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Abstract We consider a measure-valued diffusion (i.e., a superprocess). It is deter-
mined by a couple (L , ψ), where L is the infinitesimal generator of a strongly recurrent
diffusion in R

d and ψ is a branching mechanism assumed to be supercritical. Such
processes are known, see for example, (Englander and Winter in Ann Inst Henri
Poincaré 42(2):171–185, 2006), to fulfill a law of large numbers for the spatial distri-
bution of the mass. In this paper, we prove the corresponding central limit theorem.
The limit and the CLT normalization fall into three qualitatively different classes
arising from “competition” of the local growth induced by branching and global
smoothing due to the strong recurrence of L . We also prove that the spatial fluc-
tuations are asymptotically independent of the fluctuations of the total mass of the
process.
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1 Introduction

1.1 Model

Let {Pt }t≥0 be the semigroup of a strongly recurrent diffusion on R
d with the

infinitesimal generator L . We also introduce the so-called branching mechanism
ψ : R+ �→ R+. It is represented as

ψ(λ) = −αλ + βλ2 +
∫
R+

(
e−λx − 1 + λx

)
�(dx), (1.1)

where α, β ∈ R, β > 0 and � is a measure concentrated on R+ such that∫
R+ min(x2, x)�(dx) < +∞. In this paper, we will study the behavior of a super-
process {Xt }t≥0 with the infinitesimal operator L (or equivalently, with the semigroup
P) and branching mechanism ψ . It is a time-homogenous, measure-valued Markov
process.As such it is characterized by a transition kernel,which in our case is expressed
in terms of its Laplace transform

− logE(e−〈 f,Xt 〉|X0 = ν) =
∫
Rd

u f (x, t)ν(dx), (1.2)

where t ≥ 0, f ∈ b+(Rd) (bounded, positive and measurable functions on R
d ) and

ν ∈ MF (Rd) (finite, compactly supported measures). The function u f (x, t) is the
unique nonnegative solution of the integral equation

u f (x, t) = Pt f (x) −
∫ t

0
Pt−s[ψ(u f (·, s))](x)ds. (1.3)

For the technical details of this construction, we refer the reader to [6,7]. The above
definition could appear quite abstract, but actually any superprocess has a natural
interpretation as the short lifetime and high-density limit of branching particle systems
(see, for example, Introduction of [8] and Sect. 1.3). There is a vast body of literature
concerning various aspects of superprocesses, e.g., [6,7,9,10].

1.2 Results: Outline

We postpone a formal description of our assumptions and results to Sects. 3 and 4
providing now intuitions.

In this paper, we are interested in the supercritical case in which the system grows
exponentially (on the event of survival). The rate of growth is given by −ψ ′(0) = α

which, in this paper, is assumed to be strictly positive:

−ψ ′(0) = α > 0.

It is standard to prove that the limit: V∞ := limt→+∞ e−αt |Xt |, where |Xt | := 〈Xt , 1〉
is the total mass of the system, exists and is a non-trivial random variable. The semi-
groupP corresponds to a strongly recurrent diffusionwith its unique invariantmeasure
denoted by ϕ.
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Superprocesses of this type fulfill a spatial law of large numbers. In a nutshell and
without specifying detailed assumptions, recall [8, Theorem 1], this means that for
any bounded continuous function f , we have

lim
t→+∞ e−αt 〈Xt , f 〉 = 〈ϕ, f 〉V∞, in probability.

The goal of our paper is to prove the corresponding central limit theorem. This will
be achieved by studying the spatial fluctuations:

〈Xt , f 〉 − |Xt |〈ϕ, f 〉
Nt

, (1.4)

where Nt is some norming, not necessarily deterministic.
Before further discussion we need to quantify the recurrence of P. For the sake of

discussion, not being quite precise, we assume that there exists

μ > 0,

such that for a bounded continuous function f , the quantity Pt f − 〈 f, ϕ〉 decays
exponentially fast at rate μ. The behavior of (1.4) depends qualitatively on the sign
of α − 2μ. Roughly speaking, it reflects the interplay of two antagonistic forces, the
growth which is local and makes the system more coarse and the smoothing induced
by the spatial evolution corresponding to P. The results split into three qualitatively
different classes:

Small growth rate α < 2μ see Theorem 4. In this case, “the smoothing” prevails
and the formulation of the result resembles the standard CLT. The normalization
is Nt = |Xt |1/2 (which is of order e−(α/2)t ), and the limit is Gaussian, though its
variance is given by a complicated formula. Moreover, the limit does not depend
on X0.
Critical growth rate α = 2μ see Theorem 6. In this case, we are in a situation
of a delicate balance between “the growth and “the smoothing” with the growth
being “somewhat stronger.” The normalization is slightly bigger compared to the
classical case: Nt = t1/2|Xt |1/2. The limit still does not depend on X0.
Large growth rate α > 2μ see Theorem 8. In this case “the growth” prevails. The
normalization is even bigger: Nt = e(α−μ)t (we have α − μ > α/2 and therefore
Nt 
 √|Xt |). What is perhaps most surprising the limit holds in probability. In
addition, the growth is so fast that the limit depends on the starting configuration
X0. Moreover, we suspect that the limit is non-Gaussian.

In either case, we prove that the spatial fluctuations (1.4) become independent of the
fluctuations of the total mass:
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|Xt | − eαt V∞
|Xt |1/2 ,

as the time increases.

1.3 Related Results

In [2], the authors established central limit theorem results for the branching particle
system in which particles move according to the Ornstein–Uhlenbeck process (i.e.,
the one with infinitesimal generator L f = 1

2σ
2
 f − μ (x · grad f )) and branch after

exponential time into two particles. Such a system is closely related to the super-
process with L and ψ(λ) = αλ + βλ2. In fact, it can be defined as the weak limit of
branching particle systems. In the nth approximation, the system starts from a particle
configuration distributed according to a Poisson point process with intensity nν (ν is
the starting distribution of the superprocess). Each particles carries mass 1/n and lives
for an exponential time with parameter 1/n. During this time, it executes a random
movement according to an Ornstein–Uhlenbeck process. When it dies, the particle is
replaced by a random number of offspring. The mean of this number is supposed to
be 1+ α/n, while the variance 2β. Each particle evolves independently of the others.
We note that this construction can be extended to general L and ψ (see, for example,
[8]).

In [2], the authors studiedfluctuations akin to (1.4) discovering three regimes similar
to the list above. The particle point of view gives arguably more compelling intuitions.
Having this picture in mind, it might be easier to understand the discussion above;
moreover, some further heuristics are given in [2, Remarks 3.4, 3.9, 3.13].

Although [2] was inspiration for this paper, it must be stressed that the approxima-
tion, insightful as it is, cannot be easily used as a proof method in the superprocess
setting nor the proofs of [2] can be transferred directly. The main difficulty compared
to the branching systems is that a superprocess is not a discrete object. This was over-
come using the backbone construction developed in [5]. It represents a supercritical
superprocess as a subcritical superprocess (called dressing) immigrating continuously
on top of a branching diffusion. Controlling the aggregate behavior of the dressing
was the main technical issue to be resolved in this paper. This was achieved using
analytical estimates of the behavior of P, which is a different approach then the cou-
pling techniques applied in [2]. It is noteworthy that these analytical methods proved
to be much more robust and allowed to obtain results for a quite general class of L .
Moreover, in this paper we work with a general branching mechanism ψ , assuming
only finite fourth moment.

Related problems for branching particle systems were also considered in [1,4].

1.4 Organization

The next section presents notation and basic facts required further. Section 3 contains
formulation of the assumptions. Section 4 is devoted to the presentation of our results.
The proofs are deferred to Sects. 5, 6, 7 and 8 and “Appendix.”
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2 Preliminaries and Notation

Let us first recall the notions which appeared in the introduction. P is the semigroup
of the diffusion process with the infinitesimal operator L . To shorten the notation for
α ∈ R, we define a semigroup

{Pα
t

}
t≥0 by

Pα
t f (x) := eαtPt f (x). (2.1)

MF is the space of finite, compactly supported measures and b+(Rd) is the space
of bounded, positive and measurable functions on R

d . By c1, c2, . . ., we will denote
generic constants which might vary from line to line.

For a measure ν and a measurable function f , we write 〈 f, ν〉 := ∫
Rd f (x)ν(dx),

provided it exists, and by |ν|, we denote its total mass, i.e., |ν| := 〈1, ν〉 (we allow it
to be infinite).

We will use C0 to denote the space of continuous functions which grow at most
polynomially. Formally:

C0 = C0(Rd) :=
{
f : Rd �→ R : f is continuous and

there exists n such that | f (x)|/‖x‖n → 0 as ‖x‖ → +∞
}

.

We will use R1, R2, . . . to denote generic functions for C0, and these may vary from
line to line.

For x, y ∈ R
n by x · y, we denote the usual scalar product. By →d , we denote

convergence in law.
The parameter α in (1.1) is the rate of growth of the model. By Ext, we denote the

event that the process becomes extinguished, i.e.,

Ext :=
{

lim
t→+∞ |Xt | = 0

}
. (2.2)

It is well known that P (Ext) = e−λ∗|X0| where

λ∗ is the largest root of ψ(λ) = 0. (2.3)

Clearly, in the supercritical case we have λ∗ > 0.

3 Assumptions

In this section, we state precisely the assumptions on the branching mechanism ψ and
the diffusion semigroup P. We will discuss them and give an example in Sect. 4.4

B1 The branching mechanism ψ given by (1.1) is non-trivial, precisely either β �= 0
or � �= 0. It is supercritical, i.e., α > 0. Moreover, � fulfills

∫
R+

max
(
x4, x2

)
�(dx) < +∞.
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These conditions imply

ψ ′(0) = −α, ψ(i)(0) < +∞, for i ∈ {2, 3, 4} ,

and ψ ′′(0) �= 0.

Further, we formulate assumptions on the semigroup P. Note that our formulation,
although not themost compact, is chosen so that it is easy to verify and apply in proofs.
Such a presentation also highlights what properties are essential for proofs.

S1 The semigroup P has the unique invariant probability measure ϕ. We require that
any f ∈ C0(Rd) is integrable with respect to ϕ and for any x ∈ R

d

lim
t→+∞Pt f (x) = 〈 f, ϕ〉.

We will use f̃ to denote the centering of f with respect to ϕ i.e.,

f̃ := f − 〈 f, ϕ〉. (3.1)

We note that Pt f̃ = Pt f − 〈 f, ϕ〉 and for f = const we have f̃ = 0.
S2 There existsμ > 0 such that for any function f ∈ C0(Rd) one can find R ∈ C0(Rd )

fulfilling
|Pt f̃ (x)| ≤ R(x)e−μt . (3.2)

S3 There exist μ > 0 and h : Rd �→ R
k (for some k ≥ 1) such that h �= 0 for any

i ∈ {1, . . . , k} we have hi ∈ C0(Rd) and for any t ≥ 0

Pt h = e−μt h.

Moreover, for any function f ∈ C0(Rd), there are R ∈ C0(Rd) and a bounded
function r : R+ �→ R+ such that r(t) ↘ 0 and

|eμtPt f̃ (x) − h(x) · 〈 f h, ϕ〉| ≤ R(x)r(t). (3.3)

Note that for any t ≥ 0, we have 〈Pt h, ϕ〉 = 0 (indeed by the fact that ϕ is invariant
we have 〈Pt h, ϕ〉 = 〈h, ϕ〉 and moreover 〈Pt h, ϕ〉 = e−μt 〈h, ϕ〉).

We note that (S3) implies (S2). Indeed one can obtain (3.2) easily by dividing (3.3)
by eμt . We note also that (S1) and (S2) imply the following fact. For any f ∈ C0(Rd),
there exists R ∈ C0(Rd) such that for any t ≥ 0

|Pt f (x)| ≤ R(x). (3.4)

Remark 1 Conditions (S1), (S2) and (S3) state, roughly speaking, that the diffusion
associatedwithP is strongly recurrent with the spectral gapμ. It might be possible that
these conditions can be verified using a Bakry–Emery-type condition or by Foster–
Lyapunov criteria.We refer to the classicalwork [13]. Section 6 addresses the so-called
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exponential ergodicitywhichmight be useful for checking (S1) and (S2). Property (S3)
seems harder to be check in generality, one can use the asymptotics of the transition
density (as in the subsequent example).Othermethods include using tools of functional
analysis as, for example, [14, Sect. 3].

Example 2 Let us consider a superprocess with

L f = 1

2
σ 2
 f − γ (x · grad f ) , (3.5)

i.e., the infinitesimal operator of an Ornstein–Uhlenbeck process, where σ > 0 and
γ > 0 and ψ(λ) = −αλ + βλ2 for α, β > 0. It is obvious that (B1) holds. It is well
known that the unique invariant distribution ϕ of L has density

( γ

πσ 2

)1/2
exp

(
− γ

σ 2 ‖x‖2
)

.

Moreover, for any f ∈ C0 we have the following representation:

Pt f (x) = E f
(
xe−γ t + ou(t)G

)
,

where ou(t) := √
1 − e−2γ t and G is distributed according to ϕ. Using this repre-

sentation conditions, (S1), (S2) and (S3) can be verified quite easily (we refer to [1,
Section 6]). Let us just mention that the function h in (S3) is h(x) = x and μ = γ .
The limit objects V∞ and H∞ can be given a more explicit representation. V∞ is dis-
tributed according to Exp(|X0|−1) and H∞ is non-Gaussian. More information about
the joint distribution of (V∞, H∞) is contained in forthcoming Conjecture 14 which
can be proved in this particular case.

4 Results

We start with a brief discussion of the behavior of the total mass of the superprocess,
i.e., {|Xt |}t≥0. Let {Vt }t≥0 be defined by

Vt := e−αt |Xt |. (4.1)

Fact 3 Under assumption (B1), the process {Vt }t≥0 is a positive martingale with
respect to its natural filtration. Moreover, it converges

V∞ := lim
t→+∞ Vt , a.s. and in L2. (4.2)

Therefore, V∞ is non-trivial (e.g., EV∞ = V0). We also have

Var(V∞) = σ 2
V |X0|, σV := ψ ′′(0)

α
. (4.3)
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The proof of themartingale property and (4.2) is analogous to the proof of forthcoming
Fact 13 and is left to the reader.

We recall that α > 0 is the growth rate of the system (see (1.1)) and thatμ > 0 is the
constant introduced in (S2)–(S3). Analogously to the presentation in the introduction,
we split this section into three parts depending on the sign of α − 2μ.

4.1 Slow Growth α < 2μ

We recall (2.1), (3.1) and define

σ 2
f := ψ ′′(0)

∫ ∞

0
eαs〈

(
Ps f̃ (·)

)2
, ϕ〉ds. (4.4)

Let us also remind the event Ext in (2.2) and σV given in (4.3). The main result of this
section is

Theorem 4 Let {Xt }t≥0 be the superprocess starting from X0 ∈ MF (Rd). Let us
assume that (B1), (S1), (S2) and α < 2μ hold. Then, for any f ∈ C0(Rd) we have
σ f < +∞ and conditionally on the event Extc the following holds

(
e−αt |Xt |, |Xt |−eαt V∞√|Xt | ,

〈Xt , f 〉−|Xt |〈 f, ϕ〉√|Xt |
)

→d (V̂∞,G1,G2), as t →+∞,

(4.5)
whereG1 ∼ N (0, σ 2

V ),G2 ∼ N (0, σ 2
f )and V̂∞ is V∞ conditionedonExtc.Moreover,

the random variables V̂∞,G1,G2 are independent.

Remark 5 The law of the first coordinate of the limit depends on X0 only though its
total mass |X0| (see Fact 3). The second and third coordinate do not depend on X0 at
all.

The proof is given in Sect. 6.

4.2 Critical Growth α = 2μ

We recall the function h from (S3) and define

σ 2
f := ψ ′′(0)〈(h · 〈 f h, ϕ〉)2 , ϕ〉. (4.6)

Using (S1) and (S3), one easily checks that for f ∈ C0 we have σ 2
f < +∞. Let us

remind the event Ext in (2.2) and σV given by (4.3). The main result of this section is

Theorem 6 Let {Xt }t≥0 be the superprocess starting from X0 ∈ MF (Rd). Let us
assume that (B1), (S1), (S2), (S3) and α = 2μ hold. Then, for any f ∈ C0(Rd) and
conditionally on the event Extc the following holds

(
e−αt |Xt |, |Xt | − eαt V∞√|Xt | ,

〈Xt , f 〉 − |Xt |〈 f, ϕ〉
t1/2

√|Xt |
)

→d (V̂∞,G1,G2), as t → +∞,
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whereG1 ∼ N (0, σ 2
V ),G2 ∼ N (0, σ 2

f )and V̂∞ is V∞ conditionedonExtc.Moreover,

the variables V̂∞,G1,G2 are independent.

The proof is given in Sect. 8.

4.3 Fast Growth α > 2μ

Let h be the function from (S3). We define a process {Ht }t≥0 by

Ht := e−(α−μ)t 〈Xt , h〉. (4.7)

Fact 7 Let us assume (B1), (S1), (S2) and (S3). The process H is a martingale and
under assumption α > 2μ it is L2-bounded.

From this fact, it follows that in the setting of this section, the limit

H∞ := lim
t→+∞ Ht , (4.8)

exists both a.s. and in L2. Let us remind the event Ext in (2.2) and σV given by (4.3).
The main result of this section is

Theorem 8 Let {Xt }t≥0 be the superprocess starting from X0 ∈ MF (Rd). Let us
assume that (B1), (S1), (S2), (S3) and α > 2μ hold. Then, for any f ∈ C0(Rd)

conditionally on the event Extc the following holds

(
e−αt |Xt |, |Xt | − eαt V∞√|Xt | ,

〈Xt , f 〉 − |Xt |〈 f, ϕ〉
exp ((α − μ)t)

)
→d (V̂∞,G, 〈 f h, ϕ〉 · Ĥ∞),

as t → +∞, (4.9)

where G ∼ N (0, σ 2
V ), the variables V̂∞, Ĥ∞ are, respectively, H∞, V∞ conditioned

on Extc and (V̂∞, Ĥ∞),G are independent. Moreover

(
e−αt |Xt |, 〈Xt , f 〉 − |Xt |〈 f, ϕ〉

exp ((α − μ)t)

)
→ (V∞, 〈 f h, ϕ〉·H∞), in probability. (4.10)

Remark 9 The law of H∞ exhibits non-trivial dependence on the starting condition
X0 and V∞, H∞ are not independent. We expect that H∞ is non-Gaussian. We make
those observations precise in Conjecture 14 which is illustrated using the Ornstein–
Uhlenbeck superprocess from Example 2. We notice that being the limit of infinitely
divisible processes, the pair (V∞, H∞) is also infinitely divisible. Determining its
Lévy exponent would be an interesting result, though it seems unlikely to be obtained
in a general setting.

The convergence of the second coordinate in (4.10) is closer to a law of large
numbers than to a central limit theorem. Intuitively speaking, the system grows so
fast that the fluctuations become localized. This also manifests itself in the fact that

123



10 J Theor Probab (2018) 31:1–40

the normalization is much bigger than the classical one. Writing exp((α − μ)t) =
exp(αt) exp(−μt), we can decompose the normalization into exp(αt) and exp(−μt).
The first term corresponds to the standard law of large numbers, and the second
one reflects the fact that the mass of the system, roughly speaking, is distributed
according toP∗

t (themeasure adjoint toPt ).More precisely by (S3),wehave eμtPt f̃ ≈
h · 〈 f h, ϕ〉. Following these observations, we also conjecture that the convergence
above holds almost surely.

The proofs are given in Sect. 7.

4.4 Discussion and Remarks

Remark 10 In our paper, we assume (B1) which states that the branching mechanism
admits fourth moment. We use this assumption to verify Lyapunov’s condition in the
proof of central limit theorems. It seems that existence of (2 + ε)-moment for some
ε > 0 should be sufficient, but we do not have the necessary formulas to calculate
moments of superprocess in such a case. Further, it is not unlikely that the existence
of second moment is enough for the results to hold.

An interesting question would be to go beyond this assumption. Namely, to study
branching laws with heavy tails. It is natural to expect a different normalization and
convergence to stable laws.

5 Proof Preliminaries

In this section, we gather necessary prerequisites for the proofs in Sects. 6, 7 and 8.

5.1 Backbone Construction

Supercritical superprocesses admit a beautiful and insightful description known as the
backbone construction/decomposition. According to this construction, a supercritical
superprocess consists of subcritical superprocesses (the so-called dressing) immigrat-
ing along the so-called (prolific) backbone which is a supercritical branching particle
system. This allows to transfer many results concerning supercritical branching sys-
tems to superprocesses. On the conceptual level, this paper follows the strategy of [2],
which presents CLTs for some branching particle systems. The main issue is to control
the behavior of the dressing. We will comment on that once again after presenting the
decomposition (5.7).

Now we briefly discuss some aspects of the backbone construction referring the
reader to [5, Sect. 2.4] for more details.1 Let us recall the branching mechanism given
by (1.1), we assume that it is supercritical, i.e., α > 0. Let λ∗ be the largest root of
ψ(λ) = 0. We denote

ψ∗(λ) := ψ(λ + λ∗). (5.1)

1 This section is shortened version of the description in [5]. The author thanks the authors of [5] for letting
him to use it.
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This happens to be a valid branching mechanism, and thus, we may consider a super-
process with this branching mechanism, it will be referred to as X∗. It is subcritical,
i.e., its total mass decays exponentially fast with rate

α∗ = −(ψ∗)′(0) = −ψ ′(λ∗) < 0. (5.2)

The inequality follows by the fact that ψ is strictly convex. Next we define

F(s) := 1

λ∗ψ ′(λ∗)
ψ(λ∗(1 − s)). (5.3)

It is the generating function of the branching law of the backbone process {Zt }t≥0.
More precisely, it is a Markov process consisting of finite number of individuals. Each
of them from themoment of birth lives for an independent and exponentially distributed
period of time with parameter ψ ′(λ∗) during which it executes an L-diffusion started
from its position of birth and at death gives birth at the same position to an independent
number of offspring with distribution described by F . The configuration of particles
can be naturally identified with an atomic measure. The space of such measures is
denoted by Ma(R

d).

Definition 11 Fix ν ∈ MF (Rd) and γ ∈ Ma(R
d). Let Z be a branching particle

diffusion (i.e., a backbone) with initial configuration γ and X0,∗ be an independent
copy of X∗ (i.e., with subcritical branching mechanism (5.1)) such that X0,∗

0 = ν. We
define aMF (Rd)-valued stochastic process {�t }t≥0 by

� = X0,∗ + I, (5.4)

where the processes {I }t≥0 is independent of X0,∗. This process has a certain path-
wise description, namely I consists of a subcritical superprocess immigrating along
the backbone process. The full description is presented in [5]. The joint process
{(�t , Zt )}t≥0 is Markovian, we denote its law by Pν×γ . The following equation char-
acterizes the transition kernel of this process

Eν×γ exp(−〈 f,�t 〉 + 〈h, Zt 〉) = e−〈u∗
f (·,t),ν〉−〈v f,h(·,t),γ 〉

, (5.5)

where f, h ∈ b+(Rd) and e−v f,h(x,t) is the unique [0, 1]-valued solution of the integral
equation

e−v f,h(x,t) = Pt

[
e−h

]
(x) + 1

λ∗∫ t

0
Pt−s

[
ψ∗ (

−λ∗e−v f,h(·,s)+u∗
f (·, s)

)
−ψ∗ (

u∗
f (·, s)

)]
(x)ds,

(5.6)

where u∗
f is the solution of (1.3) with the subcritical branching mechanism ψ∗ given

by (5.1).
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12 J Theor Probab (2018) 31:1–40

We now present the main result concerning the backbone construction. First we ran-
domize the law of Pν×γ for ν ∈ MF (Rd) by replacing the deterministic choice of γ

with a Poisson random measure having intensity λ∗ν. We denote the resulting law by
Pν .

Theorem 12 ([5, Theorem 2]) For any ν ∈ MF (Rd), under the measure Pν the
process � is Markovian and has the same law as X starting from X0 = ν.

For any 0 ≤ s < t , we decompose the immigration process I (see (5.4)) as follows

It = Ds
t−s +

|Zs |∑
i=1

�
i,s
t−s,

where
{
Ds
t

}
t≥0 describes the evolution of the dressing which appeared in the system

before time s. The process �i,s describes the mass which immigrated along the sub-
tree stemming from the i th prolific individual at time s located at Zs(i) (we choose
any enumeration of the particles of Z ). We have thus the following decomposition of
�

�t = X0,∗
t + Ds

t−s +
|Zs |∑
i=1

�
i,s
t−s . (5.7)

Let us define
{
Y s
t

}
t≥0 by

Y s
t := X0,∗

t+s + Ds
t . (5.8)

We have Y s
0 = Xs and Y evolves according the subcritical branching mechanism ψ∗.

Subcriticality is fundamental for our proof because this process is negligible when
t 
 s. The third term of (5.7) is a sum of random variables indexed by the branching
process Z to which techniques similar to [2] can be applied. Each of the processes �i,s

performs Markovian evolution described by (5.5) with the starting conditions ν = 0
and γ = δZt (i).

5.2 Martingales and Their Limits

We recall V and H (given by (4.1) and (4.7)). We define their analogues
{Wt }t≥0 , {It }t≥0, associated with the backbone process Z . Namely,

Wt := e−αt |Zt |, (5.9)

It := e−(α−μ)t 〈Zt , h〉, (5.10)

where h is the eigenfunction introduced in (S3).
Let us assume that V, H,W and I are defined for the backbone construction.

Fact 13 Let us assume that (B1), (S1) and (S2) hold. Then, W is a positive, L2-
bounded martingale. We denote its limit by W∞. Moreover

V∞ = 1

λ∗ W∞, a.s. (5.11)
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If, in addition, (S3) holds then I is a martingale, which for α > 2μ is L2-bounded. In
this case the limit

I∞ = lim
t→+∞ It ,

exists a.s and in L2. Moreover

H∞ = 1

λ∗ I∞, a.s. (5.12)

The proof uses some facts which are presented later and thus is postponed to Sect. 7.
By Theorem 12, the backbone Z starts with a random number of particles. The

definitions of W and I and the convergences remain valid under assumption Z0 = δ0
(i.e., one particle located at 0). We denote the joint limit in this case by ( Ǐ∞, W̌∞).
We conjecture the following behavior of the law of (H∞, V∞).

Conjecture 14 Let us assume that (B1), (S1), (S3) and α > 2μ hold and let{
( Ǐ i∞, W̌ i∞)

}
i≥1

be an i.i.d. sequence distributed according to ( Ǐ∞, W̌∞). Let ν ∈
MF (Rd) and N be a Poisson point process with intensity ν independent of the
sequence. We define

Ĥ∞ := 1

λ∗

⎛
⎝ |N |∑

i=1

Ǐ i∞ +
|N |∑
i=1

h(xi )W̌
i∞

⎞
⎠ , V̂∞ := 1

λ∗

⎛
⎝ |N |∑

i=1

W̌ i∞

⎞
⎠ ,

where |N | is the number of points in N and (x1, . . . , x|N |) are their positions.
Let (H∞, V∞) be the limits of martingales (4.2) and (4.8) for the superprocess

starting from X0 = ν then

(H∞, V∞) =d (Ȟ∞, V̌∞).

The conjecture is supported by the fact that it holds in the case of superprocess from
Example 2. In this case, it follows simply by Fact 13, Theorem 12 and an analogous
decomposition for the Ornstein–Uhlenbeck branching process given in [2, Proposi-
tion 3.11]. In [2, Remark 3.14], it is proven also that in this case H∞ is not Gaussian.

5.3 Moments

This section is devoted to the presentation of themoment formulas of processes appear-
ing in the proofs. In the paper,we utilizemoments up to order 4.We recall the branching
mechanisms ψ and ψ∗ given in (1.1) and (5.1).

Given f ∈ C0(Rd), we define u1f , u
2
f : Rd ×R+ �→ R and u∗,1

f , u∗,2
f : Rd ×R+ �→

R by

u1f (x, t) := Pα
t f (x), u∗,1

f (x, t) := Pα∗
t f (x). (5.13)
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14 J Theor Probab (2018) 31:1–40

u2f (x, t) := −ψ ′′(0)
∫ t

0
Pα
t−s

[(
u1f (·, s)

)2]
(x)ds,

u∗,2
f (x, t) := −(ψ∗)′′(0)

∫ t

0
Pα∗
t−s

[(
u∗,1
f (·, s)

)2]
(x)ds. (5.14)

Further, let

B3 = {(1, 1, 0), (3, 0, 0)} , B4 = {(1, 0, 1, 0), (0, 2, 0, 0), (2, 1, 0, 0), (4, 0, 0, 0)} ,

(5.15)
and

{
c1m

}
m∈B3∪B4

be constants to be specified later.We define u∗,3
f , u∗,4

f : Rd ×R+ �→
R by

u∗,k
f (x, t) :=

∫ t

0
Pα∗
t−s

⎡
⎣ ∑

m∈Bk
c1m

k∏
j=1

(
u∗, j
f (·, s)

)m j

⎤
⎦ (x)ds. (5.16)

We define also V 1
f , V

2
f : Rd × R+ �→ R by

V 1
f (x, t) := −eαt − eα∗t

λ∗ Pt f (x), (5.17)

V 2
f (x, t) := 1

λ∗

∫ t

0
Pα
t−s

[
ψ ′′(0)

(Pα
s f (·))2 − ψ ′′(0)

(
u∗,1
f (·, s)

)2

− (α − α∗)u∗,2
f (·, s)

]
(x)ds. (5.18)

Finally, we set V 3
f , V

4
f : Rd × R+ �→ R as

V k
f (x, t) :=

∫ t

0
Pα
t−s

⎡
⎣ ∑

m∈Bk
c2m

k∏
j=1

(
−λ∗V j

f + u∗, j
f

)m j

− (α − α∗)u∗,k
f −

∑
m∈Bk

c3m

k∏
j=1

(
u∗, j
f

)m j

⎤
⎦ (x)ds, (5.19)

where
{
c2m

}
m∈B3∪B4

and
{
c3m

}
m∈B3∪B4

are constants to be specified. The usefulness
of these formulas follows by

Lemma 15 Under assumption (B1) and (S1) for any f ∈ C0(Rd) formulas (5.13),
(5.14), (5.16), (5.17), (5.18) and (5.19) are well defined (in particular all quantities
are finite). They can used to calculate moments, viz.

(1) For any X0 ∈ MF (Rd) we have

E〈Xt , f 〉 = 〈u1f (·, t), X0〉, Var (〈Xt , f 〉) = −〈u2f (·, t), X0〉. (5.20)
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Similar formulas hold for the subcritical superprocess with the branching mech-
anism ψ∗, namely

E〈X∗
t , f 〉 = 〈u∗,1

f (·, t), X0〉, Var
(〈X∗

t , f 〉) = −〈u∗,2
f (·, t), X0〉. (5.21)

(2) There is a choice of constants
{
c1m

}
,
{
c2m

}
and

{
c3m

}
such that for x ∈ R and

k ≤ 4 we have
E0×δx 〈 f,�t 〉k = (−1)kV k

f (x, t). (5.22)

Remark 16 We recall that the process � was defined in Definition 11. Formula (5.22)
will be used to calculate moments of �i,s in (5.7). To this end, notice that under E0×δx

the process � has the same law as
{
�
i,s
u

}
u≥0

under condition Zs(i) = x .

Moreover, we note that the constants
{
c1m

}
,
{
c2m

}
and

{
c3m

}
can be specified explic-

itly though are not relevant to our proofs.

Using these formulas, we analyze the process Y s defined in (5.8). Let f ∈ C0(Rd),
and using the strong Markov property, (5.20) and (5.21), we obtain

E〈Y s
t , f 〉 = EEXs 〈X∗

t , f 〉 = eα∗t
E〈Xs,Pt f 〉 = eαseα∗t 〈Ps(Pt f ), X0〉

= eαs+α∗t 〈Pt+s f, X0〉, (5.23)

where under the measure EXs , the process X∗ is a subcritical superprocess starting
from Xs . In the last transformation, we used the fact that P is a semigroup. Now, by
α∗ < 0, we see that indeed Y s

t is negligible for t 
 s.
It will be useful to have the following bounds

Lemma 17 Assume (B1), (S1) and (S2). Given f ∈ C0(Rd) there exists R ∈ C0(Rd)

such that
|u2f (x, t)| ≤ e2αt R(x), |u∗,2

f (x, t)| ≤ eα∗t R(x), (5.24)

and
|u∗,3

f (x, t)| ≤ eα∗t R(x), |u∗,4
f (x, t)| ≤ eα∗t R(x), (5.25)

finally also
V 2
f (x, t) ≤ e2αt R(x). (5.26)

The proofs of Lemmas 15 and 17 are technical and thus postponed to “Appendix.” We
will also need moment formulas for the backbone process. We skip proofs referring
the reader to [11] and derivation on [2, Sect. 4.1].

Lemma 18 Let us assume (B1) and (S1). Let Z be the backbone process as in Theorem
12. Then, there exists C > 0 such that for any f ∈ C0(Rd) we have

E〈Z , f 〉 = 〈Pα
t f, λ∗ν〉. (5.27)

E〈Z , f 〉2 = λ∗
∫
Rd

(
Pα
t

[
f 2

]
(x) + C

∫ t

0
Pα
t−s

[
(Pα

s f (·))2
]
(x)ds

)
ν(dx),

(5.28)

where we recall that λ∗ is given by (2.3).
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6 Proof of Theorem 4

In this section we fix f ∈ C0(Rd) and make the standing assumption that (B1), (S1),
(S2) and α < 2μ hold.

Let us first outline the proof. We use the decomposition of � given in (5.7). We
recall that V∞ is the limit of themartingale V (see (4.1) and Fact 3), that f̃ = f −〈 f, ϕ〉
and finally (2.3). We start with the following random vectors

K1(t) :=
(
e−αt |�t |, e−(α/2)t (|�t | − eαt V∞), e−(α/2)t 〈�t , f̃ 〉

)
.

K5(t) :=
⎛
⎝e−αt |Zt |/λ∗, e−(kα/2)t

�|�kt |�∑
i=1

(1 − V i∞), e−(α/2)t
|Zt |∑
i=1

(Mi
t − mi

t )1{‖Zt (i)‖<log t}
⎞
⎠,

(6.1)

where
{
V i∞

}
i∈N are i.i.d. copies of V∞, Mi

t := e−((k−1)α/2)t 〈�i,t
(k−1)t , f̃ 〉 and mi

t

:= E
(
Mi

t |Zt
) = E

(
Mi

t |Zt (i)
)
(k and further details of definitions will be specified

later).
We will show that

lim
t→+∞ [K1(t) − K5(t)] = 0, in probability. (6.2)

Next, we will consider a random vector related to K5 defined by

K6(t) :=
⎛
⎝e−αt |Zt |/λ∗, �|�kt |�−1/2

�|�kt |�∑
i=1

(1−V i∞),
(|Zt |/λ∗)−1/2

|Zt |∑
i=1

(Mi
t −mi

t )1{‖Zt (i)‖<log t}
⎞
⎠.

(6.3)
We will show that conditionally on the set of non-extinction Extc (see (2.2)), we have

K6(t) →d (V̂∞,G1,G2), (6.4)

where the limit is as in (4.5). From these results, Theorem 4 follows by standard
arguments.

Before going to the proofs, we recall (3.1) and σ 2
f given by (4.4) and we state the

following technical lemma.

Lemma 19 We have σ 2
f < +∞ and

lim
t→+∞ sup

‖x‖≤log t
|e−αt V 2

f̃
(x, t) − σ 2

f /λ
∗| = 0, (6.5)

Moreover, there exists R ∈ C0(Rd) such that

|V 4
f̃
(x, t)| ≤ e2αt R(x). (6.6)

The proof is deferred to the end of this section.
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6.1 Proof of (6.2)

We will proceed defining auxiliary K2(t), K3(t), K4(t) and proving that for i ∈
{1, 2, 3, 4} we have

lim
t→+∞ |Ki+1(t) − Ki (t)| = 0, in probability.

This clearly will establish (6.2). Let us fix k ∈ N such that (we recall that α∗ is
negative) k > max

(
μ/(μ − α/2),−α/α∗) . (6.7)

We set

K2(t) :=
(
e−αt |Zt |/λ∗, e−(kα/2)t (|�kt | − ekαt V∞), e−(kα/2)t 〈�kt , f̃ 〉

)
. (6.8)

Obviously, the limit of K1(kt) is the same as the one of K1(t). Moreover, we recall
(5.9), and by Fact 3 and Fact 13, we have Vkt − Wt/λ

∗ → 0 a.s. Therefore, |K2(t) −
K1(t)| → 0 almost surely.

We will now concentrate on the second coordinate. The process of the total mass
{|�t |}t≥0 is a continuous-state branching processes (CSBP) (see [12, Sect. 10]. As
such, it enjoys the branching property (see [12, 10.1]). Thus, for s ≥ kt we may
decompose

|�s | =
�|�kt |�∑
i=1

Fi
s−kt + F̂s−kt , (6.9)

where
{
Fi
s

}
s≥0 are independent CSBPs having the initial mass 1 and

{
F̂s

}
s≥0

is a

CSBP with the initial mass |�kt | − �|�kt |�. Analogously to (4.1) processes V i
s :=

e−αs Fi
s and V̂s := e−αs F̂s are positive martingales with the respective limits V i∞ and

V̂∞ as described in Fact 3. Passing to the limit in (6.9), we get

V∞ = e−kαt

⎛
⎝�|�kt |�∑

i=1

V i∞ + V̂∞

⎞
⎠ .

One easily checks that

e−(kα/2)t
(
|�kt | − ekαt V∞

)
−e−(kα/2)t

�|�kt |�∑
i=1

(1 − V i∞)=e−(kα/2)t
(
|�kt |−�|�kt |�−V̂∞

)
→0,

(6.10)
in probability.
We pass to analyze the third coordinate of (6.8). We recall that Mi

t =
e−((k−1)α/2)t 〈�i,t

(k−1)t , f̃ 〉 and observe that by (5.7) and (5.22) we have

E

∣∣∣∣∣∣e
−(kα/2)t 〈�kt , f̃ 〉 − e−(α/2)t

|Zt |∑
i=1

Mi
t

∣∣∣∣∣∣ ≤ e−(kα/2)t
E〈Y t

(k−1)t , | f̃ |〉 → 0. (6.11)
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This follows easily by (5.23) and (6.7) (the second proviso). To recapitulate, we set

K3(t) :=
⎛
⎝e−αt |Zt |/λ∗, e−(kα/2)t

�|�kt |�∑
i=1

(1 − V i∞), e−(α/2)t
|Zt |∑
i=1

Mi
t

⎞
⎠ . (6.12)

By (6.10) and (6.11), we have |K3(t) − K2(t)| → 0.
We recall also mi

t = E
(
Mi

t |Zt
) = E

(
Mi

t |Zt (i)
)
, with Zt (i) being the location of

the i th particle of Z (in some ordering). We define

K4(t) :=
⎛
⎝e−αt |Zt |/λ∗, e(kα/2)t

�|�kt |�∑
i=1

(1 − V i∞), e−(α/2)t
|Zt |∑
i=1

(Mi
t − mi

t )

⎞
⎠ .

By (5.22) and assumption (S2), we have

|mi
t | ≤ c1e

−((k−1)α/2)t e(k−1)αt |P(k−1)t f̃ (Zt (i))| ≤ e(α(k−1)/2)t e−μ(k−1)t R1(Zt (i)).

Further by (3.4), (5.27), the fact that X0 ∈ MF (Rd) and using the first proviso of
(6.7) we obtain

E

⎛
⎝e−(α/2)t

|Zt |∑
i=1

|mi
t |
⎞
⎠ ≤ e(α/2)t eα((k−1)/2)t e−μ(k−1)t 〈Pt R1, X0〉 → 0. (6.13)

In this way, we have established that |K3(t) − K4(t)| → 0.
Finally, we deal with |K5(t)−K4(t)|. We introduce truncation in order to be able to

control moments in the next section and Lemma 19. The choice of log t is somewhat
arbitrary. We define I (t) and use the conditional expectation to calculate

I (t) := E

⎛
⎝e−(α/2)t

|Zt |∑
i=1

(Mi
t − mi

t )1{‖Zt (i)‖≥log t}
⎞
⎠

2

= e−αt
E

⎛
⎝ |Zt |∑

i=1

E

(
(Mi

t − mi
t )
2|Zt (i)

)
1{‖Zt (i)‖≥log t}

⎞
⎠

≤ e−αt
E

⎛
⎝ |Zt |∑

i=1

E

(
(Mi

t )
2|Zt (i)

)
1{‖Zt (i)‖≥log t}

⎞
⎠. (6.14)

We recall (5.18), (5.22) and obtain

E

(
(Mi

t )
2|Zt

)
≤ c1e

−((k−1)α)t
∫ (k−1)t

0
Pα

(k−1)t−s

[(
Pα
s f̃ (·)

)2

+
(
u∗,1
f̃

(·, s)
)2 + u∗,2

f̃
(·, s)

]
(Zt (i))ds.
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We treat the first term. By (S2), α < 2μ and (3.4), we obtain

c1e
−((k−1)α)t

∫ (k−1)t

0
Pα

(k−1)t−s

[(
Pα
s f̃ (·)

)2]
(Zt (i))ds

≤
∫ (k−1)t

0
e(α−2μ)sP(k−1)t−s

[
R2
1

]
(Zt (i))ds ≤ R2(Zt (i)).

Other terms are easier and left to the reader. We conclude that

E

(
(Mi

t )
2|Zt

)
≤ R3(Zt (i)). (6.15)

By (5.27) and the Cauchy–Schwarz inequality, we conclude that

I (t) ≤ e−αt
E

⎛
⎝ |Zt |∑

i=1

R3(Zt (i))1{‖Zt (i)‖≥log t}
⎞
⎠ = λ∗〈Pt

[
R3(·)1{‖·‖≥log t}

]
, X0〉

≤ |X0| sup
x∈supp(X0)

[
Pt R

2
4(x)

]1/2 [(Pt1‖·‖≥log t
)
(x)

]1/2
.

For any x ∈ R, using (S1), we get

lim sup
t→+∞

(Pt1‖·‖≥log t
)
(x) ≤ lim sup

y→+∞
lim sup
t→+∞

(Pt1‖·‖≥y
)
(x) = lim sup

y→+∞
〈1‖·‖≥y, ϕ〉 = 0.

Function x �→ (Pt1‖·‖≥log t
)
(x) is continuous and the support of X0 is compact thus

lim sup
t→+∞

sup
x∈supp(X0)

(Pt1‖·‖≥log t
)
(x) = 0.

This and (3.4) imply I (t) → 0 and consequently |K5(t) − K4(t)| → 0.

6.2 Proof of (6.4)

We will use characteristic functions. It will be convenient to work conditionally on
the event Et := {|�kt | ≥ t} ∩ {Zt ≥ t} (we denote the corresponding expectation by
E
t ). We set

χ1(θ1, θ2, θ3; t) := E
t exp

⎧⎨
⎩iθ1e

−αt |Zt |/λ∗ + iθ2�|�kt |�−1/2
�|�kt |�∑
i=1

(1 − V i∞)

+ iθ3
(|Zt |/λ∗)−1/2

|Zt |∑
i=1

(Mi
t − mi

t )1{‖Zt (i)‖<log t}

⎫⎬
⎭ ,
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and

χ3(θ1, θ2, θ3; t) :=
[
e−(θ3σ f )

2/2e−(θ2σV )2/2
]
E
t exp

{
iθ1e

−αt |Zt |/λ∗} .

We shall show that for any θ1, θ2, θ3, we have

lim
t→+∞ |χ1(θ1, θ2, θ3; t) − χ3(θ1, θ2, θ3; t)| = 0. (6.16)

Secondly, we notice that P(ε ≤ |�kt | ≤ t) → 0 and P(ε ≤ |Zt | ≤ t) → 0; thus,
1Et → 1Extc a.s. and Fact 3 implies that

lim
t→+∞ χ3(θ1, θ2, θ3; t) =

[
e−(θ3σ f )

2/2e−(θ2σV )2/2
] (

E exp
{
iθ1V̂∞

})
. (6.17)

Using 1Et → 1Extc a.s. it is a standard task to conclude (6.4) from (6.16) and (6.17).
To get (6.16), we will introduce an intermediate function χ2 and show that

|χi (θ1, θ2, θ3; t) − χi+1(θ1, θ2, θ3; t)| →t 0 for i ∈ {1, 2} using the central limit
theorem.

Let h be the characteristic function of (1 − V i∞). One checks that all the random
variables in the definition of χ1, except for V i∞, are measurable with respect to the
σ -field F generated by {�ks, Zs}s≤t . Moreover, conditionally on F , V i∞ are i.i.d. By
Fact 3, we have E(1 − V i∞) = 0 and Var(V i∞) = σV . Using conditional expectation,
we obtain

χ1(θ1, θ2, θ3; t)

:= E
t

⎡
⎣exp

⎧⎨
⎩iθ1e

−αt |Zt |/λ∗ + iθ3
(|Zt |/λ∗)−1/2

|Zt |∑
i=1

(Mi
t − mi

t )1{‖Zt (i)‖<log t}

⎫⎬
⎭

h
(
θ2�|�kt |�−1/2

)�|�kt |�
⎤
⎦ .

The central limit theorem yields h
(
θ2/

√
n
)n → e−(θ2σV )2/2. This motivates the

following definition

χ2(θ1, θ2, θ3; t) :=
[
e−(θ2σV )2/2

]

E
t exp

⎧⎨
⎩iθ1e

−αt |Zt |/λ∗ + iθ3
(|Zt |/λ∗)−1/2

|Zt |∑
i=1

(Mi
t − mi

t )1{‖Zt (i)‖<log t}

⎫⎬
⎭ .

Dominated Lebesgue’s theorem and the assumption on the event Et yield

|χ1(θ1, θ2, θ3; t)−χ2(θ1, θ2, θ3; t)|≤E
t
∣∣∣∣h

(
θ2�|Xkt |�−1/2

)�|Xkt |�−e−(θ2σV )2/2
∣∣∣∣→t 0.

(6.18)
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Similarly we will deal with the other sum. We work conditionally on Zt , and
for notational simplicity, we work with integer times. We introduce sequences
{an}n≥0 , {pn}n≥0 such that an ∈ N, pn ∈ R

dan (intuitively an is the number of
particles at time n and pn are their positions). We assume that ane−αn → a > 0,
‖pn(i)‖ ≤ log n. We denote

Sn := (λ∗)1/2a−1/2
n

an∑
i=1

(
M̃i

n − m̃i
n

)
,

where M̃i
n := E

(
e−((k−1)α/2)n〈�i,n

(k−1)n, f̃ 〉|Zn(i) = pn(i)
)

(compare with Mi
t

defined below (6.1)) we set also m̃i
n = EM̃i

n . We are going to use the CLT to analyze
Sn . Firstly, we calculate its variance

vn := Var (Sn) = λ∗a−1
n

an∑
i=1

Var(M̃i
n − m̃i

n)

= λ∗a−1
n

an∑
i=1

E(M̃i
n)

2 − λ∗a−1
n

an∑
i=1

(m̃i
n)

2. (6.19)

A proof analogous to (6.13) gives λ∗a−1
n

∑an
i=1(m̃

i
n)

2 → 0. By (5.22), we have
E(M̃i

n)
2 = e−α(k−1)nV 2

f̃
(pn(i), (k − 1)n). Recalling (6.5), we obtain

lim
n→0

vn = σ 2
f ,

where σ 2
f is given by (4.4). Secondly, we check the Lyapunov condition. Using

Hölder’s inequality and (6.6), we get

a−2
n

an∑
i=1

E(M̃i
n − m̃i

n)
4 ≤ c1a

−2
n

an∑
i=1

E(M̃i
n)

4 ≤ a−2
n

an∑
i=1

R1(pn(i))

≤ a−1
n sup

‖x‖≤log n
R1(x) →n 0.

Therefore, the CLT implies

Sn →d N
(
0, σ 2

f

)
.

Using the dominated convergence theorem in a similarmanner as in the case ofχ1−χ2,
one can show that |χ2(θ1, θ2, θ3; t) − χ3(θ1, θ2, θ3; t)| →t 0.

6.3 Proof of Lemma 19

In order to prove (6.5), we will show that

e−αt V 2
f̃
(0, t) → σ 2

f /λ
∗, sup

‖x‖≤log t
e−αt |V 2

f̃
(x, t) − V 2

f̃
(0, t)| → 0. (6.20)
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To get the first convergence, we use (5.18) and write

e−αt V 2
f̃
(0, t) = ψ ′′(0)

λ∗

∫ t

0
e−αsPt−s

[(
Pα
s f̃ (·)

)2]
(0)ds

− 1

λ∗

∫ t

0
e−αsPt−s

[
ψ ′′(0)

(
u∗,1
f̃

(·, s)
)2 + (α − α∗)u∗,2

f̃
(·, s)

]
(0)ds

=: I1(t) + I2(t).

We have

I1(t) = ψ ′′(0)
λ∗

∫ t

0
eαsPt−s

[(
Ps f̃ (·)

)2]
(0)ds.

Using (S2), the integrand in the last expression can be estimated as follows

0 ≤ L(x) := eαsPt−s

[(
Ps f̃ (·)

)2]
(x) ≤ e(α−2μ)sPt−s R1(x). (6.21)

Using (3.4), we get L(0) ≤ c1e(α−2μ)s which, by assumption α < 2μ, is integrable
with respect to s. By (S1) for any fixed s ≥ 0, we have

lim
t→+∞Pt−s

[(
Ps f̃ (·)

)2]
(0) =

〈
ϕ,Ps f̃

2
〉
.

Recalling (4.4) and appealing to dominated Lebesgue’s theoremwe conclude I1(t) →
σ 2
f /λ

∗ < +∞. An analogous argument, using (5.13) and (5.24), gives

I2(t) → I2 := − 1

λ∗

∫ ∞

0
e−αs〈ϕ,ψ ′′(0)

(
u∗,1
f̃

(·, s)
)2 + (α − α∗)u∗,2

f̃
(·, s)〉ds.

By (S1) ϕ is an invariant measure thus 〈ϕ,Pu f 〉 = 〈ϕ, f 〉, using (5.13), (5.14) and
Fubini’s theorem, we get

I2= − 1

λ∗

∫ ∞

0
e−αs〈ϕ,ψ ′′(0)

(
Pα∗
s f̃

)2−(α−α∗)ψ ′′(0)
∫ s

0
Pα∗
s−u

[(
Pα∗
u f̃

)2]
du〉ds

= − ψ ′′(0)
λ∗

∫ ∞

0
e−αs〈ϕ,

(
Pα∗
s f̃

)2〉ds
+ (α − α∗)ψ ′′(0)

λ∗

∫ ∞

0

∫ ∞

u
e−αseα∗(s−u)〈ϕ,

[(
Pα∗
u f̃

)2]〉dsdu

= − ψ ′′(0)
λ∗

∫ ∞

0
e−αs〈ϕ,

(
Pα∗
s f̃

)2〉ds+ ψ ′′(0)
λ∗

∫ ∞

0
e−αu〈ϕ,

[(
Pα∗
u f̃

)2]〉du=0.
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Now we pass to the second statement of (6.20). We analyze the first term of (5.18)
which is hardest and leave the other terms to the reader. Namely, we will prove that

sup
‖x‖≤log t

∣∣∣∣
∫ t

0
eαsPt−s

[(
Ps f̃ (·)

)2]
(x)ds −

∫ t

0
eαsPt−s

[(
Ps f̃ (·)

)2]
(0)ds

∣∣∣∣
≤

∫ t

0
f (s, t)ds →t 0, (6.22)

where

f (s, t) := eαs sup
‖x‖≤log t

∣∣∣∣Pt−s

[(
Ps f̃

)2]
(x) − Pt−s

[(
Ps f̃

)2]
(0)

∣∣∣∣ . (6.23)

We recall (6.21) and notice that f (s, t) ≤ 2 sup‖x‖≤log t L(x) thus

f (s, t) ≤ 2e(α−2μ)s sup
‖x‖≤log t

Pt−s [R1] (x)

= 2e(α−2μ)s

[
〈R1, ϕ〉 + sup

‖x‖≤log t
(Pt−s [R1] (x) − 〈R1, ϕ〉)

]

≤ 2e(α−2μ)s

[
〈R1, ϕ〉 + e−μ(t−s) sup

‖x‖≤log t
R2(x)

]
≤ c1e

(α−2μ)s/2.

Fix s ≥ 0. We denote Hs(x) =
(
Ps f̃

)2
(x) and H̃s = Hs − 〈Hs, ϕ〉. Applying (S2)

and using the triangle inequality, we get

lim sup
t→+∞

f (s, t) ≤ lim sup
t→+∞

(
2eαs sup

‖x‖≤log t

∣∣∣Pt−s H̃s(x)
∣∣∣
)

≤ 2eαs lim sup
t→+∞

(
e−μ(t−s) sup

‖x‖≤log t
R1(x)

)
= 0.

Now the convergence in (6.22) follows by Lebesgue’s dominated theorem and we
conclude the proof of (6.20).

In order to prove (6.6), we apply the triangle inequality to (5.19) and Lemma 17

|V k
f̃
(x, t)| ≤ c1

∑
m∈Bk

∫ t

0
Pα
t−s

⎡
⎣ k∏

j=1

∣∣∣−λ∗V j

f̃
(·, s) + u∗, j

f̃
(·, s)

∣∣∣m j

⎤
⎦ (x)ds

+ c1
∑

m∈Bk

∫ t

0
Pα
t−s

⎡
⎣ k∏

j=1

∣∣∣u∗, j

f̃
(·, s)

∣∣∣m j

⎤
⎦ (x)ds +

∫ t

0
Pα
t−s

[
u∗,k
f̃

(·, s)
]
(x)ds.
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For simplicity, we skip all terms u∗,k
f̃

(which by (5.25) and α∗ < 0 are easy to

control). We will thus consider

Sk(x, t) :=
∑

m∈Bk

∫ t

0
Pα
t−s

⎡
⎣ k∏

j=1

∣∣∣V j

f̃
(·, s)

∣∣∣m j

⎤
⎦ (x)ds. (6.24)

For k = 2, calculations similar to (6.21) lead easily to S2(x, t) ≤ eαt R1(x). Thus, we
conclude

|V 2
f̃
(x, t)| ≤ eαt R2(x). (6.25)

For k = 3, we recall (5.15) for and use (3.2), (5.17) and (6.25) to get

S3(x, t) ≤ c1

∫ t

0
Pα
t−s

[∣∣∣V 1
f̃
(·, s)V 2

f̃
(·, s)

∣∣∣ +
∣∣∣V 1

f̃
(·, s)

∣∣∣3
]

(x)ds

≤
∫ t

0
Pα
t−s

[∣∣∣e(α−μ)s R1(·)eαs R2(·)
∣∣∣ +

∣∣∣e(α−μ)s R3(·)
∣∣∣3
]

(x)ds.

Using assumption α < 2μ and (3.4), we estimate

S3(x, t) ≤ eαt
∫ t

0
e(α−μ)sPt−s R4(x)ds ≤ R5(x)e

αt
∫ t

0
e(α−μ)sds ≤ e(3α/2)t R5(x).

This yields that
|V 3

f̃
(x, t)| ≤ e(3α/2)t R6(x). (6.26)

Finally, we pass to k = 4. We recall (5.15) and use (3.2), (5.17), (6.25) and (6.26) to
get

S4(x, t) ≤ c1

∫ t

0
Pα
t−s

[∣∣∣V 1
f̃
(·, s)V 3

f̃
(·, s)

∣∣∣ +
∣∣∣V 2

f̃
(·, s)

∣∣∣2

+
∣∣∣V 1

f̃
(·, s)

∣∣∣2
∣∣∣V 2

f̃
(·, s)

∣∣∣ +
∣∣∣V 1

f̃
(·, s)

∣∣∣4
]

(x)ds

≤
∫ t

0
Pα
t−s

[∣∣∣e(α−μ)s R1(·)e(3α/2)s R6(·)
∣∣∣ + ∣∣eαs R2(·)

∣∣2 +
∣∣∣e(α−μ)s R1(·)

∣∣∣2 ∣∣eαs R2(·)
∣∣ +

∣∣∣e(α−μ)s R1(·)
∣∣∣4
]

(x)ds.

Using the assumption α < 2μ and (3.4), we get

S4(x, t) ≤ eαt
∫ t

0
eαsPt−s R7(x)ds ≤ R8(x)e

αt
∫ t

0
eαsds ≤ e2αt R8(x).

This is enough to conclude (6.6).
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7 Proof of Theorem 8

In this section, we fix f ∈ C0(Rd) and make the standing assumption that (B1), (S1),
(S2), (S3) and α > 2μ hold. Proving the convergence of the whole vectors (4.9) and
(4.10) would be notationally cumbersome. As it follows similar lines as in the proof
of Theorem 4, it is left to the reader. We focus on the most important part which is
the convergence of the second coordinate of (4.10). Recalling (3.1) and the backbone
construction given in Definition 11, we denote

Y1(t) := e−(α−μ)t (〈�t , f 〉 − |�t |〈 f, ϕ〉) = e−(α−μ)t 〈�t , f̃ 〉.

We shall prove that

Y1(t) − 〈 f h, ϕ〉 · H∞ → 0, in probability, (7.1)

where, slightly abusing notation, we used H∞ to denote the limit of martingale (4.7)
defined for {�t }t≥0. By Theorem 12, the processes X and � have the same law and
thus (7.1) implies the convergence

[
e−(α−μ)t (〈Xt , f 〉 − |Xt |〈 f, ϕ〉)

]
− 〈 f h, ϕ〉 · H∞ →d 0,

andhence also in probability. This establishes the convergence of the second coordinate
in (4.10). Before the proof, we formulate a technical lemma

Lemma 20 There exists R ∈ C0(Rd) such that

|V 2
f̃
(x, t)| ≤ e2(α−μ)t R(x). (7.2)

We will define intermediate processes Y2,Y3,Y4. The convergence (7.1) will follow
immediately once we show

|Y1(t + j (t)) − Y2(t)| → 0, |Y2(t) − Y3(t)| → 0,

|Y3(t) − Y4(t)| → 0, |Y4(t) − 〈 f h, ϕ〉 · H∞| → 0, (7.3)

where the convergences hold in probability and j : R+ �→ R+ is a continuous function.
Recall (5.7) and let us set

Y2(t) := e−(α−μ)t
|Zt |∑
i=1

e−(α−μ) j (t)〈�i,t
j (t), f̃ 〉,

choosing j to be any continuous function fulfilling

j (t) ≥ −α + 1

α∗ t, and r( j (t))eμt → 0, (7.4)
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where r is the function introduced in (S3) and α∗ defined in (5.2). Using (3.4), (5.8)
and (5.23), we get

E|Y1(t + j (t)) − Y2(t)| = E|Y t
j (t)| ≤ eαt+α∗ j (t)〈Pt+s | f |, X0〉 ≤ c1e

αt+α∗ j (t) → 0,

where we used the first proviso in (7.4).
We proceed to the second convergence of (7.3). Let Mi

t := e−(α−μ) j (t)〈�i,t
j (t), f̃ 〉

and mi
t := E(Mi

t |Zt ) = E(Mi
t |Zt (i)) and we set

Y3(t) := e−(α−μ)t
|Zt |∑
i=1

mi
t .

Clearly, E
(
Mi

t − mi
t |Zt

) = 0 and
{
Mi

t − mi
t

}
i are independent conditionally on Zt ,

thus

E (Y2(t) − Y3(t))
2 = e−2(α−μ)t

E

⎛
⎝E

⎛
⎝ |Zt |∑

i=1

|Zt |∑
j=1

(Mi
t − mi

t )(M
j
t − m j

t )

∣∣∣∣∣∣ Zt

⎞
⎠

⎞
⎠
(7.5)

= e−2(α−μ)t
E

⎛
⎝ |Zt |∑

i=1

|Zt |∑
j=1

E

(
(Mi

t − mi
t )(M

j
t − m j

t )|Zt

)⎞⎠

= e−2(α−μ)t
E

⎛
⎝ |Zt |∑

i=1

E

(
(Mi

t − mi
t )
2|Zt

)⎞⎠ . (7.6)

By (5.22) and (5.26), we get

E

(
(Mi

t − mi
t )
2|Zt

)
≤ E

(
(Mi

t )
2|Zt

)
≤ R1(Zt (i)).

Using (5.27), α > 2μ and (3.4), we obtain

E (Y2(t) − Y3(t))
2 ≤ c1e

−2(α−μ)t
E〈Zt , R1〉 ≤ c2e

−2(α−μ)t eαt 〈Pt R1, X0〉 → 0,
(7.7)

which establishes the second convergence in (7.3).
We recall (5.17) and (5.22) to get

mi
t = e−(α−μ) j (t) e

α j (t) − eα∗ j (t)

λ∗
(
P j (t) f̃ (Zt (i))

)
= l(t)

1

λ∗
(
eμj (t)P j (t) f̃ (Zt (i))

)
,
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where l(t) =
(
1 − e(α∗−α) j (t)

)
. Following (S3), we decompose mi

t = m̃i
t + m̂i

t with

m̃i
t := l(t)

1

λ∗
(
eμj (t)P j (t) f̃ (Zt (i)) − 〈 f h, ϕ〉 · h(Zt (i))

)
,

m̂i
t := l(t)

1

λ∗ 〈 f h, ϕ〉 · h(Zt (i)).

We recall (5.10) and write

Y4(t) := e−(α−μ)t
|Zt |∑
i=1

m̂i
t = l(t)〈 f h, ϕ〉 · It

λ∗ .

By (S3) we have |m̃i
t | ≤ r( j (t))R1(Zt (i)). Applying (5.27), the second proviso of

(7.4) and (3.4) we obtain

E|Y3(t) − Y4(t)| ≤ e−(α−μ)t
|Zt |∑
i=1

|m̃i
t | ≤ e−(α−μ)t r( j (t))E〈Zt , R1〉

= eμt 〈Pt R1, X0〉r( j (t)) → 0,

thus the third convergence of (7.3) holds.
Finally, noticing l(t) → 1 and using Fact 13, we get

Y5(t) → 〈 f h, ϕ〉 · I∞
λ∗ = 〈 f h, ϕ〉 · H∞, a.s.

This is the last statement of (7.3), and thus, the proof is concluded.

7.1 Proof of Lemma 20

By (3.2), (5.18), (5.13) and (5.24), we obtain

|V 2
f̃
(x, t)| ≤ c1

∫ t

0
Pα
t−s

[(
Pα
s f̃ (·)

)2 +
(
u∗,1
f (·, s)

)2 +
∣∣∣u∗,2

f (·, s)
∣∣∣
]

(x)ds

≤
∫ t

0
Pα
t−s

[(
e(α−μ)s R1(·)

)2 +
(
e(α∗−μ)t R2(·)

)2 +
∣∣∣eα∗t R3(·)

∣∣∣
]

(x)ds.

Using (3.4), we get

|V 2
f̃
(x, t)| ≤ eαt

∫ t

0
e(α−2μ)sPt−s R4(x)ds ≤ R5(x)e

αt
∫ t

0
e(α−2μ)sds.
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7.2 Proof of Fact 7

We recall h = (h1, . . . , hk) introduced in (S3). By Lemma 15, (5.20) and (S3) for any
i ∈ {1, . . . , k}, we get

E〈Xt , hi 〉 = 〈X0, u
1
hi (·, t)〉 = eαt 〈X0,Pt hi 〉 = e(α−μ)t 〈X0, hi 〉 = e(α−μ)t 〈X0, hi 〉.

Using the Markov property, one concludes that H is a martingale.
Let α > 2μ, i ∈ {1, . . . , k}, by (S3), (5.14) and (3.4), we get

e−2(α−μ)t |u2hi (x, t)| ≤ e−2(α−μ)t
∫ t

0
Pα
t−s

[
(Pα

s hi (·))2
]
(x)ds

= e−2(α−μ)t
∫ t

0
Pα
t−s

[
e2(α−μ)shi

2
]
(x)ds

= e−(α−2μ)t
∫ t

0
e(α−2μ)sPt−s

[
hi

2
]
(x)ds ≤ R1(x).

By Lemma 15 and X0 ∈ MF (Rd) now follows that the martingale H is L2-bounded
and thus converges in L2 and a.s.

7.3 Proof of Fact 13

The fact that W is a martingale is well known (see, for example, [3, Theorem A.6.1]).
The properties of I are proved in [2, Sect. 3.3] (where its name is H ).

We now concentrate on showing (5.12). Having a.s convergence of H and I it is
sufficient to show that for some l > 0

H(l+1)t − 1

λ∗ It → 0,

in probability. Recalling h = (h1, . . . , hk) introduced in (S3) and decomposition (5.7)
we obtain for any j ∈ {1, . . . , k} the j th coordinate of H(l+1)t − 1

λ∗ It is given by

e−(l+1)(α−μ)t 〈Y t
lt , h j 〉+e−(α−μ)t

|Zt |∑
i=1

e−l(α−μ)t 〈�i,t
lt , h j 〉−e−(α−μ)t 1

λ∗
|Zt |∑
i=1

h j (Zt (i))

= e−(l+1)(α−μ)t 〈Y t
lt , h j 〉 + e−(α−μ)t

|Zt |∑
i=1

(
Mi

t − mi
t

)

+ e−(α−μ)t
|Zt |∑
i=1

(
mi

t − 1

λ∗ h j (Zt (i))

)

=: I1(t) + I2(t) + I3(t),
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where Mi
t := e−l(α−μ)t 〈�i,t

lt , h j 〉 and mi
t := E(Mi

t |Zt ) = E(Mi
t |Zt (i)). Use (5.23),

(3.4), (S3) to calculate

E|I1(t)| ≤ e−(l+1)(α−μ)t eαt+α∗lt 〈P(l+1)t |h j |, X0〉
≤ e−(l+1)(α−μ)t eαt eα∗lt 〈R1, X0〉 ≤ c1e

−(l+1)(α−μ)t eαt eα∗lt .

By (5.2) we can choose l such that E|I1(t)| → 0. The proof of E (I2(t))2 → 0 is the
same as the one of (7.7). Finally, for I3 we use (5.22) and (S3) to get

mi
t − 1

λ∗ h(Zt (i)) = 1

λ∗ e
l(α∗−α)t h(Zt (i)).

The convergence I3(t) → 0 follows by the convergence of the martingale I . Putting
together, we obtain (5.12). Relation (5.11) can be proven using a similar but simpler
way. Details are left to the reader.

8 Proof of Theorem 6

In this section, we fix f ∈ C0(Rd) and make the standing assumption that (B1), (S1),
(S2), (S3) and α = 2μ hold. Let us first present the outline of the proof. We start with
the following random vector

K1(t) :=
(
e−αt |�t |, e−(α/2)t (|�t | − eαt V∞), t−1/2e−(α/2)t 〈�t , f̃ 〉

)
. (8.1)

We will define K2, K3, K4 which will fulfill the following relations. For any k >

−α/α∗ we have

|K1(t) − K2(t; k)| → 0, |K3(t; k) − K4(t; k)| → 0 (8.2)

in probability as t → +∞ moreover

lim sup
t→+∞

E‖K2(t; k) − K3(t; k)‖2 ≤ C/k,

K4(t; k) →d Lk :=
(
V̂∞,

√
V̂∞G1,

(
k − 1

k

)1/2 √
V̂∞G2

)
, (8.3)

for C > 0 and we recall that ‖ · ‖ denotes the Euclidian norm. The last convergence
holds conditionally on Extc and G1,G2 are the same as in Theorem 6. Proving the
theorem is rather standard once (8.2) and (8.3) are established. Indeed, let L∞ we

denote the law of
(
Ṽ∞,

√
Ṽ∞G1,

√
Ṽ∞G2

)
. For any μ1, μ2 probability measures on

R
d we define

m(μ1, μ2) := sup
g∈Lip(1)

|〈g, μ1〉 − 〈g, μ2〉|,
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where Lip(1) be the space of continuous functions Rd �→ [−1, 1] with the Lipschitz
constant smaller or equal to 1. It is well known that m is a metric equivalent to weak
convergence. Moreover, when μ1, μ2 correspond to two random variables X1, X2 on
the same probability space, then we have

m(μ1, μ2) ≤ E‖X1 − X2‖ ≤
√
E‖X1 − X2‖2. (8.4)

We fix ε > 0 and choose k large enough such that
√
E‖K2(t; k) − K3(t; k)‖2 ≤

ε and m(Lk,L∞) ≤ ε. Further, we find Tk such that for any t > Tk , one have
m(K1(t), K2(t; k)) ≤ ε, m(K3(t; k), K4(t; k)) ≤ ε and m(K4(t; k),Lk) ≤ ε. With
these choices, we get

m(K1(t),L∞) ≤ 5ε,

for t ≥ Tk . The proof of Theorem 6 is concluded since ε can be taken arbitrary small.
Before the proofs of (8.2) and (8.3), we state a technical lemma.

Lemma 21 We have

lim
t→+∞ sup

‖x‖≤log t
|t−1e−αt V 2

f̃
(x, t) − σ 2

f /λ
∗| → 0, (8.5)

where λ∗ is given by (2.3) and σ 2
f by (4.6). Moreover, there exists R ∈ C0 such that

|V 4
f̃
(x, t)| ≤ t2e2αt R(x). (8.6)

We will skip some details of the proof which are repetition of arguments used in the
proof of Theorem 4 or are easy to establish. In particular, we recall (5.7) and leave to
the reader showing that the first convergence in (8.2) holds with

K2(t; k) :=
⎛
⎝ 1

λ∗ e
−αt |Zt |, e−(kα/2)t

�|�kt |�∑
i=1

(1 − V i∞), e−(α/2)t
|Zt |∑
i=1

Mk,i
t

⎞
⎠ ,

where Mk,i
t := (kt)−1/2e−((k−1)α/2)t 〈�i,t

(k−1)t , f̃ 〉 and V i∞ is an i.i.d. sequence dis-

tributed as in (4.2). We define also mk,i
t := E

(
Mk,i

t |Zt

)
= E

(
Mk,i

t |Zt (i)
)
,

Hk
t := e−(α/2)t ∑|Zt |

i=1 m
k,i
t and

K3(t; k) :=
⎛
⎝ 1

λ∗ e
−αt |Zt |, e−(kα/2)t

�|�kt |�∑
i=1

(1 − V i∞), e−(α/2)t
|Zt |∑
i=1

(Mk,i
t − mk,i

t )

⎞
⎠ .

(8.7)
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This expression differs from K2(t; k) only by Hk so in order to show the first assertion
of (8.3) we need to bound it from above in L2. Applying (5.17) to mk,i

t , we obtain

Hk
t = (kt)−1/2e−((kα/2)t e

(k−1)αt − e(k−1)α∗t

λ∗
|Zt |∑
i=1

P(k−1)t f̃ (Zt (i)).

By Lemma 18, we have

E(Hk
t )2 ≤ c1

e(k−2)αt

kt
E

⎛
⎝ |Zt |∑

i=1

P(k−1)t f̃ (Zt (i))

⎞
⎠

2

≤ c2
e(k−2)αt

kt

∫
Rd

(
Pα
t

[
(P(k−1)t f̃ (·))2

]
(x)

+
∫ t

0
Pα
t−s

[(
Pα
s P(k−1)t f̃ (·)

)2]
(x)ds

)
X0(dx).

Using (S2), we estimate

E(Hk
t )2 ≤ e(k−2)αt

kt

∫
Rd

(
eαt−2μ(k−1)tPt

[
R2
1

]
(x)

+
∫ t

0
Pα
t−s

[(
eαse−μ(s+(k−1))t R1(·)

)2]
(x)ds

)
X0(dx).

Applying (3.4), and recalling α = 2μ, we get that

E(Hk
t )2 ≤ e(k−2)αt

kt
〈R2, X0〉

(
eαt−2μ(k−1)t + eαt

∫ t

0
eαse−2μ(s+(k−1))tds

)

≤ e(k−2)αt

kt
〈R3, X0〉

(
e−α(k−2)t + e−α(k−2)t

∫ t

0
ds

)
≤ C/k, (8.8)

for some C > 0. Let us now concentrated on the third coordinate of K3(t; k). We
introduce truncation. We recall I (t) defined in (6.14), one can follow the proof there

to show I (t) → 0, the only change is to show (6.15), namely that E
(
(Mi,k

t )2|Zt

)
≤

R1(Zt (i)). This is left to the reader. Therefore, we have |K3(t; k) − K4(t; k)| → 0 in
(8.2) with

K4(t; k) :=
⎛
⎝ 1

λ∗ e
−αt |Zt |, e−(kα/2)t

�|Xkt |�∑
i=1

(1−V i∞), e−(α/2)t
|Zt |∑
i=1

(Mk,i
t −mk,i

t )1{‖Zt (i)‖<log t}
⎞
⎠.

The final step listed in (8.3) that is to show K4(t; k) → Lk . We proceed along the
lines of the proof in Sect. 6.2. The definitions and arguments are analogous. The only
significant change is the proof of convergence of vn defined by (6.19). In our case
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vn = λ∗a−1
n

an∑
i=1

E(M̃k,i
n )2 − λ∗a−1

n

an∑
i=1

E(m̃k,i
n )2,

where M̃k,i
n := E

(
(kt)−1/2e−((k−1)α/2)n〈�i,n

(k−1)n, f̃ 〉|Zn(i) = pn(i)
)
and m̃k,i

n =
EM̃k,i

n . For the second term we use (5.17), (S2) and α = 2μ to estimate

|m̃k,i
n | ≤ c1n

−1/2e((k−1)α/2)n|P(k−1)n f̃ (pn(i))| ≤ n−1/2e(k−1)(α/2−μ)n R1(pn(i))

= n−1/2R1(pn(i)).

We recall that ‖pn(i)‖ ≤ log n so supi≤an |m̃k,i
n | → 0 and consequently

a−1
n

∑an
i=1(m̃

k,i
n )2 → 0. Using (5.22), we have

E(M̃k,i
n )2 = (kn)−1e−α(k−1)nV 2

f̃
(pn(i), (k − 1)n).

By (8.5), we obtain

lim
n→+∞ vn =

(
k − 1

k

)
σ 2
f ,

where σ 2
f is given by (4.6). This completes the proof of K4(t; k) → Lk and conse-

quently the whole proof of Theorem 6.

8.1 Proof of Lemma 21

To show (8.5), we will prove

t−1e−αt V 2
f̃
(0, t) → σ 2

f /λ
∗, sup

‖x‖≤log t
t−1e−αt |V 2

f̃
(x, t) − V 2

f̃
(0, t)| → 0. (8.9)

To obtain the first convergence, we use (5.18) and write

t−1e−αt V 2
f̃
(0, t) = ψ ′′(0)

λ∗ t−1
∫ t

0
e−αsPt−s

[(
Pα
s f̃ (·)

)2]
(0)ds

− 1

λ∗ t
−1

∫ t

0
e−αsPt−s

×
[
ψ ′′(0)

(
u∗,1
f̃

(·, s)
)2 + (α − α∗)u∗,2

f̃
(·, s)

]
(0)ds

=: I1(t) + I2(t).

We start with I2 recalling (5.2), using (5.13), (5.14) and applying (3.4) multiple time
we obtain

|I2(t)| ≤ c1t
−1

∫ t

0
e−αsPt−s

[(
Pα∗
s f̃ (·)

)2 +
∫ s

0
Pα∗
s−u

[(
Pα∗
u f̃ (·)

)2]
du

]
(0)ds

≤ t−1
∫ t

0
e−αsPt−s

[(
eα∗s R1(·)

)2 +
∫ s

0
eα∗(s+u)Ps−u R

2
1(·)du

]
(0)ds
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≤ t−1
∫ t

0
e−αsPt−s

[(
eα∗s R1(·)

)2 +
∫ s

0
eα∗(s+u)R2(·)du

]
(0)ds

≤ t−1
∫ t

0
e(α∗−α)sPt−s R3(0)ds ≤ t−1

∫ t

0
e(α∗−α)sds → 0.

To treat I1, we use α = 2μ and decompose following notation of (S3)

λ∗

ψ ′′(0)
I1(t) = t−1

∫ t

0
Pt−s

[(
h(·) · 〈 f h, ϕ〉 + Pμ

s f̃ (·) − h(·) · 〈 f h, ϕ〉
)2]

(0)ds

= t−1
∫ t

0
Pt−s

[
(h(·) · 〈 f h, ϕ〉)2

]
(0)ds

+ t−1
∫ t

0
Pt−s

[(
Pμ
s f̃ (·) − h(·) · 〈 f h, ϕ〉

)2]
(0)ds

+ 2t−1
∫ t

0
Pt−s

[(
Pμ
s f̃ (·) − h(·) · 〈 f h, ϕ〉

)
(h(·) · 〈 f h, ϕ〉)

]
(0)ds

=: I3(t) + I4(t) + I5(t).

Recalling (S1), we check

I3(t) → σ 2
f /ψ

′′(0).

To I4, we apply (S3) and (3.4), namely

|I4(t)| ≤ t−1
∫ t

0
r(s)2Pt−s

[
R2
1

]
(0)ds ≤ c1t

−1
∫ t

0
r(s)2ds → 0.

Similarly, one can prove |I5(t)| → 0. Putting these results together we conclude
I1(t) → σ 2

f /λ
∗ and consequently the first convergence in (8.9) holds. Let us pass to

the second statement. We analyze the first term of (5.18), which is hardest, and leave
the others to the reader. Namely, we will show that

sup
‖x‖≤log t

t−1
∣∣∣∣
∫ t

0
eαsPt−s

[(
Ps f̃ (·)

)2]
(x)ds −

∫ t

0
eαsPt−s

[(
Ps f̃ (·)

)2]
(0)ds

∣∣∣∣
≤ t−1

∫ t

0
f (s, t)ds →t 0, (8.10)

where f (s, t) given in (6.23). We recall the notation of (S3) and write

(
Ps f̃ (·)

)2 = e−2μs
(
Pμ
s f̃ (·) − h(·) · 〈 f h, ϕ〉

)2 + e−2μs (h(·) · 〈 f h, ϕ〉)2

+ 2e−2μs
(
Pμ
s f̃ (·) − h(·) · 〈 f h, ϕ〉

)
(h(·) · 〈 f h, ϕ〉) .
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Using this decomposition, α = 2μ together with the triangle inequality, we get

f (s, t) ≤ 2 sup
‖x‖≤log t

Pt−s

[(
Pμ
s f̃ (·) − h(·) · 〈 f h, ϕ〉

)2]
(x)

+ 4 sup
‖x‖≤log t

Pt−s

[(
Pμ
s f̃ (·) − h(·) · 〈 f h, ϕ〉

)
(h(·) · 〈 f h, ϕ〉)

]
(x)

+ sup
‖x‖≤log t

∣∣∣Pt−s

[
(h(·) · 〈 f h, ϕ〉)2

]
(x) − Pt−s

[
(h(·) · 〈 f h, ϕ〉)2

]
(0)

∣∣∣ .

Weuseα = 2μ, apply (S3) to thefirst twoexpressions anddefine H = (h · 〈 f h, ϕ〉)2−
〈(h · 〈 f h, ϕ〉)2 , ϕ〉. We write

f (s, t) ≤ r(s)2 sup
‖x‖≤log t

Pt−s

[
R2
1

]
(x)+r(s) sup

‖x‖≤log t
Pt−s [R2(·) (h(·) · 〈 f h, ϕ〉)] (x)

+ 2 sup
‖x‖≤log t

|Pt−s H(x)| .

Let R3 ∈ C0 then by (S2)

sup
‖x‖≤log t

|Pt−s R3(x)| = 〈ϕ, R3〉 + sup
‖x‖≤log t

Pt−s R̃3(x) ≤ 〈ϕ, R3〉 + e−μ(t−s)R4(log t).

This will be applied to the first two terms. The third one can be analyzed similarly
using (S2)

sup
‖x‖≤log t

|Pt−s H(x)| ≤ e−μ(t−s)R5(log t).

By the fact that r(s) ↘ 0, we can write

f (s, t) ≤ c1r(s) + e−μ(t−s)R6(log t).

Clearly, it is enough to establish (8.10).
To prove (8.6), we will follow the same route as in the proof of Lemma 19. Analo-

gously, we omit terms u∗,k
f and estimate Sk as defined in (6.24). For k = 2, analogously

as in the proof of (8.5), one checks that

|V 2
f̃
(x, t)| ≤ teαt R1(x). (8.11)

For k = 3, we recall (5.15) for and use (5.17), (S2) and (8.11) to get

S3(x, t) ≤ c1

∫ t

0
Pα
t−s

[∣∣∣V 1
f̃
(·, s)V 2

f̃
(·, s)

∣∣∣ +
∣∣∣V 1

f̃
(·, s)

∣∣∣3
]

(x)ds

≤
∫ t

0
Pα
t−s

[∣∣∣eαs/2R1(·)seαs R2(·)
∣∣∣ +

∣∣∣eαs/2R3(·)
∣∣∣3
]

(x)ds.
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Using (3.4), we estimate that

S3(x, t) ≤ eαt
∫ t

0
eαs/2sPt−s [R4] (x)ds ≤ R5(x)e

αt
∫ t

0
seαs/2ds ≤ te(3α/2)t R5(x).

We conclude that
|V 3

f̃
(x, t)| ≤ te(3α/2)t R6(x). (8.12)

Finally, we pass to k = 4. We recall (5.15) and use (5.17), (S2), (8.11) and (8.12) to
get

S4(x, t) ≤ c1

∫ t

0
Pα
t−s

[∣∣∣V 1
f̃
(·, s)V 3

f̃
(·, s)

∣∣∣ +
∣∣∣V 2

f̃
(·, s)

∣∣∣2

+
∣∣∣V 1

f̃
(·, s)

∣∣∣2
∣∣∣V 2

f̃
(·, s)

∣∣∣ +
∣∣∣V 1

f̃
(·, s)

∣∣∣4
]

(x)ds

≤
∫ t

0
Pα
t−s

[∣∣∣eαs/2R1(·)se(3α/2)s R2(·)
∣∣∣ + ∣∣seαs R3(·)

∣∣2

+
∣∣∣eαs/2R1(·)

∣∣∣2 ∣∣seαs R3(·)
∣∣ +

∣∣∣eαs/2R1(·)
∣∣∣4
]

(x)ds.

By (3.4), we obtain

S4(x, t) ≤ eαt
∫ t

0
s2eαsPt−s R7(x)ds ≤ R8(x)e

αt
∫ t

0
s2eαsds ≤ t2e2αt R9(x).

This is enough to conclude the proof of (8.6).
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9 Appendix

This section contains proofs of Lemmas 15 and 17. First, we recall Faà di Bruno’s
formula,which states that for sufficiently smooth functions g : R �→ R and h : R �→ R

we have

dk

dxk
h(g(x)) =

∑
m∈Ak

am · h(m1+···+mk )(g(x)) ·
k∏
j=1

(
g( j)(x)

)m j
, (9.1)
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where am1,...,mk := k!
m1! 1!m1 m2! 2!m2 ···mk ! k!mk and the sum is over the set Ak of

all k-tuples of nonnegative integers m = (m1, . . . ,mk) satisfying the constraint∑k
j=1 jm j = k.

Fix f ∈ b+(Rd) and recall (1.3). We introduce an additional parameter θ ≥ 0 and
denote

uθ f (x, t) = Pt [θ f ] (x) −
∫ t

0
Pt−s

[
ψ(uθ f (·, s))

]
(x)ds.

Formal calculations using (9.1) yield that

∂

∂θ
uθ f (x, t) = Pt f (x) −

∫ t

0
Pt−s

[
∂

∂θ
uθ f (x, s)ψ

′(uθ f (·, s))
]

(x)ds.

∂k

∂θk
uθ f (x, t) = −

∫ t

0
Pt−s

⎡
⎣ ∑

m∈Ak

am · ψ(m1+···+mk )(uθ f (·, s))

×
k∏
j=1

(
∂ j

∂θ j
uθ f (·, s)

)m j

⎤
⎦ (x)ds,

for k ≥ 2. It is standard to check that the above formulas are valid for θ > 0.
Passing to the limit θ ↘ 0 we conclude that they remain true as long as ψ(k)(0) is

finite. We denote ukf (x, t) := ∂k

∂θk
uθ f (x, t)

∣∣∣
θ=0

. The same reasonings hold for the

branching mechanism ψ∗ given by (5.1). The respective quantities are denoted with
the superscript ∗ (e.g., u∗,k

f ).

We will prove that under assumption (B1) for k ≤ 4 the quantities ukf and u∗,k
f

given here are the same as the ones of (5.13), (5.14) and (5.16). One checks that
u∗,0
f (x, t) = u∗

0 f = 0. Recalling (ψ∗)′(0) = −α∗, we get

u∗,1
f (x, t) = Pt f (x) + α∗

∫ t

0
Pt−s

[
u∗,1
f (·, s)

]
(x)ds.

It is straightforward to verify that this equation is solved by the first formula of (5.13)
(we recall the notation (2.1)). The second formula of (5.13) holds analogously. To
treat the case k ≥ 2, we denote

Bk := Ak\ {(0, . . . , 0, 1)} , (9.2)
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(which in particular implies (5.15)) and write

u∗,k
f (x, t) = −

∫ t

0
Pt−s

⎡
⎣−α∗u∗,k

f (·, s) +
∑

m∈Bk
am

×ψ(m1+···+mk )(0) ·
k∏
j=1

(
u∗, j
f (·, s)

)m j

⎤
⎦ (x)ds.

Analogously as before it is solved by

u∗,k
f (x, t) = −

∫ t

0
Pα∗
t−s

⎡
⎣ ∑

m∈Bk
am · ψ(m1+···+mk )(0) ·

k∏
j=1

(
u∗, j
f (·, s)

)m j

⎤
⎦ (x)ds.

(9.3)
These are the same as (5.14) and (5.16).

The validity of the above expressions for f ∈ C0 follows by a standard integral-
theoretic exercise. The formulas (5.20) and (5.21) are standard properties of the
Laplace transform (recall (1.2)).

Similar derivations hold for V k
f .We fix f ∈ b+(Rd) recall (5.5) and put ν = 0, γ =

δx , f = θ f, h = 0, θ ≥ 0 and denote

Vθ f (x, t) := E0×δx

(
e−〈θ f,�t 〉

)
.

By (5.6), we know that Vθ f (x, t) is the unique [0, 1]-valued solution of the integral
equation

Vθ f (x, t) = 1 + 1

λ∗

∫ t

0
Pt−s

[
ψ∗ (

−λ∗Vθ f (·, s) + u∗
θ f (·, s)

)
− ψ∗(u∗

θ f (·, s))
]
(x)ds.

Let k ≥ 1, using (9.1) we obtain (we skip some arguments to make expressions more
clear)

∂kVθ f

∂θk
= 1

λ∗

∫ t

0
Pt−s

⎡
⎣ ∑

m∈Ak

am · ψ∗(m1+...+mk )
(
−λ∗Vθ f + u∗

θ f

)

×
k∏
j=1

(
−λ∗ ∂ j Vθ f

∂θ j
+ ∂ j u∗

θ f

∂θ j

)m j

−
∑

m∈Ak

am · ψ∗(m1+...+mk )(u∗
θ f ) ·

k∏
j=1

(
∂ j u∗

θ f

∂θ j

)m j
⎤
⎦ ds.

Similarly as before we pass to the limit θ ↘ 0, again it is possible whenψk(0) < +∞.

Under assumption (B1) for k ≤ 4, we denote V k
f := ∂kVθ f

∂θk

∣∣∣
θ=0

and we will prove that
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they are the same as given by (5.17), (5.18) and (5.19). One checks that V0 f = 1 and
u∗,0
f = 0 and thus

V k
f (x, t) = 1

λ∗

∫ t

0
Pt−s

⎡
⎣ ∑

m∈Ak

am · ψ∗(m1+...+mk )(−λ∗) ·
k∏
j=1

(
−λ∗V j

f + u∗, j
f

)m j

−
∑

m∈Ak

am · ψ∗(m1+...+mn)(0) ·
k∏
j=1

(
u∗, j
f

)m j

⎤
⎦ ds.

By (5.1) and (5.2), we have (ψ∗)′ (−λ∗) = ψ ′(0) = −α. Therefore,

V k
f (x, t) = 1

λ∗

∫ t

0
Pt−s

⎡
⎣−α

(
−λ∗V k

f + u∗,k
f

)
+

∑
m∈Bk

am · ψ∗(m1+...+mk )(−λ∗)

×
k∏
j=1

(
−λ∗V j

f + u∗, j
f

)m j

+α∗u∗,k
f −

∑
m∈Bk

am · ψ∗(m1+...+mk )(0) ·
k∏
j=1

(
u∗, j
f

)m j

⎤
⎦ ds.

The formula (5.17) follows by simple calculations. Namely, we notice that by (9.2),
we have B1 = ∅ and thus

V 1
f (x, t) = −α − α∗

λ∗

∫ t

0
Pα
t−s

[
u∗,1
f (·, s)

]
(x)ds.

Using (5.13) and the semigroup property of P, we obtain that

V 1
f (x, t) = −α − α∗

λ∗

∫ t

0
eα(t−s)Pt−s

[
eα∗sPs f (·)

]
(x)ds

= −α − α∗

λ∗ eαtPt f (x)
∫ t

0
e(α∗−α)sds

= − 1

λ∗Pt f (x)
(
eαt − eα∗t

)
.

Derivation of (5.18) follows similarly, observing that B2 = {(2, 0)} and calculating

V 2
f (x, t) = 1

λ∗

∫ t

0
Pα
t−s

[
ψ ′′(0)

(
−λ∗V 1

f (·, s) + u∗,1
f (·, s)

)2

−ψ ′′(0)
(
u∗,1
f (·, s)

)2 − (α − α∗)u∗,2
f (·, s)

]
(x)ds.
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We notice that−λ∗V 1
f (x, s)+u∗,1

f (x, s) = Pα
s f (x)which concludes. Showing (5.19)

is left to the reader.
The fact that these expressions are valid for f ∈ C0 follows by a standard integral-

theoretic exercise. (5.22) is a standard property of the Laplace transform.
Let us now pass to the estimates asserted in Lemma 17. Let us now prove the first

estimate in (5.24). Using (5.13), (5.14) and (3.4)

|u2f (x, t)| ≤
∫ t

0
Pα
t−s

[
e2αs R2

1

]
(x) = eαt

∫ t

0
eαsPt−s

[
R2
1

]
(x)ds ≤ e2αt R2(x).

The second inequality in (5.24) follows analogously. In order to prove (5.25), we
utilize (5.13), (5.16) and (3.4) (we recall that α∗ < 0)

|u∗,3
f (x, t)| ≤ c1

∫ t

0
Pα∗
t−s

[∣∣∣u∗,1
f (·, s)u∗,2

f (·, s)
∣∣∣ +

∣∣∣u∗,1
f (·, s)

∣∣∣3
]

(x)ds

≤ eα∗t
∫ t

0
e−α∗sPt−s

[
eα∗s R1(·)eα∗s R2(·) +

(
eα∗s R1(·)

)3]
(x)ds

≤ eα∗t R3(x).

The case of u∗,4
f (x, t) follows similarly. Estimate (5.26) holds by (5.24), (3.4) and the

following calculation.

V 2
f (x, t) ≤ c1

∫ t

0
Pα
t−s

[(
eαsPs f (·)

)2 +
(
eα∗sPs f (·)

)2 + |u∗,2
f (·, s)|

]
(x)ds

≤ eαt
∫ t

0
eαsPt−s R1(x)ds ≤ e2αt R2(x).

References
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