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Abstract We prove the Wiener–Hopf factorization for Markov additive processes.
We derive also Spitzer–Rogozin theorem for this class of processes which serves for
obtaining Kendall’s formula and Fristedt representation of the cumulant matrix of the
ladder epoch process. Finally, we also obtain the so-called ballot theorem.
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1 Introduction

The classical Wiener–Hopf factorization of a probability measure was given by
Spitzer [29] and Feller [13], and has a strong connection to random walks. This result
was generalized by Rogozin [28], Fristedt [16], and other authors using approxima-
tion based on discrete time skeletons. Greenwood and Pitman [17] used a direct ap-
proach which relies on excursion theory for reflected process; for details, see [7, 20].
Another approach is presented in [14] where the link with scattering theory is also
made. Presman [26] and Arjas and Speed [5] generalized Spitzer identity in a differ-
ent direction, to the class of Markov additive processes (MAPs) in discrete time (see
also [2, 25]). Later, Kaspi [19] proved Wiener–Hopf factorization for a continuous
time parameter Markov additive process, where Markovian component has a finite
state space and is ergodic. The fluctuation identity given by Kaspi [19] involves dis-
tribution of the inverse local time. Dieker and Mandjes [12] investigate discrete-time
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Markov additive processes and use an embedding to relate these to a continuous-time
setting (see also [9, 27]).

The use of MAPs is widespread, making it a classical model in applied proba-
bility with a variety of application areas, such as queues, insurance risk, invento-
ries, data communication, finance, environmental problems and so forth; see, e.g.,
[2, Chap. XI], [4, 9, 10, 15], [25, Chap. 7]. The reason comes from considering sea-
sonality of prices, recurring everyday patterns of activity, burst arrivals, occurrence of
events in phases, and so on. This leads to regime-switching models, where the process
of interest is modulated by a background process. The so-called phase-type distribu-
tions fit also naturally into the framework of MAPs. MAP with positive phase-type
jumps can be reduced to a MAP with no positive jumps without losing any informa-
tion. This procedure is called fluid embedding. Informally, it involves enlarging the
state space of the background process and replacing the jumps by linear stretches of
unit slope. Apart of above a MAP is a natural generalization of a Lévy process with
many analogous properties and characteristics although various new mathematical
objects appear in the theory of MAPs posing new challenges.

This paper presents Wiener–Hopf factorization for a special, but nonetheless quite
general, class of Markov additive processes. For this class of processes, we give short
proof of Wiener–Hopf factorization based on Markov property and additivity. We
also express the terms of Wiener–Hopf factorization directly in terms of the basic
data of the process. Finally, we derive Spitzer–Rogozin theorem for this class of pro-
cesses which serves for obtaining Kendall’s formula and Fristedt representation of
the cumulant matrix of the ladder epoch process. We also present the ballot theo-
rem.

The paper is organized as follows. Section 2 introduces basic definitions, facts
and properties related with MAPs. In Sect. 3, we give the main results of this paper.
Finally, in Sect. 4, we prove all the theorems.

2 Preliminaries

2.1 Markov Additive Processes

Before presenting our main results, we shall simply begin by defining the class
of processes we intend to work with and their properties. Following [3], we con-
sider a process X(t), where X(t) = X(1)(t) + X(2)(t), and the independent pro-
cesses X(1)(t) and X(2)(t) are specified by the characteristics: qij ,Gi, σi, ai, νi(dx)

which we shall now define. Let J (t) be a right-continuous, ergodic, finite state space
continuous time Markov chain, with I = {1, . . . ,N}, and with the intensity matrix
Q = (qij ). We denote the jumps of the process J (t) by {Ti} (with T0 = 0). Let {U(i)

n }
be i.i.d. random variables with distribution function Gi(·). Define the jump process
by

X(1)(t) =
∑

n≥1

∑

i∈I
U(i)

n 1{J (Tn)=i, Tn≤t}.
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For each j ∈ I , let Xj(t) be a Lévy process with the Lévy–Khinchine expo-
nent:

− log E
(
exp

{
iαXj (1)

})

= Ψj (α) = −iajα + σ 2
j α2

2
+

∫ ∞

−∞
(
1 − eiαy + iα|y|1|y|≤1

)
νj (dy), (1)

where
∫ ∞
−∞(1 ∧ |y|2)νj (dy) < ∞. By X(2)(t) we denote the process which be-

haves in law like Xi(t), when J (t) = i. We shall assume that the afore-mentioned
class of MAPs is defined on a probability space with probabilities {Pi : i ∈ I},
where Pi (·) = P(·|J (0) = i), and right-continuous natural filtration F = {Ft :
t ≥ 0}. In fact, we can consider more general MAP where additional jumps U

(i)
n

appearing during the change of the state of J (t) could also depend on the state
J (Tn+1) (so-called anticipative MAP). This could be done by considering the
vector state space I 2 and the modified governing Markov process J on it. If
each of the measures νi are supported on (−∞,0] as well as the distributions
of each U

(i)
n then we say that X is a spectrally negative MAP. These defini-

tion and more concerning the basic characterization of MAPs can be found in
[2, Chap. XI].

2.2 Time Reversal

Predominant in the forthcoming analysis will be the use of the bivariate process
(Ĵ , X̂), representing the process (J,X) time reversed from a fixed moment in the
future when J (0) has the stationary distribution π . For definitiveness, we mean

Ĵ (s) = J
(
(t − s)−

)
and X̂(s) = X(t) − X

(
(t − s)−

)
, 0 ≤ s ≤ t

under Pπ = ∑
i∈I πiPi . Note that X̂ is also Markov additive process. The charac-

teristics of (Ĵ , X̂) will be indicated by using a hat over the existing notation for the
characteristics of (J,X). Instead of talking about the process (Ĵ , X̂), we shall also
talk about the process (J,X) under probabilities {̂Pi : i ∈ I}. Note also for future use,
following classical time reversed path analysis, for y ≥ 0 and s ≤ t ,

Pi

(
G(t) ∈ ds,−I (t) ∈ dy|J (t) = j

)

= P̂j

(
G(t) ∈ ds, S(t) − X(t) ∈ dy|J (t) = i

)
, (2)

where I (t) = inf0≤s≤t X(s), S(t) = sup0≤s≤t X(s) and G(t) = sup{s < t : X(s) =
S(s)}, G(t) = sup{s < t : X(s) = I (s)}. (A diagram may help to explain the last
identity.)

From now on, we assume that at least one of the processes Xi is not a downward
subordinator and compound Poisson process. To include compound Poisson process
X(i)(t) in the main Theorem 1(i), it is necessary to work with the new definition
G(t) = inf{s < t : X(s) = I (s)} instead the previous one. Under the above assump-
tion, we have also G(t) = sup{s ≤ t : X(s) = S(s)} and G(t) = sup{s ≤ t : X(s) =
I (s)}.
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2.3 Ladder Height Process

We start from recalling the representation of the local time given in [19, for-
mula (3.21)]. For MAP, we say that state i ∈ {1, . . . ,N} is regular when Pi (R = 0) =
1 for R = inf{t > 0 : t ∈ M}, where M is a closure of M = {t ≥ 0 : X(t) = S(t)}.
Denote by {Un} the stopping times at which R(t−) = 0 and R(t) > 0 for the
R(t) = inf{s > t : S(t) = X(t)} − t and J (t) is irregular. Denote

Sn =
{

Un on X(Un) = S(Un),

∞ otherwise.

By Kaspi [19, Theorem 3.28] (see also [22]), for the MAP we can define the ladder
height process:

{(
L−1(t),H(t) = X

(
L−1(t)

)
, J

(
L−1(t)

))
, t ≥ 0

}

choosing the local time:

L(t) = Lc(t) +
∑

Sn<t

λ
(
J (Un)

)
e(n)

1 , (3)

where Lc(t) is a continuous additive process that increases only on M and e(n)
1 are

independent exponential random variables with intensity 1,

λ(i) = Ei

[
1 − e−R

]
.

Obviously, to make the functional (3) measurable, we enlarge probability space to
include the exponential random variables. One can easily verify that (L−1(t),H(t),

J (L−1(t))) is again a (bivariate) MAP (see [19, p. 185]). For each moment of time,
we can define the excursion:

εt (s) =
{

X(L−1(t−) + s) − X(L−1(t−)) for L−1(t−) < L−1(t),

∂ otherwise,

where ∂ is a cemetery state. Let ζ(εt ) = L−1(t) − L−1(t−) be the length of the
excursion if εt �= ∂ . From ( 3) it follows that the excursion process {(t, εt ), t ≥ 0} is a
(possibly stopped at the first excursion with infinite length) marked Cox point process
with the intensity n(J (L−1(t−)), dε) depending on the state process J (L−1(t−)).
Denote by E the σ -field on the excursion state space.

2.4 Spectrally Negative Markov Additive Process

Letting Q ◦ G̃(α) = (qij G̃i(α)), where G̃i(α) = E(exp(αU
(i)
1 )), for spectrally nega-

tive MAP we can define the cumulant generating matrix (cgm) of a MAP X(t):

F(α) = Q ◦ G̃(α) + diag
(
ψ1(α), . . . ,ψN(α)

)
, α ∈ R+, (4)
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where ψj (α) = −Ψ (−iα) for Ψ defined in (1). Perron–Frobenius theory identifies
F(α) as having a real-valued eigenvalue with maximal real part which we shall label
κ(α). The corresponding left and right 1 × N eigenvectors we label v(α) and h(α),
respectively. In this text, we shall always write vectors in their horizontal form and
use the usual T to mean transpose. Since v(α) and h(α) are given up to multiplicative
constants, we are free to normalize them such that

v(α)h(α)T = 1 and πh(α)T = 1.

Note also that h(0) = e, the 1 × N vector consisting of a row of ones. We shall write
hi(α) for the ith element of h(α). The eigenvalue κ(α) is a convex function (this can
also be easily verified) such that κ(0) = 0 and κ ′(0) is the asymptotic drift of X in
the sense that for each i ∈ I we have limt↑∞ E(X(t)|J (0) = i,X(0) = x)/t = κ ′(0).
For the right inverse of κ , we shall write Φ .

It can be checked that under the following Girsanov change of measure,

dP
γ

i

dPi

∣∣∣∣
Ft

:= eγX(t)−κ(γ )t hJ (t)(γ )

hi(γ )
for γ such that κ(γ ) < ∞, (5)

the process (X,P
γ

i ) is again a spectrally negative MAP whose intensity matrix Fγ (α)

is well defined and finite for α ≥ −γ . Generally, for all quantities calculated for P
γ ,

we will add subscript γ . Further, if Fγ (α) has largest eigenvalue κγ (α) and associated
right eigenvector hγ (α), the triple (Fγ (α), κγ (α),hγ (α)) is related to the original
triple (F(α), κ(α),h(α)) via

Fγ (α) = Δh(γ )−1F(α + γ )Δh(γ ) − κ(γ )I and

κγ (α) = κ(α + γ ) − κ(γ ),
(6)

where I is the N × N identity matrix and

Δh(γ ) := diag
(
h1(γ ), . . . , hN(γ )

)
.

Similarly, the time reversed process X̂(t) is the spectrally negative MAP with the
characteristics F̂, ĥ, κ̂ . To relate them to the original ones, recall that the intensity
matrix of Ĵ must satisfy

Q̂ = Δ−1
π QTΔπ ,

where Δπ is the diagonal matrix whose entries are given by the vector π . Hence
according to (4) we find that

F̂(α) = Δ−1
π F(α)TΔπ . (7)

Moreover, κ̂(α) = κ(α) and Δπ ĥ(α)T = v(α)T (see [21] for details).
Here and throughout, we work with the definition that eq is a random variable

which is exponentially distributed with mean 1/q and independent of (J,X).
As much as possible, from now on, we shall also prefer to work with ma-

trix notation. For a random variable Y and (random) time τ , we shall understand
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E(Y ;J (τ)) as the matrix with the (i, j)th element Ei (Y ;J (τ) = j). For an event A,
P(A;J (τ)) will be understood in a similar sense. Let Iij (q) = Pi,0(J (eq) = j), in
other words,

I(q) = q(qI − Q)−1.

The spectrally negative MAP is easier to analyze since its ladder height process
(L−1(t),H(t), J (L−1(t))) has explicit cumulant generating matrix Ξ(q,α). Let

τ+
a := inf

{
t ≥ 0 : X(t) ≥ a

}
,

where a ≥ 0. Denote the generator of the Markov process {J (τ+
a ), a ≥ 0} by Λ(q)

on P
Φ(q). Pistorius [24], Ivanovs et al. [18] show that it solves the following equa-

tion:

FΦ(q)

(−Λ(q)
) = 0, (8)

where the above equation is understood as a matrix equation by putting −Λ(q) in the
place of α in (6) with γ = Φ(q) and the obvious meaning of an exponential matrix.
In other words, we should understand the latter as

− ΔaΦ(q)
Λ(q)

+ Δσ 2/2Λ(q)2 +
∫ 0

−∞
ΔνΦ(q)

(dy)
(
e−Λ(q)y − I + Λ(q)y1[−1,0](y)

)

+
∫ 0

−∞
Q ◦ GΦ(q)(dy)e−Λ(q)y = 0, (9)

where ΔaΦ(q)
is the diagonal matrix with entries ai +Φ(q)σ 2

i − ∫ 0
−∞ y1[−1,0](y)(1 −

eΦ(q)y)νi(dy) (i = 1, . . . ,N ) along the diagonal; similarly, Δσ 2/2 is diagonal with

elements σ 2
i /2 (i = 1, . . . ,N ), matrix ΔνΦ(q)

(·) is diagonal with entries eΦ(q)·νi(·)
(i = 1, . . . ,N ) on the diagonal, and the matrix Q ◦ GΦ(q) has entries qij e

Φ(q)·Gi(·)
(i, j = 1, . . . ,N ). For details, check [21] and [23, Prop. 5.6]. D’Auria et al. [6] give
a numerical algorithm of calculating Λ(q) based on the theory of Jordan chains.
Note that the ladder height process can be identified as {(τ+

a ,X(τ+
a ) = a,J (τ+

a )),

a ≥ 0}. It is a bivariate Markov additive process with the cumulant generating ma-
trix:

Ξ(q,α) = Δh
(
Φ(q)

)(
Φ(q)I − Λ(q)

)
Δh

(
Φ(q)

)−1 + α

= Δh
(
Φ(q)

)((
Φ(q) + α

)
I − Λ(q)

)
Δh

(
Φ(q)

)−1 (10)

for α, q > 0. The above could be deduced from the equalities

e−Ξ(q,α)a = E
(
e−qτ+

a −αX(τ+
a );J (

τ+
a

)) = E
(
e−qτ+

a −αa;J (
τ+
a

))
(11)
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and Theorem 1 of Kyprianou and Palmowski [21] stating that

E
(
e−ξτ+

x ; τ+
x < eq;J (

τ+
x

))

= E
(
e−(q+ξ)τ+

x 1(τ+
x <∞);J

(
τ+
x

))

= Δh
(
Φ(q + ξ)

)
e−(Φ(q+ξ)I−Λ(q+ξ))xΔh

(
Φ(q + ξ)

)−1

= Δh
(
Φ(q + ξ)

) ∞∑

n=0

1

n!
[−(

Φ(q + ξ)I − Λ(q + ξ)
)
x
]n

Δh
(
Φ(q + ξ)

)−1

=
∞∑

n=0

1

n!
[−Δh

(
Φ(q + ξ)

)(
Φ(q + ξ)I − Λ(q + ξ)

)
xΔh

(
Φ(q + ξ)

)−1]n

= exp
{−Δh

(
Φ(q + ξ)

)(
Φ(q + ξ)I − Λ(q + ξ)

)
Δh

(
Φ(q + ξ)

)−1
x
}
. (12)

3 Main Results

The main result of this paper is given in the next theorem.

Theorem 1 (i) For a general MAP, the random vectors (S(eq),G(eq)) and (S(eq) −
X(eq), eq − G(eq)) are independent conditionally on J (G(eq)), that is, for α ∈ R,
ξ ≥ 0,

E
[
eiαX(eq )−ξeq ;J (eq)

]

= E
[
eiαS(eq )−ξG(eq );J (

G(eq)
)]

Δ−1
π

× Ê
[
eiαI (eq )−ξG(eq );J (

G(eq)
)]T

Δπ (13)

and

E
[
eiαX(eq )−ξeq ;J (eq)

]

= E
[
eiαI (eq )−iξG(eq );J (

G(eq)
)]

Δ−1
π

× Ê
[
eiαS(eq )−iξG(eq );J (

G(eq)
)]T

Δπ . (14)

(ii) For the spectrally negative MAP and α, ξ ≥ 0,

E
[
e−αS(eq )−ξG(eq );J (

G(eq)
)] = Ξ(q + ξ,α)−1 diag

(
Ξ(q,0)I(q)eT)

, (15)

E
[
e−αS(eq )−ξG(eq );J (eq)

] = Ξ(q + ξ,α)−1Ξ(q,0)I(q), (16)

E
[
eαI (eq )−ξG(eq );J (

G(eq)
)]
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= q
(
(q + ξ)I − F(α)

)−1
Δ−1

π

× Ξ̂(q + ξ,−α)T diag
(
Ξ̂(q,0)̂I(q)eT)−1

Δπ , (17)

E
[
eαI (eq )−ξG(eq );J (eq)

]

= q
(
(q + ξ)I − F(α)

)−1
Δ−1

π Ξ̂(q + ξ,−α)T[
Ξ̂(q,0)−1]T

Δπ . (18)

Remark 1 Applying Theorem 1(i) to the reversed process yields a similar conclu-
sion for the infimum functional. Namely, processes {(X(t), J (t)),0 ≤ t < G(eq)}
and {(X(G(eq) + t) − X(G(eq)), J (G(eq) + t)), t ≥ 0} are independent condition-
ally on J (G(eq)).

Remark 2 For N = 1 (hence Λ(q) = 0, I(q) = 1), the above theorem gives well-
known identities for a spectrally negative Lévy process:

E
[
e−αS(eq )−ξG(eq )

] = Φ(q)

Φ(q + ξ) + α
,

E
[
eαI (eq )−ξG(eq )

] = q(Φ(q + ξ) − α)

Φ(q)(q + ξ − ψ(α))
,

where ψ(θ) = −Ψ (−iθ) is the Laplace exponent of X. Finally, for ξ = 0, the above
theorem gives an already known identity for spectrally negative MAP (see [21]):

E
(
eαI (eq );J (eq)

)T(
F(α) − qI

)T

= qΔv
(
Φ(q)

)[
α
(
Φ(q)I − Λ̂(q)

)−1 − I
]
Δv

(
Φ(q)

)−1
, (19)

which was derived using Asmussen–Kella martingale.

Remark 3 It is hard to give an explict expression for the expression appearing in
Theorem 1(ii) which depends on the matrix Ξ defined in (10) and hence requires
solving the matrix equation (8). There only a few known examples; see, e.g., the
examples given in [10]. There are still two numerical methods in the literature. The
first one uses an iteration scheme, and the second one uses a theory of generalized
Jordan chains; see, e.g., [1, 6].

We prove also the following counterpart of Spitzer–Rogozin version of Wiener–
Hopf factorization and the Fristedt theorem:

Theorem 2 Assume that the matrix E exp{iαX(1)} has distinct eigenvalues and that
for any t, s ≥ 0:

E
[
eiαX(t)1{X(t)≥0};J (t)

]
E

[
eiαX(s)1{X(s)<0};J (s)

]

= E
[
eiαX(s)1{X(s)<0};J (s)

]
E

[
eiαX(t)1{X(t)≥0};J (t)

]
. (20)
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Then

E
[
e−αS(eq )−ξG(eq );J (eq)

]

= exp

{∫ ∞

0
dt

∫

[0,∞)

(
e−ξ t−αx − 1

)
t−1e−qtP

(
X(t) ∈ dx;J (t)

)}
I(q)

and

E
[
eαI (eq )−ξG(eq );J (eq)

]

= exp

{∫ ∞

0
dt

∫

(−∞,0)

(
e−ξ t+αx − 1

)
t−1e−qtP

(
X(t) ∈ dx;J (t)

)}
I(q).

By Markov property, the assumption (20) heuristically means that for the MAP
(X,J ) on time interval t + s going at time t above 0 and then below the present value
is statistically equivalent to going first below 0 at time s and then above the present
value. This assumption is satisfied, for example, for the two-state Markov process
J (t) and for X(t) = 0 when J (t) = 1 and X(t) = B(t), which is a Brownian motion,
when J (t) = 2. It is not satisfied, for example, for the two-state Markov process J (t)

with q12 = q21 = λ and for X(t) = t when J (t) = 1 and X(t) = −t + B(t) when
J (t) = 2. Indeed, take α = 0 and note that for s ↓ 0 we have P1(X(s) < 0, J (s) =
1) = ∫ s

0 P1(T1 ∈ dw)P2(X(s − w) < w,J (s − w) = 1) ≤ ∫ s

0 P1(T1 ∈ dw)P2(X(s −
w) < w,J (s − w) = 2) + o(s) = P1(X(s) < 0, J (s) = 2) + o(s). Hence for s, t ↓ 0,
we have

P1
(
X(s) < 0, J (s) = 1

)
P1

(
X(t) > 0, J (t) = 2

)

+ P1
(
X(s) < 0, J (s) = 2

)
P2

(
X(t) > 0, J (t) = 2

)

≤ (
P1

(
X(s) < 0, J (s) = 2

) + o(s)
)

× (
P1

(
J (t) = 2

) + P2
(
B(t) > t

) + λt + o(t)
)

≤ P1
(
X(s) < 0, J (s) = 2

)
P2

(
B(t) > t

) + o(s) + o(t)

< P1
(
X(s) < 0, J (s) = 2

)
e−λt + o(s) + o(t)

≤ P1
(
X(s) < 0, J (s) = 2

)
P1

(
X(t) > 0, J (t) = 1

) + o(s) + o(t)

≤ P1
(
X(t) > 0, J (t) = 1

)
P1

(
X(s) < 0, J (s) = 2

)

+ P1
(
X(t) > 0, J (t) = 2

)
P2

(
X(s) < 0, J (s) = 2

) + o(s) + o(t).

The following generalizations of Kendall’s identity and the ballot theorem also
hold.
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Theorem 3 Consider the spectrally negative Markov additive process X(t) with ab-
solutely continuous transition probabilities. Under the assumptions of Theorem 2, we
have

tP
(
τ+
x ∈ dt;J (t)

)
dx = xP

(
X(t) ∈ dx;J (t)

)
dt.

Theorem 4 Let

X(t) = ct − σ(t),

where {σ(t), t ≥ 0} is a Markov additive subordinator without the drift component
and c > 0. Under the assumptions of Theorem 2, the following identity holds

P
(
X(t) ∈ dx, I (t) = 0;J (t)

) = x

ct
P
(
X(t) ∈ dx;J (t)

)
.

Summarizing, the theorems given here might be seen as a foundation of the fluc-
tuation theory for the (spectrally negative) MAP and might serve for deriving coun-
terparts of the well-known identities for the Lévy processes.

4 Proofs

4.1 Proof of Theorem 1

(i) Sampling the MAP process (X(t), J (t)) up to an exponential random time eq cor-
responds to sampling the marked Cox point process (double Poisson point process) of
the excursions up to time L(eq). Moreover, since conditioning on a realization of the
process J (t) the point process (t, εt ) is a non-homogeneous marked Poisson process,
we know that, conditioning on J (L−1(σA−)) for

σA = inf{t ≥ 0 : εt ∈ A},
the point process {(t, εt ), t < σA} is independent of εσA . Indeed, for Borel sets B1
and B2 and k0 = max{k : Tk ≤ σA} we have

Pi

({
(t, εt ), t < σA

} ∈ B1,
{
(t, εt ), t ≥ σA

} ∈ B2
)

=
∑

ik∈{1,...,N}
Pi

({
(t, εt ), t < σA

} ∈ B1|J (T1) = i1, J (T2) = i2, . . .
)

× P
({

(t, εt ), t ≥ σA
} ∈ B2|J (T1) = i1, J (T2) = i2, . . .

)

× P
(
J (T1) = i1, J (T2) = i2, . . .

)

=
∑

ik∈{1,...,N}
Pi

({
(t, εt ), t < σA

} ∈ B1|J (T1) = i1, J (T2) = i2, . . . , J (Tk0) = ik0

)

× P
({

(t, εt ), t ≥ σA
} ∈ B2|J (Tk0) = ik0 , J (Tk0+1) = ik0+1, . . .

)
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× P
(
J (T1) = i1, J (T2) = i2, . . . , J (Tk0) = ik0

)

× P
(
J (Tk0+1) = ik0+1, . . . |J (Tk0) = ik0

)

=
N∑

ik0=1

Pi

({
(t, εt ), t < σA

} ∈ B1;J
(
σA−) = ik0

)
Pik0

({
(t, εt ), t ≥ σA

} ∈ B2
)
.

Hence

P
({

(t, εt ), t < σA
} ∈ B1,

{
(t, εt ), t ≥ σA

} ∈ B2
)

= P
({

(t, εt ), t < σA
} ∈ B1;J

(
σA−))

P
({

(t, εt ), t ≥ σA
} ∈ B2

)
.

Consider now

σ1 = inf

{
t ≥ 0 :

∫ L−1(t)

0
1{X(s)=S(s)} ds > eq

}

and

σ2 = inf
{
t ≥ 0 : ζ(εt ) > eq

}
.

Note that σ2 is σA for A = {ζ(ε) > eq} and possibly σ1 = ∞ (e.g., when the set of
maxima has Lebesgue measure 0). If σ2 < σ1, then conditioning on J (L−1((σ1 ∧
σ2)−)) = J (L−1(σ2−)) the process

{
(t, εt ), t < σ1 ∧ σ2 and εt �= ∂

}
(21)

is independent of εσ2 = εσ1∧σ2 . If σ1 < σ2, then εσ1 = εσ1∧σ2 = ∂ and is also inde-
pendent of the process (21). Hence conditioning on J (L−1(σ1 ∧ σ2−)) the excursion
εσ1∧σ2 is independent of the process (21). Note also that

G(eq) = L−1((σ1 ∧ σ2)−
)
, S(eq) = H

(
(σ1 ∧ σ2)−

)
, (22)

and the last excursion εσ1∧σ2 occupies the final eq − G(eq) units of time in the in-
terval [0, eq ] and reaches the depth X(eq) − S(eq). The proof of the identities (22)
completely follows the arguments given in [17, Sect. 4]. These identities complete
the proof of the first part of Theorem 1(i). Note that (eq −G(eq),X(eq)−S(eq)) has
the same law as (Ĝ(eq), Î (eq)). The second part of Theorem 1(i) follows now from
the first part applied to the reversed process.

(ii) To prove Theorem 1(ii), we follow [8]. Fix n ∈ N and set

i+n = [
nS(eq)

]
/n, (23)

where [·] stands– for the integer part. Applying the strong Markov property at time
τ+
k/n and using (12) yields
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E
[
e
−ξτ+

i
+
n

−αi+n ;J (eq)
]

=
∞∑

k=0

E
[
e
−ξτ+

k/n−αk/n; k/n ≤ S(eq) < (k + 1)/n;J (eq)
]

=
∞∑

k=0

e−Ξ(q+ξ,α)k/nP
(
eq < τ+

1/n;J (eq)
)

= [
n
(
I − e−Ξ(q+ξ,α)1/n

)]−1
nP

(
eq < τ+

1/n;J (eq)
)
. (24)

Taking n → ∞ we have i+n → S(eq). Moreover, S(eq) ≥ Xτ+
i
+
n

≥ i+n and XG(eq ) =
S(eq). Hence τ+

i+n
→ G(eq) where we use fact that by excluding a compound Poisson

processes Xj the supremum S(eq) is uniquely attained. Hence the left-hand side of
the above equation converges by the dominated convergence theorem. Thus the right-
hand side also converges. Note that for any matrix A,

I − e−A/n = 1

n
A + o(1/n). (25)

Thus

E
[
e−ξG(eq )−αS(eq );J (eq)

] = Ξ(q + ξ,α)−1B

for some matrix B using the fact that the matrix (Φ(q + ξ) + α)I − Λ(q + ξ) is
invertible for q > 0. Taking ξ = α = 0, we obtain

B = Ξ(q,0)I(q),

which completes the proof of (16). Similarly, from (24),

Ei

[
e
−ξτ+

i
+
n

−αi+n ;J (
τ+
i+n

) = j
]

=
∞∑

k=0

Ei

[
e
−ξτ+

k/n−αk/n; τ+
k/n ≤ eq;J (

τ+
k/n

) = j
]
Pj

(
eq < τ+

1/n

)

= [
E

[
e
−ξτ+

i
+
n

−αi+n ;J (eq)
]
P
(
eq < τ+

1/n;J (eq)
)−1]

ij
Pj

(
eq < τ+

1/n

)
,

and therefore,

E
[
e−ξG(eq )−αS(eq );J (eq)

] = E
[
e−ξG(eq )−αS(eq );J (

G(eq)
)]

C, (26)

for

C = lim
n→∞ diag

(
Pi

(
eq < τ+

1/n

)−1)P
(
eq < τ+

1/n;J (eq)
)

= lim
n→∞ P

(
J (eq)|S(eq) < 1/n

)
. (27)
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Now (15) will follow straightforwardly from (27) and (16) since, by (12),

P
(
eq < τ+

1/n;J (eq)
) = I(q) − P

(
eq > τ+

1/n;J (eq)
) = (

I − e−Ξ(q,0)1/n
)
I(q),

and hence

C = [
diag

(
Ξ(q,0)I(q)eT)]−1

Ξ(q,0)I(q). (28)

Identity (17) follows from (15) and Theorem 1(i). Indeed, note that the LHS of (13)
applied to the dual equals q(qI − F̂(α))−1 = qΔ−1

π (qI − F(α)T)−1Δπ . Putting (15)
into (13) (where both identities are taken for the dual) will produce (17). Finally, from
the proof of the Theorem 1(i) it follows that

E
[
eαI (eq )−ξG(eq );J (eq)

]

= E
[
eαI (eq )−ξG(eq );J (

G(eq)
)]

Δ−1
π P̂

(
J
(
G(eq)

))T
Δπ ,

which completes the proof of (18) in view of (15).

4.2 Proof of Theorem 2

For a general matrix A with the distinct eigenvalues λi (hence with the independent
eigenvectors si ) such that Re λi > 0, using Frullani integral and the representation
A = S diag{λi}S−1 with S = (s1, . . . , sN), for q > 0 we can derive the following
identities:

q(qI + A)−1 = exp

{∫ ∞

0

(
e−Ax − I

) 1

x
e−qx dx

}
(29)

and

A(A + α)−1 = exp

{∫ ∞

0

(
e−αx − 1

) 1

x
e−Ax dx

}
. (30)

Lemma 1 Under assumption (20), for ξ strictly larger than the largest real part of
an eigenvalue of F(α),

E
[
eiαX(eq )−ξeq ;J (eq)

]

= exp

{∫ ∞

0

∫

[0,∞)

(
exp{−ξ t + iαx} − 1

)1

t
e−qt P

(
X(t) ∈ dx;J (t)

)
dt

}

× exp

{∫ ∞

0

∫

(−∞,0)

(
exp{−ξ t + iαx} − 1

)1

t
e−qtP

(
X(t) ∈ dx;J (t)

)
dt

}
.

Proof By additivity of the process X(t), there exists a matrix F such that
E exp{iαX(t)} = exp{F(iα)t} (see [2, Prop. XI.2.2, p. 311]). Note that this matrix
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also has distinct eigenvalues. Then we have

E
[
eiαX(eq )−ξeq ;J (eq)

] =
∫ ∞

0
qe−qt exp

{−(
ξI − F(iα)

)
t
}
dt

= exp

{∫ ∞

0

(
exp

{−(
ξI − F(iα)

)
t
} − I

)1

t
e−qt dt

}

= exp

{∫ ∞

0

∫

R

(
exp{−ξ t + iαx} − 1

)1

t
e−qt P

(
X(t) ∈ dx;J (t)

)
dt

}
.

Note that, by identity (20), the matrices
∫ ∞

0

∫

[0,∞)

(
exp{−ξ t + iαx} − 1

)1

t
e−qt P

(
X(t) ∈ dx;J (t)

)
dt

and
∫ ∞

0

∫

(−∞,0)

(
exp{−ξ t + iαx} − 1

)1

t
e−qt P

(
X(t) ∈ dx;J (t)

)
dt

commute. This gives the assertion of the lemma by the factorization. �

From Lemma 1 and Theorem 1, using classical extension arguments for ξ ≥ 0, we
have

exp

{∫ ∞

0

∫

[0,∞)

(
exp{−ξ t + iαx} − 1

)1

t
e−qt P

(
X(t) ∈ dx;J (t)

)
dt

}

× exp

{∫ ∞

0

∫

(−∞,0)

(
exp{−ξ t + iαx} − 1

)1

t
e−qt P

(
X(t) ∈ dx;J (t)

)
dt

}

= H(α, ξ)T(α, ξ), (31)

where

H(α, ξ) = E
[
eiαS(eq )−ξG(eq );J (eq)

]
I(q)−1 (32)

and

T(α, ξ) = Ξ(q,0)−1 diag
(
Ξ(q,0)I(q)eT)

Δ−1
π

× Ê
[
eiαI (eq )−ξG(eq );J (

G(eq)
)]T

Δπ . (33)

From Theorem 1(i), it follows that matrices H(α, ξ) and T(α, ξ) are invertible. Thus,

H−1(α, ξ) exp

{∫ ∞

0

∫

[0,∞)

(
exp{−ξ t + iαx} − 1

)

× 1

t
e−qtP

(
X(t) ∈ dx;J (t)

)
dt

}
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= T(α, ξ) exp

{
−

∫ ∞

0

∫

(−∞,0)

(
exp{−ξ t + iαx} − 1

)

× 1

t
e−qtP

(
X(t) ∈ dx;J (t)

)
dt

}
. (34)

Moreover, each entry of the matrix H(α, ξ) is analytic in the upper half of the complex
plane. The same applies also to the matrix H−1(α, ξ). Thus each entry of the LHS of
(34) extends analytically to the lower half of the complex plane in α, and similarly
each entry of the matrix on the RHS of (34) extends analytically to the upper half
of the complex plane in α. Hence from Morera’s Theorem matrices on both sides of
(34) can be defined in the whole α-plane. Observe that each entry of these matrices is
a continuous and bounded function. Indeed, from definitions (32) and (33), by Jensen
inequality it follows that each entry of the matrices H(α, ξ) and T(α, ξ) is bounded
in respective regions. Note that the reciprocal of the determinant of H(α, ξ) is also
bounded. Indeed, by (10), (16), and (32), we have

1

|α| log Hij (α, ξ)

∼ max
k

1

|α| log Ei

[
eiαS(eq )−ξG(eq );J (eq) = k

]

∼ max
k

1

|α| logΞ ik(q + ξ,α) ∼ 1

|α| log
(
Φ(q + ξ) + α − Λii(q + ξ)

) = 0

(35)

as |α| → ∞ in the upper half complex plane, where f (α) ∼ g(α) means that
f (α)/g(α) → 1. Now the fact that each entry of H−1(α, ξ) is bounded follows from
Phragmen–Lindelöf Theorem (see [11, Corr. 4.4]) and the asymptotics

− 1

α
log det H(α, ξ) → 0

which is a consequence of (35). Similarly, one can prove that each entry of the second
factors of the RHS and LHS of (34) is bounded. Thus, by Liouville’s Theorem, each
entry of (34) must be a constant. Putting α = ξ = 0 gives the assertion of the theorem.

4.3 Proof of Theorem 3

From (15) and (10),

E
[
e−αS(eq );J (eq)

] = A(A + α)−1I(q)

where A = Δh(Φ(q))(Φ(q)I − Λ(q))Δh(Φ(q))−1. Using (30) and (12), this gives

E
[
e−αS(eq );J (eq)

] = e
∫ ∞

0 dt
∫ ∞

0 (e−αx−1) 1
x
e−qt P(τ+

x ∈dt;J (t)) dx.

In view of Theorem 2, this completes the proof.
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4.4 Proof of Theorem 4

If there is an atom at x = ct in P(X(t) ∈ dx;J (t)), then the assertion of the theo-
rem remains true. Assume now that P(X(t) ∈ dx;J (t)) is absolutely continuous. By
Kendall’s identity given in Theorem 3, it suffices then to prove that

P
(
X(t) ∈ dx, I (t) = 0;J (t)

)
dt = 1

c
P
(
τ+
x ∈ dt;J (t)

)
dx,

or that for all q > 0 and sufficiently large s > 0

q

∫ ∞

0
e−qt dt

∫ ∞

0
esxP

(
X(t) ∈ dx, I (t) = 0;J (t)

)

= q

c

∫ ∞

0
e−qt

∫ ∞

0
esx dx P

(
τ+
x ∈ dt;J (t)

)
(36)

that is equivalent to

lim
α→∞ E

[
esX(eq )+αI (eq );J (eq)

] = q

c

∫ ∞

0
esxE

[
e−qτ+

x ;J (
τ+
x

)]
dx. (37)

We prove (37) passing from its left-hand side to its right-hand side. Let q = q − κ(s).
The change of measure (5) and Wiener–Hopf factorization given in Theorem 1(ii)
yields

lim
α→∞ E

[
esX(eq )+αI (eq );J (eq)

]

= lim
α→∞Δh(s)Es

[
eαI (eq )+κ(s)eq ;J (eq)

]
Δh(s)−1

= lim
α→∞

q

q
Δh(s)Es

[
eαI (eq );J (eq)

]
Δh(s)−1

= lim
α→∞Δh(s)q

(
q

α
I − Fs(α)/α

)−1

Δ−1
π s

× 1

α
Ξ̂ s(q,−α)T[

Ξ̂ s(q,0)−1]T
Δπ s Δh(s)−1,

where π s is a stationary measure of X under P
s
i . Note that

lim
α→∞

(
q

α
I − Fs(α)/α

)−1

= (−cI)−1 = −1

c
I,

and from (10)

lim
α→∞

1

α
Ξ̂s(q,−α)T = −I.
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Hence

lim
α→∞ E

[
esX(eq )+αI (eq );J (eq)

] = q

c
Δh(s)Δ−1

π s

[
Ξ̂ s(q,0)−1]T

Δπ s Δh(s)−1.

Using classical arguments for the reversed process, note that under P
s
πs we have

P̂
s
i

(
τ+
x ∈ dt |J (t) = j

) = P
s
j

(
τ+
x ∈ dt |J (t) = i

)
. (38)

We can now proceed as follows:

q

c
Δh(s)Δ−1

π s

[
Ξ̂ s(q,0)−1]T

Δπ s Δh(s)−1

= q

c
Δh(s)

∫ ∞

0
Δ−1

π s e−xΞ̂ s (q,0)T
Δπ s dx Δh(s)−1

= q

c
Δh(s)

∫ ∞

0
Δ−1

π s Ês
[
e−qτ+

x ;J (
τ+
x

)]T
Δπ s dx Δh(s)−1

= q

c

∫ ∞

0
Δh(s)Es

[
e−qτ+

x ;J (
τ+
x

)]
Δh(s)−1 dx

= q

c

∫ ∞

0
E

[
e−(q+κ(s))τ+

x +sx;J (
τ+
x

)]
dx,

where in the first equality we use (11) and in the third one we apply (38). The last
equality gives the right-hand side of (37), which completes the proof.
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