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Abstract Let {X (t) : t ∈ R+} be a stationary Gaussian process with almost surely
(a.s.) continuous sample paths, EX (t) = 0,EX2(t) = 1 and correlation function
satisfying (i) r(t) = 1 − C |t |α + o(|t |α) as t → 0 for some 0 ≤ α ≤ 2 and C > 0;
(ii) supt≥s |r(t)| < 1 for each s > 0 and (iii) r(t) = O(t−λ) as t → ∞ for someλ > 0.
For any n ≥ 1, consider n mutually independent copies of X and denote by {Xr :n(t) :
t ≥ 0} the r th smallest order statistics process, 1 ≤ r ≤ n. We provide a tractable
criterion for assessing whether, for any positive, non-decreasing function f,P(E f ) =
P(Xr :n(t) > f (t) i.o.) equals 0 or 1. Using this criterion we find, for a family of func-
tions f p(t) such that z p(t) = P(sups∈[0,1] Xr :n(s) > f p(t)) = O((t log1−p t)−1), that
P(E f p ) = 1{p≥0}. Consequently, with ξp(t) = sup{s : 0 ≤ s ≤ t, Xr :n(s) ≥ f p(s)},
for p ≥ 0 we have limt→∞ ξp(t) = ∞ and lim supt→∞(ξp(t) − t) = 0 a.s.
Complementarily, we prove an Erdös–Révész type law of the iterated logarithm
lower bound on ξp(t), namely, that lim inf t→∞(ξp(t) − t)/h p(t) = −1 a.s. for
p > 1 and lim inf t→∞ log(ξp(t)/t)/(h p(t)/t) = −1 a.s. for p ∈ (0, 1], where
h p(t) = (1/z p(t))p log log t .
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1 Introduction and Main Results

Let X = {X (t) : t ∈ R+} be a stationary Gaussian process with almost surely (a.s.)
continuous sample paths, EX (t) = 0 and EX2(t) = 1. Suppose that the correlation
function of X, r(t) = EX (t)X (0), satisfies the following regularity assumptions:

r(t) = 1 − C |t |α + o(|t |α) as t → 0 for some 0 ≤ α ≤ 2, C > 0,

r∗(s) = sup
t≥s

|r(t)| < 1 for each s > 0, (1)

r(t) = O(t−2λ) as t → ∞ for some λ > 0. (2)

The analysis of extremes of Gaussian stochastic processes has a long history. The cel-
ebrated double sum method, primarily developed by Pickands, e.g., [8], and extended
by seminal works of Piterbarg, e.g., [10] or monograph [9], plays central role in the
extreme value theory of Gaussian processes. The technique developed there appeared
to be an universal method, which may deliver answers also to classes of non-Gaussian
processes, see for example, recent contributions of [5,6].

Laws of the iterated logarithm take important place in this theory, providing proper-
ties of extremal behavior of stochastic processes on large-time scale. One of important
contributions in this domain is a result on the process ξ = {ξ(t) : t ≥ 0}, defined via
ξ(t) = sup{s : 0 ≤ s ≤ t, X (s) ≥ (2 log s)1/2}. In particular, the law of the iterated
logarithm implies that, see [11,12],

lim sup
t→∞

(ξ(t) − t) = 0 a.s.

Interestingly, under the above regularity assumptions, [12] gave the lower bound of
ξ(t) and obtained an Erdös–Révész type law of the iterated logarithm, that is,

lim inf
t→∞

ξ(t) − t

t (log t)(α−2)/(2α) · log2 t
= − (2 + α)

√
π

αHα(2C)1/α
a.s. if 0 < α < 2, (3)

lim inf
t→∞

log (ξ(t)/t)

log2 t
= − 2

√
π

H2
√
2C

a.s. if α = 2, (4)

where Hα is the Pickands’ constant defined by Hα = limT →∞ T −1
E

esupt∈[0,T ](
√
2Bα/2(t)−tα), with Bα/2 = {Bα/2(t) : t ≥ 0} denoting fractional Brownian

motion with Hurst index α/2 ∈ (0, 1], i.e., a continuous, centered Gaussian process
with covariance function

EBα/2(s)Bα/2(t) = 1

2
(|s|α + |t |α − |t − s|α).

Equation (3) shows that for any t big enough there exists an s in [t − t (log t)(α−2)/(2α) ·
log2 t, t] such that, almost surely, X (s) ≥ (2 log s)1/2 and that the length of the interval
t (log t)(α−2)/(2α) · log2 t is smallest possible. Moreover, the bigger the parameter α is,
the wider the interval will be.
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In this paper, we derive a counterpart of Shao’s result for the order statistics process
Xr :n . Namely, for any n ≥ 0, we consider X1, . . . , Xn, n mutually independent copies
of X and denote by Xr :n = {Xr :n(t) : t ≥ 0} the r th smallest order statistics process,
that is, for each t ≥ 0, 1 ≤ r ≤ n,

X1:n(t) = min
1≤ j≤n

X j (t) ≤ X2:n(t) ≤ . . . ≤ Xn−1:n(t) ≤ max
1≤ j≤n

X j (t) = Xn:n(t).

Our first contribution is the theorem that extends classical findings of Qualls and
Watanabe [11].

Theorem 1 For all functions f that are positive and non-decreasing on some interval
[T,∞), T > 0, it follows that

P
(
E f
) := P (Xr :n(t) > f (t) i.o.) = 0 or 1,

as the integral

I f :=
∫ ∞

T
P

(

sup
t∈[0,1]

Xr :n(t) > f (u)

)

du is finite or infinite.

[1, Theorem 2.2], see also [3], gave the expression for the asymptotic behavior of the
probability in I f , namely

P

(

sup
t∈[0,1]

Xr :n(t) > u

)

= C
1
α

(
n

r̂

)
Hα,r̂ u

2
α (�(u))r̂ (1 + o(1)), as u → ∞, (5)

where r̂ = n − r + 1, �(u) = 1− �(u) and �(u) is the distribution function of unit
normal law,

Hα,k = lim
T →∞ T −1Hα,k(T ) ∈ (0,∞),

Hα,k(T ) =
∫

Rk
e
∑k

i=1 wiP

(

sup
t∈[0,T ]

min
1≤i≤k

(√
2B(i)

α/2(t) − tα − wi

)
> 0

)

dw1 . . . dwk

and B(i)
α/2, 1 ≤ i ≤ n, are mutually independent fractional Brownian motions.Hα,k is

the generalized Pickands’ constant introduced in [2]; see also [1]. Therefore, Theo-
rem 1 provides a tractable criterion for settling the dichotomy of P

(
E f
)
.

For instance, let

f p(s) =
(
2

r̂

(
log s +

(
2 − r̂α

2α
+ 1 − p

)
log2 s

)) 1
2

, p ∈ R.
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One easily checks that, as u → ∞,

P

(

sup
t∈[0,1]

Xr :n(t) > f p(u)

)

= C
1
α

(
n

r̂

) Hα,r̂

(2π)
r̂
2

(
2

r̂

) 2−r̂α
2α (

u log1−p u
)−1

(1 + o(1)).

(6)
Hence, for any p ∈ R,

P
(
Xr :n(t) > f p(t) i.o.

) =
{
1 if p ≥ 0
0 if p < 0

.

Furthermore,

lim sup
t→∞

Xr :n(t)√
log t

=
√
2

r̂
a.s.

Next, consider the process ξp = {ξp(t) : t ≥ 0} defined as

ξp(t) = sup{s : 0 ≤ s ≤ t, Xr :n(s) ≥ f p(s)}.

Since I f p = ∞ for p ≥ 0, Theorem 1 implies that

lim
t→∞ ξp(t) = ∞ a.s. and lim sup

t→∞
(ξp(t) − t) = 0 a.s.

Let, cf. (6),

h p(t) = p

(

P

(

sup
s∈[0,1]

Xr :n(s) > f p(t)

))−1

log2 t.

The second contribution of this paper is an Erdös–Révśz type of law of the iterated
logarithm for the process ξp.

Theorem 2 If p > 1, then

lim inf
t→∞

ξp(t) − t

h p(t)
= −1 a.s.

If p ∈ (0, 1], then

lim inf
t→∞

log
(
ξp(t)/t

)

h p(t)/t
= −1 a.s.

Now, let us complementary put ηp = {ηp(t) : t ≥ 0}, where

ηp(t) = inf{s ≥ t : Xr :n(s) ≥ f p(s)}.
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Since

P
(
ξp(t) − t ≤ −x

) = P

(

sup
s∈(t−x,t]

Xr :n(s)

f p(s)
< 1

)

and

P
(
z − ηp(z) ≤ −x

) = P

(

sup
s∈[z,z+x]

Xr :n(s)

f p(s)
< 1

)

,

then it follows that

lim inf
t→∞

ξp(t) − t

h p(t)
= lim inf

z→∞
z − ηp(z)

h p(z)
. (7)

Theorem 2 shows that for t big enough, there exists an s in [t − h p(t), t] (as well
as in [t, t + h p(t)] by (7)) such that Xr :n(s) ≥ f p(s) and that the length of the
interval h p(t) is smallest possible. One can retrieve (3)–(4) by setting n = 1, and
p = 2−r̂α

2α + 1 = 2+α
2α . Theorem 2 not only generalizes [12, Theorem 1.1], it also

unveils the lacking so far structure of the lower bound of ξp(t) by relating it, via
h p(t), to the asymptotics of the tail distribution of the supremum of the underlying
process evaluated at f p(t); in (3) t (log t)(α−2)/(2α) is of the same asymptotic order as
the reciprocal of P

(
sups∈[0,1] X (s) > (2 log t)1/2

)
. This shines new light on this type

of results, which appear to be intrinsically connected with Gumbel limit theorems; see,
e.g., [7], where the function h p(t) plays crucial role. We shall pursue this elsewhere.

The paper is organized as follows. In Sect. 2, we provide a collection of basic results
on order statistics of stationary Gaussian processes, used throughout the paper, and
prove auxiliary lemmas, which constitute building blocks of the proofs of the main
results. These are given in the final part of the paper, Sect. 3.

2 Auxiliary Lemmas

We begin with some auxiliary lemmas that are later needed in the proofs.
The following lemma is the general form of the Borel–Cantelli lemma; cf. [13].

Lemma 1 Consider a sequence of events {Ek : k ≥ 0}. If

∞∑

k=0

P (Ek) < ∞,

then P (En i.o.) = 0. Whereas, if

∞∑

k=0

P (Ek) = ∞ and lim inf
n→∞

∑
1≤k 	=t≤n P (Ek Et )
(∑n

k=1 P (Ek)
)2 ≤ 1,

then P (En i.o.) = 1.
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The following two lemmas constitute useful tools for approximating the supremum
of Xr :n on a fixed interval by its maximum on a grid with a sufficiently dense mesh.

Lemma 2 There exist positive constants K , c and u0 such that

P

(

max
0≤ j≤u

2
α /θ

Xr :n( jθu− 2
α ) ≤ u − θ

α
4

u
, sup

t∈[0,1]
Xr :n(t) > u

)

≤ K u
2r̂
α (�(u))r̂ θ

α
2 −1�(cθ− α

4 ),

for each θ > 0 and u ≥ u0.

Proof Note that, by stationarity, there exists a constant K , that may vary from line to
line, such that, for sufficiently large u,

P

(
max

0≤ j≤u
2
α /θ

Xr :n( jθu− 2
α ) ≤ u − θ

α
4

u
, sup

t∈[0,1]
Xr :n(t) > u

)

≤ u
2
α

θ
P

(

Xr :n(0) ≤ u − θ
α
4

u
, sup

t∈[0,1]
Xr :n(t) > u

)

≤ u
2
α

θ

(
n

r

)(
n

n − r + 1

)
P

(
∀i=1,...,r Xi (0) ≤ u − θ

α
4

u
,∀ j=r,...,n sup

t∈[0,1]
X j (t) > u

)

≤ K
u

2
α

θ
P

(

Xr (0) ≤ u − θ
α
4

u
, sup

t∈[0,1]
Xr (t) > u

)(

P

(

sup
t∈[0,1]

X (t) > u

))n−r

≤ K u
2r̂
α (�(u))r̂ θ

α
2 −1�(cθ− α

4 ).

The last inequality follows from (5) and the classical result of [7, Lemma 12.2.5],
where the constant c > 0 is given therein. ��
The proof of the following lemma follows line-by-line the same reasoning as the proof
of [1, Theorem 2.2], and thus we omit it.

Lemma 3 For any θ > 0, as u → ∞,

P

(

max
0≤ j≤u

2
α /θ

Xr :n( jθu− 2
α ) > u

)

= C
1
α

(
n

r̂

)Hα,r̂ (θ)

θ
(�(u))r̂ (1 + o(1)).

The next lemma follows directly from [4, Theorem 2.4] and is a generalization of the
classical Berman’s inequality to order statistics.

Lemma 4 For some n, d ≥ 1, and any 1 ≤ l ≤ n let {ξ (0)
l (i) : 1 ≤ i ≤ d}

and {ξ (1)
l (i) : 1 ≤ i ≤ d} be a sequence of N (0, 1) variables and set σ

(κ)
il, jk =

Eξ
(κ)
l (i)ξ (κ)

k ( j), κ = 0, 1. For any 1 ≤ r ≤ n and 1 ≤ i ≤ d, let ξ
(κ)
r :n (i) be the rth
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order statistic of ξ
(κ)
1 (i), ..., ξ (κ)

n (i). Suppose that, for any 1 ≤ i, j ≤ d, 1 ≤ l, k ≤
n, κ = 0, 1,

σ
(κ)
il, jk = σ

(κ)
i j 1{l=k}

for some σ
(κ)
i j . Now define

ρi j = max
(∣∣∣σ (0)

i j

∣∣∣ ,
∣∣∣σ (1)

i j

∣∣∣
)

, A(r)
i j =

∫ σ
(1)
i j

σ
(0)
i j

(1 + |h|)(n−r)/2

(1 − h2)r̂/2
dh.

Then, for any u1, . . . , ud > 0, for some positive constant Cn,r depending only on n
and r,

P

(
d⋂

i=1

{
ξ (0)

r :n (i) ≤ ui

})

− P

(
d⋂

i=1

{
ξ (1)

r :n (i) ≤ ui

})

≤ Cn,r

∑

1≤i< j≤d

(
ui + u j

)−(n−r)
(

A(r)
i j

)+
exp

⎛

⎝−
r̂
(

u2
i + u2

j

)

2(1 + ρi j )

⎞

⎠ .

Lemma 5 Under the conditions of Theorem 2, for any ε ∈ (0, 1), there exist positive
constants K and ρ depending only on ε, α and λ such that

P

(

sup
S≤t≤T

Xr :n(t)

f p(t)
≤1

)

≤exp

(

− (1 − ε)

(1 + ε)

∫ T

S+1
P

(

sup
t∈[0,1]

Xr :n(t) > f p(u)

)

du

)

+ K S−ρ,

for any T − 1 ≥ S ≥ K .

Proof Let, for any i ≥ 0 and ε ∈ (0, 1),

si = S + i(1 + ε), ti = si + 1, xi = f p(ti ), Ii = (si , ti ].

For some θ > 0, define grid points in the interval Ii , as follows

si,u = si + uqi , 0 ≤ u ≤ Li , Li = [1/qi ], qi = θx
− 2

α

i . (8)

Since f p is an increasing function, it easily follows that, with T (S, ε) = [(T − S −
1)/(1 + ε)],

P

(

sup
S≤t≤T

Xr :n(t)

f p(t)
≤ 1

)

≤ P

⎛

⎝
T (S,ε)⋂

i=0

{

sup
t∈Ii

Xr :n(t) ≤ xi

}⎞

⎠

≤ P

⎛

⎝
T (S,ε)⋂

i=0

{
max

0≤u≤Li
Xr :n(si,u) ≤ xi

}
⎞

⎠ .
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For any 1 ≤ l ≤ n and i ≥ 0, let Xl,i be an independent copy of the process Xl .
Define a sequence of processes Yl = {Yl(t) : t ∈ ∪i Ii } as Yl(t) = Xl,i (t), if t ∈ Ii .
Let Yr :n = {Yr :n(t) : t ≥ 0} be the r th order statistic of Y1, . . . , Yn . Put

σ
(0)
il, jk := EXl(i)Xk( j) = r (| j − i |) 1{l=k} =: σ

(0)
i j 1{l=k},

σ
(1)
il, jk := EYl(i)Yk( j) = r (| j − i |) 1{l=k}1{∃m:i, j∈Im } =: σ

(1)
i j 1{l=k},

and note that

ρi j = max
(∣∣∣σ (0)

i j

∣∣∣ ,
∣∣∣σ (1)

i j

∣∣∣
)

= |r (| j − i |) |,

A(r)
i j =

∫ σ
(1)
i j

σ
(0)
i j

(1 + |h|)2(n−r)

(1 − h2)r̂/2
dh = 1{∀m:i, j /∈Im }

∫ r( j−i)

0

(1 + |h|)2(n−r)

(1 − h2)r̂/2
dh

=: 1{∀m:i, j /∈Im }| Ã(r)
i j |. (9)

Now using Lemma 4 we find that

P

⎛

⎝
T (S,ε)⋂

i=0

{
max

0≤u≤Li
Xr :n(si,u) ≤ xi

}⎞

⎠

≤
T (S,ε)∏

i=0

P

(
max

0≤u≤Li
Xr :n(si,u) ≤ xi

)

+ Cn,r

∑

0≤i< j≤T (S,ε)

∑

0≤u≤Li
0≤v≤L j

(
xi x j

)−(n−r)
∣∣∣ Ã(r)

si,us j,v

∣∣∣ exp

⎛

⎝−
r̂
(

x2i +x2j

)

2(1+|r(s j,v − si,u)|)

⎞

⎠

=: P1 + P2.

Estimate of P1.
Since Xr :n is a stationary process, from Eq. 5 combined with Lemma 3, for any

ε ∈ (0, 1), sufficiently large θ and S,

P1 ≤ exp

⎛

⎝−
T (S,ε)∑

i=0

P

(
max

0≤u≤Li
Xr :n(si,u) > xi

)⎞

⎠

≤ exp

⎛

⎝−(1 − ε)

T (S,ε)∑

i=0

P

(

sup
t∈[0,1]

Xr :n(t) > f p(ti )

)⎞

⎠

≤ exp

(

−1 − ε

1 + ε

∫ T

S+1
P

(

sup
t∈[0,1]

Xr :n(t) > f p(u)

)

du

)

.

Estimate of P2.
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Noting that, for any 0 ≤ i < j, 0 ≤ u ≤ Li , 0 ≤ v ≤ L j ;

s j,v − si,u = s j + vq j − si − uqi = ( j − i)(1 + ε) + vq j − uqi ≥ ( j − i)ε,

we have

sup
0≤u≤Li ,
0≤v≤L j

|r(s j,v − si,u)| ≤ sup
|s−s′|≥( j−i)ε

|r(s − s′)| = r∗(( j − i)ε) ≤ r∗(ε) < 1.

Without loss of generality assume that λ < 2. From (2) it follows that there is s0 such
that for every s > s0,

r∗(s) ≤ s−λ ≤ min(1, λ)/4.

Finally, since the integrand in the definition of Ã(r)
si,us j,v is continuous and bounded on[0, r∗(ε)], there exists a generic constant K not depending on S and T , which may

differ from line to line, such that

∣∣∣ Ã(r)
si,us j,v

∣∣∣ ≤ K |r(s j,v − si,u)| ≤ Kr∗(( j − i)ε).

Therefore, for sufficiently large S,

P2 ≤ K
∑

0≤i< j≤T (S,ε)

Li L jr
∗ (( j − i)ε) exp

(

− r̂(x2i + x2j )

2(1 + r∗ (( j − i)ε)

)

≤ K

⎛

⎜⎜
⎝

∑

0< j−i≤2s0
0≤i< j≤T (S,ε)

+
∑

j−i>2s0
0≤i< j≤T (S,ε)

⎞

⎟⎟
⎠ (·)

≤ K

( ∞∑

i=0

x
4
α

i exp

(

− r̂ x2i
1 + r∗ (ε)

)

+
∑

j−i>2s0
0≤i< j≤T (S,ε)

x
2
α

i x
2
α

j ( j − i)−λ exp

(

− r̂(x2i + x2j )

2(1 + λ
4 )

))

≤ K

⎛

⎜⎜
⎝

∞∑

i=0

t
− 2

1+√
r∗(ε)

i +
∑

j−i>2s0
0≤i< j≤T (S,ε)

t
− 1

1+ λ
2

i t
− 1

1+ λ
2

j ( j − i)−λ

⎞

⎟⎟
⎠ .

We can bound the first sum from the above by

K
∞∑

i=0

(S + i)
− 2

1+√
r∗(ε) ≤ K S− 1−√

r∗(ε)

4 .
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The second sum is bounded from above by

∑

S≤i< j<∞
i
− 1

1+ λ
2 j

− 1
1+ λ

2 ( j − i)−λ =
∞∑

j=S

j
− 1

1+ λ
2

j−1∑

i=S

i
− 1

1+ λ
2 ( j − i)−λ

≤
∞∑

j=S

j
− 1

1+ λ
2

⎛

⎝( j/2)−λ

[ j/2]∑

i=S

i
− 1

1+ λ
2 + ( j/2)

− 1
1+ λ

2

j−1∑

i=[ j/2]
( j − i)−λ

⎞

⎠

≤ K
∞∑

j=S

j
− 1

1+ λ
2

(

j
−λ+1− 1

1+ λ
2 + j

− 1
1+ λ

2 (log j · 1{λ∈[1,2)} + j−λ+11{λ∈(0,1)})
)

≤ K

⎛

⎝
∞∑

j=S

j
− 2

1+ λ
2 log j · 1{λ∈[1,2)} +

∞∑

j=S

j
1−λ− 2

1+ λ
2 · 1{λ∈(0,1)}

⎞

⎠

≤ K

(

S
1− 2

1+ λ
2 log S · 1{λ∈[1,2)} + S

2−λ− 2
1+ λ

2 · 1{λ∈(0,1)}

)

.

Hence, for some positive constant ρ, depending only on ε, α and λ,

P2 ≤ K S−ρ,

which finishes the proof. ��

Lemma 6 Under the conditions of Theorem 2, for any ε ∈ (0, 1), there exist positive
constants K and ρ depending only on ε, α and λ such that

P

⎛

⎝
[T −S]⋂

i=0

⎧
⎨

⎩
max

0≤u≤[y
2
α

i /θi ]
Xr :n(S + i + uθi y

− 2
α

i ) ≤ yi − θ
α/4
i

yi

⎫
⎬

⎭

⎞

⎠

≥ 1

4
exp

(

−(1 + ε)

∫ T

S
P

(

sup
t∈[0,1]

Xr :n(t) > f p(u)

)

du

)

− K S−ρ,

for any T − 1 ≥ S ≥ K , where yi = f p(S + i) and θi = y
− 8

α

i .

Proof Let, for any i ≥ 0, ai = S + i so that yi = f p(ai ). Define grid points in the
interval (ai , ai+1] as follows

ai,u = ai + uqi , 0 ≤ u ≤ Li , Li = [1/qi ], qi = θi y
− 2

α

i . (10)
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Finally, put ŷi = yi − θ
α
4

i /yi . Similarly as in the proof of Lemma 5, using Lemma 4
we have

P

([T −S]⋂

i=0

{
max

0≤u≤Li
Xr :n(ai,u) ≤ ŷi

})

≥
[T −S]∏

i=0

P

(
max

0≤u≤Li
Xr :n(ai,u) ≤ ŷi

)

− Cn,r

∑

0≤i< j≤[T −S]

∑

0≤u≤Li
0≤v≤L j

(
ŷi ŷ j

)−(n−r)
(
− Ã(r)

ai,ua j,v

)+

exp

⎛

⎝−
r̂
(

ŷ2i + ŷ2j

)

2(1 + |r(a j,v − ai,u)|)

⎞

⎠

=: P ′
1 − P ′

2,

where Ã(r)
ai,ua j,v is as in (9).

Estimate of P ′
1.

Note that, by Lemma 3 combined with Eq. 5,

P ′
1 ≥ 1

4
exp

(

−
[T −S]∑

i=0

P

(
max

0≤u≤Li
Xr :n(ai,u) > ŷi

))

≥ 1

4
exp

(

−
[T −S]∑

i=0

P

(

sup
t∈[0,1]

Xr :n(t) > ŷi

))

≥ 1

4
exp

(

−(1 + ε)

[T −S]∑

i=0

P

(

sup
t∈[0,1]

Xr :n(t) > yi

))

≥ 1

4
exp

(

−(1 + ε)

∫ T

S
P

(

sup
t∈[0,1]

Xr :n(t) > f p(u)

)

du

)

,

provided that S is sufficiently large.
Estimate of P ′

2.
Noting that, for j ≥ i + 2, and any 0 ≤ u ≤ Li , 0 ≤ v ≤ L j ;

a j,v − ai,u = a j + vq j − ai − uqi ≥ j − i − 1,

we have

sup
0≤u≤Li
0≤v≤L j

|r(a j,v − ai,u)| ≤ sup
|s−s′|≥ j−i−1

|r(s − s′)| = r∗( j − i − 1) ≤ r∗(1)<1. (11)
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Since the integrand in definition of Ã(r)
ai,ua j,v is continuous and bounded on [0, r∗(1)],

there exists a constant K such that

∣∣∣ Ã(r)
ai,ua j,v

∣∣∣ ≤ Kr(a j,v − ai,u) ≤ Kr∗( j − i − 1) < K .

On the other hand, by (1), there exist positive constants s0 < 1, such that, for every
0 ≤ s ≤ s0,

Ã(r)
0s ≥ r(s) ≥ 1 − 2|s|α > 0.

Hence,

(− Ã(r)
ai,ua j,v

)+ = 0, if j = i + 1, 1 + vq j − uqi ≤ s0, (12)

|r(a j,v − ai,u)| ≤ r∗(s0) < 1, if j = i + 1, 1 + vq j − uqi > s0 (13)

Therefore, by (11)–(13) we obtain

P ′
2 ≤

∑

0≤i≤[T −S]−1
j=i+1

∑

0≤u≤Li
0≤v≤L j

1√
1 − r∗(s0)

exp

(

− r̂(ŷ2i + ŷ2j )

2(1 + r∗(s0))

)

+
∑

0≤i≤[T −S]−2
i+2≤ j≤[T −S]

∑

0≤u≤Li
0≤v≤L j

r∗( j − i − 1)√
1 − r∗(1)

exp

(

− r̂(ŷ2i + ŷ2j )

2(1 + r∗( j − i − 1))

)

.

Completely similar to the estimation of P2 in the proof of Lemma 5, we can arrive
that there exist positive constants K and ρ, independent of S and T , such that, for
sufficiently large S,

P ′
2 ≤ K S−ρ.

��

The following lemma is a straightforward modification of Lemmas 3.1 and 4.1 of
[14] and [11, Lemma 1.4].

Lemma 7 If Theorem 1 is true under the additional condition that for large t,

2

r̂
log t ≤ f 2(t) ≤ 3

r̂
log t, (14)

it is true without the additional condition.
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3 Proofs of the Main Results

Proof of Theorem 1 Note that the caseI f < ∞ is straightforward and does not need
any additional knowledge on process Xr :n apart from the assumption of stationarity.
Indeed, for sufficiently large T ,

∞∑

i=[T ]+1

P

(

sup
t∈[i,i+1]

Xr :n(t)> f (i)

)

=
∞∑

i=[T ]
P

(

sup
t∈[0,1]

Xr :n(t)> f (i + 1)

)

≤I f <∞,

and the Borel–Cantelli lemma completes this part of the proof since f is an increasing
function.

Now let f be any increasing function such that I f ≡ ∞. With the same notation
as in Lemma 5 with f instead of f p, we find that, for any S > 0,

P (Xr :n(s) > f (s) i.o.) ≥ P

({

sup
t∈Ii

Xr :n(t) > xi

}

i.o.

)

≥ P

({
max

1≤u≤Li
Xr :n(si,u) > xi

}
i.o.

)
,

where, recall, si,u = S + i(1+ ε) + uθx−2/α
i , Li = [1/(θx−2/α

i )], θ, ε > 0. Further-
more, for sufficiently large S and θ , cf. estimation of P1,

∞∑

i=0

P

(
max

1≤u≤Li
Xr :n(si,u) > xi

)
≥ 1 − ε

1 + ε

∫ ∞

S
P

(

sup
t∈[0,1]

Xr :n(t) > f (u)

)

du = ∞.

(15)
Let Ei = {max1≤u≤Li Xr :n(si,u) ≤ xi }, and note that

1 − P
(
Ec

i i.o.
) = lim

m→∞

∞∏

k=m

P (Ek) + lim
m→∞

(

P

( ∞⋂

k=m

Ek

)

−
∞∏

k=m

P (Ek)

)

.

The first limit is zero as a consequence of (15), and the second limit will be zero
because of the asymptotic independence of the events Ek . Indeed, there exist positive
constants K and ρ, such that for any n > m,

Am,n =
∣∣
∣∣∣
P

(
n⋂

k=m

Ek

)

−
n∏

k=m

P (Ek)

∣∣
∣∣∣
≤ K (S + m)−ρ,

by the same calculations as in the estimate of P2 in Lemma 5 after realizing that,
by Lemma 7, we might restrict ourselves to the case when (14) holds. Therefore,
P
(
Ec

i i.o.
) = 1, which finishes the proof. ��
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Proof of Theorem 2 Step 1. Let p > 1, then, for every ε ∈ (0, 1
4 ),

lim inf
t→∞

ξp(t) − t

h p(t)
≥ −(1 + 2ε)2 a.s.

��
Proof Let {Tk : k ≥ 1} be a sequence such that Tk → ∞, as k → ∞. Put Sk =
Tk − (1 + 2ε)2h p(Tk). Then by Lemma 5,

P

(
ξp(Tk) − Tk

h p(Tk)
≤ −(1 + 2ε)2

)
= P

(
ξp(Tk) ≤ Sk

) = P

(

sup
Sk<t≤Tk

Xr :n(t)

f p(t)
< 1

)

≤ exp

(

− (1 − ε)

(1 + ε)

∫ Tk

Sk+1
P

(

sup
t∈[0,1]

Xr :n(t) > f p(u)

)

du

)

+ 2K T −ρ
k ,

where the last inequality follows by the fact that h p(t) = o(t), so that Sk ∼ Tk . Note
that as k → ∞

∫ Tk

Sk+1
P

(

sup
t∈[0,1]

Xr :n(t) > f p(u)

)

du ∼ (1 + 2ε)2h p(Tk)P

(

sup
t∈[0,1]

Xr :n(t) > f p(Tk)

)

= (1 + 2ε)2 p log2 Tk . (16)

Now take Tk = exp(k1/p). Then

∞∑

k=0

P
(
ξp(Tk) ≤ Sk

) ≤ 2K
∞∑

k=0

k−(1+ε/2) < ∞.

Hence, by the Borel–Cantelli lemma,

lim inf
k→∞

ξp(Tk) − Tk

h p(Tk)
≥ −(1 + 2ε)2 a.s. (17)

Since ξ(t) is a non-decreasing random function of t , for every Tk ≤ t ≤ Tk+1, we
have

ξp(t) − t

h p(t)
≥ h p(Tk)

h p(Tk+1)

ξp(Tk) − Tk+1

h p(Tk)
= h p(Tk)

h p(Tk+1)

(
ξp(Tk) − Tk

h p(Tk)
− Tk+1 − Tk

h p(Tk)

)
.

For p > 1 elementary calculus implies

lim
k→∞

Tk+1 − Tk

h p(Tk)
= 0, lim

k→∞
h p(Tk)

h p(Tk+1)
= 1,
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so that

lim inf
t→∞

ξp(t) − t

h p(t)
≥ lim inf

k→∞
ξp(Tk) − Tk

h p(Tk)
a.s.,

which finishes the proof of this step. ��

Step 2. Let p > 1, then, for every ε ∈ (0, 1
4 ),

lim inf
t→∞

ξp(t) − t

h p(t)
≤ −(1 − ε) a.s.

Proof As in the proof of the lower bound, put

Tk = exp(k(1+ε2)/p), Sk = Tk − (1 − ε)h p(Tk), k ≥ 1.

Let

Bk = {ξp(Tk) ≤ Sk} =
{

sup
Sk<s≤Tk

Xr :n(s)

f p(s)
< 1

}

.

It suffices to show P (Bn i.o.) = 1, that is

lim
m→∞P

( ∞⋃

k=m

Bk

)

= 1. (18)

Let ak
i = Sk + i and define grid points in the interval [ak

i , ak
i+1] as follows

ak
i,u = ak

i + uqk
i , 0 ≤ u ≤ Lk

i , Lk
i = [1/qk

i ], qk
i = θk

i (yk
i )−

2
α , θk

i =
(

yk
i

)− 8
α

,

yk
i = f p(a

k
i ).

Put

Ak =
[Tk−Sk ]⋂

i=0

{

max
0≤u≤Lk

i

Xr :n(ak
i,u) ≤ yk

i − θk
i /yk

i

}

.

Clearly, for m ≥ 1,

P

( ∞⋃

k=m

Ak

)

≤ P

( ∞⋃

k=m

Bk

)

+
∞∑

k=m

P
(

Ak ∩ Bc
k

)
.

123



594 J Theor Probab (2018) 31:579–597

Put ŷk
i = yk

i − θk
i /yk

i . Then, by Lemma 2, for some constants K independent of S and
T , which may vary between (and among) lines,

∞∑

k=m

P
(

Ak ∩ Bc
k

) ≤
∞∑

k=m

[Tk−Sk ]∑

i=0

P

(

max
0≤u≤Lk

i

Xr :n(ak
i,u) ≤ ŷk

i , sup
s∈[0,1]

Xr :n(s) ≥ yk
i

)

≤ K
∞∑

k=m

∞∑

i=0

(yk
i )

2r̂
α �(yk

i )(θk
i )

α
2 −1�

(
K (θk

i )−
α
4

)

≤ K
∞∑

k=m

∞∑

i=0

(ak
i log

1−p ak
i )−1(log ak

i )
4
α
−3α exp

(

− log2 ak
i

K

)

≤ K
∞∑

k=m

∞∑

i=0

(Sk + i)−3(log(Sk + i))
4
α
−3α+p−1

≤ K
∞∑

k=m

S−1
k ≤ K m−4,

provided m is large enough. Therefore,

lim
m→∞

∞∑

k=m

P
(

Ak ∩ Bc
k

) = 0

and

lim
m→∞P

( ∞⋃

k=m

Bk

)

≥ lim
m→∞P

( ∞⋃

k=m

Ak

)

.

To finish the proof of (18), we only need to show that

P (An i.o.) = 1. (19)

Similarly to (16), we have

∫ Tk

Sk

P

(

sup
t∈[0,1]

Xr :n(t) > f p(u)

)

du ∼ (1 − ε)p log2 Tk .

Now from Lemma 6 it follows that

P (Ak) ≥ 1

4
exp

(
−(1 − ε2)p log2 Tk

)
− K S−ρ

k ≥ 1

8
k−(1−ε4),

123



J Theor Probab (2018) 31:579–597 595

for every k sufficiently large. Hence,

∞∑

k=1

P (Ak) = ∞. (20)

Applying Lemma 4, we get for 0 ≤ t < k

P (Ak At ) ≤ P (Ak)P (At ) + Mk,t , (21)

where, similarly to the proof of Lemma 5,

Mk,t =Cn,r

∑

0≤i≤[Tk−Sk ]
0≤ j≤[Tt −St ]

∑

0≤u≤Lk
i

0≤v≤Lt
j

(
ŷk

i ŷt
j

)−(n−r)
∣∣
∣
∣ Ã

(r)

sk
i,ust

j,v

∣∣
∣
∣ exp

⎛

⎝−
r̂
(
(ŷk

i )2 + (ŷt
j )
2
)

2(1 + |r(sk
i,u − st

j,v)|)

⎞

⎠ ,

where

∣∣∣∣ Ã
(r)

sk
i,ust

j,v

∣∣∣∣ ≤ K
∣∣∣r(sk

i,u − st
j,v)

∣∣∣ .

It is easy to see that,

Sk+1 − Tk

Tk+1 − Tk
∼ 1, as k → ∞,

so that, for 0 ≤ t < k and k large enough, and assuming without loss of generality
that λ < 2,

∣∣∣r(sk
i,u − st

j,v)

∣∣∣ ≤ r∗(Sk − Tt ) ≤ r∗(Sk − Tk−1) ≤ Kr∗
(
1

2
(Tk − Tk−1)

)

≤ 2K (Tk − Tk−1)
−λ

≤ min(1, λ)/16.

Therefore,

Mk,t ≤ K (Tk − Tk−1)
−λ

∑

0≤i≤[Tk−Sk ]
0≤ j≤[Tt −St ]

Lk
i Lt

j exp

⎛

⎝−
r̂
(
(ŷk

i )2 + (ŷt
j )
2
)

2(1 + λ
8 )

⎞

⎠

≤ K (Tk − Tk−1)
−λLk

[Tk−Sk ]L
t
[Tt −St ]

∑

0≤i≤[Tk−Sk ]
0≤ j≤[Tt −St ]

(ak
i )

− 1
1+ λ

4 (at
j )

− 1
1+ λ

4
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≤ K (Tk − Tk−1)
−λ log

5
α Tk log

5
α Tt · T

λ
4

k T
λ
4

t

≤ K T
− λ

4
k ≤ K exp(−λk(1+ε2)/p/4).

Hence we have, ∑

0≤t<k<∞
Mk,t < ∞. (22)

Now (19) follows from (21), (22) and (20) and the general form of the Borel–Cantelli
lemma. ��
Step 3. If p ∈ (0, 1], then, for every ε ∈ (0, 1

4 ),

lim inf
t→∞

log
(
ξp(t)/t

)

h p(t)/t
≥ −(1 + 2ε)2 a.s. (23)

and

lim inf
t→∞

log
(
ξp(t)/t

)

h p(t)/t
≤ −(1 − ε) a.s. (24)

Proof Put

Tk = exp(k1/p), Sk = Tk exp
(
−(1 + 2ε)2h p(Tk)

)
.

Proceeding the same as in the proof of (17), one can obtain that

lim inf
k→∞

log
(
ξp(Tk)/Tk

)

h p(Tk)/Tk
≥ −(1 + 2ε)2 a.s.

On the other hand it is clear that

lim inf
t→∞

log
(
ξp(t)/t

)

h p(t)/t
≥ lim inf

k→∞
log
(
ξp(Tk)/Tk

)

h p(Tk)/Tk
a.s.

since

lim
k→∞

log (Tk/Tk+1)

h p(Tk)/Tk
= 0, lim

k→∞
h p(Tk)

Tk

Tk+1

h p(Tk+1)
= 1.

This proves (23).
Let

Tk = exp
(

k(1+ε2)/p
)

, Sk = Tk exp
(−(1 − ε)h p(Tk)

)
.

Noting that

Sk+1 − Tk

Sk+1
∼ 1 as k → ∞,

123



J Theor Probab (2018) 31:579–597 597

along the same lines as in the proof of (18), we also have

lim inf
k→∞

log
(
ξp(Tk)/Tk

)

h p(Tk)/Tk
≤ −(1 − ε) a.s.,

which proves (24). ��
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