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Abstract We investigate Laha–Lukacs properties of noncommutative random vari-
ables (processes). We prove that some families of free Meixner distributions can be
characterized by the conditional moments of polynomial functions of degree 3. We
also show that this fact has consequences in describing some free Lévy processes. The
proof relies on a combinatorial identity. At the end of this paper we show that this
result can be extended to a q-Gausian variable.
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1 Introduction

The original motivation for this paper comes from a desire to understand the results
about the conditional expectation which were shown in [13,16,17] and [24]. They
proved, that the first conditional linear moment and conditional quadratic variances
characterize free Meixner laws Bożejko and Bryc [13], Ejsmont [17]. Laha–Lukacs
type characterizations of random variables in free probability are also studied by
Szpojankowski and Wesołowski [24]. They give a characterization of noncommutative
free-Poisson and free-Binomial variables by properties of the first two conditional
moments, which mimics Lukacs type assumptions known from classical probability.
In this paper we show that free Meixner variables can be characterized by the third
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degree polynomial. In particular, we apply this result to describe a characterization of
free Lévy processes.

In the last part of the paper we also show that these properties are also true for q-
Gaussian variables. It is worthwhile to mention the work of Bryc [16], where the Laha-
Lukacs property for q-Gaussian processes was shown. Bryc proved that q-Gaussian
processes have linear regressions and quadratic conditional variances.

The paper is organized as follows. In Sect. 2 we review basic free probability and
free Meixner laws. We also establish a combinatorial identity used in the proof of
the main theorem. In Sect. 3 we proof our main theorem about the characterization
of free Meixner distribution by the conditional moments of polynomial functions of
degree 3. In particular, we apply this result to describe a characterization of free Lévy
processes (and some property of this processes). Finally, in Sect. 4 we compile some
basic facts about a q-Gausian variable and we show that the main result from Sect. 3
can be extended to a q-Gausian variable.

2 Free Meixner Laws, Free Cumulants, Conditional Expectation

Classical Meixner distributions first appeared in the theory of orthogonal polynomials
in the paper of Meixner [20]. In free probability the Meixner systems of polynomials
were introduced by Anshelevich [1], Bożejko et al. [12] and Saitoh and Yoshida [22].
They showed that the free Meixner system can be classified into six types of laws: the
Wigner semicircle, the free Poisson, the free Pascal (free negative binomial), the free
Gamma, a law that we will call pure free Meixner and the free binomial law.

We assume that our probability space is a von Neumann algebra A with a normal
faithful tracial state τ : A → C i.e., τ(·) is linear, continuous in weak* topology,
τ(XY) = τ(YX), τ (I) = 1, τ (XX

∗) ≥ 0 and τ(XX
∗) = 0 implies X = 0 for all

X, Y ∈ A. A (noncommutative) random variable X is a self-adjoint (i.e. X = X
∗)

element of A. We are interested in the two-parameter family of compactly supported
probability measures (so that their moments does not grow faster than exponentially)
{μa,b : a ∈ R, b ≥ −1} with the Cauchy-Stieltjes transform given by the formula

Gμ(z) =
∫

R

1

z − y
μa,b(dy) = (1 + 2b)z + a − √

(z − a)2 − 4(1 + b)

2(bz2 + az + 1)
, (2.1)

where the branch of the analytic square root should be determined by the condition
that �(z) > 0 ⇒ �(Gμ(z)) � 0 (see [22]). Cauchy-Stieltjes transform of μ is a
function Gμ defined on the upper half plane C

+ = {s + t i |s, t ∈ R, t > 0} and takes
values in the lower half plane C

− = {s + ti |s, t ∈ R, t ≤ 0}.
Equation (2.1) describes the distribution with the mean equal to zero and the vari-

ance equal to one (see [22]). The moment generating function, which corresponds to
the Eq. (2.1), has the form

M(z) = 1

z
Gμ

(
1

z

)
= 1 + 2b + az − √

(1 − za)2 − 4z2(1 + b)

2(z2 + az + b)
, (2.2)

for |z| small enough.
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Let C〈X1, . . . , Xn〉 denote the non-commutative ring of polynomials in variables
X1, . . . , Xn . The free cumulants are the k-linear maps Rk : C〈X1, . . . , Xk〉 → C

defined by the recursive formula (connecting them with mixed moments)

τ(X1X2 . . . Xn) =
∑

ν∈NC(n)

Rν(X1, X2, . . . , Xn), (2.3)

where

Rν(X1, X2, . . . , Xn) := �B∈ν R|B|(Xi : i ∈ B) (2.4)

and NC(n) is the set of all non-crossing partitions of {1, 2, . . . , n} (see [21,23]).
Sometimes we will write Rk(X) = Rk(X, . . . , X).

The R-transform of a random variable X is RX(z) = ∑∞
i=0 Ri+1(X)zi , where

Ri (X) is a sequences defined by (2.3) (see [8] for more details). For reader’s conve-
nience we recall that the R-transform corresponding to M(z) which is equal to

Rμ(z) = 2z

1 − za + √
(1 − za)2 − 4z2b

, (2.5)

where the analytic square root is chosen so that limz→0 Rμ(z) = 0 (see [22]). If X

has the distribution μa,b, then sometimes we will write RX for the R-transform of X.
For particular values of a and b the law of X is:

• the Wigner’s semicircle law if a = b = 0;
• the free Poisson law if b = 0 and a �= 0;
• the free Pascal (negative binomial) type law if b > 0 and a2 > 4b;
• the free Gamma law if b > 0 and a2 = 4b;
• the pure free Meixner law if b > 0 and a2 < 4b;
• the free binomial law −1 ≤ b < 0.

Definition 2.1 Random variables X1, . . . , Xn are freely independent (free) if, for
every n ≥ 1 and every non-constant choice of Yi ∈ {X1, . . . , Xn}, where i ∈
{1, . . . , k} (for each k = 1, 2, 3 . . . ) we get Rk(Y1, . . . , Yk) = 0.

The R-transform linearizes the free convolution, i.e., if μ and ν are (compactly
supported) probability measures on R, then we have

Rμ�ν = Rμ + Rν, (2.6)

where � denotes the free convolution (the free convolution � of measures μ, ν is the
law of X + Y where X, Y are free and have laws μ, ν, respectively). For more details
about free convolutions and free probability theory, the reader can consult [21,26].

If B ⊂ A is a von Neumann subalgebra and A has a trace τ , then there exists a unique
conditional expectation from A to B with respect to τ , which we denote by τ(·|B).
This map is a weakly continuous, completely positive, identity preserving, contraction
and it is characterized by the property that, for any X ∈ A, τ (XY) = τ(τ (X|B)Y)
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Fig. 1 Non-crossing partitions of {1, 2, 3, 4, 5} with the first 3 elements in the same block

for any Y ∈ B (see [10,25]). For fixed X ∈ A by τ(·|X) we denote the conditional
expectation corresponding to the von Neumann algebra B generated by X and I. The
following lemma has been proven in [13].

Lemma 2.2 Let W be a (self-adjoint) element of the von Neumann algebra A, gen-
erated by a self-adjoint V ∈ A. If, for all n ≥ 1 we have τ(UV

n) = τ(WV
n),

then

τ(U|V) = W. (2.7)

We introduce the notation

• NC(n) is the set of all non-crossing partitions of {1, 2, . . . , n},
• NCk(m) is the set of all non-crossing partitions of {1, 2, . . . , m} (where m ≥ k ≥

1) which have first k elements in the same block. For example for k = 3 and
m = 5, see Fig. 1.

The following lemma is a generalization of the Lemma 2.4 in [17] (the proof is also
similar)

Lemma 2.3 Suppose that Z is a element of A, mi = τ(Zi ) and n, k � 1. Then

∑
ν∈NCk (n+k)

Rν(Z) =
n−1∑
i=0

mi

∑
ν∈NCk+1(k+n−i)

Rν(Z) + Rk(Z)mn . (2.8)

Remark 2.4 Note that in Lemma 2.3 we could only assume that Z is an element in
a complex unital algebra A endowed with a linear function τ : A → C satisfying
τ(I) = 1.

Proof of Lemma 2.3 First, we consider partitions π ∈ NCk(n + k) with π =
{V1, . . . , Vs} where V1 = {1, . . . , k}. The class of all, such π we will denote
NCk

0 (n + k). It is clear that the sum of all non-crossing partitions of this form corre-
sponds to the term Rk(Z)mn .

On the other hand, for ν ∈ NCk(n + k)\NCk
0 (n + k) denote s(ν) = min{ j : j >

k, j ∈ B1} where B1 is the block of ν which contains 1, . . . , k. This decomposes
NCk(n + k) into the n classes NCk

j (n + k) = {ν ∈ NCk(n + k) : s(ν) = j}, j =
k + 1, . . . , n + k. The set NCk

j (n + k) can be identified with the product NC( j − k −
1)× NCk+1(n+2k − j +1) with convention that NC(0) = {∅}. Indeed, the blocks of
ν ∈ NCk

j (n +k), which partitions are the elements of {k +1, k +2, k +3, . . . , j −1},
can be identified with an appropriate partitions in NC( j − 1 − k), and (under the
additional constraint that the first k + 1 elements 1, . . . , k, j are in the same block)
the remaining blocks, which are partitions of the set {1, . . . , k, j, j + 1, . . . , n + k},
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1 2 3 . . . k . . . . . . . . . j . . . . . . . . . . . .n+k

Fig. 2 The main structure of non-crossing partitions of {1, 2, 3, . . . , n + k} with the first k elements in the
same block

can be uniquely identified with a partitions in NCk+1(n + 2k − j + 1). The above
situation is illustrated in Fig. 2.

This gives the formula

∑
ν∈NCk (n+k)

Rν(Z) =
n+k∑

j=k+1

∑
ν∈NC( j−k−1)

Rν(Z)
∑

ν∈NCk+1(n+2k− j+1)

Rν(Z) + Rk(Z)mn .

Now we rewrite the last sum based on the value of i = j −k −1 where i ∈ {0, . . . , n−
1}. Thus, we have

∑
ν∈NCk (n+k)

Rν(Z) =
n−1∑
i=0

∑
ν∈NC(i)

Rν(Z)
∑

ν∈NCk+1(n+k−i)

Rν(Z) + Rk(Z)mn

=
n−1∑
i=0

mi

∑
ν∈NCk+1(k+n−i)

Rν(Z) + Rk(Z)mn, (2.9)

which proves the lemma. ��
Let Z be the self-adjoint element of the von Neumann algebra A from the above

lemma. We define ck
n = ck

n(Z) = ∑
ν∈NCk (n+k) Rν(Z) and the following functions

(power series):

Ck(z) =
∞∑

n=0

ck
nzk+n where k ≥ 1 (2.10)

for sufficiently small |z| < ε and z ∈ C. This series is convergent because we consider
compactly supported probability measures, so moments and cumulants do not grow
faster than exponentially (see [8]). This implies that ck

n also does not grow faster than
exponentially.

Lemma 2.5 Let Z be a (self-adjoint) element of the von Neumann algebra A then

C (k)(z) = M(z)C (k+1)(z) + Rk(Z)zk M(z) (2.11)

where k � 1.
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Proof It is clear from Lemma 2.3 that we have

C (k)(z) =
∞∑

n=0

ck
n(Z)zk+n = ck

0(Z)zk +
∞∑

n=1

ck
n(Z)zk+n

= ck
0(Z)zk +

∞∑
n=1

[
n−1∑
i=0

mi c
k+1
n−i−1(Z) + Rk(Z)mn

]
zk+n

= ck
0(Z)zk +

∞∑
n=1

n−1∑
i=0

mi z
i ck+1

n−i−1(Z)zk+n−i + Rk(Z)zk
∞∑

n=1

mnzn

= M(z)C (k+1)(z) + Rk(Z)zk M(z), (2.12)

which proves the lemma. ��
Example 2.6 For k = 1, we get:

C (1)(z) = M(z) − 1 = M(z)C (2)(z) + R1(Z)zM(z). (2.13)

Particularly, we have the coefficients of the power series 1/M(z) (Maclaurin series):

1

M(z)
= 1 − C (2)(z) − R1(Z)z (2.14)

for sufficiently small |z|.
Similarly, by putting k = 2, we obtain:

C (2)(z) = M(z)C (3)(z) + R2(Z)z2 M(z). (2.15)

Now we present Lemma 4.1 of [13], which will be used in the proof of the main
theorem to calculate the moment generating function of free convolution.

Lemma 2.7 Suppose that X, Y are free, self-adjoint and X/
√

α, Y/
√

β have the free
Meixner laws μa/

√
α,b/α and μa/

√
β,b/β respectively, where α, β > 0, α +β = 1 and

a ∈ R, b ≥ −1. Then the moment generating function M(z) for X + Y satisfies the
following quadratic equation

(z2 + az + b)M2(z) − (1 + az + 2b)M(z) + 1 + b = 0. (2.16)

3 Characterization of Free Meixner Laws

The next lemma will be applied in the proof of the Theorem 3.2.

Lemma 3.1 If X and Y are free independent and centered, then the condition
β Rk(X) = αRk(Y) for β, α > 0 and non-negative integers k is equivalent to

τ(X|(X + Y)) = α

α + β
(X + Y). (3.1)
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Proof From the equation β Rk(X) = αRk(Y) and from the freeness of X and Y it
stems that

Rk(X) = α

α + β
Rk(X + Y). (3.2)

Analogously we get

Rk(Y) = β

α + β
Rk(X + Y). (3.3)

This gives

τ(X(X + Y)n) =
∑

ν∈NC(n+1)

Rν(X, X + Y, . . . , X + Y)

= α

α + β

∑
ν∈NC(n+1)

Rν(X + Y, X + Y, . . . , X + Y)

= τ

(
α

α + β
(X + Y)(X + Y)n

)
(3.4)

which, by Lemma 2.2, implies that τ(X|(X + Y)) = α
α+β

(X + Y). Let’s suppose that
the assertion (3.1) is true. Then, we use first part of the proof of Theorem 3.2 from
the article [13]. From this proof (the first part, by induction) we can deduce that the
condition (3.1) implies β Rk(X) = αRk(Y). ��

The main result of this paper is the following characterization of free Meixner laws
in the terms of the cubic polynomial condition for conditional moments.

Theorem 3.2 Suppose that X, Y are free, self-adjoint, non-degenerate, centered
(τ (X) = τ(Y) = 0) and τ(X2 + Y

2) = 1. Then X/
√

α and Y/
√

β have the free
Meixner laws μa/

√
α,b/α and μa/

√
β,b/β , respectively, where a ∈ R, b ≥ −1 if and

only if

τ(X|(X + Y)) = α(X + Y) (3.5)

and

τ ((βX − αY)(X + Y)(βX − αY)|(X + Y))

= αβ

(b + 1)2

(
b2(X + Y)3 + 2ba(X + Y)2 + (b + a2)(X + Y) + aI

)
(3.6)

for some α, β > 0 and α + β = 1. Additionally, we assume that b ≥ max{−α,−β}
if b < 0 (the free binomial case).

Remark 3.3 In commutative probability Eq. (3.6) takes the form:

τ((βX − αY)(X + Y)(βX − αY)|(X + Y)) = c(X + Y)3 + d(X + Y)2 + e(X + Y)
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for some c, d, e ∈ R, which is equivalent to the assumption that the conditional
variance is quadratic. There are also a higher degree polynomial regression studied
in commutative probability, see e.g. [5,6,18,19]. They proved that some classical
random variable can be characterized by the higher degree polynomial but in a different
context as presented in this article. In free probability the result (3.6) is in some
way unexpected. As an argument we can give the Wigner’s semicircle law variables.
Suppose that X, Y are free, self-adjoint, non-degenerate, centered (τ (X) = τ(Y) =
0), τ (X2) = τ(Y2) = 1 and have the same distribution. Then the following statements
are equivalent:

• X and Y have the Wigner’s semicircle law,
• τ((X − Y)2|X + Y) = 2I – which follows from the main Theorem of [13] and

[17],
• τ((X − Y)(X + Y)(X − Y)|(X + Y)) = O – which follows from the Theorem 3.2

(a = b = 0).

Thus we see that the last equation is unexpected, because in the classical case from
τ((X−Y)2|X+Y) = 2 we can easily deduce τ((X−Y)(X+Y)(X−Y)|(X+Y)) =
2(X + Y), and in fact in noncommutative probability, the conditional expectation
τ(XYZ|Y) is difficult to compute (if we know τ(XZ|Y)).

Proof of Theorem 3.2 ⇒: Suppose that X/
√

α and ,Y/
√

β have respectively the free
Meixner laws μa/

√
α,b/α and μa/

√
β,b/β . The condition (3.5) holds because we can

use Theorem 3.1 from the article [17]. Then, from Lemma 2.7 the moment generating
functions satisfy Eq. (2.16). If in (2.16) we multiply by (1 − C (2)(z)) both sides and
use the fact (2.13) with R1(X + Y) = 0, we get

M(z)(b + za + z2) − (2b + 1 + za) + (b + 1)(1 − C (2)(z)) = 0 (3.7)

where C (2)(z) is a function for X + Y. Expanding M(z) in the series (M(z) = 1 +∑∞
i=1 zi mi ), we get

bmn+2 + amn+1 + mn = (b + 1)c(2)
n . (3.8)

Now we apply (2.15) to the Eq. (3.7) (using the assumption R2(X+Y) = 1) and after
simple computations, we see that

M(z)(b + za + z2) − (b + za) = (b + 1)(M(z)C (3)(z) + z2 M(z)) (3.9)

or equivalently:

b + za − z2b − (b + za)

M(z)
= (b + 1)C (3)(z) (3.10)

for |z| small enough. Then using (2.14) we have

− z2b + (b + za)C (2)(z) = (b + 1)C (3)(z). (3.11)
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Expanding the above equation in series, we get

bc(2)
n+1 + ac(2)

n = c(3)
n (b + 1), (3.12)

and using (3.8) we obtain

b2mn+3 + 2bamn+2 + (b + a2)mn+1 + amn = c(3)
n (b + 1)2. (3.13)

From the assumption of the main Theorem and Lemma 3.1 we get

Rk(βX − αY, X + Y, X + Y, . . . , X + Y) = β Rk(X) − αRk(Y) = 0 (3.14)

and similarly for k � 3

Rk(βX − αY, X + Y, βX − αY, X + Y, . . . , X + Y) = β2 Rk(X) + α2 Rk(Y)

= βαRk(X + Y). (3.15)

Now we use the moment-cumulant formula (2.3)

τ((βX − αY)(X + Y)(βX − αY)(X + Y)n)

=
∑

ν∈NC(n+3)

Rν(βX − αY, X + Y, βX − αY, X + Y, X + Y, . . . , X + Y︸ ︷︷ ︸
n−times

)

=
∑

ν∈NC3(n+3)

Rν(βX − αY, X + Y, βX − αY, X + Y, X + Y, . . . , X + Y)

+
∑

ν∈NC(n+3)�NC3(n+3)

Rν(βX − αY, X + Y, βX − αY, X + Y, X + Y, . . . , X + Y).

Let us look more closely at the second sum from the last equation. We have that either
the first and the third elements are in different blocks, or they are in the same block.
In the first case, the second sum (from the last equation) vanishes because we have
(3.14). On the other hand, if they are in the same block, the sum disappears because
then we have that τ(X + Y) = 0. So, by (3.15) we have

τ((βX − αY)(X + Y)(βX − αY)(X + Y)n)

= αβ
∑

ν∈NC3(n+3)

Rν(X + Y, X + Y, X + Y, X + Y, X + Y, . . . , X + Y︸ ︷︷ ︸
n-times

)

= αβc(3)
n . (3.16)

Therefore the Eq. (3.13) is equivalent to

αβτ(b2(X + Y)n+3 + 2ba(X + Y)n+2 + (b + a2)(X + Y)n+1 + a(X + Y)n)

= τ((βX − αY)(X + Y)(βX − αY)(X + Y)n)(b + 1)2. (3.17)

for all n � 0. Now we use Lemma 2.2 to get (3.6).

123



924 J Theor Probab (2014) 27:915–931

⇐: Let’s suppose now, that the equality (3.5) and (3.6) holds. Multiplying (3.6) by
(X + Y)n for n � 0 and applying τ(·) we obtain (3.13). Using the facts that m1 = 0
and m2 = 1, from (3.13) we obtain

b2 M(z) + 2zbaM(z) + z2(b + a2)M(z) + z3aM(z)

−b2z2 − b2 − 2zba − z2(b + a2) = C (3)(z)(b + 1)2. (3.18)

From (2.15) we get

b2 M2(z) + 2zbaM2(z) + z2(b + a2)M2(z) + z3aM2(z)

−(b2z2 + b2 + 2zba + z2(b + a2))M(z) + z2 M(z)(b + 1)2 = C (2)(z)(b + 1)2,

(3.19)

and from (2.13) we have

b2 M3(z) + 2zbaM3(z) + z2(b + a2)M3(z) + z3aM3(z)

−(b2z2 + b2 + 2zba + z2(b + a2))M2(z) + z2 M2(z)(b + 1)2 = (b + 1)2

(M(z) − 1), (3.20)

or equivalently

((b + za)M(z) + b + 1) ×
((b + za + z2)M2(z) − M(z)(2b + za + 1) + b + 1) = 0. (3.21)

Thus, we have found two solutions (if a �= 0 and b �= 0)

M(z) = −(b + 1)/(b + za) (3.22)

or

(b + za + z2)M2(z) − M(z)(2b + za + 1) + b + 1 = 0 (3.23)

but the first solution does not corresponds to probability measure (except for b =
−0.5) because then M(z) = − b+1

b +− b+1
b

∑∞
i=1(

za
b )n . If b = −0.5, then the solution

corresponds to the Dirac measure at the point −2a. However, by the assumption
that the variable is non-degenerate variable, we reject this solution. Thus we have
(3.23) and Lemma 2.7 says that X and Y have the Meixner laws, which completes the
proof. ��

A non-commutative stochastic process (Xt ) is a free Lévy process, if it has free addi-
tive and stationary increments. For a more detailed discussion of free Lévy processes
we refer to [7]. Let us first recall some properties of free Lévy processes which follow
from [13]. If (Xt ) is a free Lévy process such that τ(Xt ) = 0 and τ(X2

t ) = t for all
t > 0 then

τ(Xs |Xu) = s

u
Xu (3.24)

for all s < u. This note allows to formulate the following proposition.
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Proposition 3.4 Suppose that (Xt≥0) is a free Lévy process such as τ(Xt ) = 0 and
τ(X2

t ) = t for all t > 0. Then the increment (Xt+s − Xt )/
√

s (t, s > 0) has the free
Meixner law μa/

√
s,b/s (for some b � 0) if and only if for all t < s

τ(XtXsXt |Xs) = (s − t)t

s2(b + s)2 (b2
X

3
s + 2basX

2
s + (b + a2)s2

Xs + as3
I) + t2

s2 X
3
s

(3.25)

Remark 3.5 The existence of a free Lévy process was demonstrate by Biane [10] who
proved that from every infinitely divisible distribution we can construct a free Lévy
process. We assume that b � 0 in Proposition 3.4 because a free Meixner variable is
infinitely divisible if and only if b � 0 (see [4,13]).

Proof of Proposition 3.4 Let’s rewrite Theorem 3.2 for the variables (non-degenerate)
X and Y such that τ(X2) = α, τ(Y2) = β and τ(Y) = τ(X) = 0. After a simple
parameter normalization (α by α

α+β
, β by β

α+β
, a by a√

α+β
, b by b

α+β
) we get that

X/
√

α = X√
α+β

/
√

α√
α+β

and Y/
√

β = Y√
α+β

/
√

β√
α+β

have the free Meixner laws
μa/

√
α,b/α and μa/

√
β,b/β , respectively, if and only if (after a simple computation)

τ((βX − αY)(X + Y)(βX − αY)|(X + Y))

= αβ

(b + (α + β))2 (b2(X + Y)3 + 2ba(α + β)(X + Y)2

+(α + β)2(b + a2)(X + Y) + a(α + β)3
I). (3.26)

i.e. we apply Theorem 3.2 with X equal X√
α+β

and Y equal Y√
α+β

and the parameters

mentioned above in the brackets. Now we consider two variables Xt/
√

t and (Xs −
Xt )/

√
s − t , which are free and centered. Thus, the formula (3.26) tell us that Xt/

√
t

and (Xs − Xt )/
√

s − t (X = Xt , Y = Yt , α = t, β = s − t), have the free Meixner
laws μa/

√
t,b/t and μa/

√
s−t,b/(s−t), respectively, if and only if

τ((tXs − sXt )Xs(tXs − sXt )|Xs)
(3.24)= t2

X
3
s − t2

X
3
s + s2τ(XtXsXt |Xs) − t2

X
3
s

= (s − t)t

(b + s)2

(
b2

X
3
s +2basX

2
s + (b + a2)s2

Xs

+as3
I

)
. (3.27)

Thus, the proposition holds. ��
At the end of this section, we are coming to the following proposition.

Proposition 3.6 Suppose that (Xt≥0) is a free Lévy process such that the increments
(Xt+s − Xt )/

√
s (t, s > 0) have the free Meixner law μa/

√
s,b/s (for some b � 0).

Then
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τ(X3
t |X2t ) = 1

8(b + 2t)2

(
b2

X
3
2t + 4batX2

2t + 4(b + a2)t2
X2t + 8at3

I

)

+1

8
X

3
2t + 1

4(b + 2t)

[
4t2

X2t + 2taX
2
2t + bX

3
2t

]
. (3.28)

Proof Let Xt be as in the above proposition. First, we show that the third conditional
central moment is equal to zero i.e.

τ((Xt − τ(Xt |X2t ))
3|X2t ) = 0. (3.29)

for all t > 0. From the assumption we have τ((Xt − t
2t X2t ))

3|X2t ) = τ((2tXt −
tX2t ))

3|X2t )/(2t)3. For this reason, τ((2tXt − tX2t ))
3
X

k
2t ) = 0 for all integers k ≥ 0,

by the relation t Rk(X2t ) = 2t Rk(Xt ). Indeed, if the first element (2tXt − tX2t ) is in
the partition with the element from ”part” X

k
2t only then we have the cumulant

Rk(2tXt − tX2t , X2t , . . . , X2t )=2t Rk(Xt , X2t , . . . , X2t )−t Rk(X2t , X2t , . . . , X2t )

= 2t Rk(Xt , X2t − Xt + Xt , . . . , X2t − Xt + Xt ) − t Rk(X2t , X2t , . . . , X2t )

= 2t Rk(Xt , Xt , . . . , Xt ) − t Rk(X2t , X2t , . . . , X2t ) = 0. (3.30)

Now, if the first element is in the partition with the second or third element (but not
simultaneously) then cumulants are zero as well (by a similar argument presented
above). Thus, the first three elements must be in the same block, so using the fact
2tXt − tX2t = tXt − t (X2t − Xt ) and X2t = X2t − Xt + Xt (X2t − Xt and Xt are
free) we obtain

Rk(2tXt − tX2t , 2tXt − tX2t , 2tXt − tX2t , X2t , . . . , X2t )

= t3 Rk(Xt , Xt , . . . , Xt ) − t3 Rk(X2t − Xt , X2t − Xt , . . . , X2t − Xt )

= t3 Rk(Xt ) − t3 Rk(X2t ) + t3 Rk(Xt ) = t2(2t Rk(Xt ) − t Rk(X2t )) = 0. (3.31)

From Lemma 2.2 we obtain τ((Xt − 1
2 X2t ))

3|X2t ) = 0, or equivalently

0 = τ((2Xt − X2t ))
3|X2t )

= τ(8X
3
t |X2t ) − 4τ(X2

t |X2t )X2t − 4X2tτ(X2
t |X2t ) − 4τ(XtX2tXt |X2t ) + 2X

3
2t .

(3.32)

To compute τ(XtX2tXt |X2t ) we use Proposition 3.4 and to compute the expression
τ(X2

t |X2t ) we use Proposition 3.2. from [17]. Here we don’t cite this proposition
(Proposition 3.2. from the paper [17]), we note only that if we know τ(XtX2tXt |X2t )

and τ(X2
t |X2t ) then from (3.32) we can compute τ(X3

t |X2t ) (we skip simple calcula-
tions leading to the formula (3.28)). This completes the proof. ��
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4 Some Consequences for a q-Gaussian Random Variable

In this section we consider a mapping H � f → G f ∈ B(H) from a real Hilbert
space H into the algebra B(H) of bounded operators acting on the space H. We also
use a parameter q ∈ (−1, 1). We consider non-commutative random variables as the
elements of the von Neumann algebra A, generated by the bounded (i.e −1 < q < 1),
self-adjoint operators G f , with a state E : A → C. State E is a unital linear functional
(which means that it preserves the identity), positive (which means E(X) � 0 whenever
X is a non-negative element of A), faithful (which means that if E(Y∗

Y) = 0 then
Y = 0), and not necessarily tracial. In (A, E)we refer to the self-adjoint elements of the
algebra A as random variables. Similarly as in free probability any self-adjoint random
variable X has a law: this is the unique compactly supported probability measure μ

on R which has the same moments as X i.e. τ(Xn) = ∫
tndμ(t), n = 1, 2, 3, . . . .

Denote by Pn the lattice of all partitions of {1, . . . , n}. Fix a partition σ ∈ Pn ,
with blocks {B1, . . . , Bk}. For a block B, denote by a(B) its first element. Following
[9], we define the number of restricted crossings of a partition σ as follows. For B
a block of σ and i ∈ B, i �= a(B), denote p(i) = max{ j ∈ B, j < i}. For two
blocks B, C ∈ σ , a restricted crossing is a quadruple (p(i) < p( j) < i < j) with
i ∈ B, j ∈ C .The number of restricted crossings of B, C is

rc(B, C) = |{i ∈ B, j ∈ C : p(i) < p( j) < i < j}|
+|{ j ∈ B, i ∈ C : p( j) < p(i) < j < i}|, (4.1)

and the number of restricted crossings of σ is rc(σ ) = 
i< j rc(Bi , B j ) (see also
[2,3]).

Definition 4.1 For a seqence A f1 , A f2 . . . let C〈A f1 , A f2 , . . . , A fn 〉 denote the non-
commutative ring of polynomials in variables A f1 , A f2 , . . . , A fn . The q-deformed
cumulants are the k-linear maps Rq

k : C〈A f1 , A f2 , . . . , A fn 〉 → C defined by the
recursive formula

E(A f1 . . . A fn ) =
∑
σ∈Pn

qrc(σ )
∏
B∈σ

Rq
|B|(A fi : i ∈ B). (4.2)

To state Theorem 4.4 we shall need the following definition (see also [2,3]).

Definition 4.2 Random variables A f1 , A f2 , . . . , A fn are q-independent if, for every
n ≥ 1 and every non-constant choice of Yi ∈ {A f1, A f2 , . . . , A fn }, where i ∈
{1, . . . , k} (for some positive integer k) we get Rq

k (Y1, . . . , Yk) = 0.

Definition 4.3 A family of self-adjoint operators G f = G∗
f ; f ∈ H is called q-

Gaussian random variables if there exists a state E on the von Neumann algebra A
(generated by G f ; f ∈ H) such that the following Wick formula holds:

E(G f1 . . . G fn ) =
{∑

σ∈P2(n) qrc(σ )
∏n/2

j=1〈 f j , fσ( j)〉 if n is even
0 if n is odd.

(4.3)

where P2(n) is the set of 2-partitions of the set {1, 2, . . . , n}.
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The existence of such random variables, far from being trivial, is ensured by Bożejko
and Speicher [11]. Our assumptions on E do not allow us to use conditional expecta-
tions. In general, state E is not tracial so we do not know if conditional expectations
exist.

The following theorem is q-version of Theorem 3.2.

Theorem 4.4 Let G f and Gg be two q-independent variables with E(G f ) =
E(Gg) = 0, E(G2

f ) = || f ||2 = 1, 〈 f, g〉 = 0, E(G2
g) = ||g||2 = 1 and

Rq
k (Gg) = Rq

k (G f ) (for all integers k � 0 which means G f and Gg have the same
distribution) then

E
(
(G f − Gg)(G f + Gg)(G f − Gg)(G f + Gg)

n) = 2qE

(
(G f + Gg)

n+1
)

for all n � 0 (4.4)

if and only if G f and Gg are q-Gaussian random variables.

Remark 4.5 If G f and Gg are q-Gaussian random variables, then the state E is a trace
and the conditional expectation exists (see [16]). In this case formula (4.4) can be
reformulated to

E((G f − Gg)(G f + Gg)(G f − Gg)|(G f + Gg)) = 2q(G f + Gg). (4.5)

In particular, for q = 0 we have the thesis of Theorem 3.2 is satisfied for the variables
with the same distribution (only one way for a = b = 0).

Remark 4.6 The Theorem 4.4 can be reformulated in the following form.
Let G f and Gg be two q-independent variables and E(G f ) = E(Gg) =

0, E(G2
f ) = || f ||2, 〈 f, g〉=0, E(G2

g) = ||g||2 and || f ||2 Rq
k (Gg) = ||g||2 Rq

k (G f )

(for all integer k � 0) then

E

((
||g||2G f − || f ||2Gg

) (
G f + Gg

) (
||g||2G f − || f ||2Gg

) (
G f + Gg

)n
)

= ||g||2 + || f ||2)|| f ||2||g||2qE

(
(G f + Gg)

n+1
)

f or all n � 0 (4.6)

if and only if G f and Gg are q-Gaussian random variables. The proof of this theorem
is completely analogous with the one below, but is not as transparent as this expression
presented beneath.

Proof of Theorem 4.4 From assumption of the Theorem 4.4 above we deduce that
Rq

2 (G f ) = || f ||2 = 1, Rq
2 (Gg) = ||g||2 = 1 and Rq

2 (G f + Gg) = 〈 f + g, f + g〉 =
2.

⇐: Under the assumption that G f and Gg are q-Gaussian random variables and
let’s compute

E
(
(G f − Gg)(G f + Gg)(G f − Gg)(G f + Gg)

n) . (4.7)
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Fig. 3 The structure of crossing
2-partitions of
{1, 2, 3, . . . , n + 3} with 1 and 3
in the same block

1 2 3 . . . . . . . . .n+3

From (4.3) we see that the both sides (left and right) of the main formula of Theorem
4.4 are zero if n is even thus we investigate only the case when n is odd. Since
Rq

2 (G f − Gg, G f + Gg) = 0 (from the assumption Rq
k (Gg) = Rq

k (G f )) Eq. (4.7)
equals 0 if we consider 2-partitions π ∈ P2(n + 3) and π = {V1, . . . , Vs} where
V1 = {1, k} and k ∈ {2, 4, 5, . . . , n + 3} (if the first element is in the 2-partition
without third element). So we should analyse only this 2-partitions π ∈ P2(n + 3)

such as π = {V1, . . . , Vs} and V1 = {1, 3}, see Fig. 3. We denote this partitions by
P1,3

2 (n + 3). Moreover this partitions can be identified with the product P2(n + 1)

and P2(2) multiplied by q because if 1 and 3 are in the same block we always get one
more crossing.

So if we use (4.3) we get

E
(
(G f − Gg)(G f + Gg)(G f − Gg)(G f + Gg)

n)
=

∑
σ∈P1,3

2 (n+3)

qrc(σ ) 〈 f − g, f − g〉 〈 f + g, f + g〉(n+1)/2

= 2q
∑

σ∈P2(n+1)

qrc(σ ) 〈 f + g, f + g〉(n+1)/2 = 2qE

(
(G f + Gg)

n+1
)

. (4.8)

⇒:Suppose that (4.4) is true. Our proof relies on the observation that

Rq
n+3(G f + Gg) = 0 (4.9)

for all n � 0. We will prove this by induction on the length of the cumulant. Using
the definition (4.2) and the assumption of q-independence and putting n = 0 in (4.4)
we get

E((G f − Gg)(G f + Gg)(G f − Gg)) = Rq
3 ((G f − Gg), (G f +Gg), (G f −Gg))

= Rq
3 ((G f + Gg), (G f + Gg), (G f + Gg)) = 0. (4.10)

We fix k and suppose that (4.9) holds for all n ∈ {0, . . . , k}. Now we will prove
Eq. (4.9) for n = k + 1. Expanding both sides of (4.4) into q-cumulants and using the
fact that non-zero are only cumulants of size 2 and k + 4 we get

E

(
(G f − Gg)(G f + Gg)(G f − Gg)(G f + Gg)

k+1
)

=
∑

σ∈P2(k+4)

qrc(σ ) Rq
2 (G f − Gg)

(k+2)/2∏
j=1

Rq
2 (G f + Gg) + Rq

k+4(G f + Gg)
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= 2q
∑

σ∈P2(k+2)

qrc(σ )

(k+2)/2∏
j=1

Rq
2 (G f + Gg) + Rq

k+4(G f + Gg)

rightsideof(4.4)= 2qE

(
(G f + Gg)

k+2
)

= 2q
∑

σ∈P2(k+2)

qrc(σ )

(k+2)/2∏
j=1

Rq
2 (G f + Gg),

(4.11)

which implies Rq
k+4(G f + Gg) = 0. Thus non-zero cumulants are only cumulants

of size 2 so we obtain that G f + Gg is a q-Gaussian random variable. From the
assumption Rq

k (Gg) = Rq
k (G f ) we infer that G f and Gg are q-Gaussian random

variables as well. This completes the proof. ��
Open Problems and Remarks

• In Theorem 3.2 and Proposition 3.4 of this paper we assume that the random
variables are bounded that is Xt ∈ A. It would be interesting to show if this
assumption can be replaced by Xt ∈ L2(A).

• A version of Theorem 4.4 can be formulated for q-Poisson variables (see [2,
3]). The proof of this theorem is analogous with the proof of Theorem 4.4 (by
induction).

• It would be worth to show whether Proposition 3.4 is true for non-commutative
generalized stochastic processes with freely independent values, see [14,15].
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13. Bożejko, M., Bryc, W.: On a class of free Lévy laws related to a regression problem. J. Funct. Anal.
236, 59–77 (2006)
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