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Abstract For k,m, n ∈ N, we consider nk × nk random matrices of the form

Mn,m,k(y) =
m∑

α=1

ταYαY
T
α , Yα = y(1)

α ⊗ · · · ⊗ y(k)
α ,

where τα , α ∈ [m], are real numbers and y( j)
α , α ∈ [m], j ∈ [k], are i.i.d. copies of a

normalized isotropic random vector y ∈ R
n . For every fixed k ≥ 1, if the Normalized

Counting Measures of {τα}α converge weakly as m, n → ∞, m/nk → c ∈ [0,∞)

and y is a good vector in the sense of Definition 1.1, then the Normalized Counting
Measures of eigenvalues ofMn,m,k(y) convergeweakly in probability to a nonrandom
limit found inMarchenko and Pastur (MathUSSRSb 1:457–483, 1967). For k = 2, we
define a subclass of good vectors y for which the centered linear eigenvalue statistics
n−1/2 Tr ϕ(Mn,m,2(y))◦ converge in distribution to a Gaussian random variable, i.e.,
the Central Limit Theorem is valid.
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1 Introduction: Problem and Main Result

For every k ∈ N, consider random vectors of the form

Y = y(1) ⊗ · · · ⊗ y(k) ∈ (Rn)⊗k, (1.1)

where y(1),…, y(k) are i.i.d. copies of a normalized isotropic random vector y =
(y1, . . . , yn) ∈ R

n ,

E{y j } = 0, E{yi y j } = δi j n
−1, i, j ∈ [n], (1.2)

[n] = {1, . . . , n}. The components of Y have the form

Yj = y(1)
j1

× . . . × y(k)
jk

,

where we use the notation j for k-multiindex:

j = { j1, . . . , jk}, j1, . . . , jk ∈ [n].

For every m ∈ N, let {Yα}mα=1 be i.i.d. copies of Y , and let {τα}mα=1 be a collection of
real numbers. Consider an nk × nk real symmetric random matrix corresponding to a
normalized isotropic random vector y,

Mn = Mn,m,k = Mn,m,k(y) =
m∑

α=1

ταYαYα
T . (1.3)

We suppose that

m → ∞ and m/nk → c ∈ (0,∞) as n → ∞. (1.4)

Note that Mn,m,k can be also written in the form

Mn,m,k = Bn,m,kTm B
T
n,m,k, (1.5)

where
Bn,m,k = (Y1 Y2 . . . Ym), Tm = {ταδαβ}mα,β=1.

Such matrices with Tm ≥ 0 (not necessarily diagonal) are known as sample covari-
ance matrices. The asymptotic behavior of their spectral statistics is well studied when
all entries of Yα are independent. Much less is known in the case when columns Yα

have dependence in their structure.
Themodel constructed in (1.3) appeared in the quantum information theory andwas

introduced to random matrix theory by Hastings (see [3,14,15]). In [3], it was studied
as a quantum analog of the classical probability problem on the allocation of p balls
among q boxes (a quantum model of data hiding and correlation locking scheme). In
particular, by combinatorial analysis of moments of n−k TrMp

n , p ∈ N, it was proved
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that for the special cases of random vectors y uniformly distributed on the unit sphere
in C

n or having Gaussian components, the expectations of the Normalized Counting
Measures of eigenvalues of the corresponding matrices converge to the Marchenko–
Pastur law [17]. The main goal of the present paper is to extend this result of [3] to
a wider class of matrices Mn,m,k(y) and also to prove the Central Limit Theorem for
linear eigenvalue statistics in the case k = 2.

Let {λ(n)
l }nkl=1 be the eigenvalues of Mn counting their multiplicity, and introduce

their Normalized Counting Measure (NCM) Nn , setting for every � ⊂ R

Nn(�) = Card{l ∈ [nk] : λ
(n)
l ∈ �}/nk .

Likewise, define the NCM σm of {τα}mα=1,

σm(�) = Card{α ∈ [m] : τα ∈ �}/m. (1.6)

We assume that the sequence {σm}∞m=1 converges weakly:

lim
m→∞ σm = σ, σ (R) = 1. (1.7)

In the case k = 1, there are a number of papers devoted to the convergence of the
NCMs of the eigenvalues ofMn,m,1 and related matrices (see [1,6,12,17,20,27] and
references therein). In particular, in [20] the convergence of NCMs of eigenvalues of
Mn,m,1 was proved in the case when corresponding vectors {Yα}α are “good vectors”
in the sense of the following definition.

Definition 1.1 We say that a normalized isotropic vector y ∈ R
n is good, if for every

n × n complex matrix Hn which does not depend on y, we have

Var{(Hny, y)} ≤ ||Hn||2δn, δn = o(1), n → ∞, (1.8)

where ||Hn|| is the Euclidean operator norm of Hn .

Following the scheme of the proof proposed in [20], we show that despite the fact
that the number of independent parameters, kmn = O(nk+1) for k ≥ 2, is much less
than the number of matrix entries, n2k , the limiting distribution of eigenvalues still
obeys the Marchenko–Pastur law. We have:

Theorem 1.2 Fix k ≥ 1. Let n and m be positive integers satisfying ( 1.4), let {τα}α be
real numbers satisfying (1.7), and let y be a good vector in the sense of Definition 1.1.
Then there exists a nonrandom measure N of total mass 1 such that the NCMs Nn

of the eigenvalues of Mn (1.3) converge weakly in probability to N as n → ∞. The
Stieltjes transform f of N ,

f (z) =
∫

N (dλ)

λ − z
, 
z �= 0, (1.9)
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is the unique solution of the functional equation

z f (z) = c − 1 − c
∫

(1 + τ f (z))−1σ(dτ) (1.10)

in the class of analytic in C \ R functions such that 
 f (z)
z ≥ 0, 
z �= 0.

We use the notation
∫
for the integrals over R. Note that in [26] there was proved

an analog of this statement for a deformed version of Mn,m,2.
It follows from Theorem 1.2 that if

Nn[ϕ] =
nk∑

j=1

ϕ(λ
(n)
j ) (1.11)

is the linear eigenvalue statistic of Mn corresponding to a bounded continuous test
function ϕ : R → C, then we have in probability

lim
n→∞ n−kNn[ϕ] =

∫
ϕ(λ)dN (λ). (1.12)

This can be viewed as an analog of the Law of Large Numbers in probability theory
for (1.11). Since the limit is nonrandom, the next natural step is to investigate the
fluctuations of Nn[ϕ]. This corresponds to the question of validity of the Central
Limit Theorem (CLT). The main goal of this paper is to prove the CLT for the linear
eigenvalue statistics of the tensor version of the sample covariance matrix Mn,m,2
defined in (1.3).

There are a considerable number of papers on theCLT for linear eigenvalue statistics
of sample covariance matricesMn,m,1 (1.5), where all entries of the matrix Bn,m,1 are
independent (see [4,7–9,11,16,18,19,21,25] and references therein). Less is known
in the case where the components of vector y are dependent. In [13], the CLT was
proved for linear statistics of eigenvalues of Mn,m,1, corresponding to some special
class of isotropic vectors defined below.

Definition 1.3 The distribution of a random vector y ∈ R
n is called unconditional if

its components {y j }nj=1 have the same joint distribution as {±y j }nj=1 for any choice
of signs.

Definition 1.4 We say that normalized isotropic vectors y ∈ R
n , n ∈ N, are very good

if they have unconditional distributions, their mixed moments up to the fourth order
do not depend on i, j, n, there exist n-independent a, b ∈ R such that as n → ∞,

a2,2 := E{y2i y2j } = n−2 + an−3 + O(n−4), i �= j, (1.13)

κ4 := E{y4j } − 3a2,2 = bn−2 + O(n−3), (1.14)

and for every n × n complex matrix Hn which does not depend on y,

E{|(Hny, y)◦|4} ≤ C ||Hn||4n−2. (1.15)
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Here and in what follows we use the notation ξ◦ = ξ − E{ξ}.
An important step in proving the CLT for linear eigenvalue statistics is the asymp-

totic analysis of their variances Var{Nn[ϕ]} := E{|N ◦
n [ϕ]|2}, in particular, the proof

of the bound
Var{Nn[ϕ]} ≤ Cn||ϕ||2H, (1.16)

where || . . . ||H is a functional norm andCn depends only on n. This bound determines
the normalization factor in front of N ◦

n [ϕ] and the class H of the test functions for
which the CLT, if any, is valid. It appears that for many random matrices normalized
so that there exists a limit of their NCMs, in particular for sample covariance matrices
Mn,m,1, the variance of the linear eigenvalue statistic corresponding to a smooth
enough test function does not grow with n, and the CLT is valid for N ◦

n [ϕ] itself
without any n-dependent normalization factor in front. Consider the test functions
ϕ : R → R from the Sobolev space Hs , possessing the norm

||ϕ||2s =
∫

(1 + |t |)2s |ϕ̂(t)|2dt, ϕ̂(t) =
∫

eitθϕ(θ)dθ. (1.17)

The following statement was proved in [13] (see Theorem 1.8 and Remark 1.11):

Theorem 1.5 Let m and n be positive integers satisfying (1.4) with k = 1, let {τα}mα=1
be a collection of real numbers satisfying (1.7) and

sup
m

∫
τ 4dσm(τ ) < ∞, (1.18)

and let y be a very good vector in the sense of Definition 1.4. Consider matrix
Mn,m,1(y) (1.3) and the linear statistic of its eigenvalues Nn[ϕ] (1.11) correspond-
ing to a test function ϕ ∈ Hs , s > 2. Then {N ◦

n [ϕ]}n converges in distribution to a
Gaussian random variable with zero mean and the variance V [ϕ] = limη↓0 Vη[ϕ],
where

Vη[ϕ] = 1

2π2

∫ ∫

[

L(z1, z2) − L(z1, z2)
]
(ϕ(λ1) − ϕ(λ2))

2dλ1dλ2

+ (a + b)c

π2

∫
τ 2

(



∫
f ′(z1)

(1 + τ f (z1))2
ϕ(λ1)dλ1

)2

dσ(τ),

L(z1, z2) = ∂2

∂z1∂z2
log

� f

�z
,

z1,2 = λ1,2 + iη, � f = f (z1) − f (z2), �z = z1 − z2, and f given by (1.10).

Hereweprove an analogofTheorem1.5 in the case k = 2.We startwith establishing
a version of (1.16) in general case k ≥ 1:

Lemma 1.6 Let {τα}α be a collection of real numbers satisfying (1.7) and (1.18), and
let y be a normalized isotropic vector having an unconditional distribution, such that

a2,2 = n−2 + O(n−3), κ4 = O(n−2). (1.19)
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Consider the corresponding matrix Mn (1.3) and a linear statistic of its eigenvalues
Nn[ϕ]. Then for every ϕ ∈ Hs , s > 5/2, and for all sufficiently large m and n, we
have

Var{Nn[ϕ]} ≤ Cnk−1||ϕ||2s , (1.20)

where C does not depend on n and ϕ.

It follows from Lemma 1.6 that in order to prove the CLT (if any) for linear eigen-
value statistics of Mn , one needs to normalize them by n−(k−1)/2. To formulate our
main result we need more definitions.

Definition 1.7 We say that the distribution of a random vector y ∈ R
n is permuta-

tionally invariant (or exchangeable) if it is invariant with respect to the permutations
of entries of y.

Definition 1.8 We say that normalized isotropic vectors y ∈ R
n , n ∈ N, are the CLT-

vectors if they have unconditional permutationally invariant distributions and satisfy
the following conditions:

(i) their fourth moments satisfy (1.13)–(1.14),
(ii) their sixth moments satisfy conditions

a2,2,2 :=E{y2i y2j y2k } = n−3 + O(n−4),

a2,4 :=E{y2i y4j } = O(n−3), a6 := E{y6i } = O(n−3), (1.21)

(iii) for every n × n matrix Hn which does not depend on y,

E{|(Hny, y)◦|6} ≤ C ||Hn||6n−3. (1.22)

It can be shown that a vector of the form y = x/n1/2, where x has i.i.d. components
with even distribution and bounded twelfth moment is a CLT-vector as well as a vector
uniformly distributed on the unit ball inRn or a properly normalized vector uniformly
distributed on the unit ball Bn

p = {
x ∈ R

n : ∑n
j=1 |x j |p ≤ 1

}
in lnp (see [13],

Section 2 for k = 1).
The main result of the present paper is:

Theorem 1.9 Let m and n be positive integers satisfying (1.4) with k = 2, and let
{τα}mα=1 be a set of real numbers uniformly bounded in α and m and satisfying (1.7).
Consider matrices Mn,m,2(y) (1.3) corresponding to CLT-vectors y ∈ R

n. If Nn[ϕ]
are the linear statistics of their eigenvalues (1.11) corresponding to a test function
ϕ ∈ Hs , s > 5/2, then {n−1/2N ◦

n [ϕ]}n converges in distribution to aGaussian random
variable with zero mean and the variance V [ϕ] = limη↓0 Vη[ϕ], where

Vη[ϕ] = 2(a + b + 2)c

π2

∫
τ 2

(



∫
f ′(λ + iη)

(1 + τ f (λ + iη))2
ϕ(λ)dλ

)2

dσ(τ) (1.23)

and f is given by (1.10).
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Remark 1.10 (i) In particular, if τ1 = · · · = τm = 1, then

V [ϕ] = (a + b + 2)

2cπ2

(∫ a+

a−
ϕ(μ)

μ − am√
(a+ − μ)(μ − a−)

dμ

)2

,

where a± = (1 ± √
c)2 and am = 1 + c.

(ii) We can replace the condition of the uniform boundedness of τα with the con-
dition of uniform boundedness of eighth moments of the Normalized Counting
Measures σn , or take {τα}α being real random variables independent of y with
commonprobability lawσ havingfinite eighthmoment. In general, it is clear from
(1.23) that it should be enough to have second moments of σn being uniformly
bounded in n.

(iii) If in (1.23) a+ b+ 2 = 0, then to prove the CLT one needs to renormalize linear
eigenvalue statistics. In particular, it can be shown that if y in the definition of
Mn,m,k(y) is uniformly distributed on the unit sphere in Rn , then a + b+ 2 = 0
and under additional assumption m/n = c + O(n−1) the variance of the linear
eigenvalue statistic corresponding to a smooth enough test function is of the order
O(nk−2) (cf 1.20).

The paper is organized as follows. Section 3 contains some known facts and aux-
iliary results. In Sect. 4, we prove Theorem 1.2 on the convergence of the NCMs
of eigenvalues of Mn,m,k . Sections 5 and 7 present some asymptotic properties of
bilinear forms (HY,Y ), where Y is given by (1.1) and H does not depend on Y . In
Sect. 6, we prove Lemma 1.6. In Sect. 8, the limit expression for the covariance of the
resolvent traces is found. Section 9 contains the proof of the main result, Theorem 1.9.

2 Notations

Let I be the nk × nk identity matrix. For z ∈ C, 
z �= 0, let G(z) = (Mn − z I )−1 be
the resolvent of Mn , and

γn(z) = Tr G(z) =
∑

j

Gj j(z),

gn(z) = n−kγn(z), fn(z) = E{gn(z)}.

Here and in what follows

∑

j

=
∑

j1,..., jk

,
∑

j

=
n∑

j=1

, and
∑

α

=
m∑

α=1

,
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so that for the nonbold Latin and Greek indices the summations are from 1 to n and
from 1 to m, respectively. For α ∈ [m], let

Mα
n =Mn

∣∣
τα=0 = Mn − ταYαY

T
α , Gα(z) = (Mα

n − z I )−1,

γ α
n =Tr Gα, gα

n = n−kγ α
n , f α

n = E{gα
n }. (2.1)

Thus the upper index α indicates that the corresponding function does not depend on
Yα . We use the notations Eα{. . .} and (. . .)◦α for the averaging and the centering with
respect to Yα , so that (ξ)◦α = ξ − Eα{ξ}.

In what follows we also need functions (see (4.5) below)

Aα = Aα(z) := 1 + τα(GαYα,Yα) and Bα = Bα(z) := τα((Gα)2Yα,Yα).

Writing O(n−p) or o(n−p) we suppose that n → ∞ and that the coefficients in
the corresponding relations are uniformly bounded in {τα}α , n ∈ N, and z ∈ K . We
use the notation K for any compact set in C \ R.

Givenmatrix H , ||H || and ||H ||HS are the Euclidean operator norm and theHilbert-
Schmidt norm, respectively. We use C for any absolute constant which can vary from
place to place.

3 Some Facts and Auxiliary Results

We need the following bound for the martingales moments, obtained in [10]:

Proposition 3.1 Let {Sm}m≥1 be a martingale, i.e., ∀m, E{Sm+1 | S1, . . . , Sm} = Sm
andE{|Sm |} < ∞. Let S0 = 0. Then for every ν ≥ 2, there exists an absolute constant
Cν such that for all m = 1, 2 . . .

E{|Sm |ν} ≤ Cνm
ν/2−1

m∑

j=1

E{|S j − S j−1|ν}. (3.1)

Lemma 3.2 Let {ξα}α be independent random variables assuming values in Rnα and
having probability laws Pα , α ∈ [m], and let � : Rn1 × . . . × R

nm → C be a Borel
measurable function. Then for every ν ≥ 2, there exists an absolute constant Cν such
that for all m = 1, 2 . . .

E{|� − E{�}|ν} ≤ Cνm
ν/2−1

m∑

α=1

E{|(�)◦α|ν}, (3.2)

where (�)◦α = � − Eα{�}, and Eα is the averaging with respect to ξα .

Proof This simple statement is hidden in the proof of Proposition 1 in [25].We give its
proof for the sake of completeness. For α ∈ [m], denote E≥α = Eα . . .Em . Applying
Proposition 3.1 with S0 = 0, Sα = E≥α+1{�} − E{�}, Sm = � − E{�}, we get
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E{|� − E{�}|ν} ≤ Cνm
ν/2−1

m∑

α=1

E{|E≥α+1{�} − E≥α{�}|ν}.

By the Hölder inequality

|E≥α+1{�} − E≥α{�}|ν = |E≥α+1{(�)◦α}|ν ≤ E≥α+1{|(�)◦α|ν},

which implies (3.2). ��
Lemma 3.3 Fix � ≥ 2 and k ≥ 2. Let y ∈ R

n be a normalized isotropic random
vector (1.2) such that for every n × n complex matrix H which does not depend on y,
we have

E{|(Hy, y)◦|�} ≤ ||H ||�δn, δn = o(1), n → ∞. (3.3)

Then there exists an absolute constant C� such that for every nk × nk complex matrix
H which does not depend on y, we have

E{|(HY,Y )◦|�} ≤ C�k
�/2||H||�δn, (3.4)

where Y = y(1) ⊗ . . . ⊗ y(k), and y( j), j ∈ [k], are i.i.d. copies of y.
Proof It follows from (3.2) that

E{|(HY,Y )◦|�} ≤ C�k
�/2−1

k∑

j=1

E{|(HY,Y )◦j |�}, (3.5)

where ξ◦
j = ξ − E j {ξ} and E j is the averaging w.r.t. y( j). We have

(HY,Y ) =
∑

p,q

Hp,qYpYq = (H ( j)y( j), y( j)),

where H ( j) is an n × n matrix with the entries

(H ( j))st =
∑

p, q

Hp, q δp j sδq j t y(1)
p1 . . . y( j−1)

p j−1 y( j+1)
p j+1 . . . y(k)

pk y(1)
q1 . . . y( j−1)

q j−1 y( j+1)
q j+1 . . . y(k)

qk .

This and (3.3) yield

E j

{
|(HY,Y )◦j |�

}
= E j {|(H ( j)y( j), y( j))◦|�} ≤ ||H ( j)||�δn .

We have

||H ( j)|| ≤ ||H||
∏

i �= j

||y(i)||2.

For i ∈ [k], since by (1.2) E{||y(i)||} = 1, we have by (3.3) E{||y(i)||2�} ≤ C .
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Hence

E j {|(HY,Y )◦j |�} ≤ ||H||�
∏

i �= j

E{||y(i)||2�}δn ≤ C ||H||�δn .

This and (3.5) lead to (3.4), which completes the proof of the lemma. ��
The following statement was proved in [20].

Proposition 3.4 Let Nn be the NCM of the eigenvalues of Mn = ∑
α ταYαYα

T , where
{Yα}mα=1 ∈ R

p are i.i.d. random vectors and {τα}mα=1 are real numbers. Then

Var{Nn(�)} ≤4m/p2, ∀� ⊂ R, (3.6)

Var{gn(z)} ≤4m/(p|
z|)2, ∀z ∈ C \ R. (3.7)

Also, we will need the following simple claim:

Claim 3.5 If h1, h2 are bounded random variables, then

Var{h1h2} ≤ C
(
Var{h1} + Var{h2}

)
. (3.8)

4 Proof of Theorem 1.2

Theorem 1.2 essentially follows from Theorem 3.3 of [20] and Lemma 3.3; here we
give a proof for the sake of completeness. In view of (3.6) with p = nk , it suffices
to prove that the expectations Nn = E{Nn} of the NCMs of the eigenvalues of Mn

converge weakly to N . Due to the one-to-one correspondence between nonnegative
measures and their Stieltjes transforms (see, e.g., [2]), it is enough to show that the
Stieltjes transforms of Nn ,

fn(z) =
∫

Nn(dλ)

λ − z
,

converge to the solution f of (1.10) uniformly on every compact set K ⊂ C \ R, and
that

lim
η→∞ η| f (iη)| = 1. (4.1)

In [20], it is proved that the solution of (1.10) satisfies (4.1), so it is enough to show
that

fn(z) ⇒
n→∞

f (z), z ∈ K , (4.2)

where we use the double arrow notation for the uniform convergence. Assume first
that all τα are bounded:

∀m ∀α ∈ [m] |τα| ≤ L . (4.3)

Since Mn − Mα
n = ταYαY T

α , the rank one perturbation formula

G − Gα = − ταGαYαY T
α Gα

1 + τα(GαYα,Yα)
(4.4)
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implies that

γn − γ α
n = − τα((Gα)2Yα,Yα)

1 + τα(GαYα,Yα)
= − Bα

Aα

. (4.5)

It follows from the spectral theorem for the real symmetric matrices that there exists
a nonnegative measure mα such that

(GαYα,Yα) =
∫

mα(dλ)

λ − z
, ((Gα)2Yα,Yα) =

∫
mα(dλ)

(λ − z)2
. (4.6)

This yields

|Aα| ≥ |
Aα| = |τα||
z|
∫

mα(dλ)

|λ − z|2 , |Bα| ≤ |τα|
∫

mα(dλ)

|λ − z|2 ,

implying that

|Bα/Aα| ≤ 1/|
z|. (4.7)

It also follows from (4.4) that A−1
α = 1 − τα(GYα,Yα). Hence,

|A−1
α | ≤ 1 + |τα| · ||Yα||2/|
z|, (4.8)

where we use ||G|| ≤ |
z|−1. Let us show that

|Eα{Aα}|−1, |E{Aα}|−1 ≤ 4(1 + |τα|/|
z|). (4.9)

It follows from (1.2) that

Eα{Aα} = 1 + ταg
α
n (z), E{Aα} = 1 + τα f α

n (z). (4.10)

Consider Eα{Aα}. By the spectral theorem for the real symmetric matrices,

Eα{Aα} = 1 + ταn
−k

∫ N α
n (dλ)

λ − z
,

where N α
n is the counting measure of the eigenvalues of Mα

n . For every η ∈ R \ {0},
consider

Eη =
{
z = μ + iη :

∣∣∣n−k
∫ N α

n (dλ)

λ − z

∣∣∣ ≤ 1

2|τα|
}
.

Clearly, for z ∈ Eη, |Eα{Aα}| ≥ 1/2. If z = μ + iη /∈ Eη, then

1

2|τα| <

∣∣∣n−k
∫ N α

n (dλ)

λ − z

∣∣∣ ≤
(
n−k

∫ N α
n (dλ)

|λ − z|2
)1/2

,
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so that

|Eα{Aα}| ≥ |
Eα{Aα}| = |τα||η|n−k
∫ N α

n (dλ)

|λ − z|2 ≥ |η|
4|τα| .

This leads to (4.9) for Eα{Aα}. Replacing in our argumentN α
n withN α

n , we get (4.9)
for E{Aα}.

It follows from the resolvent identity and (4.4) that

zgn(z) = −1 + n−k TrMnG = ( − 1 + mn−k) − n−k
∑

α

A−1
α . (4.11)

This and the identity
1

Aα

= 1

E{Aα} − A◦
α

AαE{Aα} (4.12)

lead to

z fn(z) =( − 1 + n−k) − n−k
∑

α

E{Aα}−1 + rn(z),

rn(z) =n−k
∑

α

1

E{Aα}E
{ A◦

α

Aα

}
.

It follows from the Schwarz inequality that

|E{A◦
αA

−1
α }| ≤ E{|A◦

α|2}1/2E{|A−2
α |}1/2.

Note that since E{||Yα|| = 1}, we have by (1.8) E{||Yα||4} ≤ C . This and (4.8) imply
that E{|A−2

α |} is uniformly bounded in |τα| ≤ L and z ∈ K . We also have

A◦
α = (Aα)◦α + τα(gα

n )◦ = τα

[
(GαYα,Yα)◦α + (gα

n )◦
]
, (4.13)

hence
E{|A◦

α|2} = τ 2α

(
E{Eα{|(GαYα,Yα)◦α|2}} + E{|(gα

n )◦|2}
)
.

By (1.4) and (3.7) with p = nk , Var{gα
n } ≤ Cn−k |
z|−2. It follows from (1.8) and

Lemma 3.3 withH = Gα and � = 2 that

Eα{|(GαYα,Yα)◦α|2} ≤ C2k||Gα||2δn ≤ C2k|
z|−2δn .

Thus, E{|A◦
α|2} ≤ CL2|
z|−2(kδn + n−k). This and (4.9) yield

|rn| ≤ C(kδn + n−k)1/2. (4.14)

uniformly in |τα| ≤ L and z ∈ K . Hence

z fn(z) = (−1 + mn−k) − n−k
∑

α

(1 + τα f α
n (z))−1 + o(1). (4.15)

123



1036 J Theor Probab (2018) 31:1024–1057

It follows from (4.5) and (4.7) that

| fn(z) − f α
n (z)| ≤ n−k |
z|−1. (4.16)

This and (4.9) imply that |1+τα fn(z)|−1 is uniformly bounded in |τα| ≤ L and z ∈ K .
Hence, in (4.15) we can replace f α

n with fn (the corresponding error term is of the
order O(n−k)) and pass to the limit as n → ∞. Taking into account (1.7) we get that
the limit of every convergent subsequence of { fn(z)}n satisfies (1.10). This finishes
the proof of the theorem under assumption (4.3).

Consider now the general case and take any sequence {σn} = {σm(n)} satisfying
(1.7). For any L > 0, introduce the truncated random variables

τ L
α =

{
τα, |τα| < L ,

0, otherwise.

Denote ML
n = ∑m

α=1 τ L
α YαY T

α . Then

rank(Mn − ML
n ) ≤ Card{α ∈ [m] : |τα| ≥ L}.

Take any sequence {Li }i which does not contain atoms of σ and tends to infinity as

i → ∞. If NLi
n is the NCM of the eigenvalues of MLi

n and N
Li
n is its expectation,

then the mini-max principle implies that for any interval � ⊂ R:

|Nn(�) − N
Li
n (�)| ≤

∫

|τ |≥Li

σn(dτ).

We have ∫

|τ |≥Li

σn(dτ) =
∫

|τ |≥Li

(σn − σ)(dτ) +
∫

|τ |≥Li

σ(dτ),

where by (1.7) the first term on the r.h.s. tends to zero as n → ∞. Hence,

lim
Li→∞ lim

n→∞

∫

|τ |≥Li

σn(dτ) = 0.

Thus if f and f Li are the Stieltjes transforms of N and limn→∞ N
Li
n , then

f (z) = lim
i→∞ f Li (z)

uniformly on K . It follows from the first part of the proof that

z f Li (z) = −1 − cLi f
Li (z)

∫ Li

−Li

τ(1 + τ f Li (z))−1σ(dτ), (4.17)
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where cLi = cσ [−Li , Li ] → c as Li → ∞. Since N (R) = 1, there exists C > 0,
such that

min
z∈K |
 f (z)| = C > 0.

Hence we have for all sufficiently big Li :

min
z∈K |
 f Li (z)| = C/2 > 0.

Thus |τ/(1 + τ f Li (z))| ≤ |
 f Li (z)|−1 ≤ 2/C < ∞, z ∈ K . This allows us to pass
to the limit Li → ∞ in (4.17) and to obtain (1.10) for f , which completes the proof
of the theorem. ��

Remark 4.1 It follows from the proof that in the model we can take k depending on n
such that

k → ∞ and kδn → 0

as n → ∞, and the theorem remains valid (see 4.14).

5 Variance of Bilinear Forms

Lemma 5.1 Let Y be defined in (1.1–1.2), where y has an unconditional distribution
and satisfies (1.19). Then for every symmetric nk×nk matrix H which does not depend
on y and whose operator norm is uniformly bounded in n, there is an absolute constant
C such that

nVar{(HY,Y )} ≤ Cn−k ||H ||2HS ≤ C ||H ||2. (5.1)

If additionally y satisfies (1.13–1.14), then we have

nVar{(HY,Y )} = ka|n−k Tr H |2

+ n−2k+1
k∑

i=1

∑

j,p

[
2Hj, j(pi )Hp,p( ji ) + bHj, jHp,pδpi ji

]

+ O(n−1), (5.2)

where j(pi ) = { j1, . . . , ji−1, pi , ji+1, . . . , jk}.

Proof Since y has an unconditional distribution, we have

E{y j ys yp yq} = a2,2(δ jsδpq + δ j pδsq + δ jqδsp) + κ4δ jsδ j pδ jq . (5.3)
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Hence,

E{|(HY,Y )|2} =
∑

j,s,p,q

Hj, sHp,q

k∏

i=1

[
a2,2δ ji si δpi qi + wi

]
,

where

wi = wi (j, s,p,q) = a2,2(δ ji pi δsi qi + δ ji qi δsi pi ) + κ4δ ji si δ ji pi δ ji qi .

For W ⊂ [k], Wc = [k] \ W , denote

�(W, j, s,p,q) =
∏

i∈Wc

(a2,2δ ji si δpi qi )
∏

�∈W
w�.

For every fixed W, j, s, we have

∑

p,q

�(W, j, s,p,q) = O(n−k−|W |). (5.4)

Indeed, the number of pairs forwhich�(W, j, s,p,q) �= 0 does not exceed 2|W |nk−|W |
(the number of choices of indices pi = qi for i /∈ W equals to nk−|W |; all other indices
p�, q� (� ∈ W ) must satisfy {p�, q�} = { j�, s�} and, therefore, can be chosen in at
most two ways each). Since a2,2, wi = O(n−2), (5.4) follows.

For every fixed W ,

∑

j,s,p,q

|Hj, s||Hp,q|�(W, j, s,p,q) ≤
∑

j,s,p,q

(|Hj, s|2 + |Hp,q|2
)
�(W, j, s,p,q)/2

= O(n−k−|W |)||H ||2HS. (5.5)

Since by (1.2) E{(HY,Y )} = n−k Tr H, we have

Var{(HY,Y )} =
k∑

r=0

∑

|W |=r

∑

j,s,p,q

Hj, sHp,q�(W, j, s,p,q) − n−2k |Tr H |2. (5.6)

By (1.19), the term corresponding to W = ∅, Wc = [k], has the form

T0 :=
∑

j,s,p,q

Hj, sHp,q

k∏

i=1

(a2,2δ ji si δpi qi ) = ak2,2|Tr H |2.

This and (1.19) imply that

n
∣∣T0 − n−2k |Tr H |2∣∣ ≤ Cn−k ||H ||2HS,
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and by (1.13),

n(T0 − n−2k |Tr H |2) = kan−2k |Tr H |2 + O(n−1). (5.7)

The term corresponding to
∑

|W |=1 (i.e., W = {1}, . . . ,W = {k}), has the form

T1 : =
k∑

i=1

∑

j,s,p,q

Hj, sHp,q wi (j, s,p,q)
∏

� �=i

a2,2δ j�s�δp�q�

=
k∑

i=1

∑

j,p

[
ak2,2Hj, j(pi )Hp,p( ji ) + ak−1

2,2 κ4Hj, jHp,pδpi ji
]
,

and by (1.13)

nT1 = n−2k+1
k∑

i=1

∑

j,p

[
2Hj, j(pi )Hp,p( ji ) + bHj, jHp,pδpi ji

] + O(n−1). (5.8)

Also it follows from (5.5) that the terms corresponding to W : |W | ≥ 2 are less than
Cn−k−2||H ||2HS . Summarizing (5.6–5.8), we get (5.1) and (5.2) and complete the
proof of the lemma. ��

6 Proof of Lemma 1.6

Lemma 6.1 Let {τα}α be a collection of real numbers satisfying (1.7), (1.18), and let y
be a normalized isotropic vector having an unconditional distribution and satisfying
(1.19). Consider the corresponding matrix Mn (1.3) and the trace of its resolvent
γn(z) = Tr(Mn − z I )−1. We have

Var{γn(z)} ≤ Cnk−1|
z|−6. (6.1)

If additionally y satisfies (1.15) and τα are uniformly bounded in α and m, then

E{|γ ◦
n (z)|4} ≤ Cn2k−2|
z|−12. (6.2)

Proof The proof follows the scheme proposed in [25] (see also Lemma 3.2 of [13]).
For q = 1, 2, by (3.2) we have

E{|γ ◦
n |2q} ≤ Cmq−1

∑

α

E{|(γn)◦α|2q}. (6.3)
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Applying (4.5), (4.7), and (4.9) we get

E{|(γn)◦α|2q} = E{|γn − γ α
n − Eα{γn − γ α

n }|2q}
≤ CE

{∣∣∣
Bα

Aα

− Eα{Bα}
Eα{Aα}

∣∣∣
2q} = CE

{∣∣∣
(Bα)◦α
Eα{Aα} − Bα

Aα

· (Aα)◦α
Eα{Aα}

∣∣∣
2q}

≤ C(1 + |τα|/|
z|)2qE{
Eα{|(Bα)◦α|2q} + Eα{|(Aα)◦α|2q}/|
z|2q}.

(6.4)

Here by (5.1)

nτ−2
α Eα{|(Aα)◦α|2} = nEα{|(GαYα,Yα)◦α|2} ≤ Cn−k ||Gα||2HS ≤ C |
z|−2 (6.5)

and

nτ−2
α Eα{|(Bα)◦α|2} ≤ Cn−k ||(Gα)2||2HS ≤ |
z|−4. (6.6)

This and (6.3–6.4) lead to (6.1). Also it follows from (1.15) and Lemma 3.3 that

Eα{|(Bα)◦α|4}, Eα{|(Aα)◦α|4}/|
z|4 ≤ Cτ 4α |
z|−8n−2,

which leads to (6.2). ��
Proof of Lemma 1.6 The proof of (1.20) is based on the following inequality obtained
in [25]: for ϕ ∈ Hs (see 1.17),

Var{Nn[ϕ]} ≤ Cs ||ϕ||2s
∫ ∞

0
dηe−ηη2s−1

∫
Var{γn(μ + iη)}dμ.

Let z = μ + iη, η > 0. It follows from (6.3) – (6.6) that

Var{γn} ≤
∑

α

E{|(γn)◦α|2}

≤ Cn−k−1
∑

α

τ 2α(1 + η−2τ 2α)E{||(Gα)2||2HS + η−2||Gα||2HS}.

By the spectral theorem for the real symmetric matrices,

E
{||Gα||2HS

} =
∫ N α

n (dλ)

|λ − z|2 , E
{||(Gα)2||2HS

} =
∫ N α

n (dλ)

|λ − z|4 ,

where N α
n is the expectation of the counting measure of the eigenvalues of Mα

n . We
have

n−k
∫ ∫ N α

n (dλ)

|λ − z|2 dμ ≤ Cη−1, n−k
∫ ∫ N α

n (dλ)

|λ − z|4 dμ ≤ Cη−3.
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Summarizing, we get

Var{Nn[ϕ]} ≤ Cnk−1||ϕ||2s
∫ ∞

0
dηe−ηη2s−6 ≤ Cnk−1||ϕ||2s

provided that s > 5/2. This finishes the proof of Lemma 1.6. ��

7 Case k = 2: Some Preliminary Results

From now on we fix k = 2 and consider matrices Mn = Mn,m,2. For every j =
{ j1, j2} = j1 j2,

∑

j

=
∑

j1, j2

,
∑

j

=
n∑

j=1

.

In this section we establish some asymptotic properties of Aα , (GαYα,Yα), and
their central moments. We start with

Lemma 7.1 Under conditions of Theorem 1.9,

Eα{|(Aα)◦α|p} ≤C(τα/|
z|)pn−p/2,

Eα{|(Bα)◦α|p} ≤C(τα/|
z|2)pn−p/2, (7.1)

and

E{|A◦
α|p}, E{|B◦

α|p} = O(n−p/2), 2 ≤ p ≤ 6. (7.2)

Proof Since (Aα)◦α = τα(GαYα,Yα)◦α , Lemma 3.3 and (1.22) imply that

Eα{|(Aα)◦α|6} ≤ C(τα/|
z|)6n−3,

and by the Hölder inequality we get the first estimate in (7.1). Analogously one can
get the second estimate in (7.1). Also we have by (6.1)

E{|(gα
n )◦|p} ≤ |
z|2−pE{|(gα

n )◦|2} = O(n−3), p ≥ 2,

which together with (4.13) and (7.1) leads to (7.2). ��

Let

H = H(z) = Gα(z).
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It follows from (5.2) with k = 2 that

nVar{(HY,Y )} =2a|n−2 Tr H |2
+ 2n−3

∑

j,p

[
Hj, j1 p2Hp, p1 j2 + Hj, p1 j2Hp, j1 p2

]

+ bn−3
∑

j,p

Hj, jHp,p(δp1 j1 + δp2 j2) + O(n−1). (7.3)

Consider an n × n matrix of the form

G = {Gs,p}ns,p=1, Gs,p =
∑

j

H js, j p.

Since G = ∑
j G( j), where for every j , G( j) = {Hjs, j p}s,p is a block of Gα , we have

||G|| ≤
∑

j

||G( j)|| ≤ n||Gα|| ≤ n/|
z|. (7.4)

We define functions

g(1)
n (z1, z2) :=n−3

∑

j,p

Hj, j1 p2(z1)Hp, p1 j2(z2) = n−3 Tr G(z1)G(z2),

g(2)
n (z1, z2) :=n−3

∑

i,s, j

His, is(z1)Hjs, js(z2) = n−3
∑

s

Gss(z1)Gss(z2).

Similarly, we introduce the matrix

G̃ = {G̃i, j }ni, j=1, G̃i, j =
∑

s

His, js

and define functions

g̃(1)
n (z1, z2) = n−3 Tr G̃(z1)G̃(z2), g̃(2)

n (z1, z2) = n−3
∑

i

G̃i i (z1)G̃i i (z2). (7.5)

It follows from (7.3) that

nEα

{
((H(z)Yα,Yα)◦α)2

} =2a(gα
n (z))2 + 2(g(1)

n (z, z) + g̃(1)
n (z, z))

+ b(g(2)
n (z, z) + g̃(2)

n (z, z)) + O(n−1). (7.6)

We have:
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Lemma 7.2 Under conditions of Theorem 1.9, we have for i = 1, 2:

Var{g(i)
n }, Var{g̃(i)

n } =O(n−2), (7.7)

lim
n→∞E{g(i)

n (z1, z2)} = lim
n→∞E{g̃(i)

n (z1, z2)} = f (z1) f (z2), (7.8)

where f is the solution of (1.10).

Proof We prove the lemma for g(1)
n ; the cases of g̃(2)

n , g(2)
n , and g̃(2)

n can be treated
similarly. Without loss of generality we can assume that in the definitions of G and
g(1)
n , H = G. It follows from (3.2) that

Var{g(1)
n } ≤

∑

α

E{|(g(1)
n )◦α|2}.

We have

g(1)
n − g(1)α

n =n−3 Tr(G(z1) − Gα(z1))G(z2)

+ n−3 Tr Gα(z1)(G(z2) − Gα(z2)) =: S(1)
n + S(2)

n .

Hence

(g(1)
n )◦α = g(1)

n − g(1)α
n − Eα{g(1)

n − g(1)α
n } = (S(1)

n )◦α + (S(2)
n )◦α,

and to get (7.7), it is enough to show that

E{|S( j)
n |2} = O(n−4), j = 1, 2. (7.9)

Consider S(1)
n . It follows from (4.4) that

S(1)
n = A−1

α n−3
∑

s,p

∑

j

Gs,p(HαYα) js(H
αYα) j p. (7.10)

Since for x, ξ ∈ R
n and an n × n matrix D

∣∣∣
∑

i, j

Di j xiξ j
∣∣∣ ≤ ||D|| · ||x || · ||ξ ||, (7.11)

taking into account ||H || ≤ 1/|
z|, (4.8), and (7.4) we get

|S(1)
n | ≤ n−3(1 + |τα| · |
z|−1||Yα||2) · ||G|| · ||HαYα||2

≤ n−2(1 + |τα| · |
z|−1||Yα||2)|
z|−3||Yα||2. (7.12)

This and following from (1.2) and (1.22) bound

E{||Yα||p} ≤ C, p ≤ 12 (7.13)
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imply (7.9) for j = 1. The case j = 2 can be treated similarly. So we get (7.7) for
g(1)
n .
Let us prove (7.8) for g(1)

n . Let f (1)
n = E{g(1)

n }. For a convergent subsequence
{ f (1)

ni }, put f (1) := limni→∞ f (1)
ni . It follows from (4.4) that

(YαY
T
α H)j,q = A−1

α Yαj(H
αYα)q.

This and the resolvent identity yield

Hj,q(z1) = −z−1
1 δj,q + z−1

1

∑

α

ταA
−1
α (z1)Yαj(H

α(z1)Yα)q.

Hence,

z1 f
(1)
n (z1, z2) = − fn(z2) + n−3

∑

j,p

∑

α

ταE
{Yαj(Hα(z1)Yα) j1 p2

Aα(z1)
Hα
p, p1 j2 (z2)

}

− n−3
∑

j,p

∑

α

τ 2αE
{Yαj(Hα(z1)Yα) j1 p2

Aα(z1)
· (Hα(z2)Yα)p(Hα(z2)Yα)p1 j2

Aα(z2)

}

= − fn(z2) + T (1)
n + T (2)

n .

By the Hölder inequality, (4.8), and (7.13)

|T (2)
n | ≤ n−3

∑

α

τ 2αE
{ ||Yα|| · ||Hα(z1)Yα||

|Aα(z1)| · ||Hα(z2)Yα|| · ||Hα(z2)Yα||
|Aα(z2)|

}

≤ Cn−3
∑

α

τ 2αE{||Yα||4|Aα(z1)|−1|Aα(z2)|−1} = O(n−1).

It follows from (1.2) that

Eα{Yαj(H
αYα) j1 p2} = n−2Hα

j, j1 p2 .

This and (4.12) yield

T (1)
n = n−5

∑

j,p

∑

α

τα

E{Hα
j, j1 p2

Hα
p, p1 j2

(z2)}
1 + τα f α

n (z1)
+ rn,

rn = n−3
∑

j,p

∑

α

τα

E{Aα(z1)}E
{
A◦

α(z1)
Yαj(Hα(z1)Yα) j1 p2

Aα(z1)
Hα
p, p1 j2(z2)

}
.

Treating rn we note that

n−1
∑

j,p2

∣∣Yαj(H
αYα) j1 p2Gα

p2, j2

∣∣ ≤ n−1||Gα|| · ||Yα|| · ||HαYα|| ≤ C ||Yα||2.
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Hence, by the Schwarz inequality, (4.8), (4.9), (7.2), and (7.13)

|rn| ≤ Cn−2
∑

α

E{|A◦
α| · |Aα|−1||Yα||2}

≤ Cn−2
∑

α

E{|A◦
α|2}1/2E{|Aα|−2||Yα||4}1/2 = O(n−1/2).

Also one can replace f α
n and Hα with fn andG (the error term is of the order O(n−1)).

Hence,

z1 f
(1)
n (z1, z2) = − fn(z2) + f (1)

n (z1, z2)n
−2

∑

α

τα

1 + τα fn(z1)
+ o(1).

This, (1.4), (1.7), and (1.10) lead to

f (1)(z1, z2) = f (z2)
(
c
∫

τdσ(τ)

1 + τ f (z1)
− z1

)−1 = f (z1) f (z2)

and finishes the proof of the lemma. ��
It follows from Lemmas 5.1 and 7.2 that under conditions of Theorem 1.9

lim
n→∞ nτ−2

α E{A◦
α(z1)Aα(z2)} = 2(a + b + 2) f (z1) f (z2), (7.14)

where f is the solution of (1.10).

Lemma 7.3 Under conditions of Theorem 1.9

Var{Eα{(A◦
α)p}} = O(n−4), p = 2, 3. (7.15)

Proof Since τα , α ∈ [m], are uniformly bounded in α and n, then to get the desired
bounds it is enough to consider the case τα = 1, α ∈ [m]. By (4.13), we have

Eα{(A◦
α)2} =Eα{(HYα,Yα)◦2α } + (gα

n )◦2,
Eα{(A◦

α)3} =Eα{(HYα,Yα)◦3α } + 3Eα{(HYα,Yα)◦2α }gα◦
n + (gα

n )◦3,

where by (6.2) E{|(gα
n )◦|2p} = O(n−6), p = 2, 3, and by (7.1) and (6.1)

E{|Eα{(HYα,Yα)◦2α }(gα
n )◦|2} = O(n−2)E{|(gα

n )◦|2} = O(n−5).

Hence,

Var{Eα{(A◦
α)p}} ≤ 2Var{Eα{(HYα,Yα)◦pα }} + O(n−4), p = 2, 3.
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It also follows from (7.6) and Lemmas 6.1 and 7.2 that

Var{Eα{(HYα,Yα)◦2α }} = O(n−4), (7.16)

which leads to (7.15) for p = 2. To get (7.15) for p = 3, it is enough to show that

Var{Eα{(HYα,Yα)◦3α }} = O(n−4). (7.17)

We have

Eα{(HYα,Yα)◦3α } =Eα{(HYα,Yα)3} − Eα{(HYα,Yα)}3
− 3Eα{(HYα,Yα)} · Eα{(HYα,Yα)◦2α }
= Eα{(HYα,Yα)3} − gα3

n − 3gα
n · Eα{(HYα,Yα)◦2α }.

It follows from (6.1), (7.16), and (3.8) with h1 = gα
n , h2 = nEα{(HYα,Yα)◦2α } that

Var{gα
n · nEα{(HYα,Yα)◦2α }} ≤ C

(
Var{gα

n } + Var{nEα{(HYα,Yα)◦2α }}) = O(n−2).

Hence,

Var{Eα{(HYα,Yα)◦3α }} ≤ 2Var
{
Eα{(HYα,Yα)3} − gα3

n

}
+ O(n−4),

and to get (7.17) for p = 3 it is enough to show that

Var
{
Eα{(HYα,Yα)3} − gα3

n

}
= O(n−4). (7.18)

We have

Eα{(HYα,Yα)3} =
∑

i,j,p,q,s,t

Hi, jHp,qHs, t�(i, j,p,q, s, t), (7.19)

where

�(i, j,p,q, s, t) =
2∏

k=1

Eα{(y(k)
α )ik (y

(k)
α ) jk (y

(k)
α )pk (y

(k)
α )qk (y

(k)
α )sk (y

(k)
α )tk }

and by (1.21)

�(i, j,p,q, s, t) = O(n−6). (7.20)

Also, due to the unconditionality of the distribution, � contains only even moments.
Thus in the index pairs i, j,p,q, s, t ∈ [n]2, every index (both on the first positions and
on the second positions) is repeated an even number of times. Hence, there are atmost 6
independent indices:≤ 3 on the first positions (call them i, j, k) and≤ 3 on the second
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positions (call them u, v, w). For every fixed set of independent indices, consider maps
� from this set to the sets of index pairs {i, j,p,q, s, t}. We call such maps the index
schemes. Let |�| be the cardinality of the corresponding set of independent indices.
For example,

� : {i, j ; u, v, w} → {(i, u), (i, v); (i, w), (i, u); ( j, w), ( j, v)}, |�| = 5,

is an index schemewith 5 independent indices (i, j on the first positions and u, v, w on
the second positions). The inclusion–exclusion principle allows to split the expression
(7.19) into the sums over fixed sets of independent indices of cardinalities from 2 to
6 with the fixed coefficients depending on a2,2,2, a2,4, and a6 in front of every such
sum. We have

Eα{(HYα,Yα)3} =
6∑

�=2

S�, S� =
∑

�: |�|=�

∑
Hi, jHp,qHs, t�

′(�), (7.21)

where the last sum is taken over the set of independent indices of cardinality �,� is an
index scheme constructing pairs {i, j,p,q, s, t} from this set, and �′(�) is a certain
expression, depending on �, a2,2,2, a2,4, and a6. For example,

S2 = F(a2,2,2, a2,4, a6)
∑

i,u

(Hiu, iu)
3,

where F(a2,2,2, a2,4, a6) can be found by using the inclusion–exclusion formulas. As
to �′(�) in (7.21), the only thing we need to know is that

�′(�) = O(n−6), (7.22)

and that in the particular case of

�Tr : {i, j, k ; u, v, w} → {(i, u), (i, u); ( j, v), ( j, v); (k, w), (k, w)},

we have by (1.21)

�′(�) = a22,2,2 = n−6 + O(n−7),

and the corresponding term in S6 has the form a22,2,2(Tr H)3.
Note that by (7.20), S2 is of the order O(n−4). By the same reason

∣∣∣
4∑

�=2

S�

∣∣∣ = O(n−2)
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so that

Var
{∣∣∣

4∑

�=2

S�

∣∣∣
}

= O(n−4).

Hence to get (7.18) it suffices to consider terms with 5 and 6 independent indices and
show that

Var{S5}, Var
{
S6 − gα3

n

} = O(n−4). (7.23)

Consider S5. In this case we have exactly 5 independent indices. By the symmetry
we can suppose that there are two first independent indices, i, j , and three second
independent indices, u, v, w, and that we have i on four places and j on two places.
Thus, S5 is equal to the sum of terms of the form

S′
5 =O(n−6)

∑

i, j,u,v,w

Hi ·, i ·Hi ·, j ·Hi ·, j · or

S′′
5 =O(n−6)

∑

i, j,u,v,w

Hi ·, i ·Hi ·, i ·Hj ·, j · .

Herewe suppose that there are some fixed indices on the dot places, which are different
from explicitly mentioned ones. Note that S′

5 has a single “external” pairing with
respect to j . While estimating the terms, our argument is essentially based on the
simple relations

∑

j,v

|Hiu, jv|2 = O(1), |Hiu, jv| = O(1), ||H || = O(1), (7.24)

and on the observation that the more the mixing of matrix entries we have the lower
order of sums we get. Let V ⊂ R

n be the set of vectors of the form

ξ = {ξ j }nj=1 = {H··, j ·}nj=1 or ξ = {H··, ·u}nu=1,

and let W be the set of n × n matrices of the form

D = {Hi ·, j ·}ni, j=1, or D = {Hi ·, ·u}ni,u=1, or D = {H·u, ·v}nu,v=1.

It follows from (7.24) that

∀ξ ∈ V ||ξ || = O(1) and ∀D ∈ W ||D|| = O(1).
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Hence,

∑

j

|H··, j ·H··, j ·| =O(1),
∑

u

|H··, ·u H··, ·u | = O(1), (7.25)

∑

i, j

Hi ·, j ·Hi ·, ··H··, j · =O(1), and
∑

i,u

Hi ·, ·u Hi ·, ··H··, ·u = O(1). (7.26)

In particular, by (7.24) and (7.25), we have for S′
5

|S′
5| ≤ O(n−6)

∑

i,u,v,w

∑

j

|Hi ·, j ·Hi ·, j ·| = O(n−2),

so thatVar{S′
5} = O(n−4). Consider S′′

5 . Note that if in S
′′
5 we have a single “external”

pairing with respect to at least one index on the second positions, then similar to S′
5,

the variance of this term is of the order O(n−4). So we are left with the terms of the
form

S′′′
5 = O(n−6)

∑

i, j,u,v,w

Hiu, iu Hiv, ivHjw, jw.

It follows from (7.5) that

S′′′
5 = O(n−1) · gα

n (z) · g̃(2)
n (z, z).

Now (3.8), (6.1), and (7.7) imply that

Var{S′′′
5 } ≤ Cn−2(Var{gα

n } + Var{g̃(2)
n }) = O(n−4).

Summarizing we get Var{S5} = O(n−4).
Consider S6 and show that Var{S6 − gα3

n } = O(n−4). In this case we have 6
independent indices, i, j, k for the first positions and u, v, w for the second positions.
Suppose that we have two single external pairing with respect to two different first
indices and consider terms of the form

S′
6 =O(n−6)

∑

i, j,k,u,v,w

Hi ·, j ·Hi ·, ··H··, j ·,

S′′
6 =O(n−6)

∑

i, j,k,u,v,w

Hi ·, j ·Hi ·, j ·H··, ·· .

It follows from (7.26) that S′
6 = O(n−2); hence Var{S′

6} = O(n−4). Consider S′′
6

S′′
6 = O(n−6)

∑

i, j,k,u,v,w

Hi ·, j ·Hi ·, j ·Hk·, k· . (7.27)
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If the second indices in Hk·, k· are not equal, then we get the expression of the form

S′′′
6 = O(n−6)

∑

i, j,k,u,v,w

Hi ·, ju Hi ·, j ·Hk·, ku .

It follows from (7.26) that S′′′
6 = O(n−2); hence Var{S′′′

6 } = O(n−4). If the second
indices in Hk·, k· in (7.27) are equal, then we get the expressions of three types:

O(n−6)
∑

i, j,k,u,v,w

Hiu, jvHiu, jvHkw, kw =gα
n n

−4
∑

i, j,u,v

(Hiu, jv)
2 = O(n−2),

O(n−6)
∑

i, j,k,u,v,w

Hiu, jvHiv, ju Hkw, kw =gα
n n

−4
∑

i, j,u,v

Hiu, jvHiv, ju = O(n−2),

O(n−6)
∑

i, j,k,u,v,w

Hiu, ju Hiv, jvHkw, kw =O(n−1)g(1)
n (z, z)gα

n (z),

where we used (7.24) to estimate the first two expressions, so that their variances are
of the order O(n−4). It also follows from (3.8), (6.1), and (7.7) that the variance of
the third expression is of the order O(n−4). Hence, Var{S′′′

6 } = O(n−4). It remains
to consider the term without external pairing, which corresponds to

(a2,2,2)
2

∑

i, j,k,u,v,w

Hiu, iu Hjv, jvHkw, kw = (a2,2,2)
2γ 3

n

(see (7.22)). Summarizing we get

Var{S6 − gα3
n } ≤ 2Var{((a2,2,2)2 − n−6)γ α3

n } + O(n−4)

= O(n−2)Var{gα3
n } + O(n−4) = O(n−4),

where we used (1.21) and (6.1). This leads to (7.23) and completes the proof of the
lemma. ��

8 Covariance of the Resolvent Traces

Lemma 8.1 Suppose that the conditions of Theorem 1.9 are fulfilled. Let

Cn(z1, z2) := n−1Cov{γn(z1), γn(z2)} = n−1E{γn(z1)γ ◦
n (z2)}.

Then {Cn(z1, z2)}n converges uniformly in z1,2 ∈ K to

C(z1, z2) = 2(a + b + 2)c
∫

f ′(z1)
(1 + τ f (z1))2

f ′(z2)
(1 + τ f (z2))2

τ 2dσ(τ). (8.1)
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Proof For a convergent subsequence {Cni }, denote

C(z1, z2) := lim
ni→∞Cni (z1, z2).

Wewill show that for every converging subsequence, its limit satisfies (8.1). Applying
the resolvent identity, we get (see (4.11))

Cn(z1, z2) = − 1

nz1

∑

α

E{A−1
α (z1)γ

◦
n (z2)} = − 1

nz1

∑

α

E{A−1
α (z1)γ

α◦
n (z2)}

− 1

nz1

∑

α

E{A−1
α (z1)(γn − γ α

n )◦(z2)} =: T (1)
n + T (2)

n . (8.2)

Consider T (1)
n . Iterating (4.12) four times, we get

T (1)
n = 1

nz1

∑

α

[E{Aα(z1)γ α◦
n (z2)}

E{Aα(z1)}2 − E{A◦2
α (z1)γ α◦

n (z2)}
E{Aα(z1)}3 + E{A◦3

α (z1)γ α◦
n (z2)}

E{Aα(z1)}4

− E{A−1
α (z1)A◦4

α (z1)γ α◦
n (z2)}

E{Aα(z1)}4
]

=: S(1)
n + S(2)

n + S(3)
n + S(4)

n .

It follows from (4.9), (6.1), and (7.15) that S(i)
n = O(n−1/2), i = 2, 3. Also, by (4.8)

we have

E{|A−1
α A◦4

α γ α◦
n |} ≤ E{(1 + |τα|||Yα||2/|
z|)|A◦4

α γ α◦
n |},

where by the Schwarz inequality, (6.2), (7.1), and (7.13)

E{||Yα||2|A◦4
α γ α◦

n |} ≤ E{|A◦
α|6}1/2E{|A◦

α|4}1/4E{Eα{||Yα||8}|γ α◦
n |4}1/4 = O(n−3/2).

Hence S(4)
n = O(n−1/2), and we are left with S(1)

n . We have

E{Aα(z1)γ
α◦
n (z2)} = E{Eα{Aα(z1)}γ α◦

n (z2)} = n−2ταE{γ α◦
n (z1)γ

α◦
n (z2)}.

It follows from (4.5) and (4.7) that |γn(z) − γ α
n (z)| ≤ 1/|
z|. This and (6.1) yield

|E{(γ α
n − γn)

◦(z1)γ α◦
n (z2)} + E{(γ ◦

n (z1)(γ
α
n − γn)

◦(z2)}|
≤ E{|γ α◦

n (z2)|}/|z1| + E{|γ ◦
n (z1)|}/|z2| = O(n1/2).

Hence,

E{Aα(z1)γ
α◦
n (z2)} = n−1ταCn(z1, z2) + O(n−3/2),

123



1052 J Theor Probab (2018) 31:1024–1057

and we have

S(1)
n = Cn(z1, z2)

1

n2z1

∑

α

τα

(1 + τα f α
n (z1))2

+ O(n−1/2).

Summarizing, we get

T (1)
n = C(z1, z2)

c

z1

∫
τdσ(τ)

(1 + τ f (z1))2
+ o(1). (8.3)

Consider now T (2)
n of (8.2). By (4.5),

T (2)
n = 1

nz1

∑

α

E{A−1
α (z1)(Bα/Aα)◦(z2)}. (8.4)

For shortness let for the moment Ai = Aα(zi ), i = 1, 2, B2 = Bα(z2). Iterating (4.12)
with respect to A1 and A2 two times we get

E{(1/A1)
◦(B2/A2)

◦}

= E{(−A◦
1 + A−1

1 A◦2
1 )(B2E{A2} − B2A◦

2 + B2A
−1
2 A◦2

2 )◦}
E{A1}2E{A2}2

= −E{A◦
1B2}E{A2} + E{B2}E{A◦

1A2}
E{A1}2E{A2}2

+ E{A◦
1B

◦
2 A

◦
2 − A◦

1B2A
−1
2 A◦2

2 + A−1
1 A◦2

1 (B2E{A2} − B2A◦
2 + B2A

−1
2 A◦2

2 )◦}
E{A1}2E{A2}2 .

Applying (1.22), (7.13), and using bounds (4.7), (4.8), (4.9) for |B2/A2|, |Ai |−1,
|E{Ai }|−1, i = 1, 2, one can show that the terms containing at least three centered
factors A◦

1, A
◦
2, B

◦
2 are of the order O(n−3/2). This implies that

E{(1/A1)
◦(B2/A2)

◦} = −E{A◦
1B2}E{A2} + E{B2}E{A◦

1A2}
E{A1}2E{A2}2 + O(n−3/2).

Returning to the original notations and taking into account that

Bα(z) = ∂Aα(z)/∂z,

we get

E{A−1
α (z1)(Bα/Aα)◦(z2)} = − 1

E{Aα(z1)}2
∂

∂z2

E{A◦
α(z1)A◦

α(z2)}
E{Aα(z2)} + O(n−3/2).

(8.5)
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Denote for the moment

D = 2(a + b + 2).

It follows from (7.14) and (8.4–8.5) that

T (2)
n = −Dc

z1

∫
τ 2 f (z1)

(1 + τ f (z1))2
∂

∂z2

f (z2)

1 + τ f (z2)
dσ(τ) + o(1).

This and (8.2–8.3) yield

C(z1, z2) = Dc

c
∫

τ(1+τ f (z1))−2dσ(τ)−z1

∫
τ 2 f (z1)

(1+τ f (z1))2
∂

∂z2

f (z2)

1 + τ f (z2)
dσ(τ).

Note that by (1.10),

c
∫

τdσ(τ)

(1 + τ f (z))2
− z = f (z)

f ′(z)
.

Hence

C(z1, z2) = Dc
∫

f ′(z1)
(1 + τ f (z1))2

f ′(z2)
(1 + τ f (z2))2

τ 2dσ(τ).

which completes the proof of the lemma. ��

9 Proof of Theorem 1.9

The proof essentially repeats the proofs of Theorem 1 of [25] and Theorem 1.8 of
[13]; the technical details are provided by the calculations of the proof of Lemma 8.1.
It suffices to show that if

Zn(x) = E{en(x)}, en(x) = eixN ◦
n [ϕ]/√n, (9.1)

then we have uniformly in |x | ≤ C

lim
n→∞ Zn(x) = exp{−x2V [ϕ]/2}

with V [ϕ] of (1.23). Define for every test functions ϕ ∈ Hs , s > 5/2,

ϕη = Pη ∗ ϕ, (9.2)

where Pη is the Poisson kernel

Pη(x) = η

π(x2 + η2)
, (9.3)
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and “∗” denotes the convolution. We have

lim
η↓0 ||ϕ − ϕη||s = 0. (9.4)

Denote for the moment the characteristic function (9.1) by Zn[ϕ], to make explicit
its dependence on the test function. Take any converging subsequence {Zn j [ϕ]}∞j=1
Without loss of generality assume that the whole sequence {Zn j [ϕη]} converges as
n j → ∞. By (1.20), we have

|Zn j [ϕ] − Zn j [ϕη]| ≤ |x |n−1/2(Var{Nn j [ϕ] − Nn j [ϕη]}
)1/2 ≤ C |x |||ϕ − ϕη||s,

hence

lim
η↓0 lim

n j→∞(Zn j [ϕ] − Zn j [ϕη]) = 0.

This and the equality Zn j [ϕ] = (Zn j [ϕ] − Zn j [ϕη]) + Zn j [ϕη] imply that

∃ lim
η↓0 lim

n j→∞ Zn j [ϕη] and lim
n j→∞ Zn j [ϕ] = lim

η↓0 lim
n j→∞ Zn j [ϕη]. (9.5)

Thus it suffices to find the limit of

Zηn(x) := Zn[ϕη] = E{eηn(x)}, where eηn(x) = eixN ◦
n [ϕη]/√n,

as n → ∞. It follows from (9.2) – (9.3) that

Nn[ϕη] = 1

π

∫
ϕ(μ)
γn(z)dμ, z = μ + iη. (9.6)

This allows to write

d

dx
Zηn(x) = 1

2π

∫
ϕ(μ)(Yn(z, x) − Yn(z, x))dμ, (9.7)

where

Yn(z, x) = n−1/2E{γn(z)e◦
ηn(x)}.

Since |Yn(z, x)| ≤ 2n−1/2Var{γn(z)}1/2, it follows from the proof of Lemma 1.6 that
for every η > 0 the integrals of |Yn(z, x)| over μ are uniformly bounded in n. This
and the fact that ϕ ∈ L2 together with Lemma 9.1 below show that to find the limit of
integrals in (9.7) it is enough to find the pointwise limit of Yn(μ + iη, x). We have

Yn(z, x) = − 1

zn1/2

m∑

α=1

[
E{A−1

α (z)eα◦
ηn (x)} − E{A−1

α (z)(e◦
ηn(x) − eα◦

ηn (x))}
]
,
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where eα
ηn(x) = exp{i xN α◦

n [ϕη]/√n} and N α
n [ϕη] = Tr ϕη(Mα). By (9.6),

eηn − eα
ηn = i xeα

ηn√
nπ

∫
ϕ(λ1)
(γn − γ α

n )◦(z1)dλ1

+ O
(∣∣∣

1√
n

∫
ϕ(λ1)
(γn − γ α

n )◦(z1)dλ1
∣∣∣
2)

,

so that

E{A−1
αn (z)(eηn − eα

ηn)
◦(x)} = i xeα

ηn√
nπ

∫
ϕ(λ1)
(γn − γ α

n )◦(z1)dλ1

+
∫ ∫

O(Rn)ϕ(λ1)ϕ(λ2)dλ1dλ2,

where z j = λ j + iη, j = 1, 2, and

Rn = n−1E{(A−1
αn )◦(z)
(Bαn A

−1
αn )◦(z1)
(Bαn A

−1
αn )◦(z2)}.

Using the argument of the proof of the Lemma 8.1, it can be shown that Rn =
O(n−5/2). Hence,

Yn(z, x) = − 1

zn1/2

m∑

α=1

E{A−1
α (z)eα◦

ηn (x)}

− i x

znπ

∫
ϕ(λ1)

m∑

α=1

E{eα
ηn(x)(A

−1
α (z))◦
(γn − γ α

n )◦(z1)}dλ1+O(n−1).

Treating the r.h.s. similarly to T (1)
n and T (2)

n of (8.2), we get

Yn(z, x) = x Zηn(x)

2π

∫
ϕ(λ1) [C(z, z1) − C(z, z1)]dλ1 + o(1), (9.8)

where C(z, z1) is defined in (8.1). It follows from (9.7) and (9.8) that

d

dx
Zηn(x) = −xVη[ϕ]Zηn(x) + o(1), (9.9)

(see (1.23)) and finally

lim
n→∞ Zηn(x) = exp{−x2Vη[ϕ]/2}.

Taking into account (9.5), we pass to the limit η ↓ 0 and complete the proof of the
theorem. ��

It remains to prove the following lemma.
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Lemma 9.1 Let g ∈ L2(R) and let {hn} ⊂ L2(R) be a sequence of complex-valued
functions such that

∫
|hn|2dx < C and hn → h a.e. as n → ∞, where |h(x)| ≤ ∞ a.e.

Then

∫
g(x)hn(x)dx →

∫
g(x)h(x)dx as n → ∞.

Proof According to the convergence theorem of Vitali (see, e.g., [24]), if (X,F , μ)

is a positive measure space and

μ(X) < ∞,

{Fn}n is uniformly integrable,

Fn → F a.e. as n → ∞, |F(x)| ≤ ∞ a.e.,

then F ∈ L1(μ) and limn→∞
∫
X |Fn − F |dμ = 0. Without loss of generality assume

that g(x) �= 0, x ∈ R, and take

dμ(x) = |g(x)|2dx, Fn = ghn/|g|2, F = gh/|g|2.

Then

μ(R) =
∫

|g(x)|2dx < ∞,

∫

E
|Fn(x)|dμ(x) ≤ ||hn||L2

( ∫
|g(x)|2dx

)1/2 ≤ C(μ(E))1/2,

Fn → F a.e. as n → ∞, |F(x)| ≤ ∞ a.e.

Hence, the conditions of Vitali’s theorem are fulfilled and we get

lim
n→∞

∫
|Fn − F |dμ = lim

n→∞

∫
|hn − h||g|dx = 0,

which completes the proof of the lemma. ��
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