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Abstract A Banach random walk in the unit ball S in l2 is defined, and we show that
the integral introduced byBanach (Theory of the integral.Warszawa-Lwów, 1937) can
be expressed as the expectation with respect to the measure P induced by this walk.
A decomposition l2 (S, P) = ⊕∞

i=0 Bi in terms of what we call Banach chaoses is
given.
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1 Introduction

Wepropose an averaging procedure based onBanach’s concept of Lebesgue integral in
abstract spaces [1]. To be specific, we are going to use a particular variant of Banach’s
theory, connected with integration in l2. We denote by

Sn =
{

x ∈ R
n :

n∑

k=1

x2k ≤ 1

}

and S =
{

x ∈ R
N :

∞∑

k=1

x2k ≤ 1

}

the unit balls in l2n and l
2, respectively. According to Banach’s result, the most general

nonnegative linear functional defined on S and satisfying certain conditions listed in
[1] (which we do not need to repeat here) has the form
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F(Φ) = lim
n→∞ Fn(Φ),

where

Fn (Φ) =
∫

Sn
Φ (x1, . . . , xn, 0, . . .) ρn (x1, . . . , xn) dx1 . . . dxn,

ρn (x) = χSn (x)
g (x1) g

(

x2/
√
1 − x21

)

. . . g
(
xn/

√
1 − x21 − · · · − x2n−1

)

√(
1 − x21

)
. . .

(
1 − x21 − · · · − x2n−1

) ,

and g : [−1, 1] → [0,∞),
∫ 1
−1 g (t) dt = 1, Φ : R

N → R is a bounded Borel
measurable function, and χA is the indicator of A.

Although Banach’s considerations and constructions are purely deterministic and
based on ideas coming from functional analysis, his expression ofρn can be easily rein-
terpreted in probabilistic terms, giving a probabilistic interpretation for his extension
of Lebesgue integral. The first step in this direction is to find a stochastic sequence hav-
ing probability density function ρn . Such a sequence will be called a Banach random
walk (BRW), or a standard Banach random walk (SBRW) if g ≡ 1. The expression of
Fn (Φ) in terms of BRW is immediate. In Sects. 3 and 4, an orthogonal expansion of
square integrable functionals of the BRW [elements of l2 (Sn)] in terms of Legendre
polynomials is obtained, and a chaotic decomposition of l2 (S) is presented. These are
the main results of this paper.

2 Banach Random Walk on Sn

Choose a point x1 in S1 = [−1, 1] randomly with density g. Then, the point

(x1, 0) is in S2. Choose x2 randomly in

[

−
√
1 − x21 ,

√
1 − x21

]

with density

g

(

x2/
√
1 − x21

)

/

√
1 − x21 . Then, (x1, x2, 0) is in S3. Choose x3 randomly in

[

−
√
1 − x21 − x22 ,

√
1 − x21 − x22

]

with density g

(

x3/
√
1−x21−x22

)

/

√
1−x21 − x22 ,

etc. The sequence x1, . . . , xn is random, and the probability density function corre-
sponding to this sample is ρn (x1, . . . , xn), as in the Banach integral. To check that it
is a density, it is enough to show that

In �
∫

Sn
ρn (x) dx = 1

for any n ≥ 1. Indeed, this holds for n = 1, and for n ≥ 2 and x ∈ Sn , we have

In =
∫

Sn−1

⎡

⎢
⎣

∫
√
1−x21−···−x2n−1

−
√
1−x21−···−x2n−1

g
(
xn/

√
1 − x21 − · · · − x2n−1

)

√
1 − x21 − · · · − x2n−1

dxn

⎤

⎥
⎦
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× ρn−1 (x1, . . . , xn−1) dx1 . . . dxn−1

= In−1 = I1 =
∫ 1

−1
g (x1) dx1 = 1.

3 Legendre Polynomials

Legendre polynomials in one variable are defined by the formulae

L p (t) =
{
1 for p = 0,
1

2p p!
dp

dt p
(
t2 − 1

)p
for p = 1, 2, . . . .

The polynomials are orthogonal:

2−1
∫ 1

−1
L p (t) Lq (t) dt =

{
0 if p �= q,

1/(1 + 2p) if p = q,

and
{
L p (·) : p = 0, 1, . . .

}
is a complete set in L2 [−1, 1]. To extend these to the

multivariate case, we introduce a mapping Θ : Sn → [−1, 1]n by

y1 = Θ1 (x) = x1,

y2 = Θ2 (x) = x2/
√
1 − x21 ,

yn = Θn (x) = xn/
√
1 − x21 − · · · − x2n−1,

x1 = Θ−1
1 (y) = y1,

x2 = Θ−1
2 (y) = y2

√
1 − y21 ,

xn = Θ−1
n (y) = yn

√(
1 − y21

)
. . .

(
1 − y2n−1

)
,

and note that changing variables by means of y = Θ (x), we get

∫

Sn

Φn (x) dx

2n
√(

1 − x21
)
. . .

(
1 − x21 − · · · − x2n−1

)

= 2−n
∫

[−1,1]n
Ψn (y) dy (where Ψn = Φn ◦ Θ−1).

For a multi-index p = (p1, p2, . . .), define

Ln,p (y) =
n∏

i=1

L pi (yi ) ,

and note

2−n
∫

[−1,1]n
Ln,p (y) Ln,q (y) dy =

{
0 if p �= q,

1/
∏n

i=1 (1 + 2pi ) if p = q.
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This implies that the set
{
ln,p (y) : p ∈ N

∞
0

}
, where N0 = 0 ∪ N, N = {1, 2, ...} and

ln,p (y) =
√
√
√
√

n∏

i=1

(1 + 2pi ) Ln,p (y) ,

is an orthonormal basis for L2
(
[−1, 1]n , 2−ndx

)
, and any element Ψn of this space

has a unique orthogonal expansion

Ψn (y) =
∑

p∈Nn
0

ψpln,p (y) ,

where

ψp = 2−n
∫

[−1,1]n
ln,p (y) Ψn (y) dy.

4 Orthogonal Decomposition of l2 (S,P)

The orthogonal decomposition of spaces of square integrable random variables dates
back to Wiener [2] and was continued by Ito [3] for the continuous-time counterpart
of SBRW, which is the standard Wiener process. These results were applied to diffu-
sion processes in [4,5] and were recently extended to Lévy processes (see [6,7] for
instance). This line of research has several motivations, beginning with usefulness of
orthogonal representations for approximation and ending with applications in Malli-
avin calculus (see [8,9] for instance) and stochastic analysis in general (see [10]).
Our situation is different since BRW is neither Gaussian nor Markov. Nevertheless, it
appeared naturally in Banach’s extension of Lebesgue integral to abstract spaces. It
is worth mentioning that Banach’s method uses functional analytic tools and “is not
based on the notion of measure” (according to [1]).

Definition 1 We say that Φ ∈ l2 (Sn) if Φ : Sn → R, and

‖Φ‖2l2(Sn) =
∫

Sn

Φ2 (x1, . . . , xn) dx1 . . . dxn

2n
√(

1 − x21
)
. . .

(
1 − x21 − · · · − x2n−1

) < ∞,

and we say that Φ ∈ l2 (S) if Φ : S → R, and

‖Φ‖2l2(S)
= lim

n→∞

∫

Sn

Φ2
n (x) dx1 . . . dxn

2n
√(

1 − x21
)
. . .

(
1 − x21 − · · · − x2n−1

) < ∞,

where
Φn (x) = Φ (x1, . . . , xn, 0, . . .) = (Φ ◦ πn) (x) ,

and where πn : R
N → R

n is the projection onto the first n coordinates.
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Definition 2 Let Ω = [−1, 1]N, F = ⊗∞
n=1 B ([−1, 1]), where B ([−1, 1]) is the

Borel sigma field on [−1, 1], and P = ⊗∞
n=1

1
2λ[−1,1], where λ[−1,1] is the one-

dimensional Lebesgue measure restricted to [−1, 1]. On (Ω,F , P) define Y =
(Y1,Y2, . . .), where Yi (ω) = ωi , ω = (ω1, ω2, . . .) ∈ Ω , i.e., Yi is a sequence
of i.i.d. random variables uniformly distributed on [−1, 1], and X = (X1, X2, . . .),
where

Xn (ω) = ωn

√(
1 − ω2

1

)
. . .

(
1 − ω2

n−1

)
.

Proposition 1 Xn = (X1, . . . , Xn) = πn (X), n = 1, 2, . . . , is a SBRW.

Proof Since Xn = Θ−1
n ◦πn (Y), for any bounded measurable f : R

n → R, we have

E
[
f
(
Xn)] = E

[
f ◦ Θ−1 (

Yn)
]

= 2−n
∫

[−1,1]n
f ◦ Θ−1 (y) dy

=
∫

Sn

f (x) dx

2n
√(

1 − x21
)
. . .

(
1 − x21 − · · · − x2n−1

) .

�

Definition 3 We say that a random variable F : Ω → R belongs to the space
l2 (Sn, Pn) [(respectively, l2 (S, P)] if it is of the form

F = Φn(X
n) (resp. F = Φ(X))

and

‖F‖2l2(Sn ,Pn)
= EPn

[
Φn

(
Xn)]2 < ∞,

(respectively, ‖F‖2l2(S,P)
= EP [Φ (X)]2 < ∞).

There is an obvious correspondence: F ∈ l2 (Sn, Pn) iffΦ ∈ l2 (Sn), and F ∈ l2 (S, P)

iff Φ ∈ l2 (S).

Theorem 1 If Φ ∈ l2 (S), then

Φ (X) = lim
n→∞ Φn

(
Xn) , in the norm l2 (S, P)

l2 (S, P) =
∞⊕

i=0

Bi ,
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where

Φn
(
Xn) =

∑

p∈Nn
0

ψpl p1 (X1)

n∏

i=2

l pi

(

Xi/

√

1 − (X1)
2 − · · · − (Xi−1)

2
)

,

Bi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R for i = 0,

spanl p1 (X1), p1 ∈ N0 for i = 1,

spanl pi

(

Xi/

√
1 − (X1)

2 − · · · − (Xi−1)
2
)

, pi ∈ N0, for i ≥ 2,

where spanl pi (·) stands for the closure in l2 (S, P).

Proof Since l2 (S, P) is a Hilbert space, to prove the first equality, it is enough to
show that Φn (Xn), n = 1, 2, . . . , is a Cauchy sequence. Indeed, if n ≤ m, we have
Φn (Xn) = Φm (Xn, 0, . . . , 0), hence

Φm
(
Xm) − Φm

(
Xn, 0, . . . , 0

)

=
∑

p∈Nm
0 \Nn

0×{0}m−n

ψpl p1 (X1)

m∏

i=2

l pi

⎛

⎝ Xi
√
1 − (X1)

2 − · · · − (Xi−1)
2

⎞

⎠ ,

whereψp = 0 for allmulti-indices p = (p1, . . . , pn, 0, . . .); hence, by orthonormality
of l pi , we get

En
[
Φn

(
Xn) − Φm

(
Xm)]2 =

∑

p∈Nm
0 \Nn

0×{0}m−n

ψ2
p → 0 as n,m → ∞.

For the second equality, note that i �= j implies

E

⎡

⎣l pi

⎛

⎝ Xi
√
1 − (X1)

2 − · · · − (Xi−1)
2

⎞

⎠ l p j

⎛

⎝
X j

√

1 − (X1)
2 − · · · − (

X j−1
)2

⎞

⎠

⎤

⎦

=
∫

S j

l pi (Θi (x)) l p j

(
Θ j (x)

)
dx

2 j

√
(
1 − x21

)
. . .

(
1 − x21 − · · · − x2j−1

) (if i < j)

= 2− j
∫

[−1,1] j
l pi (yi ) l p j

(
y j

)
dy

= 2−2
∫

[−1,1]
l pi (yi ) dyi

∫

[−1,1]
l p j

(
y j

)
dy j = 0,
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hence

0 =
∑

pi ,q j∈N0

ψpi ψq j E

⎡

⎣l pi

⎛

⎝ Xi
√
1 − (X1)

2 − · · · − (Xi−1)
2

⎞

⎠ lq j

×
⎛

⎝
X j

√

1 − (X1)
2 − · · · − (

X j−1
)2

⎞

⎠

⎤

⎦

= E
[
BiB j

]

for i �= j . �
The crucial argument used in the proof abovewill be repeated below to show stochastic
independence of the renormalized walk.

Proposition 2 If X = (X1, X2, . . .) is a SBRW on some probability space (Ξ, �, Q),
then the random variables

Yn = Xn
√
1 − (X1)

2 − · · · − (Xn−1)
2
, n = 1, 2, . . . ,

are stochastically independent with uniform distribution on [−1, 1]. Consequently, all
the Banach chaoses Bi , i = 0, 1, . . . , are stochastically independent.

Proof Indeed, for every Borel bounded measurable f : R → R and g : R → R, we
have

EQ [ f (Yn) g (Ym)]

=
∫

Sn

f (Θn (x)) g (Θm (x)) dx

2n
√(

1 − x21
)
. . .

(
1 − x21 − · · · − x2n−1

) (n > m)

= 2−n
∫

[−1,1]n
f (yn) g (ym) dy

=
∫

[−1,1]
2−1 f (yn) dyn

∫

[−1,1]
2−1g (ym) dym

=
∫

Sn

f (Θn (x)) dx

2n
√(

1 − x21
)
. . .

(
1 − x21 − · · · − x2n−1

)

∫

Sm

× g (Θm (x)) dx

2m
√(

1 − x21
)
. . .

(
1 − x21 − · · · − x2m−1

)

= EQ [ f (Yn)]EQ [g (Ym)] .

�
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Remark 1 For a purely deterministic mathematical object, namely a linear, nonneg-
ative functional on l2 (S) expressed in the form of Banach’s extension of Lebesgue
integral, we found a deeply hidden random object, namely a SBRW, which is closely
connected with it and can be used for its equivalent representation. This implies a
natural question; is it true that with nonnegative linear functionals defined on Banach
spaces more general than l2 (S) and satisfying conditions (A)–(R) on the first page of
[1], one can associate a stochastic process such that this functional is the expectation
with respect to the probability measure induced by this process?

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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