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Abstract We study convergence in law of partial sums of linear processes with heavy-
tailed innovations. In the case of summable coefficients, necessary and sufficient
conditions for the finite dimensional convergence to an α-stable Lévy Motion are
given. The conditions lead to new, tractable sufficient conditions in the case α ≤ 1.
In the functional setting, we complement the existing results on M1-convergence,
obtained for linear processes with nonnegative coefficients by Avram and Taqqu (Ann
Probab 20:483–503, 1992) and improved by Louhichi and Rio (Electr J Probab 16(89),
2011), by proving that in the general setting partial sums of linear processes are conver-
gent on the Skorokhod space equipped with the S topology, introduced by Jakubowski
(Electr J Probab 2(4), 1997).
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1 Introduction and Announcement of Results

Let {Y j } j∈Z be a sequence of independent and identically distributed randomvariables.
By a linear process built on innovations {Y j }, we mean a stochastic process

Xi =
∑

j∈Z
c jYi− j , i ∈ Z, (1)

where the constants {c j } j∈Z are such that the above series isP-a.s. convergent. Clearly,
in non-trivial cases, such a process is dependent and stationary, and due to the sim-
ple linear structure, many of its distributional characteristics can be easily computed
(provided they exist). This refers not only to the expectation or the covariances, but
also to more involved quantities, like constants for regularly varying tails (see e.g.,
[21] for discussion) or mixing coefficients (see e.g., [10] for discussion).

There exists a huge literature devoted to applications of linear processes in statistical
analysis and modeling of time series. We refer to the popular textbook [6] as an
excellent introduction to the topic.

Here, we would like to stress only two particular features of linear processes.
First, linear processes provide a natural illustration for phenomena of local (or

weak) dependence and long-range dependence. The most striking results go back to
Davydov [9], who obtained a rescaled fractional Brownian motion as a functional
weak limit for suitable normalized partial sums of {Xi }’s.

Another important property of linear processes is the propagation of big values.
Suppose that some random variable Y j0 takes a big value, then this big value is prop-
agated along the sequence Xi (everywhere, where Y j0 is taken with a big coefficient
ci− j0 ). Thus, linear processes form the simplest model for phenomena of clustering
of big values, what is important in models of insurance (see e.g., [21]).

In the present paper, we shall deal with heavy-tailed innovations. More precisely,
we shall assume that the law of Yi belongs to the domain of strict attraction of a
non-degenerate strictly α-stable law μα , i.e.,

Zn = 1

an

n∑

i=1

Yi −→
D

Z , (2)

where Z ∼ μα .
Let us observe that by the Skorokhod theorem [25], we also have

Zn(t) = 1

an

[nt]∑

i=1

Yi −→
D

Z(t), (3)

where {Z(t)} is the stable Lévy process with Z(1) ∼ μα , and the convergence holds
on the Skorokhod space D([0, 1]), equipped with the Skorokhod J1 topology.

Recall, that if the variance of Z is infinite, then (2) implies the existence ofα ∈ (0, 2)
such that
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P(|Y j | > x) = x−αh(x), x > 0, (4)

where h is a function that varies slowly at x = +∞, and also

lim
x→∞

P(Y j > x)

P(|Y j | > x)
= p and lim

x→∞
P(Y j < −x)

P(|Y j | > x)
= q, p + q = 1. (5)

The norming constants an in (3) must satisfy

nP(|Y j | > an) = nh(an)

aα
n

→ C > 0, (6)

hence are necessarily of the form an = n1/αg(n1/α), where the slowly varying function
g(x) is the de Bruijn conjugate of (C/h(x))1/α (see [5]). Moreover, if α > 1, then
EY j = 0, and if α = 1, then p = q in (5).

Conversely, conditions (4), (5) and

E[Y j ] = 0, if α > 1, (7)

{Y j } are symmetric, if α = 1, (8)

imply (3).
If an is chosen to satisfy (6) with C = 1, then μα is given by the characteristic

function

μ̂(θ) =

⎧
⎪⎨

⎪⎩

exp
(∫

R1(eiθx − 1) fα,p,q(x) dx
)

if 0 < α < 1,

exp
(∫

R1(eiθx − 1) f1,1/2,1/2(x) dx
)

if α = 1,

exp
(∫

R1(eiθx − 1 − iθx) fα,p,q(x) dx
)

if 1 < α < 2,

(9)

where

fα,p,q(x) = (p I(x > 0) + q I(x < 0)) α|x |−(1+α).

We refer to [12] or any of contemporary monographs on limit theorems for the above
basic information.

Suppose that the tails of |Y j | are regularly varying, i.e., (4) holds for someα ∈ (0, 2),
and the (usual) regularity conditions (7) and (8) are satisfied. It is an observation
due to Astrauskas [1] (in fact: a direct consequence of the Kolmogorov Three Series
Theorem—see Proposition 5.4 below) that the series (1) defining the linear process
Xi is P-a.s. convergent if, and only if,

∑

j∈Z
|c j |αh(|c j |−1) < +∞. (10)

Given the above series is convergent we can define
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Sn(t) = 1

bn

[nt]∑

i=1

Xi , t ≥ 0, (11)

and it is natural to ask for convergence of Sn’s, when bn is suitably chosen. Astrauskas
[1] and Kasahara & Maejima [16] showed that fractional stable Lévy Motions can
appear in the limit of Sn(t)’s, and that some of the limiting processes can have regular
or even continuous trajectories, while trajectories of other can be unbounded on every
interval.

In the present paper, we consider the important case of summable coefficients:

∑

j∈Z
|c j | < +∞. (12)

In Sect. 2, we give necessary and sufficient conditions for the finite dimensional
convergence

Sn(t) = 1

an

[nt]∑

i=1

Xi −→
f.d.d.

A · Z(t), (13)

where the constants an are the same as in (2), A = ∑
j∈Z c j and {Z(t)} is an α-stable

Lévy Motion such that Z(1) ∼ Z . The obtained conditions lead to tractable sufficient
conditions, which in case α < 1 are new and essentially weaker than condition

∑

j∈Z
|c j |β < +∞, for some 0 < β < α,

considered in [1], [8] and [16]. See Sect. 4 for details. Notice that in the case A = 0,
another normalization bn is possible with a non-degenerate limit. We refer to [22] for
comprehensive analysis of dependence structure of infinite variance processes.

Section3 contains strengtheningof (13) to a functional convergence in some suitable
topology on the Skorokhod space D([0, 1]). Since the paper [2], it is known that in
non-trivial cases (when at least two coefficients are nonzero) the convergence in the
Skorokhod J1 topology cannot hold. In fact, none of Skorokhod’s J1, J2, M1 and M2
topologies are applicable. This can be seen by analysis of the following simple example
([2], p. 488). Set c0 = 1, c1 = −1 and ci = 0 if j �= 0, 1. Then Xi = Yi − Yi−1 and
(13) holds with A = ∑

j c j = 0, i.e.,

Sn(t) −→
P

0, t ≥ 0.

But we see that

sup
t∈[0,1]

Sn(t) = max
k≤n

(Yk − Y0) /an

converges in law to a Fréchet distribution. This means that supremum is not a con-
tinuous (or almost surely continuous) functional, what excludes convergence in Sko-
rokhod’s topologies in the general case.
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For linear processes with nonnegative coefficients ci , partial results were obtained
by Avram and Taqqu [2], where convergence in the M1 topology was considered.
Recently, these results have been improved and developed in various directions in
[20] and [3]. We use the linear structure of processes and the established convergence
in theM1 topology to show that in the general case, the finite dimensional convergence
(13) can be strengthen to convergence in the so-called S topology, introduced in [13].
This is a sequential and non-metric, but fully operational topology, for which addition
is sequentially continuous.

Section 5 is devoted to some consequences of results obtained in previous sections.
We provide examples of functionals continuous in the S topology. In particular, we
show that for every γ > 0

1

naγ
n

n∑

k=1

⎛

⎝
k∑

i=1

⎛

⎝
∑

j

ci− j Y j

⎞

⎠− AYi

⎞

⎠
γ

−→
P

0.

Wealso discuss possible extensions of the theory to linear sequences built ondependent
summands.

The “Appendix” contains technical results of independent interest.
Conventions and notations. Throughout the paper, in order to avoid permanent rep-
etition of standard assumptions and conditions, we adopt the following conventions.
We will say that {Y j }’s satisfy the usual conditions if they are independent identically
distributed and (4), (5), (7) and (8) hold. When we write Xi , it is always the linear
process given by (1) and is well-defined, i.e., satisfies (10). Similarly, the norming
constants {an} are defined by (6) and the normalized partial sums Sn(t) and Zn(t) are
given by (11) with bn = an and (3), respectively, where Z is the limit in (2) and Z(t)
is the stable Lévy Motion such that Z(1) ∼ Z .

2 Convergence of Finite Dimensional Distributions for Summable Coefficients

We begin with stating the main result of this section followed by its important conse-
quence.

Theorem 2.1 Let {Y j } be an i.i.d. sequence satisfying the usual conditions. Suppose
that

∑

j

|c j | < +∞.

Then

Sn(t) = 1

an

[nt]∑

i=1

Xi −→
f.d.d.

A · Z(t), where A =
∑

j

c j ,

if, and only if,
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0∑

j=−∞

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
→ 0, as n → ∞,

∞∑

j=n+1

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
→ 0, as n → ∞,

(14)

where

dn, j =
n− j∑

k=1− j

ck, n ∈ N, j ∈ Z.

Corollary 2.2 Under the assumptions of Theorem 2.1, define

Ui =
∑

j

|ci− j |Y j , X+
i =

∑

j

c+
i− j Y j , X−

i =
∑

j

c−
i− j Y j , (15)

where c+ = c ∨ 0, c− = (−c) ∨ 0, c ∈ R
1, and set

Tn(t) = 1

an

[nt]∑

i=1

Ui , T+
n (t) = 1

an

[nt]∑

i=1

X+
i , T−

n (t) = 1

an

[nt]∑

i=1

X−
i . (16)

Then
Tn(t) −→

f.d.d.
A|·| · Z(t), where A|·| =

∑

j

|c j |,

implies

T+
n (t) −→

f.d.d.
A+ · Z(t), where A+ =

∑

j

c+
j ,

T−
n (t) −→

f.d.d.
A− · Z(t), where A− =

∑

j

c−
j ,

Sn(t) = T+
n (t) − T−

n (t) −→
f.d.d.

A · Z(t), where A =
∑

j

c j .

Proof of Corollary 2.2 In view of Theorem 2.1, it is enough to notice that

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
= P

⎛

⎝

∣∣∣∣∣∣

n− j∑

k=1− j

ck

∣∣∣∣∣∣
· |Y j | > an

⎞

⎠ ≤ P

⎛

⎝

⎛

⎝
n− j∑

k=1− j

|ck |
⎞

⎠ · |Y j | > an

⎞

⎠ .

Proof of Theorem 2.1 Using Fubini’s theorem, we obtain that

Sn(t) = 1

an

[nt]∑

i=1

∑

j∈Z
ci− j Y j =

∑

j∈Z

1

an

⎛

⎝
[nt]− j∑

k=1− j

ck

⎞

⎠ Y j =
∑

j∈Z

1

an
d[nt], j Y j . (17)
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Further, we may decompose

∑

j∈Z

1

an
d[nt], j Y j =

0∑

j=−∞

1

an
d[nt], j Y j

+
[nt]∑

j=1

1

an
d[nt], j Y j

+
∞∑

j=[nt]+1

1

an
d[nt], j Y j

= S−
n (t) + S0n (t) + S+

n (t). (18)

Let us consider the partial sum process:

Zn(t) = 1

an

[nt]∑

i=1

Yi , t ≥ 0.

First we will show

Lemma 2.3 Under the assumptions of Theorem 2.1 we have for each t > 0

S0n (t) − A · Zn(t) −→
P

0. (19)

In particular,
S0n (t) −→

D
A · Z(t). (20)

Proof of Lemma 2.3 Define

V 0
n =

[nt]∑

j=1

(
A − d[nt], j

)

an
Y j = A · Zn(t) − S0n (t). (21)

To prove that V 0
n −→P 0, we apply Proposition 5.5. We have to show that

[nt]∑

j=1

∣∣A − d[nt], j
∣∣α

aα
n

h

(
an∣∣A − d[nt], j

∣∣

)

=
[nt]∑

j=1

P
(∣∣A − d[nt], j

∣∣ · |Y j | > an
) → 0, as n → ∞.

(22)

Since an → ∞ and
∣∣A − d[nt], j

∣∣ ≤ ∑
k∈Z |ck |, we have

max
1≤ j≤[nt]P

(∣∣A − d[nt], j
∣∣ · |Y j | > an

) → 0. (23)
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We need a simple lemma.

Lemma 2.4 Let {an, j ; 1 ≤ j ≤ n, n ∈ N} be an array of numbers such that

max
1≤ j≤n

|an, j | → 0, as n → ∞.

Then there exists a sequence jn → ∞, jn = o(n), such that

jn∑

j=1

|an, j | → 0.

Proof of Lemma 2.4 For each m ∈ N there exists Nm > max{Nm−1,m2} such that
for n ≥ Nm

m∑

j=1

|an, j | <
1

m
.

Set jn = m, if Nm ≤ n < Nm+1. By the very definition, if Nm ≤ n < Nm+1 then

jn∑

j=1

|an, j | <
1

m
and

jn
n

≤ jn
Nm

= m

Nm
≤ m

m2 = 1

m
.

By the above lemma and (23), we can find a sequence jn → ∞, jn = o(n),
increasing so slowly that still

jn∑

j=1

P
(∣∣A − d[nt], j

∣∣ · |Y j | > an
)+

[nt]∑

j=[nt]− jn+1

P
(∣∣A − d[nt], j

∣∣ · |Y j | > an
) → 0.

For the remaining part we have

max
jn< j≤[nt]− jn

∣∣A − d[nt], j
∣∣ = max

jn< j≤[nt]− jn

∣∣∣∣∣∣
A −

[nt]− j∑

k=1− j

ck

∣∣∣∣∣∣
= δn → 0,

hence for δ ≥ δn

[nt]− jn∑

j= jn+1

P
(∣∣A − d[nt], j

∣∣ · |Y j | > an
) ≤

[nt]− jn∑

j= jn+1

P
(|δn||Y j | > an

)

≤
[nt]∑

j=1

P
(|δn||Y j | > an

)
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≤ [nt] δ
α

aα
n
h(an/δ)

= [nt]δα h(an)

aα
n

h(an/δ)

h(an)
.

Since na−α
n h(an) = nP(|Y | > an) → 1 and h varies slowly we have

[nt]δα h(an)

aα
n

h(an/δ)

h(an)
∼ [nt]δα 1

n
→ tδα, as n → ∞.

But δ > 0 is arbitrary, hence we have proved (22) and

V 0
n = A · Zn(t) − S0n (t) −→

P
0.

Since

A · Zn(t) −→
D

A · Z(t),

Lemma 2.3 follows.
In the next step, we shall prove

Lemma 2.5 Under the assumptions of Theorem 2.1, the following items (i)–(iii) are
equivalent.

(i)
Sn(1) −→

D
A · Z(1), (24)

(ii)
S−
n (1) + S+

n (1) −→
P

0. (25)

(iii) For every t ∈ [0, 1]
Sn(t) − A · Zn(t) −→

P
0. (26)

Proof of Lemma 2.5 By Lemma 2.3 we know that S0n (1) − A · Zn(1) −→P 0 and
S0n (1) −→D A · Z(1). Since Sn(1) = S−

n (1) + S0n (1) + S+
n (1), (26) implies (25) and

the latter implies (24).

So let us assume (24). By regular variation of an , we have for each t ∈ (0, 1]

Sn(t) = 1

an

[nt]∑

i=1

Xi = a[nt]
an

1

a[nt]

[nt]∑

i=1

Xi −→
D

t1/αA · Z(1) ∼ A · Z(t).

It follows that

E
[
eiθ Sn(t)

] = E
[
eiθ S

0
n (t)
]
E
[
eiθ(S

−
n (t)+S+

n (t))
]

→ E
[
eiθ A·Z(t)

]
, θ ∈ R

1.
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Since also

E
[
eiθ S

0
n (t)
]

→ E
[
eiθ A·Z(t)

]
, θ ∈ R

1,

and E
[
eiθ A·Z(t)

] �= 0, θ ∈ R
1 (for Z(t) has infinitely divisible law), we conclude

that

E
[
eiθ(S

−
n (t)+S+

n (t))
]

→ 1, θ ∈ R
1.

Thus S−
n (t)+ S+

n (t) −→P 0 and by Lemma 2.3 also S0n (t)− A · Z(t) −→P 0. Hence
(26) follows.

Let us observe that by Proposition 5.5 (25) holds if, and only if,

0∑

j=−∞

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
+

∞∑

j=n+1

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
→ 0, as n → ∞, (27)

i.e., relation (14) holds. Therefore the Proof of Theorem 2.1will be complete, if we can
show that convergence of one-dimensional distributions implies the finite dimensional
convergence. But this is obvious in view of (26):

(Sn(t1), Sn(t2), . . . , Sn(tm)) − A · (Zn(t1), Zn(t2), . . . , Zn(tm)) −→
P

0,

and the finite dimensional distributions of stochastic processes A·Zn(t) are convergent
to those of A · Z(t).

Remark 2.6 Observe that for one-sided moving averages, the two conditions in (14)
reduce to one (the expression in the other equals 0). This is the reason we use in
Theorem 2.1 two conditions replacing the single statement (27).

Remark 2.7 In the Proof of Proposition 5.5, we used the Three Series Theorem with
the level of truncation 1. It is well-known that any r ∈ (0,+∞) can be chosen as
the truncation level. Hence, conditions (14) admit an equivalent reformulation in the
“r -form”

0∑

j=−∞

∣∣dn, j
∣∣α

aα
n

h

(
r · an∣∣dn, j

∣∣

)
→ 0, as n → ∞.

∞∑

j=n+1

∣∣dn, j
∣∣α

aα
n

h

(
r · an∣∣dn, j

∣∣

)
→ 0, as n → ∞.

3 Functional Convergence

3.1 Convergence in the M1 Topology

As outlined in Introduction (see also Sect. 5.2 below), the convergence of finite dimen-
sional distributions of linear processes built on heavy-tailed innovations cannot be, in
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general, strengthened to functional convergence in any of Skorokhod’s topologies
J1, J2, M1, M2.

The general linear process {Xi } can be, however, represented as a difference of
linear processes with nonnegative coefficients. Let us recall the notation introduced in
Corollary 2.2:

X+
i =

∑

j

c+
i− j Y j , T+

n (t) = 1

an

[nt]∑

i=1

X+
i ,

X−
i =

∑

j

c−
i− j Y j , T−

n (t) = 1

an

[nt]∑

i=1

X−
i .

Notice, that in general X±
i (ω) is not equal to (Xi (ω))± and that we have

Sn(t) = T+
n (t) − T−

n (t). (28)

The point is that both T+
n (t) and T−

n (t) are partial sums of associated sequences
in the sense of [11] (see e.g., [7] for the contemporary theory) and thus exhibit much
more regularity.

Theorem 1 of Louhichi and Rio [20] can be specified to the case of linear processes
considered in our paper in the following way.

Proposition 3.1 Let the innovation sequence {Y j } satisfies the usual conditions. Let

c j ≥ 0, j ∈ Z, and
∑

j

c j < +∞. (29)

If the linear process {Xi } is well-defined and

Sn(t) −→
f.d.d.

A · Z(t),

then also functionally

Sn −→
D

A · Z

on the Skorokhod space D([0, 1]) equipped with the M1 topology.

Remark 3.2 The first result of this type was obtained by Avram and Taqqu [2]. They
required however more regularity on coefficients (e.g., monotonicity of {c j } j≥1 and
{c− j } j≥1).
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3.2 M1-Convergence Implies S-Convergence

Let us turn to linear processes with coefficients of arbitrary sign. Given decomposition
(28) and Proposition 3.1, the strategy is now clear: Choose any linear topology τ on
D([0, 1]) which is coarser than M1, then

Sn(t) −→
f.d.d.

A · Z(t),

should imply

Sn −→
D

A · Z

on the Skorokhod space D([0, 1]) equipped with the topology τ . Since convergence
of càdlàg functions in the M1 topology is bounded and implies pointwise convergence
outside of a countable set, there are plenty of such topologies. For instance, any space
of the form L p ([0, 1], μ), where p ∈ [0,∞) and μ is an atomless finite measure
on [0, 1], is suitable. The point is to choose the finest among linear topologies with
required properties, for we want to have the maximal family of continuous functionals
on D([0, 1]).

Although we are not able to identify such an “ideal” topology, we believe that this
distinguished position belongs to the S topology, introduced in [13]. This is a non-
metric sequential topology, with sequentially continuous addition, which is stronger
than any of mentioned above L p(μ) spaces and is functional in the sense it has the
following classic property (see Theorem 3.5 of [13]).

Proposition 3.3 Let Q ⊂ [0, 1] be dense, 1 ∈ Q. Suppose that for each finite subset
Q0 = {q1 < q2 < · · · < qm} ⊂ Q we have as n → ∞

(Xn(q1), Xn(q2), . . . , Xn(qm)) −→
D

(X0(q1), X0(q2), . . . , X0(qm)),

where X0 is a stochastic process with trajectories in D[0, 1]). If {Xn} is uniformly
S-tight, then

Xn −→
D

X0,

on the Skorokhod space D([0, 1]) equipped with the S topology.

For readers familiarwith the limit theory for stochastic processes, the aboveproperty
may seem obvious. But it is trivial only for processes with continuous trajectories. It
is not trivial even in the case of the Skorokhod J1 topology, since the point evaluations

πt : D([0, 1]) → R
1, πt (x) = x(t),

can be J1-discontinuous at some x ∈ D([0, 1]) (see [26] for the result corresponding
to Proposition 3.3). In the S topology, the point evaluations are nowhere continuous
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(see [13], p. 11). Nevertheless, Proposition 3.3 holds for the S topology, while it does
not hold for the linear metric spaces L p(μ) considered above. It follows that the S
topology is suitable for the needs of limit theory for stochastic processes. It admits
even such efficient tools like the a.s Skorokhod representation for subsequences [14].
On the other hand, sinceD([0, 1]) equipped with S is non-metric and sequential, many
of apparently standard reasonings require special tools and careful analysis. This will
be seen below.

Before we define the S topology, we need some notation. LetV([0, 1]) ⊂ D([0, 1])
be the space of (regularized) functions of finite variation on [0, 1], equipped with the
norm of total variation ‖v‖ = ‖v‖(1), where

‖v‖(t) = sup

{
|v(0)| +

m∑

i=1

|v(ti ) − v(ti−1)|
}

,

and the supremum is taken over all finite partitions 0 = t0 < t1 < · · · < tm = t .
SinceV([0, 1]) can be identified with a dual of (C([0, 1]), ‖ · ‖∞), we have on it the
weak-∗ topology. We shall write vn ⇒ v0 if for every f ∈ C([0, 1])

∫

[0,1]
f (t)dvn(t) →

∫

[0,1]
f (t)dv0(t).

Definition 3.4 (S-convergence and the S topology) We shall say that xn S-converges
to x0 (in short xn →S x0) if for every ε > 0 one can find elements vn,ε ∈ V([0, 1]),
n = 0, 1, 2, . . . which are ε-uniformly close to xn’s and weakly-∗ convergent:

‖xn − vn,ε‖∞ ≤ ε, n = 0, 1, 2, . . . , (30)

vn,ε ⇒ v0,ε, as n → ∞. (31)

The S topology is the sequential topology determined by the S-convergence.

Remark 3.5 This definition was given in [13], and we refer to this paper for detailed
derivation of basic properties of S-convergence and construction of the S topology,
as well as for instruction how to effectively operate with S. Here, we shall stress
only that the S topology emerges naturally in the context of the following criteria of
compactness, which will be used in the sequel.

Proposition 3.6 (2.7 in [13]) For η > 0, let Nη(x) be the number of η-oscillations of
the function x ∈ D([0, 1]), i.e., the largest integer N ≥ 1, for which there exist some
points

0 ≤ t1 < t2 ≤ t3 < t4 ≤ · · · ≤ t2N−1 < t2N ≤ 1,

such that

|x(t2k) − x(t2k−1)| > η for all k = 1, . . . , N .

123



504 J Theor Probab (2016) 29:491–526

Let K ⊂ D. Assume that

sup
x∈K

‖x‖∞ < +∞, (32)

sup
x∈K

Nη(x) < +∞, for each η > 0. (33)

Then from any sequence {xn} ⊂ K one can extract a subsequence {xnk } and find
x0 ∈ D([0, 1]) such that xnk −→S x0.

Conversely, if K ⊂ D([0, 1]) is relatively compact with respect to −→S, then it
satisfies both (32) and (33).

Corollary 3.7 (2.14 in [13]) Let Q ⊂ [0, 1], 1 ∈ Q, be dense. Suppose that {xn} ⊂
D([0, 1]) is relatively S-compact and as n → ∞

xn(q) → x0(q), q ∈ Q.

Then xn → x0 in S.

Remark 3.8 The S topology is sequential, i.e., it is generated by the convergence
−→S . By the Kantorovich–Kisyński recipe [17] xn → x0 in S topology if, and only
if, in each subsequence {xnk } one can find a further subsequence xnkl −→S x0. This
is the same story as with a.s. convergence and convergence in probability of random
variables.

According to our strategy, we are going to prove that Skorokhod’s M1-topology is
stronger than the S topology or, equivalently, that xn −→M1 x0 implies xn −→S x0.
We refer the reader to the original Skorohod’s article [24] for the definition of the M1
topology, as well as to Chapter 12 of [28] for a comprehensive account of properties
of this topology.

The M1 convergence can be described using a suitable modulus of continuity. We
define for x ∈ D([0, 1]) and δ > 0

wM1(x, δ) := sup
0∨(t2−δ)≤t1<t2<t3≤1∧(t2+δ)

H (x(t1), x(t2), x(t3)) , (34)

where H(a, b, c) is the distance between b and the interval with endpoints a and c:

H(a, b, c) = (a ∧ c − a ∧ c ∧ b) ∨ (a ∨ c ∨ b − a ∨ c).

Proposition 3.9 (2.4.1 of [24]) Let (xn)n≥1 and x0 be arbitrary elements inD([0, 1]).
Then

xn −→
M1

x0

if, and only if, for some dense subset Q ⊂ [0, 1] containing 0 and 1,

xn(t) → x(t), t ∈ Q, (35)
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and
lim
δ→0

lim sup
n→∞

wM1(xn, δ) = 0. (36)

In particular, if xn −→M1 x0, then

xn(t) → x0(t)

for t = 1 and at every point of continuity of x0.

Lemma 3.10 For any a, b, c, d ∈ R
1

|a − b| ≤ |c − d| + H(c, a, d) + H(c, b, d).

Proof If c ≤ a ≤ b ≤ d, then b − a ≤ d − c = d − c + H(c, a, d) + H(c, b, d).
If a ≤ c ≤ b ≤ d then b − a = b − c + c − a ≤ d − c + H(c, a, d) = d − c +
H(c, a, d) + H(c, b, d). If a ≤ c ≤ d ≤ b then b − a = b − d + d − c + c − a =
H(c, b, d) + d − c+ H(c, a, b). If a ≤ b ≤ c ≤ d, then b− a ≤ |b− c| + |c− a| =
H(c, b, d) + H(c, a, d) ≤ H(c, b, d) + H(c, a, d) + d − c. The other cases can be
reduced to the considered above.

Corollary 3.11 Let x ∈ D([0, 1]). For any 0 ≤ s ≤ u < v ≤ t ≤ 1,

|x(u) − x(v)| ≤ |x(s) − x(t)| + H(x(s), x(u), x(t)) + H(x(s), x(v), x(t)).

Lemma 3.12 Let x ∈ D([0, 1]). For 0 ≤ s < t ≤ 1, define

β = sup
s≤u<v<w≤t

H(x(u), x(v), x(w)).

If η > 2β then

Nη(x; [s, t]) ≤ |x(t) − x(s)| + β

η − β
,

where Nη(x; [s, t]) denotes the number of η-oscillations of x in the interval [s, t].
Proof Let s ≤ t1 < t2 ≤ t3 < t4 ≤ · · · ≤ t2N−1 < t2N ≤ t be such that

|x(t2k) − x(t2k−1)| > η for all k = 1, . . . , N .

Assume first that x(t2) − x(t1) > η. We claim that

x(t3) ≥ x(t2) − β and x(t4) − x(t3) > η.

To see this, suppose that x(t3) < x(t2) − β. Then the distance between x(t2) and
the interval with endpoints x(t1) and x(t3) is greater than β, which is a contradiction.
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Hence x(t3) ≥ x(t2) − β. On the other hand, if we assume that x(t4) − x(t3) < −η,
we obtain that

x(t1) = x(t1) − x(t2) + x(t2) − x(t3) + x(t3) < −η + β + x(t3) < x(t3) − β,

which means that the distance between x(t3) and the interval with endpoints x(t1) and
x(t4) is greater than β, again a contradiction.

Repeating this argument, we infer that:

x(t2k) − x(t2k−1) > η, for all k = 1, . . . , N

and

x(t2k+1) − x(t2k) > −β for all k = 1, . . . , N − 1.

Taking the sum of these inequalities, we conclude that:

x(t2N ) − x(t1) > Nη − (N − 1)β = N (η − β) + β. (37)

On the other hand, by Corollary 3.11, we have:

|x(t2N ) − x(t1)| ≤ |x(t) − x(s)| + 2β. (38)

Combining (37) and (38), we obtain that

N ≤ |x(t) − x(s)| + β

η − β
,

which is the desired upper bound.
Assuming that x(t2) − x(t1) < −η, we come in a similar way to the inequality

x(t2N ) − x(t1) < −Nη + (N − 1)β = −N (η − β) − β

or

|x(t2N ) − x(t1)| N (η − β) + β.

This again allows us to use Corollary 3.11 and gives the desired bound for N

The following result was stated without proof in [13]. A short proof can be
given using Skorohod’s criterion 2.2.11 (page 267 of [24]) for the M1-convergence,
expressed in terms of the number of upcrossings. This proof has a clear disadvantage:
It refers to an equivalent definition of the M1-convergence, but the equivalence of
both definitions was not proved in Skorokhod’s paper. In the present article, we give
a complete proof.
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Theorem 3.13 The S topology is weaker than the M1 topology (and hence, weaker
than the J1 topology). Consequently, a set A ⊂ D([0, 1]) which is relatively M1-
compact is also relatively S-compact.

Proof Let xn −→M1 x0. By Proposition 3.9

xn(t) → x0(t),

on the dense set of points of continuity of x0 and for t = 1. Suppose, we know that
K = {xn} satisfies conditions (32) and (33). Then by Proposition 3.6 {xn} is relatively
S-compact and by Corollary 3.7 xn → x0 in S. Thus, it remains to check conditions

Ksup = sup
n

‖xn‖∞ < +∞, (39)

Kη = sup
n

Nη(xn) < ∞, η > 0. (40)

First suppose that x0(1−) = x0(1). Then, D([0, 1]) � x �→ ‖x‖∞ is M1-
continuous at x0. Consequently, xn −→M1 x0 implies ‖xn‖∞ → ‖x0‖∞ and (39)
follows.

If x0(1−) �= x0(1), we have to proceed a bit more carefully. Consider (36) and take
δ > 0 and n0 such that w(xn, δ) ≤ 1, n ≥ n0. Find t0 ∈ (1− δ, 1) which is a point of
continuity of x0. Then,

sup
t∈[0,t0]

|xn(t)| → sup
t∈[0,t0]

|x0(t)|,

hence supn supt∈[0,t0] |xn(t)| < +∞.We also know that xn(t0) → x0(t0) and xn(1) →
x0(1). Choose n ∈ N and u ∈ (t0, 1). By the very definition of the modulus H

|xn(u)| ≤ |xn(t0)| + |xn(1)| + H (xn(t0), xn(u), xn(1))

≤ sup
n

|xn(t0)| + sup
n

|xn(1)| + 1, n ≥ n0.

It follows that also

sup
n

sup
t∈(t0,1]

|xn(t)| < +∞,

and so (39) holds.
In order to prove (40), choose η > 0 and 0 < ε < η/2. By Proposition 3.9, there

exist some δ > 0 and an integer n0 ≥ 1 such that wM1(xn, δ) < ε, n ≥ n0. Next, we
find a partition 0 = t0 < t1 < · · · < tM = 1 consisting of points of continuity of x0
and such that

t j+1 − t j < δ, j = 0, 1, . . . , M − 1.
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Again by Proposition 3.9, there exists an integer n1 ≥ n0 such that for any n ≥ n1

|xn(t j ) − x(t j )| < ε, j = 0, 1, . . . , M. (41)

Fix an integer n ≥ n1. Suppose that Nη(xn) ≥ N , i.e., there exist some points

0 ≤ s1 < s2 ≤ s3 < s4 ≤ · · · ≤ s2N−1 < s2N ≤ 1, (42)

such that
|xn(s2k) − xn(s2k−1)| > η, for all k = 1, 2, . . . , N . (43)

The Proof of (40) will be complete once we estimate the number N by a constant
independent of n.

The η-oscillations of xn determined by (42) can be divided into two (disjoint)
groups. The first group (Group 1) contains the oscillations for which the corresponding
interval [s2k−1, s2k) contains at least one point t j ′ . Since the number of points t j is M ,

the number of oscillations in Group 1 is at most M. (44)

In the second group (Group 2), we have those oscillations for which the corresponding
interval [s2k−1, s2k) contains no point t j , i.e.,

t j ≤ s2k−1 < s2k ≤ t j+1 for some j = 0, 1, . . . , M − 1. (45)

We now use Lemma 3.12 in each of intervals [t j , t j+1], j = 0, 1, . . . ,m. Note that

βn, j := sup
t j≤u<v<w≤t j+1

H (xn(u), xn(v), xn(w)) ≤ wM1(xn, δ) < ε,

hence,

Nη(xn, [t j , t j+1]) ≤ |xn(t j+1) − xn(t j )| + βn, j

η − βn, j
<

2Ksup + ε

η − ε
.

Since there are M intervals of the form [t j , t j+1], we conclude that

the number of oscillations in Group 2 is at most M · 2Ksup + ε

η − ε
(46)

Summing (44) and (46), we obtain that

N ≤ M

(
1 + 2Ksup + ε

η − ε

)
= M

2Ksup + η

η − ε
,

which does not depend on n. Theorem 3.13 follows.

For the sake of completeness, we provide also a typical example of a sequence
(xn)n≥1 in D[0, 1] which is S-convergent, but does not converge in the M1 topology.
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Example 3.14 Let x = 0 and

xn(t) = 1[1/2−1/n,1](t) − 1[1/2+1/n,1](t) =
{
1 if 1

2 − 1
n ≤ t < 1

2 + 1
n

0 otherwise

Then xn −→S x . To see this, we take vn,ε = xn . Then vn,ε ⇒ vε = 0 since for any
f ∈ C[0, 1],

∫ 1

0
f (t)dvn(t) = f

(
1

2
− 1

n

)
− f

(
1

2
+ 1

n

)
→ 0.

The fact that (xn)n≥1 cannot converge in M1 follows by Proposition 3.9 since if
t1 < 1

2 − 1
n < t2 < 1

2 + 1
n < t3, then H (xn(t1), xn(t2), xn(t3)) = 1.

3.3 Convergence in Distribution in the S Topology

Now, we are ready to specify results on functional convergence of stochastic processes
in the S topology, which are suitable for needs of linear processes. They follow directly
from Proposition 3.6 and Proposition 3.3.

Proposition 3.15 (3.1 in [13]) A family {Xγ }γ∈� of stochastic processes with trajec-
tories in D([0, 1]) is uniformly S-tight if, and only if, the families of random variables
{‖Xγ ‖∞}γ∈� and {Nη(Xγ )}γ∈� , η > 0, are uniformly tight.

Proposition 3.16 Let {Xn}n≥0 and {Yn}n≥0 be two sequences of stochastic processes
with trajectories in D([0, 1]) such that as n → ∞

(Xn(q1) + Yn(q1), Xn(q2) + Yn(q2), . . . , Xn(qk) + Yn(qk))

−→
D

(X0(q1) + Y0(q1), X0(q2) + Y0(q2) . . . , X0(qk) + Y0(qk)) ,

for each subset Q0 = {0 ≤ q1 < q2 < · · · < qk} of a dense set Q ⊂ [0, 1], 1 ∈ Q.
If {Xn} and {Yn} are uniformly S-tight, then

Xn + Yn −→
D

X0 + Y0

on the Skorokhod space D([0, 1]) equipped with the S topology.

Proof of Proposition 3.16 According to Proposition 3.3, it is enough to establish the
uniform S-tightness of Xn +Yn . This follows immediately from Proposition 3.15 and
from the inequalities ‖x + y‖∞ ≤ ‖x‖∞ + ‖y‖∞ and

Nη(x + y) ≤ Nη/2(x) + Nη/2(y),

valid for arbitrary functions x, y ∈ D[0, 1] and η > 0.
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Remark 3.17 In linear topological spaces, the algebraic sumK1+K2 = {x1+x2 ; x1 ∈
K1, x2 ∈ K2} of compact setsK1 andK2 is compact. It follows directly from the conti-
nuity of the operation of addition and trivializes the proof of uniform tightness of sum
of uniformly tight random elements. In D([0, 1]) equipped with S, we are, however,
able to prove that the addition is only sequentially continuous, i.e., if xn −→S x0 and
yn −→S y0, then xn + yn −→S x0 + y0. In general, it does not imply continuity (see
[13], p. 18, for detailed discussion). Sequential continuity gives a weaker property:
the sum K1 + K2 of relatively S-compact K1 and K2 is relatively S-compact. For
the uniform tightness purposes, we also need that the S-closure of K1 + K2 is again
relatively S-compact. This is guaranteed by the lower-semicontinuity in S of ‖ · ‖∞
and Nη (see [13], Corollary 2.10).

3.4 The Main Result

Theorem 3.18 Let {Y j } be an i.i.d. sequence satisfying the usual conditions and∑
j |c j | < +∞. Let Sn(t) be defined by (11) and Tn(t) by (16). Then

Tn(t) −→
f.d.d.

A|·| · Z(t), where A|·| =
∑

j

|c j |,

implies

Sn −→
D

A · Z , where A =
∑

j

c j ,

on the Skorokhod space D([0, 1]) equipped with the S topology.

Proof By Corollary 2.2

T+
n (t) = 1

an

[nt]∑

i=1

X+
i −→

f.d.d.
A+ · Z(t), T−

n (t) = 1

an

[nt]∑

i=1

X−
i −→

f.d.d.
A− · Z(t),

where A+ = ∑
i∈Z c+

i and A− = ∑
i∈Z c−

i . It follows from Proposition 3.1 that
T+
n −→D A+ · Z onD([0, 1]) equipped with the M1 topology. A similar result holds

for T−
n . Since the law of every càdlàg process is M1-tight, Le Cam’s theorem [19]

(see also Theorem 8 in Appendix III of [4]) guarantees that both sequences {T+
n } and

{T−
n } are uniformly M1-tight. By Theorem 3.13 we obtain the uniform S-tightness of

both {T+
n } and {T−

n }. Again by Corollary 2.2

Sn(t) = T+
n (t) − T−

n (t) −→
f.d.d.

A · Z(t).

Now a direct application of Proposition 3.16 completes the proof of the theorem.
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4 Discussion of Sufficient Conditions

Conditions (14) do not look tractable. In what follows, we shall provide three types of
checkable sufficient conditions. In both cases, the following slight simplification (47)
of (14) will be useful. As in Proof of Lemma 2.3, we can find a sequence jn → ∞,
jn = o(n), such that

0∑

j=− jn+1

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
→ 0, as n → ∞.

n+ jn−1∑

j=n+1

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
→ 0, as n → ∞.

Hence, it is enough to check

− jn∑

j=−∞

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
→ 0, as n → ∞.

+∞∑

j=n+ jn

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
→ 0, as n → ∞.

(47)

The advantage of this form of the conditions consists in the fact that

sup
j≤− jn

∣∣dn, j
∣∣ → 0, as n → ∞,

sup
j≥n+ jn

∣∣dn, j
∣∣ → 0, as n → ∞.

(48)

We will write −→D(S) when convergence in distribution with respect to the S
topology takes place.

Corollary 4.1 Under the assumptions of Theorem 2.1, if there exists 0 < β < α,
β ≤ 1 such that ∑

j∈Z
|c j |β < +∞, (49)

then

Sn(t) −→
D(S)

A · Z(t).

Proof We have to check (47). By simple manipulations and taking into account that
due to (6) K = supn na

−α
n h(an) < +∞ we obtain

− jn∑

j=−∞

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
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= 1

n

− jn∑

j=−∞

∣∣
n− j∑

k=1− j

ck
∣∣β nh(an)

aα
n

∣∣dn, j
∣∣α−β 1

h(an)
h

(
an∣∣dn, j
∣∣

)

≤ K
1

n

− jn∑

j=−∞

n− j∑

k=1− j

|ck |β
α−β

(
an,

an∣∣dn, j
∣∣

)
,

where


α−β(x, y) =
(
x

y

)α−β h(y)

h(x)
.

Let

h(x) = c(x) exp

(∫ x

a

ε(u)

u
du

)
,

where limx→∞ c(x) = c ∈ (0,∞) and limx→∞ ε(x) = 0, be the Karamata repre-
sentation of the slowly varying function h(x) (see e.g., Theorem 1.3.1 in [5]). Take
0 < γ < min{α − β, c} and let L > a be such that for x > L

ε(x) ≤ γ and c − γ < c(x) < c + γ.

Then, we have for x ≥ y ≥ L

h(y)

h(x)
= c(y)

c(x)
exp

(∫ x

y

ε(u)

u
du

)
≤ c + γ

c − γ
exp

(
γ log

(
x

y

))
= c + γ

c − γ

(
x

y

)γ

,

and so


α−β(x, y) ≤ K
( y
x

)α−β−γ

, x ≥ y ≥ L .

It follows from that fact and (48) that

sup
j≤− jn


α−β

(
an,

an∣∣dn, j
∣∣

)
→ 0, as n → ∞.

Hence it is sufficient to show that

sup
n

1

n

− jn∑

j=−∞

n− j∑

k=1− j

|ck |β < +∞.

In fact, more is true.
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Lemma 4.2 If
∑∞

j=0 |b j | < +∞, then for each t > 0

1

n

∞∑

j=0

n+ j∑

k=1+ j

bk → 0, as n → ∞.

Proof of Lemma 4.2 We have

∣∣∣
1

n

∞∑

j=0

n+ j∑

k=1+ j

bk
∣∣∣ ≤ 1

n

∞∑

j=0

n+ j∑

k=1+ j

|bk |

= 1

n

∞∑

k=1

(k ∧ n)|bk |

=
(
1

n

n∑

k=1

k|bk | +
∞∑

k=n+1

|bk |
)

.

The first sum in the last line converges to 0 by Kronecker’s lemma. The second is the
rest of a convergent series.

Returning to the Proof of Corollary 4.1, let us notice that convergence

+∞∑

j=n+ jn

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
→ 0, as n → ∞,

can be checked the same way.

Corollary 4.3 Under the usual conditions, if α ∈ (1, 2) and
∑

j∈Z |c j | < +∞, then

Sn(t) −→
D(S)

A · Z(t).

Remark 4.4 Corollaries 4.1 and 4.3 were proved independently by Astrauskas [1]
and Davis and Resnick [8]. Our approach follows direct manipulations of Astrauskas,
while Davis and Resnick involved point process techniques.

Remark 4.5 For α ≤ 1 assumption (49) is unsatisfactory, for it excludes the case of
strictly α-stable random variables {Y j } with∑ j |c j |α < +∞, but

∑
j |c j |β = +∞

for every β < α. With our criterion given in Theorem 2.1 we can easily prove the
needed result.

Corollary 4.6 Suppose that α ≤ 1,
∑

j∈Z |c j |α < +∞, the usual conditions hold
and h is such that

h(λx)/h(x) ≤ M, λ ≥ 1, x ≥ x0, (50)

for some constants M, x0. If the linear process {Xi } is well-defined, then

Sn(t) −→
D(S)

A · Z(t).
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Proof of Corollary 4.6 First notice that
∑

j |c j | < +∞ so that A is defined. Proceed-
ing like in the Proof of Corollary 4.1, we obtain

− jn∑

j=−∞

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)

= 1

n

− jn∑

j=−∞

∣∣∣∣∣∣

n− j∑

k=1− j

ck

∣∣∣∣∣∣

α

nh(an)

aα
n

1

h(an)
h

(
an∣∣dn, j
∣∣

)

≤ K · M 1

n

− jn∑

j=−∞

n− j∑

k=1− j

|ck |α → 0,

where the convergence to 0 holds by Lemma 4.2.

Remark 4.7 Asmentioned before, the above corollary covers the important case when
h(x) → C > 0, as x → ∞, i.e., when the law of Yi is in the domain of strict (or
normal) attraction. Many other examples can be produced using Karamata’s represen-
tation of slowly varying functions. Assumption (50) is much in the spirit of Lemma
A.4 in [21]. Our final result goes in different direction.

Remark 4.8 Notice that if α < 1, then
∑

j |c j |αh(|c j |−1) < +∞, with h slowly
varying, automatically implies

∑
j |c j | < +∞.

Corollary 4.9 Under the usual conditions, if α < 1, then

Sn(t) −→
D(S)

A · Z(t),

if

∑

j∈Z
|c j |α < +∞,

and the coefficients c j are regular in a very weak sense: there exists a constant 0 <

γ < α such that

max j+1≤k≤ j+n |ck |
(1−α)(α−γ )

(1−α+γ )

∑ j+n
k= j+1 |ck |α

≤ K+ < +∞, j ≥ 0. (51)

max j−n≤k≤ j−1 |ck |
(1−α)(α−γ )

(1−α+γ )

∑ j−1
k= j−n |ck |α

≤ K− < +∞, j ≤ 0. (52)

(with the convention that 0/0 ≡ 1.)

Remark 4.10 Notice that we always assume that the linear process is well- defined.
This may require more than demanded in Corollary 4.9.
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Proof of Corollary 4.9 As before, we have to check (47).

− jn∑

j=−∞

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)

= 1

n

− jn∑

j=−∞

∣∣∣
n− j∑

k=1− j

ck
∣∣∣
α−γ nh(an)

aα
n

∣∣dn, j
∣∣γ 1

h(an)
h

(
an∣∣dn, j
∣∣

)

≤ K
1

n

− jn∑

j=−∞

∣∣∣
n− j∑

k=1− j

ck
∣∣∣
α−γ


γ

(
an,

an∣∣dn, j
∣∣

)
,

where 
γ (x, y) was defined in the Proof of Corollary 4.1 and

sup
j≤− jn


γ

(
an,

an∣∣dn, j
∣∣

)
→ 0, as n → ∞.

Thus it is enough to prove

sup
n

1

n

− jn∑

j=−∞

∣∣∣
n− j∑

k=1− j

ck
∣∣∣
α−γ

< +∞.

We have

∣∣∣
n− j∑

k=1− j

ck
∣∣∣ ≤

n− j∑

k=1− j

|ck | ≤
⎛

⎝
n− j∑

k=1− j

|ck |α
⎞

⎠ · max
1− j≤k≤n− j

|ck |1−α, (53)

hence

1

n

− jn∑

j=−∞

∣∣∣
n− j∑

k=1− j

ck
∣∣∣
α−γ = 1

n

− jn∑

j=−∞

⎛

⎝
n− j∑

k=1− j

|ck |α
⎞

⎠

∣∣∣
∑n− j

k=1− j ck
∣∣∣
α−γ

(∑n− j
k=1− j |ck |α

)

≤ 1

n

− jn∑

j=−∞

⎛

⎝
n− j∑

k=1− j

|ck |α
⎞

⎠ max1− j≤k≤n− j |ck |(1−α)(α−γ )

(∑n− j
k=1− j |ck |α

)1−α+γ

≤ (K+)1−α+γ 1

n

− jn∑

j=−∞

⎛

⎝
n− j∑

k=1− j

|ck |α
⎞

⎠ → 0.

This is again more than needed. The proof of

+∞∑

j=n+ jn

∣∣dn, j
∣∣α

aα
n

h

(
an∣∣dn, j
∣∣

)
→ 0, as n → ∞.
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goes the same way.

Example 4.11 If α < 1,

|c j | = 1

| j |1/α log(1+ε)/α | j | , | j | ≥ 3,

and {Xi } is well-defined, then under the usual conditions

Sn(t) −→
D(S)

A · Z(t).

Remark 4.12 In our considerations, we search for conditions giving functional con-
vergence of {Sn(t)} with the same normalization as {Zn(t)} (by {an}). It is possible
to provide examples of linear processes, which are convergent in the sense of finite
dimensional distribution with different normalization. Moreover, it is likely that also
in the heavy-tailed case one can obtain a complete description of the convergence of
linear processes, as it is done by Peligrad and Sang [23] in the case of innovations
belonging to the domain of attraction of a normal distribution. We conjecture that
whenever the limit is a stable Lévy motion our functional approach can be adapted to
the more general setting.

5 Some Complements

5.1 S-Continuous Functionals

A phenomenon of self-canceling oscillations, typical for the S topology, was described
in Example 3.14. This example shows that supremum cannot be continuous in the S
topology. In fact, supremum is lower semi-continuous with respect to S, as many other
popular functionals—see [13], Corollary 2.10. On the other hand addition is sequen-
tially continuous and this property was crucial in consideration given in Sect. 3.4.

Here is another positive example of an S-continuous functional.
Let μ be an atomless measure on [0, 1] and let h : R

1 → R
1 be a continuous

function. Consider a smoothing operation sμ,h on D([0, 1]) given by the formula

sμ,h(x)(t) =
∫ t

0
h(x(s)) dμ(s).

Then, sμ,h(x)(·) is a continuous function on [0, 1] and a slight modification of the
Proof of Proposition 2.15 in [13] shows that the mapping

(D([0, 1]), S) � x �→ sμ,h(x) ∈ (C([0, 1]), ‖ · ‖∞)
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is continuous. In particular, if we set μ = � (the Lebesgue measure), h(0) = 0,
h(x) ≥ 0, and suppose that xn −→S 0, then

∫ 1

0
h(xn(s)) ds → 0.

In the case of linear processes, such functionals lead to the following result.

Corollary 5.1 Under the conditions of Corollaries 4.1, 4.3, 4.6 or 4.9 we have for
any β > 0

1

naβ
n

n∑

k=1

∣∣∣
k∑

i=1

⎛

⎝
∑

j

ci− j Y j

⎞

⎠− AYi
∣∣∣
β −→

P
0.

Proof of Corollary 5.1 The expression to be analyzed has the form

∫ 1

0
Hβ (Sn(t) − A · Zn(t)) dt,

where Hβ(x) = |x |β and by (26)

Sn(t) − A · Zn(t) −→
f.d.d.

0.

We have checked in the course of the Proof of Theorem 3.18, that {Sn} is uniformly
S-tight. By (3) {A · Zn} is uniformly J1-tight, hence also S-tight. Similarly as in the
Proof of Proposition 3.16 we deduce that {Sn − A · Zn} is uniformly S-tight. Now an
application of Proposition 3.3 gives

Sn − A · Zn −→
D

0,

on the Skorokhod space D([0, 1]) equipped with the S topology.

5.2 An Example Related to Convergence in the M1 Topology

In Introduction, we provided an example of a linear process (c0 = 1, c1 = −1)
for which no Skorokhod’s convergence is possible. In this example A = 0 and the
limit is degenerate, what might suggest that another, more appropriate norming is
applicable, under which the phenomenon disappears. Here, we give an example with a
non-degenerate limit showing that in the general case M1-convergence need not hold.

Example 5.2 Let c0 = ζ > −c1 = ξ > 0. Then X j = ζY j − ξY j−1 and defining
Zn(t) by (3) we obtain for t ∈ [k/n, (k + 1)/n)

Sn(t) = 1

an

k∑

j=1

X j = 1

an
(ζYk − ξY0) + (ζ − ξ)Zn((k − 1)/n).
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Clearly, the f.d.d. limit {(ζ−ξ)Z(t)} is non-degenerate.Wewill show that the sequence
{Sn(t)} is not uniformly M1-tight and so cannot converge to {(ζ − ξ)Z(t)} in the M1
topology.

For the sake of simplicity, let us assume that Y j ’s are non-negative and

P (Y1 > x) = x−α, x ≥ 1,

with α < 1. Then, we can choose an = n1/α . Consider sets

Gn =
n−1⋃

j=0

{
Y j > εnan,Y j+1 > εnan

}
.

where εn = n−1/(3α). Then,

P (Gn) ≤ (n + 1)P (Yi > εnan)
2 = (n + 1)ε−2α

n

(
n1/α

)−2α −→ 0.

Notice that

on Gc
n there are no two consecutive values of Y j exceedingεnan . (54)

Let us define Yn, j = Y j1I{Y j > εnan} and set for t ∈ [k/n, (k + 1)/n)

S̃n(t) = 1

an

(
ζYn,k − ξYn,0

)+ ζ − ξ

an

k−1∑

j=1

Yn, j .

We have by (61)

E

[
sup

t∈[0,1]
∣∣Sn(t) − S̃n(t)

∣∣
]

≤ ζ

an

n∑

j=0

E
[
Y j1I{Y j ≤ εnan}

]

≤ C1ζ
(n + 1)(εnan)1−α

an
→ 0.

It follows that {Sn(t)} are uniformlyM1-tight if, and only if, {S̃n(t)} are. LetwM1(x, δ)
be given by (34). Since P

(
Gc

n

) → 1 we have for any δ > 0 and η > 0

lim sup
n

P
(
wM1(S̃n(·), δ) > η

)
= lim sup

n
P
(
{wM1(S̃n(·), δ) > η} ∩ Gc

n

)
.

And on Gc
n , by the property (54) and if 2/n < δ we have

ω(S̃n(·), δ) ≥ 1

an
(ζ − ξ)max

j
Yn, j .

123



J Theor Probab (2016) 29:491–526 519

If η/(ζ − ξ) > εn , then

P

(
(1/an)max

j
Yn, j > η/ (ζ − ξ)

)

= P

(
(1/an)max

j
Y j > η/ (ζ − ξ)

)

−→ 1 − exp
(− ((ζ − ξ)/η)α

) = θ > 0.

Hence for each δ > 0

lim inf
n

P
(
wM1(S̃n(·), δ) > η

)
≥ θ > 0,

and the sequence {S̃n(t)} cannot be uniformly M1-tight.

5.3 Linear Space of Convergent Linear Processes

We can explore the machinery of Sect. 4 to obtain a natural

Proposition 5.3 We work under the assumptions of Theorem 2.1. Denote by CY the
set of sequences {ci }i∈Z such that if

Xi =
∑

j∈Z
c jYi− j , i ∈ Z,

then

Sn(t) = 1

an

[nt]∑

i=1

Xi −→
f.d.d.

A · Z(t),

with A = ∑
i∈Z ci .

Then CY is a linear subspace of RZ.

Proof of Proposition 5.3 Closeness ofCY undermultiplicationby anumber is obvious.
So let us assume that {c′

i } and {c′′
i } are elements of CY . By Theorem 2.1, we have to

prove that

0∑

j=−∞
P

⎛

⎝∣∣
n− j∑

k=1− j

(c′
k + c′′

k )
∣∣|Y j | > an

⎞

⎠ → 0, as n → ∞.

∞∑

j=n+1

P

⎛

⎝∣∣
n− j∑

k=1− j

(c′
k + c′′

k )
∣∣|Y j | > an

⎞

⎠ → 0, as n → ∞.

(55)
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But

0∑

j=−∞
P

⎛

⎝∣∣
n− j∑

k=1− j

(c′
k + c′′

k )
∣∣|Y j | > an

⎞

⎠

≤
0∑

j=−∞
P

⎛

⎝∣∣
n− j∑

k=1− j

c′
k

∣∣|Y j | + ∣∣
n− j∑

k=1− j

c′′
k

∣∣|Y j | > an

⎞

⎠

≤
0∑

j=−∞
P

⎛

⎝∣∣
n− j∑

k=1− j

c′
k

∣∣|Y j | > an/2

⎞

⎠+
0∑

j=−∞
P

⎛

⎝∣∣
n− j∑

k=1− j

c′′
k

∣∣|Y j | > an/2

⎞

⎠ .

Now both terms tend to 0 by Remark 2.7. Identical reasoning can be used in the proof
of the “dual” condition in (55).

5.4 Dependent Innovations

In the main results of the paper, we studied only independent innovations {Y j }. It is
however clear that the functional S-convergence can be obtained under much weaker
assumptions. In order to apply crucial Proposition 3.16 we need only that

Sn(t) −→
f.d.d.

A · Z(t),

and that

T+
n −→

D
A+ · Z , and T−

n −→
D

A− · Z ,

on the Skorokhod space D([0, 1]) equipped with the M1 topology. For the latter rela-
tions, Theorem 1 of [20] seems to be an ideal tool for associated sequences (see our
Proposition 3.1). A variety of potential other possible examples is given in [27].
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Appendix

We provide two results of a technical character. The first one is well-known [1] and is
stated here for completeness. Proposition 5.5 might be of independent interest.
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Proposition 5.4 Let {Y j } be an i.i.d.sequence satisfying (4), (7) and (8) and let {c j }
be a sequence of numbers. Then the series

∑
j∈Z c jY j is well-defined if, and only if,

∑

j∈Z
|c j |αh(|c j |−1) < +∞. (56)

Proposition 5.5 Let {Y j } be an i.i.d.sequence satisfying (4), (7) and (8). Consider an
array {cn, j ; n ∈ N, j ∈ Z} of numbers such that for each n ∈ N

∑

j∈Z
|cn, j |αh(|cn, j |−1) < +∞. (57)

Set Vn = ∑
j∈Z cn, j Y j , n ∈ N. Then

Vn −→
P

0 (58)

if, and only if, ∑

j∈Z
|cn, j |αh(|cn, j |−1) → 0, as n → ∞. (59)

In the proofs, we shall need some estimates which seem to be a part of the proba-
bilistic folklore.

Lemma 5.6 Assume that

P (|Y | > x) = x−αh(x),

where h(x) is slowly varying at x = ∞.

(i) If α ∈ (0, 2), then there exists a constant C2, depending on α and the law of Y
such that

E
[
Y 2I (|Y | ≤ x)

]
≤ C2x

2−αh(x), x > 0. (60)

(ii) If α ∈ (0, 1), then there exists a constant C1, depending on α and the law of Y
such that

E [|Y |I (|Y | ≤ x)] ≤ C1x
1−αh(x), x > 0. (61)

(iii) If α ∈ (1, 2), then there is x0 > 0, depending on the law of Y , such that

E [|Y |I (|Y | > x)] ≤ E [|Y | I (x ≤ x0)] + 2α

α − 1
x1−αh(x), x > 0. (62)

Proof Take β > α. Applying the direct half of Karamata’s Theorem (Th. 1.5.11 [5]),
we obtain

E
[|Y |βI (|Y |≤ x)

]= β

∫ x

0
tβ−1P (|Y | > t) dt − xβP (|Y | > t) ∼ α

β − α
xβ−αh(x).
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Hence there exists x0 such that

E
[|Y |βI (|Y | ≤ x)

] ≤ 2α

β − α
xβ−αh(x), x > x0.

If 0 < x ≤ x0, then

E
[|Y |βI (|Y | ≤ x)

] ≤ xβ = xβ x−αh(x)

P (|Y | > x)
≤ 1

P (|Y | > x0)
xβ−αh(x).

Setting Cβ = max{1/P (|Y | > x0) , 2α/(β − α)} one obtains both (60) and (61).
To get (62), we proceed similarly. First, by Karamata’s Theorem

E [|Y |I (|Y | > x)] =
∫ ∞

x
P (|Y | > t) dt + xP (|Y | > x) ∼ α

α − 1
x1−αh(x),

Hence, for some x0, we have

E|Y |I (|Y | > x) ≤ 2α

α − 1
x1−αh(x), x > x0.

Since α > 1, we have E [|Y |] < +∞ and (62) follows.

Proof of Proposition 6.1 We begin with specifying the conditions of the Kolmogorov
Three Series Theorem in terms of our linear sequences. We have

∑

j∈Z
P
(|c jY j | > 1

) =
∑

j∈Z

(
1

|c j |
)−α

h(|c j |−1) =
∑

j∈Z
|c j |αh(|c j |−1). (63)

Applying (60) we obtain

∑

j∈Z
Var

(
(c jY j )I

(|c jY j | ≤ 1
)) ≤

∑

j∈Z
E
[(
c jY j

)2
I
(|c jY j | ≤ 1

)]

=
∑

j∈Z
|c j |2E

[
Y 2
j I (|Y j | ≤ 1/|c j |)

]

≤ C2

∑

j∈Z
|c j |2(1/|c j |)2−αh(|c j |−1)

= C2

∑

j∈Z
|c j |αh(|c j |−1).

(64)
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Similarly, if α ∈ (0, 1), then by (61)

∑

j∈Z

∣∣E
[
c jY jI

(|c jY j | ≤ 1
)] ∣∣ ≤

∑

j∈Z
|c j |E

[|Y j |I
(|Y j | ≤ 1/|c j |

)]

≤ C1

∑

j∈Z
|c j |(1/|c j |)1−αh(|c j |−1)

= C1

∑

j∈Z
|c j |αh(|c j |−1).

(65)

If α = 1, then by the symmetry we have E
[
Y jI

(|Y j | ≤ a
)] = 0, a > 0, and the

series of truncated expectations trivially vanishes

∑

j∈Z
E
[
c jY jI

(|c jY j | ≤ 1
)] = 0. (66)

For α ∈ (1, 2) we have E
[
X j
] = 0 and by (62)

∑

j∈Z
|E [c jY jI

(|c jY j | ≤ 1
)] | =

∑

j∈Z
|E [c jY jI

(|c jY j | > 1
)] |

≤
∑

j∈Z
|c j |E

[|Y j |I
(|Y j | > 1/|c j |

)]

≤ E [|Y |]max
j∈Z |c j |#{ j ; |c j | ≥ 1/x0}

+ 2α

α − 1

∑

j∈Z
|c j |(1/|c j |)1−αh(|c j |−1)

(67)

By (63)–(67) we obtain that
∑

j∈Z |c j |αh(|c j |−1) < +∞ if, and only if, all the
assumptions of the Three Series Theorem are satisfied. Hence

∑
j∈Z c jY j is a.s. con-

vergent if, and only if, (56) holds.

Proof of Proposition 6.2 By Proposition 5.4, all random variables Vn = ∑
j∈Z cn, j Y j

are well-defined. Let us consider a decomposition of each Vn into a sum of another
three (convergent!) series:

Vn =
∑

j∈Z

(
cn, j Y j I (|cn, j Y j | ≤ 1) − E

[
cn, j Y j I (|cn, j Y j | ≤ 1)

])

+
∑

j∈Z
E
[
cn, j Y j I (|cn, j Y j | ≤ 1)

]

+
∑

j∈Z
cn, j Y j I (|cn, j Y j | > 1)

= Vn,1 + Vn,2 + Vn,3.
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By (64), we have

Var
(
Vn,1

) ≤ C2

∑

j∈Z
|cn, j |αh(|cn, j |−1) → 0, as n → ∞,

if (59) holds. Similarly Vn,2 → 0 by (65)–(67). Finally, we have

P
(
Vn,3 �= 0

) ≤ P

⎛

⎝
⋃

j∈Z
{|cn, j Y j | > 1}

⎞

⎠

≤
∑

j∈Z
P
(|cn, j Y j | > 1

)

=
∑

j∈Z
|cn, j |αh(|cn, j |−1) → 0 as n → ∞.

We have proved the sufficiency part of Proposition 5.5.

To prove the “only if” part, we show first that Vn −→P 0 implies uniform infini-
tesimality of the coefficients, that is

sup
j∈Z

|cn, j | → 0, as n → ∞. (68)

Let {Ȳ j } be an independent copy of {Y j }. If V̄n = ∑
j∈Z cn, j Ȳ j , then also Vn −

V̄n −→P 0 and these are series of symmetric random variables. For each n select some
arbitrary jn ∈ Z and consider decomposition into independent symmetric random
variables

Vn − V̄n = cn, jn (Y jn − Ȳ jn ) +
∑

j∈Z, j �= jn

cn, j (Y j − Ȳ j ) = Wn + W̃n .

Since {Vn − V̄n}n∈N is uniformly tight, so is {Wn}n∈N (it follows from the Lévy–
Ottaviani inequality, see e.g., Proposition 1.1.1 in [18]). Since the law of Y j − Ȳ j is
non-degenerate, we obtain

sup
n

|cn, jn | < +∞.

If along some subsequence n′, we would have cn′, jn′ → c �= 0, then for some θ ∈ R
1

lim
n′→∞

E
[
eiθWn′

]
= |E

[
eiθcY

]
|2 < 1.

It follows that also

lim
n′→∞

E
[
eiθ(Vn′−V̄n′ )

]
= lim

n′→∞
E
[
eiθWn′

]
E
[
eiθW̃n′

]
< 1.
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This is in contradiction with Vn − V̄n −→P 0. Hence c = 0, cn, jn → 0 and since jn
was chosen arbitrary, (68) follows.

Now let us choose kn such that both

∑

| j |>kn

cn, j Y j −→
P

0, as n → ∞,

and

∑

| j |>kn

P
(|cn, j Y j | > 1

) → 0, as n → ∞.

Then {Xn, j = cn, j Y j ; | j | ≤ kn, n ∈ N} is an infinitesimal array of row-wise inde-
pendent random variables, with row sums convergent in probability to zero. Applying
the general central limit theorem (see e.g., Theorem 5.15 in [15]), we obtain

∑

| j |≤kn

P
(|Xn, j | > 1

) =
∑

| j |≤kn

P
(|cn, j Y j | > 1

) =
∑

| j |≤kn

|cn, j |αh(|cn, j |−1) → 0.

This completes the Proof of Proposition 5.5.
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