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Abstract We correct and clarify some ambiguous statements in D. M. Mason (2005):
The asymptotic distribution of self-normalized triangular arrays. J. Theoret. Probab.,
18, 853–870.

Corrections and Clarifications of Mason (2005)

This note has two purposes. First is to correct some statements in the Introduction and
Statements of Results of [4], and second is to provide the result given in Proposition
[A] below, which clarifies a claim at the end of the proof of Theorem 2.

Our corrections are needed since it is not clear that (1.9) always implies (1.2). They
are the following:

(i) On page 855, line 10, change the “further shows” to “further shows that under
the setup of Proposition [A] in this note” and on line 13 change “(1.4)” to “(1.4)
nondegenerate”.

(ii) On page 855, line 14, replace “or equivalently (1.9) holds” with “P (V > 0) = 1”.
(iii) On page 856, line 3, replace “ Actually” with “Actually under the setup of Propo-

sition [A] in this note”.

We remark in passing that the statements in [4] about triangular arrays of the
form X1,n, . . . , Xn,n , n ≥ 1, are equally valid for triangular arrays of the form
X1,nk , . . . , Xnk ,nk , k ≥ 1, where {nk}k≥1 is an infinite subsequence of the positive inte-
gers. Also we point out that everywhere triangular array of infinitesimal independent
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random variables should be changed to infinitesimal triangular array of independent
random variables, as stated in Proposition [A]. The word infinitesimal was everywhere
put in the wrong place.

The following Proposition [A] and Remark 1 justify the claim towards the end of
the proof of Theorem 2 on page 868 that says, “This means that every subsequential
distributional limit random variable T must be of the form (1.10).” They should have
been included in an appendix in the original paper.

Proposition [A] Let {nk}k≥1 be an infinite subsequence of the positive integers and
X1,nk , . . . , Xnk ,nk , k ≥ 1, be an infinitesimal triangular array of independent random
variables such that for each k ≥ 1, X1,nk , . . . , Xnk ,nk are i.i.d. X1,nk . Assume that for
a necessarily infinitely divisible random variable U,

nk∑

i=1

Xi,nk →d U, as k → ∞. (1.1)

Then
( nk∑

i=1

Xi,nk ,

nk∑

i=1

X2
i,nk

)
→d (U, V ) , as k → ∞, (1.2)

where the two dimensional infinitely divisible random vector (U, V ) in (1.2) has the
representation:

(U, V ) =d

(
b + W + τ Z , S + τ 2

)
, (1.3)

with b and τ ≥ 0 being suitable constants,

W =
∫ 1

0
ϕ1 (s) d N1(s) +

∫ ∞

1
ϕ1 (s) d {N1(s) − s}

−
∫ 1

0
ϕ2 (s) d N2(s) −

∫ ∞

1
ϕ2 (s) d {N2(s) − s} (1.4)

and

S =
∫ ∞

0
ϕ2

1 (s) d N1(s) +
∫ ∞

0
ϕ2

2 (s) d N2(s), (1.5)

with N1 and N2 being independent right continuous Poisson processes on [0,∞) with
rate 1, Z being a standard normal random variable independent of N1 and N2, and
ϕ1 and ϕ2 being two left continuous, nonincreasing, nonnegative functions defined on
(0,∞) satisfying for all δ > 0,

∫ ∞

δ

ϕ2
i (s) ds < ∞ for i = 1, 2. (1.6)
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Proof The proof that (1.1) implies (1.2) follows along very similar lines to that of
Lemma 4 in [2]. To relieve the notational burden, in the following we shall write
n = nk . By parts (ii) and (iii) of Theorem 4.7 on page 61 of [1], the distributional
convergence (1.1) implies that there exists a Lévy measure μ such that for every δ > 0
such that μ {−δ, δ} = 0,

w − lim
n→∞

n∑

i=1

nL (
Xi,n

) | (|x | > δ)

= w − lim
n→∞ nL (

X1,n
) | (|x | > δ) = μ| (|x | > δ) ; (1.7)

and for some aδ

lim
n→∞ E Sn,δ = lim

n→∞
(
nE X1,n,δ

) = aδ, (1.8)

where

Sn,δ :=
n∑

i=1

Xi,n1
{∣∣Xi,n

∣∣ ≤ δ
} =:

n∑

i=1

Xi,n,δ. (1.9)

(Note that we use here the notation of [1].) Now by part (i) of the same theorem, (1.1)
also implies that for some 0 ≤ σ 2 < ∞,

lim
δ↘0

{
lim supn→∞
lim infn→∞

} n∑

i=1

E
(
Xi,n,δ − E Xi,n,δ

)2 = σ 2. (1.10)

Notice that

n∑

i=1

E
(
Xi,n,δ − E Xi,n,δ

)2 = nE X2
1,n,δ − n−1 (

nE X1,n,δ

)2
. (1.11)

Further by (1.8) for every δ > 0 such that μ {−δ, δ} = 0, n−1
(
nE X1,n,δ

)2 → 0,
which by (1.10) and (1.11), implies

lim
δ↘0

{
lim supn→∞
lim infn→∞

}
EVn,δ = σ 2, (1.12)

where

Vn,δ :=
n∑

i=1

X2
i,n1

{∣∣Xi,n
∣∣ ≤ δ

} =
n∑

i=1

X2
i,n,δ, (1.13)
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with

EVn,δ = nE X2
1,n,δ =

∫

|x |≤δ

nx2dL (
X1,n

)
. (1.14)

Now let δm, m ≥ 1, be a sequence of constants converging to zero such that 0 <

δm+1 < δm < δ0 = δ, and μ {−δm, δm} = 0, m ≥ 0. Then for each m ≥ 1, by (1.7)
and μ {−δm, δm} = μ {−δ, δ} = 0,

lim inf
n→∞

∫

|x |≤δm

nx2dL (
X1,n

) +
∫

δm<|x |≤δ

x2dμ (x)

= lim inf
n→∞

∫

|x |≤δm

nx2dL (
X1,n

) + lim
n→∞

∫

δm<|x |≤δ

nx2dL (
X1,n

)

= lim inf
n→∞

∫

|x |≤δ

nx2dL (
X1,n

) ≤ lim sup
n→∞

∫

|x |≤δ

nx2dL (
X1,n

)

= lim sup
n→∞

∫

|x |≤δm

nx2dL (
X1,n

) + lim
n→∞

∫

δm<|x |≤δ

nx2dL (
X1,n

)

= lim sup
n→∞

∫

|x |≤δm

nx2dL (
X1,n

) +
∫

δm<|x |≤δ

x2dμ (x) .

Now by letting m → ∞, we see by (1.12) that

lim
n→∞

∫

|x |≤δ

nx2dL (
X1,n

) = σ 2 +
∫

0<|x |≤δ

x2dμ (x) =: bδ. (1.15)

Moreover, we get from (1.15) that for every k > 2,

lim
δ↘0

lim sup
n→∞

∫

|x |≤δ

n |x |k dL (
X1,n

) = 0. (1.16)

We now proceed as in the proof of Lemma 4 in [2]. We see using (1.16) that for any
α, β ∈ R,

lim
δ↘0

{
lim supn→∞
lim infn→∞

}
E

(
α

(
Sn,δ − E Sn,δ

) + β
(
Vn,δ − EVn,δ

))2 = α2σ 2. (1.17)

Write ρ = μ ◦ T −1, where T (x) = (
x, x2

)
. Clearly by (1.7) for every δ > 0 such

that μ {−δ, δ} = 0

w − lim
n→∞ nL

(
X1,n, X2

1,n

)
| (‖x‖ > δ) = ρ| (‖x‖ > δ) . (1.18)

Furthermore, by (1.8) and (1.15) we have for every δ > 0 such that μ {−δ, δ} = 0

(
E Sn,δ, EVn,δ

) → (aδ, bδ) .
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Thus by the central limit theorem in R
2 on pp. 67–68 of [1] and arguing just as in [2]

we get that (1.2) holds with (U, V ) having characteristic function E exp (sU + tV ) =

exp

{
−σ 2s2

2
+ i

(
aδs + σ 2t

) +
∫ (

exp
(
i
(
su + tu2)) − 1 − isu1 {|u| ≤ δ} )

dμ (u)

}
,

(1.19)

for any δ > 0 such that μ {−δ, δ} = 0. It can be shown using Proposition 5.7 in
[3] that a pair of random variables (U, V ) with this characteristic function has the
distributional representation (1.3) where τ 2 = σ 2 and b is a suitable constant. It is
shown there how ϕ1 and ϕ2 are defined via the Lévy measure μ. 
�
Remark 1 We note that if X is in the centered Feller class with an an appropriate
sequence of norming constants and X1, X2, . . . , are i.i.d. X , then for every subse-
quence of {n} there exists a further subsequence {nk} such that the triangular array
Xi,nk = Xi/ank , 1 ≤ i ≤ nk , k ≥ 1, satisfies (1.1), with U nondegenerate, and thus
(1.2) and (1.19) hold, as was pointed out in [2]. Also we mention that it can be inferred
using the Theorem in [5] that necessarily “P (V > 0) = 1”.

Remark 2 A special case of the Proposition 1 implies that for any triangular array
X1,nk , . . . , Xnk ,nk , k ≥ 1, satisfying its assumptions, and

nk∑

i=1

Xi,nk →d N (0, σ 2), as k → ∞, (1.20)

then

nk∑

i=1

X2
i,nk

→P σ 2, as k → ∞. (1.21)
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