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Abstract Two generalizations of Itô formula to infinite-dimensional spaces are given.
The first one, in Hilbert spaces, extends the classical one by taking advantage of
cancellations when they occur in examples and it is applied to the case of a group
generator. The second one, based on the previous one and a limit procedure, is an Itô
formula in a special class of Banach spaces having a product structure with the noise
in a Hilbert component; again the key point is the extension due to a cancellation. This
extension to Banach spaces and in particular the specific cancellation are motivated
by path-dependent Itô calculus.
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1 Introduction

Stochastic calculus and in particular Itô formula have been extended since long time
ago from the finite to the infinite-dimensional case. The final result in infinite dimen-
sions is rather similar to the finite-dimensional one except for some important details.
One of them is the fact that unbounded (often linear) operators usually appear in infi-
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nite dimensions and Itô formula has to cope with them. If the Itô process X (t), taking
values in a Hilbert space H , satisfies an identity of the form

dX (t) = AX (t) dt + B (t) dt + C (t) dW (t) , (1)

where A : D (A) ⊂ H → H is an unbounded linear operator, then in the Itô formula
for a functional F : [0, T ] × H → R we have the term

〈AX (t) , Dx F (t, X (t))〉 , (2)

which requires X (t) ∈ D (A) to be defined. The fact that AX (t) also appears in (1)
is not equally dramatic: Eq. (1) could be interpreted in weak or mild form, depend-
ing on the case. But the term (2) is less flexible. Sometimes it helps to interpret it as
〈X (t) , A∗Dx F (t, X (t))〉 or similar reformulations, but this requires strong assump-
tions on F . Thus, in general, direct application of Itô formula is restricted to the case
when X (t) ∈ D (A). Among the ways to escape this difficulty let us mention the gen-
eral trick to replace (1) by a regularized relation of the formdXn (t) = AXn (t) dt+· · ·
where Xn (t) ∈ D (A) (the proof of Theorem 2.1 below is an example) and the so-
called mild Itô formula proved in [6]. Another example of mild Itô formula under the
assumptions that DF ∈ D (A∗) was the object of [12], Theorem 4.8.

Less common but important for some classes of infinite-dimensional problems,
for example the so-called path-dependent problems, is the phenomenon that ∂F

∂t (t, x)
exists only when x lives in a smaller space than H , for instance D (A) (we shall clarify
this issue in the examples of Sect. 5). And in Itô formula we have the term

∂F

∂t
(t, X (t)) ,

so again we need the condition X (t) ∈ D (A).
The purpose of this paper is to give a generalization of Itô formula in infinite-

dimensional Hilbert and Banach spaces which solves the difficulties described above
when the two terms

〈AX (t) , Dx F (t, X (t))〉 and
∂F

∂t
(t, X (t))

compensate each other when they sum, although they are not well defined separately.
This happens in a number of cases related to hyperbolic equations and path-dependent
problems. This gives rise to a new Itô formula in which the term

∂F

∂t
(s, X (s)) + 〈AX (s), Dx F (s, X (s))〉 ,

that is a priori defined only when X (s) ∈ D(A) is replaced by a term

G(s, X (s)),

where G (t, x) is an extension of ∂F
∂t (t, x) + 〈Ax, Dx F (t, x)〉.
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In this introduction, for simplicity of exposition, we have insisted on the formula
in a Hilbert space H, but one of the main purposes of our work is the further extension
to a suitable class of Banach spaces, motivated by precise applications. Since the
notations in the Banach case require more preliminaries, we address to Sect. 3 for this
generalization.

Itô formulae for this kind of problems, both at the abstract level and in applications
to path-dependent functionals, have been investigated by many authors; see [3,4,9–
11,15]; however, the idea to exploit the compensation explained above appears to be
new and could be relevant for several applications.

Related to these problems is also the study of Kolmogorov equations in Banach
spaces; see, for instance, [2,13,14,16].

The paper is organized as follows. In Sect. 2 we give a first generalization of Itô
formula in Hilbert spaces. It serves as a first step to prove a generalization to Banach
spaces, described in Sect. 3. But this also applies directly to examples of hyperbolic
SPDEs, as described in Sect. 4. Finally, in Sects. 5 and 6, we apply the extension
to Banach spaces to several path-dependent problems: in Sect. 5 we consider typical
path-dependent functionals; in Sect. 6 we deal with the important case when F (t, x)
satisfies an infinite-dimensional Kolmogorov equation.

2 An Itô Formula in Hilbert Spaces

Let H,U be two separable Hilbert spaces (which will be always identified with their
dual spaces) and A : D (A) ⊂ H → H be the infinitesimal generator of a strongly
continuous semigroup et A, t ≥ 0, in H . Let (Ω,F ,P) be a complete probability
space, F = (Ft )t≥0 be a complete filtration and (W (t))t≥0 be a Wiener process in
U with nuclear covariance operator Q; we address to [7] for a detailed description of
these notions of stochastic calculus in Hilbert spaces.

Let B : Ω × [0, T ] → H be a progressively measurable process with∫ T
0 |B (s)| ds < ∞ a.s., C : Ω × [0, T ] → L (U, H) be progressively measur-

able with
∫ T
0 ‖C (s)‖2L(U,H) ds < ∞ a.s. and X0 : Ω → H be a random vector,

measurable w.r.t. F0; here L (U, H) denotes the space of bounded linear operators
from U to H , with the corresponding norm ‖·‖L(U,H).

Let X = (X (t))t∈[0,T ] be the stochastic process in H defined by

X (t) = et AX0 +
∫ t

0
e(t−s)AB (s) ds +

∫ t

0
e(t−s)AC (s) dW (s) , (3)

formally solution to the equation

dX (t) = AX (t) dt + B (t) dt + C (t) dW (t) , X (0) = X0. (4)

We are interested here in examples where X (s) /∈ D (A) and also, for a given
function F : [0, T ] × H → R, the derivative ∂F

∂s (s, x) exists only for a.e. s and for
x ∈ D (A). In these cases the two terms ∂F

∂s (s, X (s)) and 〈AX (s) , DF (s, X (s))〉
have no meaning, in general.
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However, there are exampleswhere the sum ∂F
∂s (s, X (s))+〈AX (s) , DF (s, X (s))〉

has a meaning even if the two addends do not, separately. This paper is devoted to this
class of examples.

We assume that there exists a Banach space Ẽ continuously embedded in H such
that

(I) D(A) ⊂ Ẽ ;
(II) et A is strongly continuous in Ẽ ;
(III) X (t) ∈ Ẽ ;
(IV) almost surely the set {X (t)}t∈[0,T ] is relatively compact in Ẽ .

The space Ẽ can possibly coincidewith thewhole space H , but in general it is a smaller
space endowed with a finer topology and it is not required to be a inner product space.

In the setting described above, our abstract result is the following one.

Theorem 1 Let F ∈ C ([0, T ] × H ;R) be twice differentiable with respect to its sec-
ond variable, with DF ∈ C ([0, T ] × H ; H) and D2F ∈ C ([0, T ] × H ; L (H, H)),
and assume the time derivative ∂F

∂t (t, x) exists for (t, x) ∈ T × D(A) where
T ⊂ [0, T ] has Lebesgue measure λ (T ) = T and does not depend on x. Assume,
moreover, that there exists a continuous function G : [0, T ] × Ẽ → R such that

G (s, x) = ∂F

∂s
(s, x) + 〈Ax, DF (s, x)〉 for all (t, x) ∈ T × D (A) .

Let X be the process defined in (3). Then

F (t, X (t)) = F
(
0, X0) +

∫ t

0
G (s, X (s)) ds

+
∫ t

0

(

〈B (s) , DF (s, X (s))〉 + 1

2
Tr

(
C (s) QC (s)∗ D2F (s, X (s))

)
)

ds

+
∫ t

0
〈DF (s, X (s)) ,C (s) dW (s)〉 ,

where DF and D2F denote the first and second Fréchet differentials of F with respect
to its second variable (the same notation will be used everywhere in this article).

For the proof we need a preliminary result, namely a “traditional” Itô formula that
holds when F is smooth.

Proposition 1 Let β : Ω × [0, T ] → H and θ : Ω × [0, T ] → L(U, H) be two
progressively measurable processes such that |β(s)| and ‖θ(s)‖2L(U,H) are integrable
on [0, T ] a.s.; consider the Itô process Z in H given by

Z(t) = Z0 +
∫ t

0
β(s) ds +

∫ t

0
θ(s) dW (s).
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If F ∈ C1,2 ([0, T ] × H) the following identity holds (in probability):

F (t, X (t)) = F
(
0, X0

)
+
∫ t

0

∂F

∂s
(s, X (s)) ds

+
∫ t

0

(

〈β (s) , DF (s, X (s))〉 + 1

2
Tr

(
θ (s) Qθ (s)∗ D2F (s, X (s))

))

ds

+
∫ t

0
〈DF (s, X (s)) , θ (s) dW (s)〉 .

Proof According to [10] we have that

F (t, X (t)) = F (0, X (0)) +
∫ t

0

〈
DF (s, X (s)) , d−X (s)

〉

+
∫ t

0

∂F

∂t
(s, X (s)) ds + 1

2

∫ t

0
D2F (s, X (s)) d[̃X, X ](s), (5)

where d−X denotes the integral via regularization introduced in [10]. We remark that

[̃X, X ] is here the global quadratic variation of the process in (3).
By Theorem 3.6 and Proposition 3.8 of [12] we get

∫ t

0

〈
DF (s, X (s)) , d−X (s)

〉 =
∫ t

0
〈DF (s, X (s)) ,C(s) dW (s)〉

+
∫ t

0
〈DF (s, X (s)) , AX (s) + B(s)〉 ds.

By Section 3.3 in [8]

[X, X ] dz (t) =
∫ t

0
C(s)Q1/2

(
C(s)Q1/2

)∗
ds,

where [X, X ] dz is the Da Prato–Zabczyk quadratic variation; hence, proposition 6.12
of [8] implies that

∫ t

0
D2F (s, X (s)) d[̃X, X ](s) =

∫ t

0
Tr

[
D2F (s, X (s))C(s)Q1/2

(
C(s)Q1/2

)∗]
ds.

This concludes the proof. ��
Proof of Theorem 1 Let {ρε}ε∈(0,1], ρε : R → R, be a family of mollifiers with
supp(ρε) ⊆ [0, 1] for every ε. For x ∈ H set F(t, x) = F(0, x) if t ∈ [−1, 0) and
F(t, x) = F(T, x) if t ∈ (T, T + 1].

Denote by Jn the Yosida approximations Jn = n (n − A)−1 : H → D (A), defined
for every n ∈ N, which satisfy limn→∞ Jnx = x for every x ∈ H . One also has
limn→∞ J ∗

n x = x , limn→∞ J 2n x = x and limn→∞
(
J 2n
)∗

x = x for every x ∈ H , used
several times below, along with the fact that the operators Jn and J ∗

n are equibounded.
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All these facts are well known and can be found also in [7]. Moreover, it is easy to
show that the family J 2n converges uniformly on compact sets to the identity (in the
strong operator topology). Since A generates a strongly continuous semigroup in Ẽ
as well, all the properties of Jn and J 2n just listed hold also in Ẽ (with respect to its
topology).

Define now Fε,n : [0, T ] × H → R as

Fε,n(t, x) = (ρε ∗ F (·, Jnx)) (t).

It is not difficult to show that Fε,n ∈ C1,2 ([0, T ] × H ;R). Notice also that

∂Fε,n

∂t
(t, x) = (ρ̇ε ∗ F (·, Jnx)) (t),

〈
DFε,n (t, x) , h

〉 = (ρε ∗ 〈DF (·, Jnx) , Jnh〉) (t)

D2Fε,n (t, x) (h, k) =
(
ρε ∗ D2F (t, Jnx) (Jnh, Jnk)

)
(t).

Moreover,
∂Fε,n

∂t
(t, x) =

(

ρε ∗ ∂F

∂t
(·, Jnx)

)

(t)

on T × D(A). To see this take (t, x) ∈ T × D(A), consider the limit

lim
a→0

1

a

[
Fε,n(t + a, x) − Fε,n(t, x)

]

= lim
a→0

1

a

∫

R

ρε(r) [F (t + a − r, Jnx) − F (t − r, Jnx)] dr

= lim
a→0

1

a

∫

Bε(0)
ρε(r) [F (t + a − r, Jnx) − F (t − r, Jnx)] dr (6)

and set Rt
ε := {r ∈ Bε(0) : t − r ∈ T0}, where T0 := [−1, 0) ∪ T ∪ (T, T + 1].

Since t − Rt
ε = (t − Bε(0))∩T0, we have that λ

(
Rt

ε

) = λ (Bε(0)), and hence, we
can go on from (6) finding

lim
a→0

1

a

[
Fε,n(t + a, x) − Fε,n(t, x)

]

= lim
a→0

1

a

∫

Rt
ε

ρε(r) [F (t + a − r, Jnx) − F (t − r, Jnx)] dr

=
∫

Rt
ε

ρε(r)
∂F

∂t
(t − r, Jnx) dr

=
(

ρε ∗ ∂F

∂t
(·, Jnx)

)

(t).
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Now set Xn (t) = Jn X (t), X0
n = Jn X0, Bn (t) = Jn B (t), Cn (t) = JnC (t). Since

Jn commutes with et A, we have

Xn (t) = et AX0
n +

∫ t

0
e(t−s)ABn (s) ds +

∫ t

0
e(t−s)ACn (s) dW (s) .

Moreover, Xn (t), Bn(t), Cn(t) belong to D (A) for a.e. t ∈ [0, T ], with |AXn (·)|
integrable P-a.s.; hence,

Xn(t) = X0
n +

∫ t

0
[AXn(s) + Bn(s)] ds +

∫ t

0
Cn(s) dW (s)

and by the Itô formula in Hilbert spaces given in Proposition 1 we have

Fε,n (t, Xn (t)) = Fε,n

(
0, X0

n

)

+
∫ t

0

(
〈
AXn (s) , DFε,n (s, Xn (s))

〉 + ∂Fε,n

∂s
(s, Xn (s))

)

ds

+
∫ t

0

〈
Bn (s) , DFε,n (s, Xn (s))

〉
ds

+
∫ t

0

〈
DFε,n (s, Xn (s)) ,Cn (s) dW (s)

〉

+ 1

2

∫ t

0
Tr

[
Cn (s) QCn (s)∗ D2Fε,n (s, Xn (s))

]
ds.

Let us prove the convergence (as n → ∞ and ε → 0) of each term to the correspond-
ing one of the formula stated by the theorem. We fix t and prove the a.s. (hence in
probability) convergence of each term, except for the convergence in probability of
the Itô term; this yields the conclusion.

Given (ω, t), we have Fε,n (t, Xn (ω, t)) = ρε ∗ F
(·, J 2n X (ω, t)

)
(t) and thus

∣
∣Fε,n (t, Xn(ω, t)) − F (t, X (ω, t))

∣
∣

=
∣
∣
∣
∣

∫

R

ρε(r)F
(
t − r, J 2n X (ω, t)

)
dr − F (t, X (ω, t))

∣
∣
∣
∣

≤
∫

Bε(0)
ρε(r)

∣
∣
∣F

(
t − r, J 2n X (ω, t)

)
− F (t, X (ω, t))

∣
∣
∣ dr,

which is arbitrarily small for ε small enough and n big enough, because J 2n converges
strongly to the identity and F is continuous; similarly

lim
ε→0
n→∞

Fε,n

(
0, X0

n (ω)
)

= F
(
0, X0 (ω)

)
.

From now on we work in the setΩ1 where X has relatively compact paths in Ẽ (hence
in H ). Fix δ > 0. Since for ω ∈ Ω1 the set {X (ω, s)}s∈[0,t] is relatively compact, we
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have that J 2n X (s) converges uniformly with respect s to X (s), and hence, there exists
N ∈ N such that for any n > N

∣
∣J 2n X (s) − X (s)

∣
∣ < δ/2 for all s; moreover, the set

{Jn X (s)}n,s is bounded.
The family

{
Bδ/2 (X (s))

}
s∈[0,t] is an open cover of {X (s)}s∈[0,t]; by compactness

it admits a finite subcover
{
Bδ/2 (X (si ))

}
i=1,...,M for some finite set {s1, . . . , sM } ⊂

[0, t]; therefore, for any s there exists i ∈ {1, . . . , N } such that |X (s) − X (si )| < δ/2

and

∣
∣
∣J 2n X (s) − X (si )

∣
∣
∣ ≤

∣
∣
∣J 2n X (s) − X (s)

∣
∣
∣ + |X (s) − X (si )| < δ

for n > N where N does not depend on s since the convergence is uniform. This
shows that the set

{
J 2n X (s)

}
n,s is totally bounded both in Ẽ and in H .

Therefore, we can study the convergence of the other terms as follows. First we
consider the difference

∣
∣
∣
∣

∫ t

0

〈
Bn(s), DFε,n (s, Xn(s))

〉
ds −

∫ t

0
〈B(s), DF (s, X (s))〉 ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

0

〈
J 2n B(s),

(
ρε ∗ DF

(
·, J 2n X (s)

))
(s)

〉
ds

−
∫ t

0

〈
J 2n B(s), DF (s, X (s))

〉
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

〈
J 2n B(s) − B(s), DF (s, X (s))

〉
ds

∣
∣
∣
∣ .

The second term in this last sum is bounded by

∫ t

0

∣
∣
∣J 2n B(s) − B(s)

∣
∣
∣ |DF (s, X (s))| ds

and {X (s)}s is compact, hence |DF (s, X (s))| is bounded uniformly in s and, since
the J 2n are equibounded and converge strongly to the identity and B is integrable,
Lebesgue dominated convergence theorem applies. The first term in the previous sum
instead is bounded by

∫ t

0

∣
∣
∣J 2n B(s)

∣
∣
∣

∫

Bε(0)
ρε(r)

∣
∣
∣DF

(
s − r, J 2n X (s)

)
− DF (s, X (s))

∣
∣
∣ dr ds; (7)

by the discussion above the set [0, t] ×
({

J 2n X (s)
}
n,s ∪ {X (s)}s

)
is contained in a

compact subset of [0, T ] × H , hence |DF | is bounded on that set uniformly in s and
r . Thanks again to the equicontinuity of the operators J 2n and the integrability of B,
(7) is shown to go to 0 by the dominated convergence theorem and the continuity of
DF .
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About the critical term involving G we have

∣
∣
∣
∣

∫ t

0

(
∂Fε,n

∂t
(s, Xn(s)) + 〈

AXn(s), DFε,n (s, Xn(s))
〉
)

ds −
∫ t

0
G (s, X (s)) ds

∣
∣
∣
∣

≤
∫

[0,t]∩T

∣
∣
∣
∣ρε ∗

(
∂F

∂t

(
·, J 2n X (s)

)
+
〈
AJ 2n X (s), DF

(
·, J 2n X (s)

)〉)

(s)

−G (s, X (s))| ds
=
∫

[0,t]∩T

∣
∣
∣
(
ρε ∗ G

(
·, J 2n X (s)

))
(s) − G (s, X (s))

∣
∣
∣ ds

≤
∫

[0,t]∩T

∫

Bε(0)
ρε(r)

∣
∣
∣G

(
s − r, J 2n X (s)

)
− G (s, X (s))

∣
∣
∣ dr ds

and this last quantity goes to 0 by compactness and continuity of G in the same way
as the previous term (now with respect to the topology on Ẽ).

For the Itô term we have

∫ t

0

∣
∣
∣C∗(s)

(
J 2n
)∗ (

ρε ∗ DF
(
·, J 2n X (s)

))
(s) − C∗(s)DF (s, X (s))

∣
∣
∣
2
ds

≤
∫ t

0
‖C(s)‖2

∣
∣
∣
(
J ∗
n

)2
ρε ∗ Df

(
·, J 2n X (s)

)
(s) − DF (s, X (s))

∣
∣
∣
2
ds; (8)

writing

∣
∣
∣
(
J ∗
n

)2
ρε ∗ DF

(
·, J 2n X (s)

)
(s) − DF (s, X (s))

∣
∣
∣

≤
∣
∣
∣
(
J ∗
n

)2
ρε ∗ DF

(
·, J 2n X (s)

)
(s) − (

J ∗
n

)2
DF (s, X (s))

∣
∣
∣

+
∣
∣
∣
(
J ∗
n

)2
DF (s, X (s)) − DF (s, X (s))

∣
∣
∣ ,

it is immediate to see that the right-hand side of (8) converges to 0 almost surely,
hence

∫ t

0

〈
DFε,n (s, Xn(s)) ,Cn(s) dW (s)

〉 →
∫ t

0
〈DF (s, X (s)) ,C(s) dW (s)〉

in probability.
It remains to treat the trace term. Let

{
h j
}
be an orthonormal complete system in

H ; then

∣
∣
∣
∣

∫ t

0
Tr

[
Cn(s)QCn(s)

∗D2Fε,n (s, Xn(s))
]
ds

−
∫ t

0
Tr

[
C(s)QC(s)∗DF (s, X (s))

]
ds

∣
∣
∣
∣
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≤
∫ t

0

∑

j

∣
∣
∣
〈[
JnC(s)QC(s)∗

(
J ∗
n

)2
ρε ∗ D2F

(
·, J 2n X (s)

)
(s)Jn

−C(s)QC(s)∗D2F (s, X (s))
]
h j , h j

〉∣∣
∣ ds. (9)

Now for any j

∣
∣
∣JnC(s)QC(s)∗

(
J ∗
n

)2
ρε ∗ D2F

(
·, J 2n X (s)

)
(s)Jnh j

− C(s)QC(s)∗D2F (s, X (s)) h j

∣
∣
∣

≤
∣
∣
∣JnC(s)QC(s)∗

(
J ∗
n

)2
ρε ∗ D2F

(
·, J 2n X (s)

)
(s)Jnh j

− C(s)QC(s)∗D2F (s, X (s)) Jnh j

∣
∣
∣

+
∥
∥
∥C(s)QC(s)∗D2F (s, X (s))

∥
∥
∥ · ∣∣Jnh j − h j

∣
∣ .

The second term in the sum converges to 0 thanks to the properties of Jn ; the first one
is bounded by the sum

∣
∣
∣JnC(s)QC(s)∗

(
J ∗
n

)2
ρε ∗ D2F

(
·, J 2n X (s)

)
(s)Jnh j

−JnC(s)QC(s)∗
(
J ∗
n

)2
D2F (s, X (s)) Jnh j

∣
∣
∣

+
∣
∣
∣
[
JnC(s)QC(s)∗

(
J ∗
n

)2 − C(s)QC(s)∗
]
D2F (s, X (s)) Jnh j

∣
∣
∣ , (10)

whose first addend is less or equal to
∥
∥
∥JnC(s)QC(s)∗

(
J ∗
n

)2
∥
∥
∥

∫

Bε(0)
ρε

∣
∣D2F

(
s − r, J 2n X (s)

) − D2F (s, X (s))
∣
∣
∣
∣Jnh j

∣
∣ dr,

which is shown to go to zero as before. For the second addend of (10) notice that for
any k ∈ H

∣
∣
∣
[
JnC(s)QC(s)∗

(
J ∗
n

)2 − C(s)QC(s)∗
]
k
∣
∣
∣

≤
∣
∣
∣
[
JnC(s)QC(s)∗

(
J ∗
n

)2 − JnC(s)QC(s)∗
]
k
∣
∣
∣

+ ∣
∣[JnC(s)QC(s)∗ − C(s)QC(s)∗

]
k
∣
∣

≤ ∥
∥JnC(s)QC(s)∗

∥
∥
∣
∣
∣
(
J ∗
n

)2
k − k

∣
∣
∣

+ ∣
∣JnC(s)QC(s)∗k − C(s)QC(s)∗k

∣
∣ ,

which tends to 0 as n tends to ∞.
The same compactness arguments used in the previous steps, the continuity of

D2F and the equiboundedness of the family {Jn} allow to apply Lebesgue dominated
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convergence theorem both to the series and to the integral with respect to s in (9). This
concludes the proof. ��

3 Extension to Particular Banach Spaces

In this section we consider the following framework. Let H1 be a separable Hilbert
space with scalar product 〈·〉1 and norm ‖ ·‖1 and let E2 be a Banach space, with norm
‖ · ‖E2 and duality pairing denoted by 〈·, ·〉, densely and continuously embedded in
another separableHilbert space H2 with scalar product and normdenoted, respectively,
by 〈·〉2 and ‖ · ‖2. Then set H := H1 × H2 so that

E := H1 × E2 ⊂ H

with continuous and dense embedding. We adopt here the standard identification of
H with H∗ so that

E ⊂ H ∼= H∗ ⊂ E∗.

Our aim here is to extend the results exposed so far to situations in which the process
X lives in a subset of E but the noise only acts on H1.

Example 1 In the application of this abstract framework to path-dependent functionals
(see Sect. 5), we will choose the spaces

H = Rd × L2
(
−T, 0;Rd

)

and

E = Rd ×
{

ϕ ∈ C
(
[−T, 0);Rd

)
: ∃ lim

s→0− ϕ(s) ∈ Rd
}

.

Similarly to the setup we introduced in Sect. 2, consider a complete probability space
(Ω,F ,P) with a complete filtration F = (Ft )t≥0 and a Wiener process (W (t))t≥0
in another separable Hilbert space U with nuclear covariance operator Q.

Consider a linear operator A on H with domain D(A) ⊂ E and assume that it
generates a strongly continuous semigroup et A in H . Let B : Ω × [0, T ] → E
be a progressively measurable process s.t.

∫ t
0 |B(t)| dt < ∞ as in Sect. 2; let then

C̃ : Ω×[0, T ] → L(U, H1) be another progressivelymeasurable process that satisfies∫ T
0 ‖C(t)‖2L(U,H1)

dt < ∞ and define C : Ω × [0, T ] → L(U, E) as

C(t)u =
(
C̃(t)u
0

)

, u ∈ U ;

let X0 be a F0-measurable random vector with values in H and set

X (t) = et AX0 +
∫ t

0
e(t−s)AB(s) ds +

∫ t

0
e(t−s)AC(s) dW (s). (11)
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Finally set

Ẽ = D (A)
E
, D̃ = A−1(E).

Notice that D̃ ⊂ D(A) ⊂ Ẽ . In most examples the set D̃ is not dense in E .
As in Sect. 2 we assume here that et A is strongly continuous in Ẽ (and this in turn
implies that D̃ is dense in Ẽ), X (t) actually belongs to Ẽ and that almost surely the
set {X (t)}t∈[0,T ] is relatively compact in E .

Example 2 In the path-dependent case, we will have

D (A) =
{
( x1
x2

) ∈ H : x2 ∈ W 1,2
(
−T, 0;Rd

)
, x1 = lim

s→0− x2(s)

}

,

A =
(
0 0
0 d

dr

)

,

Ẽ =
{
( x1
x2

) ∈ E : x1 = lim
s→0− x2(s)

}

,

D̃ =
{
( x1
x2

) ∈ E : x2 ∈ C1
(
[−T, 0);Rd

)
, x1 = lim

s→0− x2(s)

}

.

Finally consider a sequence Jn of linear continuous operators, Jn : H → E with
the properties:

(i) Jnx ∈ D̃ for every x ∈ Ẽ ;
(ii) Jnx → x in the topology of E for every x ∈ E ;
(iii) Jn commutes with A on D(A).

By Banach–Steinhaus and Ascoli–Arzelà theorems it follows that the operators Jn

are equibounded and converge to the identity uniformly on compact sets of E .

Theorem 2 Assume there exists a sequenceJn as aboveand let F ∈C ([0, T ]×E;R)

be twice differentiablewith respect to its second variablewith DF ∈C ([0, T ]×E; E∗)
and D2F ∈ C ([0, T ] × E; L (E; E∗)). Assume the time derivative ∂F

∂t (t, x) exists
for (t, x) ∈ T × D̃ where T ⊂ [0, T ] has Lebesgue measure λ (T ) = T and does
not depend on x. If there exists a continuous function G : [0, T ] × Ẽ → R such that

G(t, x) = ∂F

∂t
(t, x) + 〈Ax, DF(t, x)〉 ∀ x ∈ D̃, ∀ t ∈ T , (12)

then, in probability,

F (t, X (t)) = F
(
0, X0) +

∫ t

0
G (s, X (s)) ds

+
∫ t

0

(

〈B(s), DF (s, X (s))〉 + 1

2
TrH1

[
C(s)QC(s)∗D2F (s, X (s))

]
)

ds

+
∫ t

0
〈DF (s, X (s)) ,C(s) dW (s)〉,
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where TrH1 is defined for T ∈ L (E, E) as

TrH1 T =
∑

j

〈
T
(
h j
0

)
,
(
h j
0

)〉
,

{
h j
}
being an orthonormal complete system in H1.

Proof Set Fn : [0, T ]×H → R, Fn(t, x) := F
(
t,Jnx

)
. Thanks to the assumptions

on F we have that Fn is twice differentiable with respect to the variable x and

DFn(t, x) = J ∗
n DF

(
t,Jnx

) ∈ L (H ;R) ∼= H (13)

D2Fn(t, x) = J ∗
n D

2F
(
t,Jnx

)
Jn ∈ L (H ; H) . (14)

Furthermore for any t ∈ T the derivative of Fn with respect to t is defined for all
x ∈ H and equals

∂Fn
∂t

(t, x) = ∂F

∂t

(
t,Jnx

)
. (15)

Set Gn : [0, T ] × Ẽ → R, Gn (t, x) := G
(
t,Jnx

)
. Gn is obviously continuous; we

check now that for any t ∈ T Gn(t, ·) extends ∂Fn
∂t (t, ·)+〈A·, DFn(t, ·)〉 from D (A)

to Ẽ . Since Jn maps Ẽ into D̃ ⊂ D (A) ⊂ H we have

Gn (t, x) = G
(
t,Jnx

)

= ∂F

∂t

(
t,Jnx

) + 〈AJnx, DF
(
t,Jnx

)〉;

if we choose x ∈ D (A), Jn commutes with A so that we can proceed to get

= ∂F

∂t

(
t,Jnx

) + 〈Jn Ax, DF
(
t,Jnx

)〉

= ∂Fn
∂t

(t, x) + 〈Ax, DFn(t, x)〉.

Notice that here only the term 〈Ax, DFn(t, x)〉 has to be extended (since it is not well
defined outside D (A)) while the time derivative of Fn makes sense on the whole space
H by definition.

We can now apply Theorem 1 to Fn and Gn , obtaining that for each n

Fn (t, X (t)) = Fn
(
0, X0

)
+
∫ t

0
Gn (s, X (s)) ds

+
∫ t

0

[

〈B(s), DFn (s, X (s))〉 + 1

2
Tr

[
C(s)QC(s)∗D2Fn (s, X (s))

]]

ds

+
∫ t

0
〈DFn (s, X (s)) ,C(s) dW (s)〉.
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Here C(s)QC(s)∗ maps E∗ into E , therefore C(s)QC(s)∗D2Fn (s, X (s)) maps H
into E ⊂ H and the trace term can be interpreted as in H . Also, since C(s) belongs
to L (U ; H1 × {0}), we have that the stochastic integral above is well defined as a
stochastic integral in a Hilbert space.

Substituting the definition of Fn and identities (13), (14) in the previous equation
we get

F
(
t,Jn X (t)

) = F
(
0,Jn X

0
)

+
∫ t

0
G
(
s,Jn X (s)

)
ds

+
∫ t

0

[

〈Jn B(s), DF
(
s,Jn X (s)

)〉 + 1

2
Tr

[
C(s)QC(s)∗J ∗

n D2F
(
s,Jn X (s)

)
Jn

]]

ds

+
∫ t

0
〈DF

(
s,Jn X (s)

)
,JnC(s) dW (s)〉.

Now we fix (ω, t) and study the convergence of each of the terms above. Since
X (ω, t) ∈ Ẽ ,Jn X (ω, t) → X (ω, t) almost surely as n → ∞ and therefore by con-
tinuity of F we have that F

(
t,Jn X (ω, t)

)
converges to F (t, X (ω, t)) almost surely.

For the same reasons F
(
0,Jn X0(ω)

)
converges to F

(
0, X0(ω)

)
almost surely.

Denote by Ω1 the set of full probability where each of the trajectories {X (ω, t)}t
is relatively compact. Arguing as in Proof of Theorem 1 it can be shown that, thanks
to the uniform convergence on compact sets of the Jn , the set

{
Jn X (ω, t)

}
n,t is

totally bounded in E for any ω ∈ Ω1. Therefore, the a.s. convergence of the terms∫ t
0 G

(
s,Jn X (ω, s)

)
ds and

∫ t
0 〈Jn B(ω, s), DF

(
s,Jn X (ω, s)

)〉 ds follows from
the dominated convergence theorem since G and DF are continuous, B is integrable,
and the family

{
Jn

}
is equibounded.

To show the convergence of the stochastic integral term consider

∫ t

0

∥
∥C(s)∗J ∗

n DF
(
s,Jn X (s)

) − C(s)∗DF (s, X (s))
∥
∥2
U ds

≤
∫ t

0
‖C(s)‖2L(U,E)

∥
∥J ∗

n DF
(
s,Jn X (s)

) − DF (s, X (s))
∥
∥2
E∗ ds. (16)

Now

∥
∥J ∗

n DF
(
s,Jn X (s)

) − DF (s, X (s))
∥
∥
E∗

= sup
e∈E‖e‖=1

∣
∣〈e,J ∗

n DF
(
s,Jn X (s)

) − DF (s, X (s))〉∣∣

= sup
e∈E‖e‖=1

∣
∣〈Jne, DF

(
s,Jn X (s)

)〉 − 〈e, DF (s, X (s))〉∣∣

≤ sup
e∈E‖e‖=1

[∣∣〈Jne, DF
(
s,Jn X (s)

)〉 − 〈Jne, DF (s, X (s))〉∣∣

+ ∣
∣〈Jne − e, DF (s, X (s))〉∣∣]
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≤ sup
e∈E‖e‖=1

[∥∥Jn
∥
∥
E

∥
∥DF

(
s,Jn X (s)

) − DF (s, X (s))
∥
∥
E∗

+ ∥
∥Jne − e

∥
∥
E ‖DF (s, X (s))‖E∗

]

and this last quantity converges to zero as before, since
{
Jn

}
is equibounded, DF

is continuous (hence uniformly continuous on
{
Jn X (s)

}
n,s ∪ {X (s)}s), and Jn

converges to the identity on E . Since ‖C(s)‖2 is integrable, we can apply again the
dominated convergence theorem in (16) to get that the left-hand side converges to 0
almost surely, hence

∫ t

0
〈DF

(
s,Jn X (s)

)
,JnC(s) dW (s)〉 →

∫ t

0
〈DF (s, X (s)) ,C(s) dW (s)〉

in probability.
It remains to study the trace term. First notice that, since E∗ = (H1 × E2)

∗ ∼=
H∗
1 × E∗

2
∼= H1 × E∗

2 , every f ∈ E∗ can be written as a couple ( f1, f2) ∈ H1 × E∗
2

and therefore for any u ∈ U and f ∈ E∗

〈C(s)u, f 〉E E∗ =
〈(

C̃(s)u
0

)
,
(

f1
f2

)〉

E E∗

= 〈C̃(s)u, f1〉1 = 〈u, C̃(s)∗ f1〉U U ;

hence C(s)∗ f = C̃(s)∗ f1 for any f ∈ E∗.
Now letH1 andH2 be complete orthonormal systems of H1 and H2, respectively,

and set H1 := H1 × {0}, H2 := H2 × {0}, so that H := H1 ∪ H2 is a complete
orthonormal system for H .H is countable since H1 and H2 are separable. For h ∈ H
we have that

y := J ∗
n D

2F
(
s,Jn X (s)

)
Jnh ∈ H ⊂ E∗ = H1 × E∗

2 ,

so that, writing y = (y1, y2), we have

C(s)QC(s)∗y = C(s)QC̃(s)∗y1 =
(
C̃(s)QC̃(s)∗y1

0

)

∈ H1 × {0} ⊂ E ⊂ H.

Therefore,

〈
C(s)QC(s)∗J ∗

n D
2F

(
s,Jn X (s)

)
Jnh, h

〉
=
〈(

C̃(s)QC̃(s)∗y1
0

)

, h

〉

and this last quantity can be different from 0 only if h ∈ H1. This implies

Tr
[
C(s)QC(s)∗J ∗

n D
2F

(
s,Jn X (s)

)
Jn

]

=
∑

h∈H

〈
C(s)QC(s)∗J ∗

n D
2F

(
s,Jn X (s)

)
Jnh, h

〉
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=
∑

h∈H1

〈
C(s)QC(s)∗J ∗

n D
2F

(
s,Jn X (s)

)
Jnh, h

〉

1

= TrH1

[
C(s)QC(s)∗J ∗

n D
2F

(
s,Jn X (s)

)
Jn

]
. (17)

Now, setting K̃ := supn
∥
∥Jn

∥
∥ we have that for h ∈ H1

∣
∣
∣TrH1

[
C(s)QC(s)∗J ∗

n D
2F

(
s,Jn X (s)

)
Jn

] − TrH1

[
C(s)QC(s)∗D2F (s, X (s))

] ∣∣
∣

=
∣
∣
∣
∣
∣
∣

∑

h∈H1

〈
D2 f

(
t,Jn X (s)

)
Jnh,JnC(s)QC(s)∗h

〉

−
∑

h∈H1

〈
D2F (t, X (s)) h,C(s)QC(s)∗h

〉
∣
∣
∣
∣
∣
∣

≤
∑

h∈H1

∣
∣〈D2F

(
t,Jn X (s)

)
Jnh,JnC(s)QC(s)∗h − C(s)QC(s)∗h

〉∣∣

+
∑

h∈H1

∣
∣〈D2F

(
t,Jn X (s)

)
Jnh − D2F (t, X (s)) h,C(s)QC(s)∗h

〉∣∣

≤ K̃
∥
∥D2F

(
t,Jn X (s)

)∥∥
∑

h∈H1

∣
∣JnC(s)QC(s)∗h − C(s)QC(s)∗h

∣
∣

+ ‖C(s)‖2L(U,E) ‖Q‖2L(U,U )

∑

h∈H1

[
K̃
∥
∥D2F

(
t,Jn X (s)

) − D2F (t, X (s))
∥
∥

+ ∥
∥D2F (t, X (s))

∥
∥
∣
∣Jnh − h

∣
∣
]
;

therefore thanks to the equiboundedness of
{
Jn

}
and the uniform continuity of D2F

on the set
{
Jn X (s)

}
n,s ∪ {X (s)}s we can apply the dominated convergence theorem

to the sum over h ∈ H1 to obtain that

TrH1

[
C(s)QC(s)∗J ∗

n D
2F

(
s,Jn X (s)

)
Jn

]

n→∞−→ TrH1

[
C(s)QC(s)∗D2F (s, X (s))

]
.

Since D2F is bounded also in s ∈ [0, T ] and ‖C(s)‖2L(U ;E) is integrable by assump-
tion, a second application of the dominated convergence theorem yields that for every
t ∈ [0, T ]

∫ t

0
TrH1

[
C(s)QC(s)∗J ∗

n D
2F

(
s,Jn X (s)

)
Jn

]
ds

n→∞−→
∫ t

0
TrH1

[
C(s)QC(s)∗D2F (s, X (s))

]
ds,

thus concluding the proof. ��
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Remark 1 The use of both spaces E and Ẽ in the statement of the theorem can seem
unjustified at first sight: since the process X is supposed to live in Ẽ and the result is
a Itô formula valid on Ẽ (because the extension G is defined on Ẽ only), everything
could apparently be formulated in Ẽ . However, in most examples the space Ẽ is not
a product space (see Sect. 5) hence neither is its dual space, and the product structure
of the dual is needed to show that the second order term is concentrated only on the
H1-component. Since asking F to be defined on [0, T ] × H will leave out many
interesting examples (we typically want to endow Ẽ with a topology stronger that the
one of H ), the choice to use the intermediate space E seems to be the more adequate.

Corollary 1 Consider n + 1 points 0 = t0 ≤ t1 ≤ · · · ≤ tn = T and assume that
F ∈ C

([t j , t j+1) × E;R) for j = 0, 1, . . . , n − 1. Suppose, moreover, that

1. the map y �→ F(t, y) is twice differentiable for every t ∈ [0, T ];
2. DF ∈ C

([
t j , t j+1

) × E; E∗) for j = 0, 1, . . . , n − 1;
3. D2F ∈ C

([
t j , t j+1

) × E; L (E, E∗)
)
for j = 0, 1, . . . , n − 1;

4. the map t �→ F(t, y) is càdlàg for every y ∈ E;
5. ∂F

∂t exists for (t, x) ∈ T × D̃ where T is as in Theorem 2;
6. there exists a function G such that G ∈ C

([
t j , t j+1

) × Ẽ;R) for all j and such
that

G(t, x) = ∂F

∂t
(t, x) + 〈Ax, DF(t, x)〉 ∀x ∈ D̃, ∀t ∈ T ∩ [

t j , t j+1
)
.

Then the formula

F (T, X (T )) = F
(
0, X0) +

n∑

j=1

[
F
(
t j , X

(
t j
)) − F

(
t j−, X

(
t j
))]

+
∫ T

0
G (s, X (s)) ds +

∫ T

0
〈DF (s, X (s)) ,C(s) dW (s)〉

+
∫ T

0

(

〈B(s), DF (s, X (s))〉 + 1

2
TrH1

[
C(s)QC(s)∗D2F (s, X (s))

]
)

ds

holds.

Proof Thanks to the assumptions, Theorem 2 can be applied to obtain n identities for
the increments F

(
t j+1 − ε, X

(
t j+1 − ε

) ) − F
(
t j , X

(
t j
) )
, j = 0, . . . , n − 1, with

0 < ε < min j
(
t j+1 − t j

)
. Summing up these identities and taking the limit as ε goes

to 0 yield the result. ��

4 Application to Generators of Groups

In a Hilbert space H , given aWiener process (W (t))t≥0 with covariance Q, defined on
a filtered probability space

(
Ω,F , (Ft )t≥0 , P

)
, given x0 ∈ H , B : Ω × [0, T ] → H

progressively measurable and integrable in t , P-a.s., C : Ω × [0, T ] → L (H, H)
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progressively measurable and square integrable in t , P-a.s., let X (t) be the stochastic
process given by the mild formula

X (t) = et Ax0 +
∫ t

0
e(t−s)AB (s) ds +

∫ t

0
e(t−s)AC (s) dW (s) ,

where et A is a strongly continuous group. In this particular case we can also write

X (t) = et A
(

x0 +
∫ t

0
e−s AB (s) ds +

∫ t

0
e−s AC (s) dW (s)

)

,

fromwhichwemaydeduce, for instance, that X is a continuous process in H . Formally

dX (t) = AX (t) dt + B (t) dt + C (t) dW (t) ,

but AX (t) is generally not well defined: typically the solution has the same spatial
regularity of the initial condition and the forcing terms. Thus in general, one cannot
apply the classical Itô formula to F (t, X (t)), due to this fact. A possibility is given
by the mild Itô formula [6]. We show here an alternative, which applies when suitable
cancellations in F (t, x) occur.

As a first example, let F (t, x) be given by

F (t, x) = F0
(
e−t Ax

)
+
∫ t

0
H0

(
s, e−(t−s)Ax

)
ds,

where F0 ∈ C2 (H ;R), H0 ∈ C ([0, T ] × H ;R), with continuous derivatives DH0,
D2H0. Then ∂F

∂t (t, x) exists for all x ∈ D (A), t ∈ [0, T ] and it is given by

∂F

∂t
(t, x) = −

〈
(DF0)

(
e−t Ax

)
, e−t A Ax

〉
+ H0 (t, x)

−
∫ t

0

〈
(DH0)

(
s, e−(t−s)Ax

)
, e−(t−s)A Ax

〉
ds.

Moreover, DF ∈ C ([0, T ] × H ; H), D2F ∈ C ([0, T ] × H ; L (H, H)) and

〈DF (t, x) , h〉 =
〈
(DF0)

(
e−t Ax

)
, e−t Ah

〉

+
∫ t

0

〈
DH0

(
s, e−(t−s)Ax

)
, e−(t−s)Ah

〉
ds.

Therefore,

∂F

∂t
(t, x) + 〈Ax, DF (t, x)〉 = H0 (t, x) .
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Consider the function G (t, x) := ∂F
∂t (t, x) + 〈Ax, DF (t, x)〉. It is a priori well

defined only on x ∈ D (A). However, being

G (t, x) = H0 (t, x) ,

the function G extends to a continuous function on [0, T ] × H . Then Theorem 1
applies and Itô formula reads

F (t, X (t)) = F
(
0, x0

) +
∫ t

0
H0 (s, X (s)) ds +

∫ t

0
〈B (s) , DF (s, X (s))〉 ds

+
∫ t

0
〈DF (s, X (s)) ,C (s) dW (s)〉 + 1

2

∫ t

0
Tr

(
C (s) QC∗ (s) D2F (s, X (s))

)
ds.

4.1 Kolmogorov Equation for SDEs with Group Generator

The previous example concerns a very particular class of functionals F . As a more
useful (but very related) example, assume we have a solution F (t, x) of the following
Kolmogorov equation

∂F

∂t
(t, x) + 〈Ax + B (t, x) , DF (t, x)〉

+1

2
Tr

(
C (t, x) QC∗ (t, x) D2F (t, X (t))

)
= 0, (18)

for x ∈ D (A) , t ∈ [0, T ], F (T, x) = ϕ (x), with the regularity

F ∈ C ([0, T ] × H ;R) , DF ∈ C ([0, T ] × H ; H) (19)

D2F ∈ C ([0, T ] × H ; L (H, H)) ,
∂F

∂t
∈ C ([0, T ] × D (A) ;R) .

Here we assume that B : [0, T ] × H → H and C : [0, T ] × H → L (H, H) are
continuous (we assume continuity of B and ∂F

∂t for simplicity of exposition, but this
detail can be generalized). Since

G (t, x) := ∂F

∂t
(t, x) + 〈Ax + B (t, x) , DF (t, x)〉 , x ∈ D (A) , t ∈ [0, T ] ,

satisfies

G (t, x) = −1

2
Tr

(
C (t, x) QC∗ (t, x) D2F (t, X (t))

)
,
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then it has a continuous extension on [0, T ] × H and Theorem 1 is applicable, if
(X (t))t∈[t0,T ] (for some t0 ∈ [0, T )) is a continuous process in H satisfying

X (t) = e(t−t0)Ax0 +
∫ t

t0
e(t−s)AB (s, X (s)) ds +

∫ t

t0
e(t−s)AC (s, X (s)) dW (s) ,

(20)
thus we get

F (t, X (t)) = F
(
t0, x

0
)

+
∫ t

t0
〈DF (s, X (s)) ,C (s, X (s)) dW (s)〉 . (21)

We can now easily prove the following uniqueness result.We do not repeat the assump-
tions on H , W , et A, B.

Theorem 3 Assume that for every
(
t0, x0

) ∈ [0, T ] × H, there exists at least one
continuous process X in H satisfying Eq. (20). Then the following holds.

(i) The Kolmogorov Eq. (18) has a unique solution in the class of bounded functions
F satisfying (19).

(ii) If C ∈ Cb ([0, T ] × H ; L (H, H)), it has a unique solution in the class of func-
tions F satisfying (19) and ‖DF‖∞ < ∞.

Proof (i) The stochastic integral
∫ t
t0

〈DF (s, X (s)) ,C (s, X (s)) dW (s)〉 is a local
martingale. Since F is bounded, from identity (21) it follows that it is uniformly
integrable, and hence, it is also a martingale. Therefore, taking expectation in
(21), we get F

(
t0, x0

) = E [ϕ (X (T ))], formula which identifies F , since t0 and
x0 are arbitrary.

(ii) If C and DF are bounded, the stochastic integral in (21) is a martingale. We
conclude as in i). ��

5 Application to Path-Dependent Functionals

We will now apply the abstract results of Sect. 3 to obtain an Itô formula for path-
dependent functionals of continuous processes, stated in Theorem 4. In the first
sections we will introduce the necessary spaces and operators and we will show that
the infinite-dimensional reformulation of path-dependent problems appears naturally
when dealing with path-dependent SDEs (see again [13] for a more detailed discus-
sion).

5.1 Infinite-Dimensional Formulation of Itô Processes

In this and the following sectionswewill denote byCt the space ofRd -valued functions
on [0, t] that can have a jump only at t , that is

Ct =
{

ϕ : [0, t] → Rd : ϕ ∈ C
(
[0, t);Rd

)
, ∃ lim

s→t−
ϕ(s) ∈ Rd

}
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endowed with the supremum norm. The space Ct is clearly isomorphic to the product
space

Rd ×
{

ϕ ∈ C
(
[0, t);Rd

)
, ∃ lim

s→t−
ϕ(s) ∈ Rd

}

.

Let y(t) be the continuous process in Rd given by

y(t) = y0 +
∫ t

0
b(s) ds +

∫ t

0
c(s) dW (s), (22)

where b and c are progressively measurable processes, with values in Rd and Rk×d ,
respectively, such that

∫ T

0
|b(s)| ds < ∞,

∫ T

0
‖c(s)‖2 ds < ∞

and y0 is aF0-measurable random vector.
Let us introduce the following infinite-dimensional reformulation. We will work in

the space

E = Rd ×
{

ϕ ∈ C
(
[−T, 0);Rd

)
: ∃ lim

s→0− ϕ(s) ∈ Rd
}

, (23)

whose elements we shall usually denote by x = ( x1
x2

)
. E is a Banach space when

endowed with the norm
∥
∥( x1

x2

)∥∥2 = |x1|2 + ‖x2‖2∞; the notation 〈·, ·〉 will denote
the duality pairing between E and its dual space E∗. The space E is densely and
continuously embedded in the product space

H = Rd × L2
(
−T, 0;Rd

)
. (24)

We also introduce the unbounded linear operator A : D (A) ⊂ H → H defined as

D (A) =
{
( x1
x2

) ∈ H : x2 ∈ W 1,2
(
−T, 0;Rd

)
, x1 = lim

s→0− x2(s)

}

, (25)

A =
(
0 0
0 d

dr

)

, (26)

where we identify an element in W 1,2 with the restriction of its continuous version to
[−T, 0). Therefore, we identify also the space

Ẽ = D (A)
E =

{

y = ( x1
x2

) ∈ E : x1 = lim
s→0− x2(s)

}

. (27)

The operator A generates a strongly continuous semigroup et A in H . This semigroup
turns out to be not strongly continuous in E ; nevertheless et A maps Ẽ in itself and is
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strongly continuous in Ẽ . This follows from the fact that the semigroup et A has the
explicit form

et Ax =
(

x1
x2 (· + t)1[−T,−t) + x11[−t,0)

)

(28)

(see [1] for details on the operator A in the context of delay equations and [13] about
its role in the theory of path-dependent equations).

For any t ∈ [0, T ] we introduce the operator

Lt : Ct → E,

defined as

Ltγ =
(

γ (t)
γ (0)1[−T,−t) + γ (t + ·)1[−t,0)

)

(29)

for every γ ∈ Ct .
Using (28), it is easy to show (see also Proposition 3) that

X (t) = Lt yt ,

as a H -valued process, is given by

X (t) = et AX0 +
∫ t

0
e(t−s)AB(s) ds +

∫ t

0
e(t−s)AC(s) dW (s), (30)

where X0 =
(

x0

x01[−T,0)

)
and the processes B : [0, T ] → E and C : [0, T ] →

L
(
Rk, E

)
are given by

B(t) =
(
b(s)
0

)

, C(s)u =
(
c(s)u
0

)

for u ∈ Rk . (31)

The validity of (30) corresponds to saying that X is the unique mild solution to the
linear equation

dX (t) = AX (t) dt + B(t) dt + C(t) dW (t); (32)

hence, we see that our infinite-dimensional reformulation forces us to deal with equa-
tions even if we start from finite-dimensional processes: the operator A appears as a
consequence of the introduction of the second component that represents the “past
trajectory” of the process (see Remark 3).

Proposition 2 The process X is such that X (t) ∈ Ẽ for every t and the trajectories
t �→ X (t) are almost surely continuous as maps from [0, T ] to Ẽ .

Proof The random variable X0 takes values in Ẽ by definition. Since the process y has
almost surely continuous trajectories,

(
Lt yt

)
2 ∈ C

([−T, 0);Rd
)
and Lt yt belongs to

Ẽ . To check the almost sure continuity of the trajectories of X as a Ẽ-valued process
denote again by Ω0 ⊂ Ω a null set such that t �→ y(ω, t) is continuous for every
ω ∈ Ω \ Ω0, fix ω ∈ Ω \ Ω0, fix t, s ∈ [0, T ] and ε > 0; we can suppose t > s
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without loss of generality. Since y (ω, ·) is uniformly continuous on [0, T ]we can find
δ such that |y(t) − y(s)| < ε/2 if t − s < δ. Then for t − s < δ

‖X (t) − X (s)‖
Ẽ

≤ |y(t) − y(s)|

+ max

{

sup
r∈[0,t−s]

|y(0) − y(r)| , sup
r∈[0,s]

|y(t − s + r) − y(r)|
}

≤ ε.

��

5.2 Infinite-Dimensional Formulation of Path-Dependent Functionals

A path-dependent functional f is a family of functionals f (t, ·), t ∈ [0, T ], such that

f (t, ·) : Ct → R.

Among the examples of path-dependent functional, let us mention the integral ones

f (t, γ ) =
∫ t

0
g (γ (t), γ (s)) ds (33)

and those involving pointwise evaluations, like for instance

f (t, γ ) = q (γ (t), γ (t0))1t>t0 . (34)

Here we assume that g : Rd ×Rd → R is a measurable function in the first example,
with |g (a)| ≤ C

(
1 + |a|2) and that q : Rd ×Rd → R is a measurable function in the

second example and t0 ∈ [0, T ] is a given point. In order to apply Itô calculus let us
simplify and assume that g and q are twice continuously differentiable with bounded
derivatives of all orders.

Given a path-dependent functional f (t, ·), t ∈ [0, T ] we may associate to it a map
F : [0, T ] × E → R setting

F (t, x) = f (t, Mt x) (35)

where
Mt : E → Ct

is defined as

Mt x (s) = x2 (s − t)1[0,t)(s) + x11{t}(s), s ∈ [0, t] . (36)

Remark 2 Notice that Mt Lt is the identity on Ct .
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Here we see that if f were defined only on C
([0, t];Rd

)
, then F would be defined on

[0, T ] × Ẽ , because of the definition of the operators Mt ; our abstract results require
instead F to be defined on [0, T ] × E ; see Remark 1.

Path-dependent functionals are often studied in spaces of càdlàg paths. The frame-
work presented here can be easily modified to do so, similarly to what is done in
[13]; however, this would require the introduction of further spaces, thus complicating
notations, but would not lead to generalizations of the result proved here.

The aimof this section is to show that Examples (33) and (34) fulfill the assumptions
of Theorem 2.

The abstract reformulation of the functional given in (33) is the map F : [0, T ] ×
E → R defined as

F (t, x) =
∫ t

0
g (Mt x(t), Mt x (s)) ds =

∫ t

0
g (x1, x2 (s − t)) ds

=
∫ 0

−t
g (x1, x2 (r)) dr.

Hence,

∂F

∂t
(t, x) = g (x1, x1) −

∫ t

0
Dg (x1, x2 (s − t)) · x ′

2 (s − t) ds

= g (x1, x1) −
∫ 0

−t
g (x1, x2 (r)) · x ′

2 (r) dr,

which is meaningful, for example, if x2 belongs to C1
([−T, 0];Rd

)
. Indeed since

A
(
D(A)

) ⊂ {0} × L2
(−T, 0;Rd

)
, we have

D̃ = A−1(E) = A−1 ({0} × E2) ,

where

E2 =
{

ϕ ∈ C
(
[−T, 0);Rd

)
: ∃ lim

s→0− ϕ(s) ∈ Rd
}

,

and so
D̃ =

{( x1
x2

) ∈ D(A) : x2 ∈ C1
(
[−T, 0);Rd

)}
.

Moreover, the time derivative of F is defined for every t ∈ [0, T ]. Therefore, we see
that

∂F

∂t
: [0, T ] × D̃ → R

is a natural assumption, while ∂F
∂t : [0, T ] × E → R would not be. Since g is

continuous we also have that ∂t F belongs to C
([0, T ] × D̃;R).
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Let us then investigate the function

G (t, x) := ∂F

∂t
(t, x) + 〈Ax, DF (t, x)〉 x ∈ D̃, t ∈ [0, T ] .

For h ∈ E we have

〈h, DF (s, x)〉 = lim
ε→0

1

ε

∫ t

0
(g (x1, (x2 + εh2) (s − t)) − g (x1, x2 (s − t))) ds

=
∫ t

0
Dg (x1, x2 (s − t)) · h2 (s − t) ds

=
∫ 0

−t
Dg (x1, x2 (r)) · h2 (r) dr.

But then
G (s, x) = g (x1, x1) ;

thus we see that the function G (s, x) is well defined on E too! The assumption
G ∈ C

(
[0, T ] × Ẽ

)
is fulfilled.

The abstract reformulation of the functional given in (34) is the map F : E → R

defined as

F (t, x) = q (Mtx(t), Mt x(t0))1t>t0 = q (x1, x2 (t0 − t))1t>t0 .

Hence, writing ∂1q and ∂2q for the derivatives of q with respect to its first and second
variable, respectively, for t �= t0,

∂F

∂t
(t, x) = −∂2q (x1, x2 (t0 − t)) · x ′

2 (t0 − t)1t>t0 ,

which requires x2 ∈ C1.
But

G (t, x) = −∂2q (x1, x2 (t0 − t)) · x ′
2 (t0 − t)1t>t0

+ ∂1q (x1, x2 (t0 − t))1t>t0 · (Ax)1 + ∂2q (x1, x2 (t0 − t))1t>t0

· (Ax)2 (t0 − t)

= 0,

because (Ax)1 = 0 and (Ax)2 (t0 − t) = x ′
2 (t0 − t). Again, G extends continuously

to E .

5.3 Infinite-Dimensional Formulation of Path-Dependent SDEs

In Sect. 5.1 we have formulated a classical Itô process as an infinite-dimensional
process given by a mild formula; this apparently not natural formulation is suggested
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by the case when the process is the solution of a path-dependent SDE. For these
equations, the mild formulation is natural, due to the similarity with delay equations,
where the infinite-dimensional approach is classical. Let us give here some details
about the case of a path-dependent SDE.

Let (Ω,F ,P) be a complete probability space, F = (Ft )t≥0 a complete filtration,
(W (t))t≥0 a Brownian motion inRk (we shall writeWi (t) for its coordinates), y0 an
F0-measurable random vector of Rd . Consider the path-dependent SDE in Rd

dy (t) = b (t, yt ) dt + σ (t, yt ) dW (t) , y (0) = y0.

The solution (y (t))t∈[0,T ] is a stochastic process in Rd and yt denotes the window

yt := {y (s)}s∈[0,t] .

About b and σ , initially we assume that, for each t ∈ [0, T ], the function b (t, ·)
maps C

([0, t];Rd
)
into Rd and the function σ (t, ·) maps C

([0, t];Rd
)
into Rk×d ;

moreover, we assume that b ad σ are locally bounded measurable functions, for each
t ∈ [0, T ], with bounds uniform in t and that the processes b (t, yt ) and σ (t, yt ) are
progressively measurable. These are relatively weak requirements to give a meaning
to the integral equation

y (t) = y0 +
∫ t

0
b (s, ys) ds +

∫ t

0
σ (s, ys) dW (s) . (37)

If, in addition, we assume that b (t, ·) and σ (t, ·) are Lipschitz continuous from
C
([0, t];Rd

)
toRd and Rk×d , respectively, with Lipschitz constants independent of

t , then existence and uniqueness of a continuous solution, adapted to the completed fil-
tration ofW , holds true.We shall alsowrite σ (t, yt ) dW (t) as

∑k
i=1 σi (t, yt ) dWi (t).

We take the operator A as in Sect. 5.1 and we define the continuous nonlinear
operators B : [0, T ] × Ẽ → E , Ci : [0, T ] × Ẽ → E , i = 1, . . . , k, as

B (t, x) =
(
b (t, Mt x)

0

)

(38)

Ci (t, x) =
(

σi (t, Mt x)
0

)

. (39)

Finally, we set U = Rk , take Q equal to the identity in U and consider, for every
(t, x) ∈ [0, T ]×E , the bounded linear operatorC (t, x) : U → E having components
Ci (t, x).

Given aF0-measurable randomvariable X0 with values in E wemaynow formulate
the path-dependent SDE in the Banach space E , i.e.,

dX (t) = (AX (t) + B (t, X (t))) dt + C (t, X (t)) dW (t) , X (0) = X0. (40)

The natural concept of solution here would be that of mild solution, but since under our
assumptions the stochastic convolution is a priori well defined only in H , we consider
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Eq. (40) in its mild form in the space H , that is

X (t) = et AX0 +
∫ t

0
e(t−s)AB (s, X (s)) ds +

∫ t

0
e(t−s)AC (s, X (s)) dW (s) . (41)

Notice that since E is continuously embedded in H all the integrals in (41) are mean-
ingful.

In the following proposition we clarify the relation between Eqs. (41) and (37).

Proposition 3 Given an F0-measurable random vector y0 of Rd , set X0 =
(
y0, y01[−T,0)

)T
. Then, if {y (t)}t∈[0,T ] is a solution to Eq. (37), the process

X (t) = Lt yt (42)

is a solution to Eq. (41). We also have

yt = Mt X (t). (43)

Proof By (28) the first component of Eq. (41) reads

(
Lt yt

)
1 = y (t) = X1 (t) = X0

1 +
∫ t

0
B (s, X (s))1 ds +

∫ t

0
C (s, X (s))1 dW (s)

= y0 +
∫ t

0
b (s, MsX (s)) ds +

∫ t

0
σ (s, MsX (s)) dW (s)

= y0 +
∫ t

0
b
(
s, MsL

s ys
)
ds +

∫ t

0
σ
(
s, MsL

s ys
)
dW (s)

= y0 +
∫ t

0
b (s, ys) ds +

∫ t

0
σ (s, ys) dW (s) ,

which holds true because it is Eq. (37). About the second component, we have

(
Lt yt

)
2 (r) = X2 (t) (r) = X0

2 (r + t) 1[−T,−t] (r) + X0
11[−t,0] (r)

+
∫ t

0
b (s, MsX (s)) 1[−t+s,0] (r) ds

+
∫ t

0
σ (s, MsX (s)) 1[−t+s,0] (r) dW (s)

= y0 +
∫ t

0
b (s, ys) 1[−t+s,0] (r) ds +

∫ t

0
σ (s, ys) 1[−t+s,0] (r) dW (s) .

For r ∈ [−T,−t] this identity reads y0 = y0, which is true. For r ∈ [−t, 0] we have

y (t + r) = yt (t + r) = y0 +
∫ t+r

0
b (s, ys) ds +

∫ t+r

0
σ (s, ys) dW (s) ,
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because 1[−t+s,0] (r) = 0 for s ∈ [t + r, t]. This is again a copy of Eq. (37). The proof
is complete. ��
Remark 3 We have seen that, at the level of the mild formulation, the equation in
Hilbert space is just given by two copies of the original SDE. On the contrary, at the
level of the differential formulation, we formally have

dX1 (t) = B (t, Mt X (t)) dt + Ci (t, Mt X (t)) dW (t)

dX2 (t) = d

dr
X2 (t) dt.

The first equation, again, is a rewriting of the path-dependent SDE. But the second
equation is just a consistency equation, necessary since we need to introduce the
component X2 (t). Here we see one of the technical problems which motivate this
paper: X2 (t) = (

Lt yt
)
2 is “never” differentiable (being a trajectory of solution of the

SDE, it has the level of regularity of Brownian motion). In other words, X2 (t) “never”
belongs to D (A).

5.4 Itô Formula for Path-Dependent Functionals

Having introduced the previous infinite-dimensional reformulations, we can apply
our abstract result of Sect. 3 to obtain a Itô formula for path-dependent functionals
of continuous paths. To this end we recall that we intend to apply Theorem 2 to the
spaces

H1 = Rd

E2 =
{

ϕ ∈ C
(
[−T, 0);Rd

)
: ∃ lim

s→0− ϕ(s) ∈ Rd
}

,

H2 = L2
(
−T, 0;Rd

)
,

E = H1 × E2,

H = H1 × H2,

Ẽ =
{
( x1
x2

) ∈ E : x1 = lim
s→0− x2(s)

}

,

D̃ =
{
( x1
x2

) ∈ E : x2 ∈ C1
(
[−T, 0);Rd

)
, x1 = lim

s→0− x2(s)

}

,

U = Rk

and to the operator A on H given by

A
( x1
x2

) = ( 0
ẋ2

)

on the domain

D (A) =
{( x1

x2

) ∈ Rd × W 1,2
(
−T, 0;Rd

)
: x2(0) = x1

}
.
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As before y is a continuous process in Rd given by

y(t) = y0 +
∫ t

0
b(s) ds +

∫ t

0
c(s) dW (s),

where W , b and c are as in Sect. 5.1 (we set Q = I dRk ) and we set

X (t) = Lt yt .

Theorem 4 Let { f (t, ·)}t∈[0,T ], f (t, ·) : Ct → R, be a path-dependent functional
and define

F : [0, T ] × E −→ R

F(t, x) = f (t, Mt x) .

Suppose that

(i) F ∈ C ([0, T ] × E;R);
(ii) F is twice differentiable in its second variable with DF ∈ C ([0, T ] × E; E∗)

and D2F ∈ C ([0, T ] × E; L (E; E∗));
(iii) there exists a set T ⊂ [0, T ] such that λ (T ) = T and F is differentiable with

respect to t on T × D̃;
(iv) there exists a continuous function G : [0, T ] × Ẽ → R such that

G(t, x) = ∂F

∂t
(t, x) + 〈Ax, DF(t, x)〉

for (t, x) ∈ T × D̃.

Then the identity

f (t, yt ) = f (0, y0) +
∫ t

0
G (s, X (s)) ds

+
∫ t

0

(

〈B(s), DF (s, X (s))〉 + 1

2
TrRd

[
C(s)C(s)∗D2F (s, X (s))

])

ds

+
∫ t

0
〈DF (s, X (s)) ,C(s) dW (s)〉

holds in probability.

Proof First notice that by Proposition 2 and the discussion in Sect. 5.1 the process X
has continuous paths in Ẽ , therefore the set {X (t)}t∈[0,T ] is a compact set in E . With
this choice of E and H , a sequence Jn : H → E satisfying the requirements of
Theorem 2 can be constructed (following [13]) in this way: for any ε ∈ (0, T/2) define
the function τε : [−T, 0] → [−T, 0] as
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τε(x) =

⎧
⎪⎨

⎪⎩

−T + ε if x ∈ [−T,−T + ε]
x if x ∈ [−T + ε,−ε]
−ε if x ∈ [−ε, 0].

Then choose anyC∞(R;R) function ρ such that ‖ρ‖1 = 1, 0 ≤ ρ ≤ 1 and supp(ρ) ⊆
[−1, 1] and define a sequence {ρn} of mollifiers by ρn(x) := nρ(nx). Set, for any
ϕ ∈ L2(−T, 0;Rd)

Jnϕ(x) :=
∫ 0

−T
ρn
(
ρ2n ∗ τ 1

n
(x) − y

)
ϕ(y) dy (44)

and finally define Jn as

Jn
( x

ϕ

) :=
(

x
Jnϕ

)

.

The proof is then completed applying Theorem 2 to the function F and its extension
G. ��
Remark 4 The choice of the spaces H and E and of the operators A and Jn does
not depend on F and is the same for all path-dependent functionals of continuous
processes. The only assumptions that need to be checked on each functional are the
regularity conditions and existence of the extension G.

The path-dependent functional given in (34) is not covered by the previous result
since it is not jointly continuous on [0, T ] × E . However, it satisfies the assumptions
of Corollary 1, which we now state in its path-dependent formulation.

Corollary 2 Let f and F be as in Theorem 4. If F satisfies the assumptions of Corol-
lary 1, then the formula

f (T, yT ) = F (0, y0) +
n∑

j=1

[
f
(
t j , yt j

) − f
(
t j−, yt j

)]

+
∫ T

0
G (s, X (s)) ds +

∫ T

0
〈DF (s, X (s)) ,C(s) dW (s)〉

+
∫ T

0

(

〈B(s), DF (s, X (s))〉 + 1

2
TrH1

[
C(s)QC(s)∗D2F (s, X (s))

]
)

ds

holds in probability.

6 Application to Kolmogorov Equations

6.1 Uniqueness of Solutions

We begin investigating Kolmogorov equation in the abstract setting of Sect. 3, dis-
cussing the particular case of path-dependent Kolmogorov equations afterward. Let
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the spaces H , E , Ẽ , D̃ and U , the Wiener process W and the operator A be as in
Sect. 3; given B : [0, T ] × Ẽ → E and C : [0, T ] × Ẽ → L (U ; H1 × {0}) we can
consider the partial differential equation

{
∂V
∂t (t, x) + 〈DV (t, x), Ax + B (t, x)〉 + 1

2 TrH1

(
C(s, x)QC(s, x)∗D2V (t, x)

) = 0,
V (T, ·) = Φ,

(45)
where the terminal conditionΦ is chosen inC2,α

b (E), the space of twice differentiable
real-valued functions ϕ on E such that ϕ, Dϕ and D2ϕ are bounded and the map
E � x → D2ϕ(x) ∈ L (E; E∗) is α-Hölder continuous.

Definition 1 We say that a function V : [0, T ] × E → R is a classical solution to
Eq. (45) in E if

V ∈ L∞ (
0, T ;C2,α

b (E;R)
)

∩ C ([0, T ] × E;R) ,

V is differentiable with respect to t onT × D̃,T ⊂ [0, T ] being a set of full measure,
and satisfies identity (45) for every t ∈ T and x ∈ D̃.

Assume that B and C are continuous and such that the stochastic SDE

dX (s) = AX (s) + B (s, X (s)) ds + C (s, X (s)) dW (s) for s ∈ [t, T ], X (t) = x
(46)

has a mild solution Xt,x in H for all t ∈ [0, T ] and all x ∈ Ẽ , such that Xt,x (s)
belongs to Ẽ for all s ∈ [t, T ] and that the set

{
Xt,x (s)

}
s∈[t,T ] is almost surely

relatively compact in E .

Theorem 5 Under the aboveassumptions any classical solution toEq. (45) is uniquely
determined on the space Ẽ

Proof Suppose there exists a solution V . Since DV , D2V , B and C are defined on
[0, T ] × Ẽ and are continuous, the function

G(t, x) = −〈B(t, x), DV (t, x)〉 − 1

2
TrRd

[
C(t, x)C(t, x)∗D2V (t, x)

]

is a continuous extension of

∂V

∂t
(t, x) + 〈Ax, DV (t, x)〉

from T × D̃ to [0, T ] × Ẽ , because V satisfies Kolmogorov equation.
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Therefore, we can apply Theorem 2 to obtain

Φ
(
Xt,x (T )

) = V
(
t, Xt,x (t)

) +
∫ T

t
G
(
s, Xt,x (s)

)
ds

+
∫ T

t
〈B (

s, Xt,x (s)
)
, DV

(
s, Xt,x (s)

)〉 ds

+ 1

2

∫ T

t
TrH1

[
C
(
s, Xt,x (s)

)
C
(
s, Xt,x (s)

)∗
D2V

(
s, Xt,x (s)

)]
ds

+
∫ T

t
〈DV

(
s, Xt,x (s)

)
,C

(
s, Xt,x (s)

)
dW (s)〉

= V
(
t, Xt,x (t)

) +
∫ T

t
〈DV

(
s, Xt,x (s)

)
,C

(
s, Xt,x (s)

)
dW (s)〉.

The integral in the last line is actually a stochastic integral in a Hilbert space, since for
every u ∈ UC(s, x)u belongs to H1×{0}; taking expectations in the previous identity
we obtain that

V (t, x) = E
[
Φ
(
Xt,x (T )

)]
.

��
In the path-dependent case the above discussion canbe rephrased as follows.Choose

the spaces H , E , Ẽ , D̃,U and the operator A as inSect. 5. Let,moreover, D
([a, b];Rd

)

denote the space of Rd -valued càdlàg functions on the interval [a, b], equipped with
the supremum norm and set

O = Rd ×
{

ϕ ∈ D
(
[−T, 0);Rd

)
: ∃ lim

s→0− ϕ(s) ∈ Rd
}

.

Then E ⊂ O ⊂ H and O is isomorphic to D
([−T, 0];Rd

)
. Through (36) we can

define MT as a map from O to D
([0, T ];Rd

)
.

For a given continuous path γt ∈ C
([0, t];Rd

)
consider the stochastic differential

equation in Rd

dy(s) = b (s, ys) ds + σ (s, ys) dW (s), s ∈ [t, T ], yt = γt , (47)

and assume that b and σ are regular enough for Eq. (47) to have a continuous solution
yγt (compare Sect. 5.3).

Choose f ∈ C2,α
b

(
D
([0, T ];Rd

))
and define

Φ : O → R

Φ (x) = f (MT x) . (48)

If the operators B, C are defined from b and σ as in (38), (39), we can consider the
infinite-dimensional Kolmogorov backward equation
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{
∂V
∂t (t, x) + 〈DV (t, x), Ax + B (t, x)〉 + 1

2 TrRd

(
C(s, x)C(s, x)∗D2V (t, x)

) = 0,

V (T, ·) = Φ.

(49)
We call Eq. (49) the path-dependent Kolmogorov backward equation associated to the
triple (b, σ, f ). A classical solution V to Eq. (49) uniquely identifies a path-dependent
functional v, which is given by

v (t, γt ) = V
(
t, Ltγt

)
. (50)

Since Ltγt ∈ Ẽ if and only if γt ∈ C
([0, t];Rd

)
, it is an immediate consequence of

Theorem 5 that for every t the function v(t, ·) given by (50) is uniquely determined
on C

([0, t];Rd
)
.

Therefore, our uniqueness result for path-dependent Kolmogorov equations takes
the following form.

Theorem 6 Let b and σ such that Eq. (47) has a continuous solution for every t ∈
[0, T ] and every γt ∈ C

([0, t];Rd
)
. Then, for any f ∈ C2,α

b

(
D
([0, T ];Rd

))
, any

path-dependent functional v such that the function V (t, x) = v (t, Mt x) is a classical
solution to the path-dependent Kolmogorov backward equation associated to (b, σ, f )
is uniquely determined on C

([0, t];Rd
)
.

Proof Set ṽ (t, γt ) = V
(
t, Ltγt

)
. By the definition of MT , the restriction of Φ to E

belongs toC2,α
b (E). Thanks to the assumptions on b and σ , for any γt ∈ C

([0, t];Rd
)

there exists a mild solution Xt,x to Eq. (46) with x = Ltγt ∈ Ẽ . By Propositions 3
and 2 Xt,x takes values in Ẽ and has continuous paths with respect to the topology of
E .

Therefore, we can apply Theorem 5, and hence, ṽ is uniquely determined on
C
([0, t];Rd

)
; but for any γt ∈ Ct

v (t, γt ) = v
(
t, Mt L

tγt
) = V

(
t, Ltγt

) = ṽ (t, γt ) .

��
Remark 5 For γt ∈ C

([0, t];Rd
)
and x = (

γt (t), Ltγt
)T the process Xt,x in the

previous proof is given by
Xt,x (s) = Ls yγt

s .

Therefore, if v and V are as abovewe have, by the definition of solution andTheorem5,
that

v (t, γt ) = V
(
t, Ltγt

)

= E
[
Φ
(
Xt,x (T )

)]

= E
[
f
(
MT X

t,x (T )
)]

= E
[
f
(
MT L

T yγt
T

)]

= E
[
f
(
yγt
T

)]
.

123



822 J Theor Probab (2018) 31:789–826

This is what one would expect to be the solution to a Kolmogorov equation with
terminal condition f associated (in some sense) to the SDE (47).

Notice that the extension of γt introduced by the operator Lt is arbitrary; nevertheless
it does not play any role in the path-dependent Kolmogorov equation since B and C
are defined using Mt ; compare Remark 2.

6.2 Another Example on Kolmogorov Equations

We try to identify a class of functions solving virtually a Kolmogorov type equations.
The inspiration comes from [8], Section 9.9, see also [5], Theorem 3.5 for a variant.

Let N ∈ N, g1, . . . , gN ∈ BV ([0, T ]). We set g0 = 1. We define by Σ (t) the
(N + 1) × (N + 1) matrix

Σi j (t) :=
∫ T

t
gi (s) g j (s) ds.

We suppose that Σ (t) is invertible for any 0 ≤ t < T . We denote by

pt (x) = 1

(2π)
N+1
2

√
detΣ (t)

exp

(

−1

2
xTΣ−1 (t) x

)

the Gaussian density with covariance Σ (t), for t ∈ [0, T ), x ∈ RN+1. Let f :
RN+1 → R be a continuous function with polynomial growth. We set

ĝ j (s) = g j (s + T )

0 ≤ j ≤ N , s ∈ [−T, 0]. We consider H : C ([−T, 0]) → R defined by

H (η) = f

(

η (0) ,

∫

[−T,0]
ĝ1dη, . . . ,

∫

[−T,0]
ĝN dη

)

,

where

∫

[−T,0]
ĝi dη := ĝi (0) η (0) −

∫

[−T,0]
ηdĝi .

To simplify, let us assume gi continuous.
We define U : [0, T ] × R × C ([−T, 0]) → R by

U (t, x, ψ) = Ũ

(

t, x,
∫

[−T,0]
g1 (· + t) dψ, . . . ,

∫

[−T,0]
gN (· + t) dψ

)

, (51)

where Ũ : [0, T ] × R × RN → R is motivated by the following lines.
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We consider the martingale

Mt = E [h|Ft ]

where (with Ŵs = Ws+T , s ∈ [−T, 0]),

h = H
(
Ŵ
) = f

(

WT ,

∫ T

0
g1 (s) dWs, . . . ,

∫ T

0
gN (s) dWs

)

.

We proceed by a finite-dimensional analysis.
We remind that ĝ j (s) = g j (s + T ). We evaluate more specifically the martingale

M . We get

Mt = Ũ

(

t,Wt ,

∫ t

0
g1 (s) dWs, . . . ,

∫ t

0
gN (s) dWs

)

,

where

Ũ (t, x, x1, . . . , xN )

= E

[

f

(

x + WT − Wt , x1 +
∫ T

t
g1dW, . . . , xN +

∫ T

t
gNdW

)]

=
∫

RN+1
f (x + ξ0, x1 + ξ1, . . . , xN + ξN ) pt (ξ) dξ

=
∫

RN+1
f (ξ0, ξ1, . . . , ξN ) pt (x − ξ0, x1 − ξ1, . . . , xN − ξN ) dξ0dξ1 . . . dξN .

By inspection we can show, see also [8], that Ũ ∈ C1,2
([0, T ) × RN+1

)

∂tŨ + 1

2

N∑

i, j=0

Σi j (t)
∂2Ũ

∂xi∂x j
= 0 (52)

Ũ (T, x) = f (x) ,

where x = (x0, x1, . . . , xN ). This can be done via the property of the density ker-
nel (t, ξ) �→ pt (ξ) and classical integration theorems. We set U : [0, T ] × R ×
C ([−T, 0]) → R as in (51).

Proposition 4 Let C2 := C2 ([−T, 0]). The map U has the following properties:

(i) U ∈C0,2,0

(ii) U ∈C1,2,1
(
[0, T ] × R × C2

)

(iii) the map

(t, x, ψ) �−→ A (U ) (t, x, ψ) := ∂tU (t, x, ψ) + 〈
DψU (t, x, ψ) , ψ ′〉

extends continuously on [0, T ] × R × C ([−T, 0]) to an operator still denoted
by A (U ) (t, x, ψ)
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(iv)

∂tU + A (U ) + 1

2
∂2xxU = 0.

Proof (i) Obvious.
(ii) We evaluate the different derivatives for (t, x, ψ) ∈ [0, T ] × R × C2. We get

from (51)

∂tU (t, x, ψ) = ∂tŨ

(

t, x,
∫

[−t,0]
g1 (· + t) dψ, . . . ,

∫

[−t,0]
gN (· + t) dψ

)

+
N∑

j=1

∂ j Ũ

(

t, x,
∫

[−t,0]
g1 (· + t) dψ, . . . ,

∫

[−t,0]
gN (· + t) dψ

)

× d

dt

∫

[−t,0]
g j (· + t) dψ. (53)

Now we observe that

d

dt

∫

[−t,0]
g j (· + t) dψ = d

dt

∫

[−t,0]
g j (ξ) ψ ′ (ξ − t) dξ

= g j (t) ψ ′ (0) −
∫

[−t,0]
g j (ξ) ψ ′′ (ξ − t) dξ

=
∫

[−t,0]
ψ ′ (ξ − t) g′

j (dξ) (54)

(remark that, without restriction of generality, we can take g j (0) = 0). Now we
calculate

〈
DψU (t, x, ψ) , ψ ′〉

=
N∑

j=1

∂ j Ũ

(

t, x,
∫

[−t,0]
g1 (· + t) dψ, . . . ,

∫

[−t,0]
gN (· + t) dψ

)

×
〈

Dψ

∫

[−t,0]
g j (· + t) dψ,ψ ′

〉

. (55)

Now the application

ψ �−→
∫

[−t,0]
g j (· + t) dψ =

∫

[−t,0]
g j (ξ + t) ψ ′ (ξ) dξ

= −
∫

[−t,0]
dψ (ξ)

∫

(ξ+t,0]
dg j (l) = −

∫

(0,t]
dg j (l)

∫

[l−t,0)
dψ (ξ)

= −
∫

(0,t]
dg j (l) ψ (l − t)
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has to be differentiated in the direction ψ ′. Taking into account (53), (54), (55),
it follows that

∂tU (t, x, ψ) + 〈
DψU (t, x, ψ) , ψ ′〉

= ∂tŨ

(

t, x,
∫

[−t,0]
g1 (· + t) dψ, . . . ,

∫

[−t,0]
gN (· + t) dψ

)

(56)

for every ψ ∈ C2. On the other hand by (52) it follows that U ∈C1,2,1([0, T ]×
R × C2).

(iii) By (56), for (t, x, ψ) ∈ [0, T ] × R × C2, we get

A (U ) = ∂tŨ

(

t, x,
∫

[−t,0]
g1 (· + t) dψ, . . . ,

∫

[−t,0]
gN (· + t) dψ

)

.

(iv) This claim follows by inspection, taking into account (52). ��
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