a measurable set A ⊆ S, time horizon T > 0 and 0 ≤ t ≤ T , define (similar to the
above)

Mt := P (XT ∈ A | Xt ) and Nt := P (YT ∈ A | Yt ) . (4)

Theorem 4.3 Consider a continuous-time Markov process (not necessarily time-ho-
mogeneous) with general state space S. Let X = (Xt )t≥0 and Y = (Yt )t≥0 denote
two coupled copies of the process, that are started in fixed states x and y respectively,
and let τ denote their first meeting time. Fix a time horizon T > 0 and assume that
{τ ≤ T } is measurable. If for all measurable sets A ⊆ S, it is possible to choose
versions of the martingales (Mt )t∈[0,T ] and (Nt )t∈[0,T ], as defined in (4), that are a.s.
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continuous from the right, while having the property that for all t ∈ [0, T ], Xt = Yt
implies Mt = Nt , it holds that

‖L(XT ) − L(YT )‖TV ≤ 1 − 1
2 · P(τ ≤ T ).

Proof Again, we fix some measurable subset A ⊆ S and define the martingales
(Mt )t∈[0,T ] and (Nt )t∈[0,T ] as in (4), with the two additional properties stated in the
theorem. Following the proof of Proposition 4.2 (literally, besides replacing n by T ),
we can still conclude that {τ ≤ T } ∩ (Bx ∩ By) is a nullset. Continuity from the right
of (Mt )t∈[0,T ] and (Nt )t∈[0,T ] implies Mτx ≤ 1

2 on B c
x and Nτy ≥ 1

2 on B c
y . Using the

Optional Stopping Theorem for continuous-time martingales (see e.g., Thm. (3.2) in
[7]), we can conclude just as above. �
Remark 2 A simple way to ensure the assumed properties of (Mt )t∈[0,T ] and
(Nt )t∈[0,T ] is to consider a topology on S and to require two things: first, that the
Markov process a.s. has right-continuous sample paths and second that the transition
probabilities P(XT ∈ A | Xt = x) are continuous in t ∈ [0, T ) and x ∈ S for all
measurable A ⊆ S.

As an aside, it might be worth noting that the analogue of Proposition 4.2 is not
valid if we drop the additional assumptions completely, as it might be possible then to
alter trajectories without changing transition probabilities. For instance, consider the
process (Xt )t∈[0,1] on S = {0, 1} defined by

Xt =
{
X0, for t 
= ξ

1 − X0, for t = ξ,
where ξ ∼ unif(0, 1).

Two independent copies, started at 0 and 1, respectively, and using independent copies
of ξ , will almost surely meet, but the total variation distance of their distributions stays
1 for all t ∈ [0, 1].

Besides these generalizations, the statement from Proposition 4.2 can also be used
to get upper bounds on mixing times—similar to the usual approach, see for example
Cor. 5.3 in [6]—replacing the coupling inequality (2) as starting point. In doing so,
we pay by an additional factor 1

2 in front of P(τ ≤ n), but can in return employ any
kind of coupling, not only faithful ones. It remains to be seen whether this will ever
turn out useful in practice as basically all standard coupling constructions are faithful.
However, we want to mention at this point that non-Markovian couplings actually
already proved to be useful in applications, cf. [4] for instance.

Proposition 4.4 Consider a Markov chain X = (Xn)n∈N0 with the property that
L(Xn) converges to a fixed distribution π irrespectively of the starting distribution.
Further, suppose that for some α ∈ (0, 1] and each pair of states x, y ∈ S there exists
a (not necessarily faithful or even Markovian) coupling ((Xn,Yn))n∈N0 of two copies
of the chain started in x and y, respectively, such that the first meeting time τ of the
two coupled processes fulfills P(τ ≤ n) ≥ α. Then
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tmix ≤ n ·
⌈

log( 14 )

log
(
1 − α

2

)

⌉

.

Proof From Proposition 4.2 we can conclude that

d(n) = sup
x,y∈S

‖Pn(x, .) − Pn(y, .)‖TV ≤ 1 − α
2 .

Consequently, as d is submultiplicative and dominates d, we get for any k ∈ N :

d(kn) ≤ d(kn) ≤ d(n)k ≤ (
1 − α

2

)k
.

Choosing k ≥ log
(
1
4

)

log
(
1−α

2

) , this estimate becomes

d(kn) ≤ (
1 − α

2

)log
(
1
4

)/
log

(
1−α

2

)

= 1

4
.

�

5 A Simple Example that Narrows the Gap

In this section, we will present another finite state Markov chain that improves on the
value of 3−2

√
2 established by Häggström [3]. To begin with, let us prepare a lemma,

which will come in useful when the total variation distance in our example of a finite
segregating Markov chain is to be assessed.

Consider a sequence of independent Bernoulli trials, each with success probability
p < 1. The distribution of the number of successful attempts until r failures have
occurred is called the negative binomial distribution with parameters r and p and
commonly denoted by NB(r, p).

Lemma 5.1 For μ := NB(1, p) and ν := NB(2, p), it holds that

‖μ − ν‖TV =

⌊ p
1−p

⌋

∑

k=0

(
μ(k) − ν(k)

) = (⌊ p
1−p

⌋ + 1
) · (1 − p) · p

⌊ p
1−p

⌋
+1

(5)

for any p ∈ [0, 1). If p = m
m+1 , where m ∈ N0, this value simplifies to p

1
1−p .

Proof A standard calculation shows that for two probability distributions μ and ν on
a discrete space S, their total variation distance can be calculated as

‖μ − ν‖TV =
∑

x∈S
μ(x)≥ν(x)

(
μ(x) − ν(x)

)
,
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see for example Remark 4.3 in [6]. For μ = NB(1, p) and ν = NB(2, p), we have:

μ(k) = pk (1 − p) and ν(k) = (k + 1) pk (1 − p)2, for all k ∈ N0,

which implies μ(k) ≥ ν(k) for k ≤ ⌊ p
1−p

⌋ =: m.
Consequently, using the well-known formulas for a finite geometric sum and its

derivative, we can compute the total variation distance and get

‖μ − ν‖TV =
m∑

k=0

pk (1 − p) −
m∑

k=0

(k + 1) pk (1 − p)2

= 1 − pm+1 − [
1 − pm+2 − (m + 2) pm+1 (1 − p)

]

= (m + 1) (1 − p) pm+1.

If p = m
m+1 , for some m ∈ N0, the number p

1−p = m is integer and an elementary
simplification of the expression to the right in (5) verifies the final claim. �

Let us now use this lemma to establish the following result:

Proposition 5.2 For all ε > 0, there exists a Markov chain segregating two states x
and y such that

lim
n→∞‖Pn(x, .) − Pn(y, .)‖TV >

1

e
− ε.

Proof Let us consider the finite reducible MC depicted in Fig. 2. The state space S
comprises 3m + 5 states, among which the two initial states x and y as well as the
m + 2 absorbing states labeled 0, . . . ,m and >.

It is immediate to check that the two copies, started in x respectively y, will hit
an absorbing state after at most m + 2 steps and that on {0, . . . ,m} the distributions
Pm+2(x, .) and Pm+2(y, .) coincide with NB(1, p) and NB(2, p), respectively. The
probabilities to land in the state labeled > are

Pm+2(x,>) = P(Z1 > m) and Pm+2(y,>) = P(Z2 > m),

where Z1 ∼ NB(1, p) and Z2 ∼ NB(2, p).
Choosing p = m

m+1 , we can conclude from Lemma 5.1 that

‖Pn(x, .) − Pn(y, .)‖TV = p
1

1−p ,

for all n ≥ m + 2. Writing q := 1
1−p = m + 1 shows

lim
p→1

p
1

1−p = lim
q→∞

(
1 − 1

q

)q = 1

e
.
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Fig. 2 A segregating MC allowing for a fairly large total variation distance of two copies started in x and
y respectively

Takingm large enough, more precisely such that
(
1− 1

m+1

)m+1
> 1

e −ε, will establish
the claim if we can present a coupling that ensures that the two copies started in x and
y will meet with probability 1, either before or when they hit an absorbing state.

In order to establish such a coupling, letY = (Yn)n∈N0 be a copy of the MC started
in y. The copy X = (Xn)n∈N0 started in x mimics all movements of Y, with the delay
of one step, until it finally hits an absorbing state: First, it will move downwards until
the two processes meet—in particular this implies that its first step is downwards with
probability 1, as x 
= y. Then, once Xn = Yn for some 1 ≤ n ≤ m + 1, the next step
of the process X is to move to the right to an absorbing state, i.e., Xn+1 = n − 1. If Y
never moves to the right, neither does X and both finally end up in the state >.

First of all, we need to checkwhether the two coordinate processes are indeed copies
of the MC given in Fig. 2: It is obvious from our construction that it suffices to verify
this for the processX. The wayX is defined—to move downwards in the first step and
then always imitate the previous move of Y until ending up in an absorbing state—
gives the right marginals due to the structure of the MC: As all the non-absorbing
states apart from x have the same transition probabilities (p downwards and 1− p to
the right), X performs indeed a random walk on the graph in Fig. 2 according to the
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transition probabilities of theMC.Note that there is just this onewayY can end up in an
absorbing state before it meetsX, namely if it moves downwards only. Then, however,
X copies this behavior and ends up in the state > as well, so the coupling guarantees
τ ≤ m + 2 with probability 1. This trivially implies the almost sure finiteness of the
first meeting time τ and in conclusion the claim that the MC segregates the two states
x and y. �

In order to get the idea of how faithfulness plays a crucial role in this context,
it is worth noting that the coupling in our example—likewise the one in [3]—is in
fact Markovian, but not faithful. Such couplings, however, have to be non-faithful
as faithfulness would imply that the total variation distance necessarily tends to 0 as
already mentioned at the end of Sect. 3.

6 Closing the Gap

In this last section, we want to further improve the lower bound 1
e , established by the

example from the previous section, in order to determine the true value of the constant
κ , defined in (1). These efforts amount to the following:

Theorem 6.1 The value of κ , denoting the supremum of limn→∞‖Pn(x, .) −
Pn(y, .)‖TV taken over all segregating Markov chains and segregated states x and y,
is 1

2 .

In view of Theorem 4.1, the final step to derive this result lies in proving that for any
ε > 0, a value of at least 12 −ε can actually be attained. In order to do so, we will focus
on (reducible)Markov chainswith a specific structurewhich allows us to consider even
simpler chains in finite time instead: When talking about a Markov chain with finite
time horizonX = (Xt )

T
t=0 on state space Swith transition probabilities {P(r, s); r, s ∈

S}, we are in fact thinking of a different chain, namely the reducible Markov chain
Y = (Yn)n∈N0 on the state space S × {0, . . . , T }, with transition probabilities

P(Yn+1 = (s, n + 1) | Yn = (r, n)) = P(r, s) for all r, s ∈ S, n ∈ {0, . . . , T − 1}

and P(Yn+1 = (s, T ) | Yn = (s, T )) = 1.

In other words, we consider the evolution in time as new generations of states and stop
the original chain at time T by making all states corresponding to time T absorbing.
Incidentally, the example given in [3] is also of this kind; it corresponds to a two state
Markov chain with T = 2 (cf. Fig. 1).

So for the remainder of this article, we actually consider Markov chains in discrete,
finite time and with finite state space only. With this simplification in mind, we want
to prove the following:

Theorem 6.2 For any ε > 0, there exists a Markov chain X, two states x and y and
a positive integer T such that

‖PT (x, .) − PT (y, .)‖TV ≥ 1

2
− ε
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and such that there is a coupling of two copies of the chain, ((Xt ,Yt ))Tt=0, with initial
states x and y, respectively satisfying

P (Xt = Yt for some 0 ≤ t ≤ T ) = 1.

Before proceeding with a proof of this theorem, we want to introduce an alternative
way to view segregating couplings. Let X be any discrete-time Markov chain with a
finite state space S, and fix two states x, y ∈ S and a positive integer T .

For any coupling of two copies of this chain, ((Xt ,Yt ))Tt=0, started in X0 = x and
Y0 = y, respectively, one can consider the corresponding meeting probability

P (Xt = Yt for some 0 ≤ t ≤ T ) . (6)

A natural question to ask in this setting is how large one can make this probability
for a given (finite) Markov chain and given x, y and T by maximizing over all such
couplings. Let X denote the subset of {x} × ST consisting of all possible trajectories
of X = (Xt )

T
t=0, and, respectively, Y ⊆ {y} × ST for Y = (Yt )Tt=0. Observe that any

coupling of X and Y is determined by the values (pxy)x∈X ,y∈Y , where pxy denotes
the probability of the event that both X = x = (xt )Tt=0 and Y = y. We will denote the
maximal value of (6) by CT (x, y) and call it the optimal meeting probability.

While finding explicit couplings that maximize the meeting probability can quickly
become cumbersome as the number of possible trajectories grows, it turns out that the
problem of optimizing the meeting probability has a useful dual, which allows us to
determine CT (x, y) without having to deal with the couplings directly. This duality
corresponds to the idea of max-flow min-cut and König’s theorem in combinatorial
optimization.

Definition 5 Let A = (At )
T
t=0 be a sequence of subsets of S, the (finite) state space

of the considered Markov chainX. We will refer to any such sequence as a separating
sequence. We define the separation of any separating sequence as

SA
T (x, y) = P (Xt ∈ At for all 0 ≤ t ≤ T | X0 = x)

+ P (Xt /∈ At for all 0 ≤ t ≤ T | X0 = y) .
(7)

We say that the separating sequence is non-trivial if both summands on the right-
hand side in (7) are nonzero. We further define the optimal separation ST (x, y) as the
maximum separation over all possible separating sequences.

It is not too hard to see that the optimal meeting probability and optimal separation
are related. Specifically, for any coupling ((Xt ,Yt ))Tt=0 such that (X0,Y0) = (x, y)
and any separating sequence A = (At )

T
t=0, we have

P (Xt = Yt for some 0 ≤ t ≤ T )

≤ P (Xt /∈ At or Yt ∈ At for some 0 ≤ t ≤ T )

≤ P (Xt /∈ At for some 0 ≤ t ≤ T ) + P (Yt ∈ At for some 0 ≤ t ≤ T )

= 2 − SA
T (x, y).
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X Y
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x y

t

P(X = x) P(Y = y)

1
x ∼ y

Fig. 3 The auxiliary graph �G to which we apply the max-flow min-cut theorem

Maximizing the meeting probability over all possible couplings of two copies, started
in x, y respectively, and minimizing the upper bound by maximizing the separation
SA
T (x, y) over all separating sequences yields

CT (x, y) ≤ 2 − ST (x, y). (8)

However, for our purposes (namely to guarantee CT (x, y)=1), we rather need to bound
CT (x, y) from below. In this respect, it is quite convenient that the inequality (8)
actually holds as an equality, as the following theorem shows.

Theorem 6.3 Given an arbitrary but fixed finite Markov chain X, two states x, y ∈ S
and time horizon T , we have

CT (x, y) = 2 − ST (x, y). (9)

Proof A simple way to prove the reverse inequality is to employ the max-flow min-
cut theorem, in the same way it can be used to prove Strassen’s monotone coupling
theorem. Starting from the sets X and Y as above, we build the following directed
graph, which will be denoted by �G = (V, �E):

First we let each x ∈ X and y ∈ Y be represented by a node. Then, we add two
further nodes: a source s and a sink t . When it comes to the directed edges, there will
be an arrow (s, x) for all x ∈ X and (y, t) for all y ∈ Y . Additionally, we include
the edge (x, y), if the two trajectories x ∈ X and y ∈ Y share at least one state, i.e.,
xt = yt for some 0 ≤ t ≤ T ; in the sequel, we will write this as x ∼ y.

Finally, we have to assign capacities to these directed edges: The edges (s, x) and
(y, t) will get capacities P(X = x) and P(Y = y), respectively. All edges going in
between X and Y get capacity 1, see Fig. 3 below for an illustration.
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Let us now consider the minimum cut problem on �G. From the fact that the cut
({s}, V \{s}) has value 1, we know that we can focus on cuts that are not cutting any
edges going in between X and Y when trying to find a minimal one. For a cut (B, Bc)

of this kind, with s ∈ B and t ∈ Bc say, we note that x ∼ y can not occur for x ∈ X ∩B
and y ∈ Y ∩ Bc, due to the assumption that no such edges are cut. Furthermore, the
edges cut incident to s have at least the value P(X ∈ X ∩ Bc), the ones incident to t
at least P(Y ∈ Y ∩ B).

Let us define the set sequence A = (At )
T
t=0 by

At := {
xt ; x = (xs)

T
s=0 ∈ X ∩ B

}
, for all 0 ≤ t ≤ T,

in order to bound the value of the given cut from below by

P(X ∈ X ∩ Bc) + P(Y ∈ Y ∩ B)

≥ 1 − P(Xt ∈ At for all 0 ≤ t ≤ T ) + 1 − P(Yt /∈ At for all 0 ≤ t ≤ T )

= 2 − SA
T (x, y)

≥ 2 − ST (x, y).

Consequently, as this bound applies to any minimal cut, using the max-flow min-cut
theorem (see for example Thm. 1, Chap. III in [2]) we are guaranteed the existence
of a maximal flow of value at least 2 − ST (x, y). Let us denote the respective flow
through the edge corresponding to x ∼ y by qxy.

We can use this maximal flow to establish a coupling ofX andY in the same vein as
in the Doeblin coupling lemma (see for instance Prop. 4.7 in [6]): First we let X = x
and Y = y simultaneously with probability qxy for all x ∼ y. Then, we define X to
follow the trajectory x with the remaining probability

P(X = x) −
∑

y: x∼y

qxy

and similarly Y to follow the trajectory y with probability

P(Y = y) −
∑

x: x∼y

qxy,

independently, for all x ∈ X and y ∈ Y .
From the flow constraints, we know that all these probabilities are in [0, 1] and the

resulting coupling satisfies P(X ∼ Y) ≥ 2 − ST (x, y). The theorem then follows by
combining this inequality with (8). �

One can observe that, as the left-hand side of (9) is a probability and hence at most
1, we must always have optimal separation at least 1. Indeed, we can obtain separation
equal to 1, for instance by taking At = S for all 0 ≤ t ≤ T . Recall that a separating
sequence is called non-trivial if the probabilities that Xt ∈ At for all 0 ≤ t ≤ T given
X0 = x and Xt /∈ At for all 0 ≤ t ≤ T given X0 = y are both nonzero. Clearly, any
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trivial separating sequence has separation at most 1, so it follows from Theorem 6.3
that for any finite state Markov chain in discrete time, any x, y and T as above, the
following two statements are equivalent:

(a) The meeting probability under optimal coupling of two copies, started in x, y
respectively, is 1.

(b) For all non-trivial separating sequences A = (At )
T
t=0, we get SA

T (x, y) ≤ 1.

In order to get acquainted with the idea behind the concept of separation, let us take
a look at the simplest non-trivial example:

Example 1 Let 0 < α ≤ 1
2 . Consider the Markov chain X with state space {0, 1} and

transition probabilities P(0, 1) = P(1, 0) = α as well as P(0, 0) = P(1, 1) = 1−α,
and take x = 0, y = 1. As mentioned above, the case where T = 2 is Häggström’s
[3] example of a segregating Markov chain.

Since this chain only has two states, any non-trivial separating sequence must have
At = {0} or At = {1} for each 0 ≤ t ≤ T . As α ≤ 1

2 , the non-trivial separating
sequence given by At = {0} for all t is obviously best possible. It is immediate to
check that its separation equals 2(1− α)T . Hence, the optimal meeting probability of
two copies, started in states 0 and 1, respectively, is 1 if and only if 2(1 − α)T ≤ 1.
Using induction, one can easily check that for this chain we have

‖PT (0, .) − PT (1, .)‖TV = (1 − 2α)T .

So by choosing α = α(T ) such that 2(1 − α)T = 1, we obtain a Markov chain that
segregates the states 0 and 1 with total variation distance (21−1/T − 1)T , which tends
to 1

4 as T → ∞.

The next example is supposed to illustrate that reducible Markov chains obtained
from irreducible and aperiodic finite chains in finite time, in the way described before
Theorem 6.2, usually do segregate any two states:

Example 2 Let X be any irreducible aperiodic Markov chain with a finite state space
S, and let x and y be any two states. Pick ε > 0 and n ∈ N such that Pn(x ′, y′) ≥ ε

for all x ′, y′ ∈ S. Then, for any non-trivial separating sequence (At )
nk
t=0, we have

SA
nk(x, y) ≤ 2 (1 − ε)k

for any k ∈ N. Hence, by taking T = nk for a sufficiently large k it follows that the
optimal meeting probability during [0, T ] is 1. This shows that, unless ‖PT (x, .) −
PT (y, .)‖TV = 0, the Markov chain segregates the two states x and y, choosing T
sufficiently large.

We now turn to the proof of Theorem 6.2. Let X be the Markov chain with state
space {0, 1, . . . , L} for some positive integer L and transition probabilities given by
P(0, 1) = P(L , L − 1) = 1 − P(0, 0) = 1 − P(L , L) = α as well as P(i, i + 1) =
P(i, i − 1) = 1

2 for all 0 < i < L , see Fig. 4. Such chains, with S = {0, 1, . . . , L}
and the additional property that |Xt+1 − Xt | ≤ 1 a.s. for all t , are commonly called
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Fig. 4 A birth-and-death chain on {0, 1, . . . , L} as basic building block

finite birth-and-death chains, cf. Section 2.5 in [6]. To begin with, our main interest
lies in the optimal meeting probability of this chain given the starting states x = 0 and
y = L . We will then show that we can obtain segregation between 0 and L with total
variation arbitrarily close to 1

2 by choosing L , T and α appropriately.
The qualitative behavior of this chain for small α is easy to describe: Most of the

time, the process is either at 0 or L . Occasionally, that is at rate α, the process takes
one step inwards and typically moves around for order L steps before hitting one of
the marginal states 0 or L , more precisely the expected time to reach {0, L}, when
starting in state 1 equals L − 1. With probability 1 − 1

L , it will return to the same
side it started at, with probability 1

L it will cross over to the opposite side (check the
analysis of the so-called gambler’s ruin problem in Section 2.1 in [6] for the explicit
calculations).

In preparation to the in-depth analysis of the separation of states 0 and L , let us
collect a few general estimations for this chain in the following lemma, which will
come in useful later on. For the sake of clarity, we will use the standard big O notation
to represent error terms, i.e., for any nonnegative function f in k and α, the expression
O( f (k, α)) denotes a quantity that is bounded in absolute value by c · f (k, α), where
the constant c > 0 does not depend on k, α or t .

Lemma 6.4 (a) For any 1 ≤ i ≤ L − 1 and t ≥ 0 we have

Pt (0, i) = Pt (L , L − i) ≤ 2α.

(b) For any t ≥ 0 we have

Pt (0, 0) = Pt (L , L) = 1

2
+ 1

2

(
1 − 2α

L

)t

+ O(Lα), (10)

‖Pt (0, .) − Pt (L , .)‖TV =
(
1 − 2α

L

)t

+ O(Lα). (11)

(c) For any 0 ≤ k ≤ L − 1 and t ≥ 0 we have

P
(
Xt ′ ≤ k for all 0 ≤ t ′ ≤ t | X0 = 0

)

= P
(
Xt ′ ≥ L − k for all 0 ≤ t ′ ≤ t | X0 = L

)

=
(
1 − α

k + 1

)t

+ O(kα).

(12)
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Proof (a) The first statement easily follows by induction on t using the recursion

Pt+1(0, i) = Pt (0, i − 1) P(i − 1, i) + Pt (0, i + 1) P(i + 1, i),

which holds for any t ≥ 0 and any 1 ≤ i ≤ L − 1.
(b) To show the second claim, consider the sequence at = E [Xt | X0 = 0]. Using

part (a), we know that

at = L · Pt (0, L) + O(L2α) = L − L · Pt (0, 0) + O(L2α), (13)

where the error terms are bounded by 2 L2α in absolute value. Furthermore, since
E

[
Xt+1 − Xt | Xt

]
equals α if Xt = 0, −α if Xt = L and 0 otherwise, we can

infer from (13)

at+1 = at + α · Pt (0, 0) − α · Pt (0, L)

= at + α
(
1 − at

L

)
− α

at
L

+ O(Lα2),

which implies

at+1 − L

2
=

(
1 − 2α

L

)
·
(
at − L

2

)
+ O(Lα2),

where the error term is bounded by 4 Lα2 in absolute value irrespectively of t .
Solving this recursion, using a0 = 0 and

∑t−1
k=0(1 − 2α

L )k ≤ L
2α , yields

at = L

2
− L

2

(
1 − 2α

L

)t

+ O(L2α).

The estimate (10) immediately follows from (13), which together with part (a)
implies (11).

(c) The case k = 0 is obvious, so we may assume k > 0. Let τ denote the first time
t ≥ 0 for which Xt = k + 1. Consider the sequence bt = E [Xt∧τ | X0 = 0],
where t ∧ τ denotes the minimum of t and τ . Note that part (a) implies
P (Xt∧τ = i | X0 = 0) ≤ P (Xt = i | X0 = 0) ≤ 2α for any i ∈ {1, . . . , k} and
further

bt = (k + 1) · P (Xt∧τ = k + 1 | X0 = 0) + O(k2α)

= k + 1 − (k + 1) · P (Xt∧τ = 0 | X0 = 0) + O(k2α).
(14)

With the same reasoning as in part (b), we end up in a similar situation with b0 = 0
and bt satisfying the recursive formula

bt+1 = bt + α · P (Xt∧τ = 0 | X0 = 0)

= bt + α

(
1 − bt

k + 1

)
+ O(kα2).
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Solving it gives bt = k + 1− (k + 1) (1− α
k+1 )

t + O(k2α) and plugging this into
(14) completes the proof of part (c), using

P (1 ≤ Xt∧τ ≤ k | X0 = 0) = O(kα)

and noting that Xt∧τ ≤ k if and only if Xt ′ ≤ k for all 0 ≤ t ′ ≤ t .
�

Let us now take a closer look on the optimal separation of states 0 and L in this
chain. Tomake our lives easier, we establish three auxiliary results showing that among
the non-trivial separating sequences, there are very simple ones which are essentially
best possible as T grows large.

Proposition 6.5 Let L be fixed, and let α = α(T ) = Θ
( 1
T

)
. Then, for sufficiently

large T , any non-trivial separating sequence A = (At )
T
t=0 such that SA

T (0, L) > 1
(if such exist) must satisfy 0 ∈ At and L /∈ At for all 0 ≤ t ≤ T .

Proof By (10), we know that Pt (0, 0) = Pt (L , L) > 1/2 for any 0 ≤ t ≤ T given
T sufficiently large. Hence if 0 /∈ At1 and L ∈ At2 for some 0 ≤ t1, t2 ≤ L , then

SA
T (0, L) ≤ 1 − Pt1(0, 0) + 1 − Pt2(L , L) < 1.

So for T sufficiently large, either 0 ∈ At for all 0 ≤ t ≤ T or L /∈ At for all 0 ≤ t ≤ T .
By symmetry, we can assume without loss of generality, that 0 ∈ At for all 0 ≤

t ≤ T . Note that if there is some t1 such that L ∈ At1 , then by part (a) of Lemma 6.4,
we get

P (Xt /∈ At for all 0 ≤ t ≤ T | X0 = L) ≤ P
(
0 < Xt1 < L | X0 = L

) ≤ 2Lα.

So the proposition follows if we can show that there exists a constant ε > 0 such that
for T sufficiently large any non-trivial separating sequence satisfies

P (Xt ∈ At for all 0 ≤ t ≤ T | X0 = 0) ≤ 1 − ε.

First note that sinceA is non-trivial, there exists a trajectory y ∈ {L}× ST such that
yt /∈ At for all 0 ≤ t ≤ T and P(X = y | X0 = L) > 0. Further, recall that the chain
can only attain y with positive probability if |yt+1 − yt | ≤ 1 for all 0 ≤ t ≤ T − 1.

Next, letX = (Xt )
T+1
t=0 be a copy of the Markov chain started in X0 = 0. We define

the process X′ = (X ′
t )
T
t=0 as X

′
t = Xt+1 for all 0 ≤ t ≤ T if X1 = 0, and otherwise

put X ′
0 = 0 and let this process evolve independently of X. Clearly, this implies that

(Xt )
T
t=0 and X′ have the same distribution.

Now, if Xt = L for some 0 ≤ t ≤ T , then the trajectory of X and y necessarily
either intersect or cross. Consequently, we either have X1 
= 0 (which occurs with
probability α) or at least one of X and X′ meets y, and is thus outside At for some t .
By the union bound, we find

P (Xt = L for some 0 ≤ t ≤ T | X0 = 0)

≤ α + 2P (Xt /∈ At for some 0 ≤ t ≤ T | X0 = 0) .
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From (12) we know that P(Xt ≤ L − 1 for all 0 ≤ t ≤ T | X0 = 0) is bounded away
from 1 as T tends to infinity with our choice of α = Θ( 1

T ). So choosing ε > 0 small,
T large enough such that

P (Xt = L for some 0 ≤ t ≤ T | X0 = 0) ≥ α + 2ε

will do the job. �
Proposition 6.6 Let A = (At )

T
t=0 be any separating sequence such that 0 ∈ At and

L /∈ At for all 0 ≤ t ≤ T . For any 0 ≤ a ≤ T , we define the separating sequence
Aa = (Aa

t )
T
t=0 by Aa

t := At+a ( mod T+1). Then

SA
T (0, L) ≤ SAa

T (0, L) + 12 Lα.

Proof The case where a = 0 is obvious, so we may assume a > 0. By part (a) of
Lemma 6.4, for any fixed 0 ≤ t ≤ T , the probability that Xt ∈ At\{0} given X0 = 0
is at most 2 Lα. From this we can infer

P (Xt ∈ At for all 0 ≤ t ≤ T | X0 = 0)

≤ P (Xt ∈ At for all 0 ≤ t ≤ T and Xa−1 = Xa = XT = 0 | X0 = 0) + 6 Lα

= P (Xt ∈ At for all 0 ≤ t ≤ a − 1 and Xa−1 = 0 | X0 = 0) · (1 − α)

· P (Xt ∈ At for all a ≤ t ≤ T and XT = 0 | Xa = 0) + 6 Lα

= P (Xt ∈ At−T+a−1 for all T − a + 1 ≤ t ≤ T and XT = 0 | XT−a+1 = 0)

· (1 − α) · P (Xt ∈ At+a for all 0 ≤ t ≤ T − a and XT−a = 0 | X0 = 0)

+ 6 Lα

= P
(
Xt ∈ Aa

t for all 0 ≤ t ≤ T and XT−a = XT−a+1 = XT = 0 | X0 = 0
)

+ 6 Lα

≤ P
(
Xt ∈ Aa

t for all 0 ≤ t ≤ T | X0 = 0
) + 6 Lα,

where the first and last equality follow from the Markov property and the central one
from time homogeneity of the chain.

By symmetry, the same argument works for the chain started at L and the sequence
of complementary sets (S\At )

T
t=0. �

Proposition 6.7 For any separating sequence A = (At )
T
t=0 such that 0 ∈ At and

L /∈ At for all 0 ≤ t ≤ T , there exists a k ∈ {0, . . . , L} such that

SA
T (0, L) ≤ Sk

T (0, L) + 12 Lα, (15)

where k denotes the constant separating sequence whose elements are all equal to the
set {0, 1, . . . , k}.
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Proof By Proposition 6.6, we have

SA
T (0, L) ≤ 1

T + 1

T∑

a=0

SAa

T (0, L) + 12 Lα.

For any 0 ≤ k ≤ L , let us define

f (k) := min
0≤k′≤k

∣∣{t : k′ ∈ At }
∣∣

T + 1
.

Note that the function f is decreasing, f (0) = 1 and f (L) = 0. To simplify
the notation, we additionally set f (L + 1) := 0 and write M := max0≤t≤T Xt .
Considering only the first summands coming from each of the separation terms
SAa

T (0, L), 0 ≤ a ≤ T , we find

1

T + 1

T∑

a=0

P
(
Xt ∈ Aa

t for all 0 ≤ t ≤ T | X0 = 0
)

= 1

T + 1

T∑

a=0

L∑

k=0

P (M = k | X0 = 0)

· P (
Xt ∈ Aa

t for all 0 ≤ t ≤ T | M = k and X0 = 0
)

Fix k ∈ {0, . . . , L}, pick k′ to minimize
∣∣{t : k′ ∈ At }

∣∣ over {0, . . . , k} and note
that this implies

f (k) =
∣∣{t : k′ ∈ At }

∣∣

T + 1
= 1

T + 1

T∑

a=0

1{k′∈Aa
t }.

Let τ ≥ 0 be the first time when the Markov chain visits state k′. Given M = k, we
know τ ≤ T , hence

1

T + 1

T∑

a=0

P
(
Xt ∈ Aa

t for all 0 ≤ t ≤ T | M = k and X0 = 0
)

≤ 1

T + 1

T∑

a=0

P
(
k′ ∈ Aa

τ | M = k and X0 = 0
)

= 1

T + 1

T∑

a=0

T∑

t=0

P (τ = t | M = k and X0 = 0) · 1{k′∈Aa
t }

=
T∑

t=0

P (τ = t | M = k and X0 = 0) · f (k) = f (k).
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We conclude that

1

T + 1

T∑

a=0

P
(
Xt ∈ Aa

t for all 0 ≤ t ≤ T | X0 = 0
)

≤
L∑

k=0

P

(
max
0≤t≤T

Xt = k | X0 = 0

)
· f (k)

=
L∑

k=0

P

(
max
0≤t≤T

Xt ≤ k | X0 = 0

)
· (

f (k) − f (k + 1)
)
.

Arguing analogously in the case of X0 = L , with themodifications that we consider
min0≤t≤T Xt instead of max0≤t≤T Xt and τ now denotes the first time when the chain
is in state k, yields

1

T + 1

T∑

a=0

P
(
Xt /∈ Aa

t for all 0 ≤ t ≤ T | X0 = L
)

≤
L∑

k=0

P

(
min

0≤t≤T
Xt = k | X0 = L

)
· (
1 − f (k)

)

= 1 −
L∑

k=0

P

(
min

0≤t≤T
Xt ≤ k | X0 = L

)
· (

f (k) − f (k + 1)
)
.

=
L∑

k=0

P

(
min

0≤t≤T
Xt > k | X0 = L

)
· (

f (k) − f (k + 1)
)
,

where we used 1− f (k) ≥ 1− 1
T+1 · |{t : k ∈ At }| to derive the inequality and the last

equality follows from
∑L

k=0 f (k)− f (k+1) = 1. By combining these two estimates,
it follows that

1

T + 1

T∑

a=0

SAa

T (0, L) ≤
L∑

k=0

(
f (k) − f (k + 1)

) · Sk
T (0, L).

From the fact that the coefficients f (k) − f (k + 1), 0 ≤ k ≤ L , sum up to 1, plus
f (L) = f (L + 1), we can conclude that there exists some k ∈ {0, . . . , L − 1} such
that

1

T + 1

T∑

a=0

SAa

T (0, L) ≤ Sk
T (0, L),

which completes the proof. �
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Combining Propositions 6.5 and 6.7, it follows that for any fixed L ≥ 1, any
α = α(T ) = Θ

( 1
T

)
and T sufficiently large, the optimal separation ST (0, L) is the

maximum of 1 and

Sk
T (0, L) + O(Lα) ≤ e−αT/(k+1) + e−αT/(L−k) + O(Lα), (16)

for 0 ≤ k < L , where the inequality follows from (12).
To finish the proof of Theorem 6.2, we need one more elementary estimation:

Lemma 6.8 Given A > 0, define the function

fA(x) := e−A/x + e−A/(1−x), x ∈ (0, 1).

Then it holds

sup
0<x<1

f A(x) = max
(
e−A, 2 e−2A

)
.

Proof First note that the function f A lies in C∞((0, 1)) and is symmetric around
x = 1

2 . Calculating its first two derivatives gives

f ′
A(x) = A

x2
· e− A

x − A
(1−x)2

· e− A
1−x and

f ′′
A(x) = ( A2

x4
− 2A

x3
) · e− A

x + ( A2

(1−x)4
− 2A

(1−x)3
) · e− A

(1−x) .

If x ∈ (0, 1) is a stationary point of f A, we necessarily have

A
x2

· e− A
x = A

(1−x)2
· e− A

1−x

and as a consequence the sign of f ′′
A(x) is given by the sign of

gA(x) := 2 (A + 1) x2 − 2 (A + 1) x + A.

Due to A > 0, the function gA is strictly convex. Assuming the existence of two
local maxima of f A on (0, 1)—at points x1 < x2 say—forces the existence of a
local minimum at x3 ∈ (x1, x2). Hence max{ f ′′

A(x1), f ′′
A(x2)} ≤ 0 ≤ f ′′

A(x3), which
contradicts the strict convexity of gA.

Consequently, f A can have at most one local maximum in (0, 1), which then lies at
x = 1

2 for symmetry reasons. In conclusion, f A either attains its maximum on (0, 1)
at x = 1

2 or converges to its supremum on the boundary. �
Proof of Theorem 6.2 Applying Lemma 6.8 to (16) with A = αT/(L + 1), we see
that we can pick δ > 0 arbitrarily small, choose

α = α(T ) = 1

2

(
ln(2) + δ

) · L + 1

T
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and find that the optimal separation of the states 0 and L in the chain X on [0, T ] is
1 if T is chosen sufficiently large (after having fixed L). Hence, by Theorem 6.3 and
(11) we know that the chain (Xt )

T
t=0 segregates 0 and L . From (11) we can further

read off that for L fixed

‖PT (0, .) − PT (L , .)‖TV = e−
(
ln(2)+δ

) L+1
L − oT (1). (17)

Given ε > 0, we can choose δ > 0 small, L large enough and then pick T sufficiently
large to make the right-hand side of (17) larger than 1

2 − ε. This completes the proof.
�

Remark 3 One downside of the implicit construction proving Theorem 6.2 is the fact
that it does not give much information about the coupling involved. As the coupling
will have to take into account the whole trajectories of the two individual copies, it is
highly unlikely that the coupled process will have theMarkov property. In this respect,
it is still an open problem if the value of 1

e , established in Sect. 5, can be pushed further
(as supremumof achievable total variation distances that can be retained in segregating
Markov chains), if we restrict ourselves toMarkovian couplings.

We can however rule out that there exists a single chain in discrete time with two
segregated states x and y such that

lim
n→∞‖Pn(x, .) − Pn(y, .)‖TV = 1

2 ,

i.e., for which the value 1
2 actually is attained (cf. the following proposition, which

slightly improves the result from Theorem 4.1).

Proposition 6.9 Consider a Markov chain in discrete time with countable state space
S and two states x, y ∈ S. If two copies, X = (Xt )t∈N0 and Y = (Yt )t∈N0 , started in
x and y, respectively, can be coupled to meet almost surely in finite time, it follows
that

lim
n→∞‖Pn(x, .) − Pn(y, .)‖TV < 1

2 .

Proof As a matter of fact, we can alter the proof of Proposition 4.2 to derive the above
statement: For the reasoning there to work, we need a function f : N0 × S → [0, 1],
replacing the martingales Mt and Nt , with the following two properties:

(i)
(
f (t, Xt )

)
t∈N0

is a martingale with respect to the natural filtration of X, and
likewise for Y.

(ii) f (0, x) − f (0, y) = lim
n→∞‖Pn(x, .) − Pn(y, .)‖TV.

In order to compile such a function, let us define the sets An ⊆ S, n ∈ N0, via

An := {s ∈ S; Pn(x, s) > Pn(y, s)},

which implies ‖Pn(x, .) − Pn(y, .)‖TV = Pn(x, An) − Pn(y, An), and further
fn(t, s) := Pn−t (s, An) for all t ≤ n. Finally, choose f to be the limit of a pointwise
converging subsequence of the uniformly bounded sequence of functions ( fn)n∈N0 .
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Then (ii) is immediate and since for all n ∈ N0, fn(t, Xt ) is a martingale for
0 ≤ t ≤ n, bounded by 0 and 1 from below and above, respectively, the conditional
dominated convergence theorem ensures that f (t, Xt ) inherits these properties.

Analogously to the proof of Proposition 4.2, let us define

Bx := {
f (t, Xt ) ≥ 1

2 for all t ∈ N0
}

and By := {
f (t,Yt ) < 1

2 for all t ∈ N0
}

as well as

τx := inf
{
t ∈ N0; f (t, Xt ) < 1

2

}
and τy := inf

{
t ∈ N0; f (t,Yt ) ≥ 1

2

}
.

Note that the almost sure limit of f (t, Xt ) as t → ∞ exists, according to Doob’s
martingale convergence theorem, which implies that f (τx , Xτx ) is well defined even
on Bx = {τx = ∞}. Further note that B c

x ∪ B c
y is an almost sure event, due to the fact

that X and Y meet in finite time with probability 1.
If P(B c

x ) > 0, we get the strict inequality from (3) as f (τx , Xτx ) < 1
2 on B c

x :

lim
n→∞‖Pn(x, .) − Pn(y, .)‖TV = f (0, x) − f (0, y)

= E f
(
τx , Xτx

) − E f
(
τy,Yτy

)

< 1 − 1
2

(
P

(
B c
x

) + P

(
B c
y

))

= 1
2 .

If both B c
x and { f (t,Yt ) > 1

2 for some t ∈ N0} have probability 0, the fact that X
and Y meet a.s. forces the events { f (t, Xt ) = 1

2 for some t ∈ N0} and { f (t,Yt ) =
1
2 for some t ∈ N0

}
to have probability 1. Changing the stopping times to

τx := inf
{
t ∈ N0; f (t, Xt ) = 1

2

}
and τy := inf

{
t ∈ N0; f (t,Yt ) = 1

2

}

gives

lim
n→∞‖Pn(x, .) − Pn(y, .)‖TV = E f

(
τx , Xτx

) − E f
(
τy,Yτy

) = 0.

Hence, by symmetry it is safe to assume P(B c
x ) > 0, which verifies the claim. �
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