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Abstract We consider the Cauchy problem for systems of viscous conservation laws.
We obtain three different but related stochastic representations of weak solutions of
the problem: in terms of solutions to systems of usual backward stochastic differential
equations, in terms of solutions to some stochastic backward systems, and in terms
of solutions to some forward-backward stochastic differential equations.
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1 Introduction

In [19] Pardoux and Peng introduced the notion of nonlinear backward stochastic
differential equation (BSDE for short) and soon after Peng [23] and Pardoux and
Peng [20] showed that BSDEs provide probabilistic formulas for solutions of systems
of semilinear parabolic or elliptic partial differential equations (PDEs) which may
be viewed as the nonlinear generalization of the celebrated Feynman–Kac formula.
Since then connection between BSDEs and PDEs has been studied intensively by
many authors. As a result we know that viscosity or Sobolev space solutions of the
Cauchy problem or various boundary problems (e.g. Dirichlet, Neumann or obstacle
problem) for single or systems of semilinear PDEs of second order can be represented
by solutions of suitable BSDEs (see, e.g., [9, 11, 22, 27, 30]). However, at present
satisfactory theory exists only in the case where the right-hand side of the semilinear
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PDE is Lipschitz-continuous with respect to the solution and its gradient. A lot of
effort has been made to relax that condition and prove results for semilinear equations
with stronger nonlinearities (see, e.g., [13, 28]). In particular, in a remarkable paper
[13] Kobylanski has obtained a nonlinear Feynman–Kac formula for viscosity and
Sobolev solutions of a broad class of semilinear parabolic and elliptic PDEs whose
right-hand side satisfies some quadratic growth conditions. Let us note, however, that
results of [13] concern exclusively single equations. This is due to the fact that in
proofs in [13] some comparison theorems for BSDEs associated with equations under
consideration are used.

In the present paper we consider weak solutions of the Cauchy problem (for con-
venience we consider terminal condition) for systems of parabolic perturbations of
conservation laws of the form

∂u

∂s
+ ε2

2
�u = −divf (u), u(T , ·) = ϕ. (1.1)

Here ε > 0 is a parameter, ϕ = (ϕ1, . . . , ϕm) : R
d → R

m, f = (f1, . . . , fd) : R
m →

R
m×d (i.e. fk , k = 1, . . . , d , is a column vector with components (f 1

k , . . . , f m
k )) are

given functions and u is a solution, i.e. u = (u1, . . . , um) : [0, T ] × R
d → R

m is a
measurable function satisfying the following system of equations:

∂ui

∂s
+ ε2

2
�ui = −

d∑

k=1

m∑

j=1

∂f i
k (u)

∂uj
· ∂uj

∂xk

, ui(T , ·) = ϕi, i = 1, . . . ,m,

in a weak sense (see Sect. 2). Systems of the form (1.1) are important theoretically
and in applications. Their importance stems from the fact that in some cases their
solutions converge, as ε → 0, to solutions of admissible (physically meaningful) so-
lutions of systems of hyperbolic conservation laws (see [8, 17] for results for single
equation and [5] for the case m ≥ 1). The systems include, for different choices of f ,
many basic equations of continuum physics (see, e.g., [8, 17]).

One of the simplest examples of (1.1) is Burgers equation with viscosity which
we get putting m = 1 and f (x) = |x|2/2, x ∈ R

d . Since Burgers equation can be
linearized by the Hopf–Cole transformation, one can write down stochastic represen-
tation of its solution by using the classical Feynman–Kac formula and then effec-
tively use the stochastic representation to study properties of the solution. Such ap-
proach has been adopted in many papers (see, e.g., [33] and the references therein).
The Hopf–Cole transformation can be also applied to the study of multidimensional
Burgers equation with data of potential type. The Feynman–Kac representation for
solutions of multidimensional Burgers equation with data of non-potential type is
given in the recent paper [10].

To our knowledge, the problem of stochastic representation of global solutions
(i.e. on fixed interval [0, T ]) of general systems of the form (1.1) has not yet been
investigated except for the case m = 1, which is covered by Kobylanski’s [13] results
(see the end of Sect. 3). Multidimensional systems even more general that (1.1) but
on a small time interval are investigated in [1, 4] (see Sect. 5).

In the paper we provide three different but related stochastic representations of
global solutions of (1.1): in terms of solutions to systems of usual BSDEs, in terms
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of solutions to some stochastic backward systems and solutions to some forward-
backward SDEs. Let us stress, however, that in all cases we assume that there exists
a unique bounded weak solution to (1.1). The last problem is difficult except for the
case m = 1. A nice account of available results on the well-posedness of (1.1) is to
be found in [5] (see also Remark 3.3).

In Sect. 3 we prove that if ϕ ∈ L2(Rd)m ∩L∞(Rd)m, f i ∈ C1(Rm)d , i = 1, . . . , d ,
and there exists a unique bounded continuous weak solution u of (1.1) then for each
(s, x) ∈ [0, T ) × R

d the pair of processes (Y s,x,Zs,x) with values in R
m × R

m×d

defined by

Y
s,x,i
t = ui

(
t,X

s,x
t

)
, Z

s,x,ik
t = ε

∂ui

∂xk

(
t,X

s,x
t

)
, i = 1, . . . ,m, k = 1, . . . d,

(1.2)
where

Xs,x = (
Xs,x,1, . . . ,Xs,x,d

)
, X

s,x,k
t = xk + ε

(
Wk

t − Wk
s

)
, k = 1, . . . , d,

and W = (W 1, . . . ,Wd) is a standard d - dimensional Wiener process, is a solution
of the following system of BSDEs:

Y
s,x,i
t = ϕi

(
X

s,x
T

) + ε−1
d∑

k=1

m∑

j=1

∫ T

t

∂f i
k

∂uj

(
Y

s,x
θ

)
Z

s,x,jk
θ dθ

−
d∑

k=1

∫ T

t

Z
s,x,ik
θ dWk

θ , t ∈ [s, T ], i = 1, . . . ,m. (1.3)

It follows in particular that

u(s, x) = Y s,x
s , (s, x) ∈ [0, T ) × R

d . (1.4)

Uniqueness of solutions of (1.3) follows from results of [13] in the case where
m = 1 and f ∈ C2(Rd). We do not know whether uniqueness holds for systems
of equations of the form (1.3). However, for systems we are able to prove slightly
weaker result. It is not difficult to prove that for each (s, x) and i = 1, . . . ,m,
k = 1, . . . , d , there exists the quadratic variation 〈f i

k (Y s,x),Xs,x,k〉Ts of processes
f i

k (Y s,x) and Xs,x,k on [s, T ] and the second term on the right-hand side of (1.3)

equals
∑d

k=1〈f i
k (Y s,x),Xs,x,k〉Tt . It follows that the family {(Y s,x,Zs,x); (s, x) ∈

[0, T ) × R
d} defined by (1.2) is a solution of the system

{
Y

s,x,i
t = ϕi(X

s,x
T ) + ∑d

k=1〈f i
k (Y s,x),Xs,x,k〉Tt − ∑d

k=1

∫ T

t
Z

s,x,ik
θ dWk

θ ,

Y
s,x,i
t = ui(t,X

s,x
t ), t ∈ [s, T ], i = 1, . . . ,m.

(1.5)

In Sect. 4 we consider general systems {(Y s,x,Zs,x); (s, x) ∈ [0, T )×R
d} of the form

(1.5) with u defined by the first component {Y s,x, (s, x) ∈ [0, T )× R
d} of the system

via (1.4). From (1.4) it follows that u is bounded. Since one can show that for any
bounded measurable u the quadratic variation process t 	→ 〈f i

k ◦ u(·,Xs,x),Xs,x,k〉ts
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exists and is a 0-quadratic variation process, it is natural to consider systems (1.5)
such that for each (s, x) ∈ [0, T ) × R

d the process Y s,x is a Dirichlet process, i.e.
admits the decomposition into a continuous process of 0-quadratic variation and a
continuous square-integrable martingale. Roughly speaking, our uniqueness result
says that there is at most one family {(Y s,x,Zs,x); (s, x) ∈ [0, T ) × R

d} such that
Y s,x is a Dirichlet process on [s, T ] and (1.5) is satisfied for every (s, x) ∈ [0, T )×R

d

with u defined by (1.4).
In Sect. 5 we first consider single equation of conservation law. We give represen-

tation of its solution u by means of weak solutions of some forward-backward SDEs,
which in turn implies that u is a solution of the system

{
X

s,x,k
t = x + ∫ t

s
f ′

k(u(θ,X
s,x
θ )) dθ + ε(Wk

t − Wk
s ), t ∈ [s, T ], k = 1, . . . , d,

u(s, x) = Eϕ(X
s,x
T ), (s, x) ∈ [0, T ] × R

d .

(1.6)
Following [1] we also show that using ideas from [31] one can generalize represen-
tation of the form (1.6) to systems of conservation laws.

The case where m = 1 and ϕ,f ′ are Lipschitz-continuous existence of a unique so-
lution of (1.6) follows from results proved in [21]. Systems of the form (1.6) with reg-
ular ϕ are investigated in [1, 4] by methods completely different from those adopted
in the present paper. In [1, 4] it is proved that there is a unique solution of (1.6) on
[0, T0] for some small T0 > 0.

In the paper we consider exclusively equations of conservation laws, but at the
expense of minor technical complications our results can be extended to equations of
balance laws of the form

∂u

∂s
+ ε2

2
�u = −divf (u) + g(u), (1.7)

where g : R
m → R

m is a Lipschitz-continuous function.
Stochastic representation of solutions to Burgers equation allows one to study ef-

ficiently various properties of these solutions (see, e.g., [33]). We think that the rep-
resentations obtained in the paper lead to new insights into the structure of solutions
of more general equations (1.1) and (1.7) and as in the case of Burgers equation will
be useful in the investigation of their properties. Our representation may also serve
as the starting point for the construction of numerical algorithms for (1.1), (1.7). To
our knowledge, at present deterministic algorithms based on representation of solu-
tions in terms of BSDEs are known only in the case where the right-hand side of the
equation is Lipschitz-continuous with respect to the solution and its gradient (see,
e.g., [6]). Another kind of algorithms based on probabilistic representation of solu-
tions to semilinear parabolic equations is to be found in [18].

Notation QT = (0, T ) × R
d , ‖z‖2 = Tr(zz∗) for z ∈ R

m×d , ∂/∂xi is the partial
derivative in the distribution sense. Lp(D) (resp. L∞(D)) is the usual Banach space
of measurable functions on D that are p-integrable (resp. essentially bounded);
W 1

2 (Rd) (resp. W
0,1
2 (QT )) is the usual Sobolev space of all elements u of L2(Rd)

(resp. L2(QT )) having derivatives ∂u/∂xi in L2(Rd) (resp. L2(QT )); W
1,1
2 (QT ) is
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the space of elements of L2(QT ) having derivatives ∂u/∂xi and time derivatives
from L2(QT ), and W (QT ) = {u ∈ W

0,1
2 (QT ) : ∂u/∂t ∈ L2(0, T ;W−1

2 (Rd))}, where
W−1

2 (Rd) is the space dual to W 1
2 (Rd). By ‖ · ‖2 we denote the norm in L2(Rd) and

by ‖ · ‖2;0,T the norm in L2(QT ).

2 Preliminary Results

Let W be a standard d-dimensional Wiener process defined on some probability space
(Ω, F ,P ). For fixed 0 ≤ s < T set

Ŵt = WT +s−t − Ws, Bs,t = Ŵt − Ŵ0 +
∫ t

0

Ŵθ

T − θ
dθ, t ∈ [0, T ]. (2.1)

Then {Ŵt − Ŵ0; t ∈ [0, T ]} is a standard d-dimensional Wiener process and, by Ex-
ercise 3.18 in Chap. IV of [24], {Bs,t ; t ∈ [0, T ]} is a standard d-dimensional Wiener

process with respect to the filtration {Gs
t = (F Ŵ·−Ŵ0

t ∨ σ(Ŵ0))+}t∈[0,T ]. Write

B̃s,t = Bs,T +s−t − Bs,T , t ∈ [s, T ].
By (2.1),

B̃s,t = Wt − Ws −
∫ t

s

Wθ − Ws

θ − s
dθ.

Thus,

X
s,x,k
t − xk = ε

2

(
Wk

s,t + B̃k
s,t − V k

s,t

)
, t ∈ [s, T ], k = 1, . . . , d, (2.2)

where

Wk
s,t = Wk

t − Wk
s , V k

s,t = −
∫ t

s

Wk
θ − Wk

s

θ − s
dθ.

Let us note that the decomposition (2.2) may be viewed as a very special case of the
strict Fukushima–Lyons–Zheng decomposition of diffusions corresponding to diver-
gence form operators (see [25, 26]).

Let h = (h1, . . . , hd) : [s, T ]×R
d → R

d . Following [29] let us consider the family
of integrals

Hs,x(h) =
{
H

s,x
t (h) ≡

∫ t

s

h
(
θ,X

s,x
θ

) ∗ dX
s,x
θ ; t ∈ [s, T ]

}

defined by

∫ t

s

h
(
θ,X

s,x
θ

) ∗ dX
s,x
θ = −ε

d∑

k=1

∫ t

s

hk

(
θ,X

s,x
θ

)(
dWk

s,θ + dV k
s,θ

)

− ε

d∑

k=1

∫ T

T +s−t

h̄k

(
θ, X̄

s,x
θ

)
dBk

s,θ , t ∈ [s, T ],
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where h̄(t, x) = h(T + s − t, x), (t, x) ∈ [0, T ] × R
d , X̄

s,x
t = X

s,x
T +s−t , t ∈ [s, T ].

Let F s
t denote the σ -algebra σ(Wu − Ws,u ∈ [s, t]) augmented by P -null sub-

sets of F s
T . A continuous {F s

t }-adapted process A on [0, T ] is called a 0-quadratic
variation process if

k(n)−1∑

i=0

|Atni+1
− Atni

|2 → 0

in probability P as n → 0 for any sequence {Πn = {s = tn0 < tn1 < · · · < tnk(n) = T }}
of partitions of [s, T ] such that max0≤i≤k(n)(t

n
i+1 − tni ) → 0.

Proposition 2.1 Let h : [s, T ] × R
d → R

d be a bounded measurable function. Then
for each x ∈ R

d ,

(i) Hs,x(h) is a 0-quadratic variation process on [s, T ].
(ii) The quadratic covariation

〈
h
(·,Xs,x

)
,Xs,x

〉t
s

≡
d∑

k=1

lim
n→∞

∑

tni ∈Πn, tni <t

{
hk

(
tni+1,X

s,x

tni+1

) − hk

(
tni ,X

s,x

tni

)}(
X

s,x,k

tni+1
− X

s,x,k

tni

)

exists as limit in probability P and

H
s,x
t = 〈

h
(·,Xs,x

)
,Xs,x

〉t
s
, t ∈ [s, T ].

(iii) If, in addition, h ∈ W
0,1
2 (QT )d and E

∫ T

s
|∇h(θ,X

s,x
θ )|2 dθ < ∞, then

ε2
∫ t

s

divh
(
θ,X

s,x
θ

)
dθ = H

s,x
t (h), t ∈ [s, T ], P -a.s. (2.3)

Proof Assertion (i) follows from the proof of [29, Lemma 3.2(ii)] while (iii) is the
special case of [29, Lemma 3.1]. Assertion (ii) follows easily from the equality

∑

tni ∈Πn, tni <t

{
hk

(
tni ,X

s,x

tni

) + (
hk

(
tni+1,X

s,x

tni+1

) − hk

(
tni ,X

s,x

tni

))}(
B̃k

s,tni+1
− B̃k

s,tni

)

= −
∑

sn
i ∈Π∗

n ,T +s−t<sn
i ≤T

h̄k

(
sn
i , X̄

s,x

sn
i

)(
Bk

s,sn
i+1

− Bk
s,sn

i

)
,

where Π∗
n = {T +s− tni : tni ∈ Πn}, and the fact that Vs,· is a process of finite variation

on [s, T ]. �

Identity (2.3) will play the key role in Sect. 4. Integrating (2.3) gives

E

∫ t

s

divh
(
θ,X

s,x
θ

)
dθ = −ε−1E

d∑

k=1

∫ t

s

hk

(
θ,X

s,x
θ

)
dV k

s,t . (2.4)
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Notice that one can obtain (2.4) without referring to (2.3) by using the integration by
parts formula.

Let 〈·, ·〉 denote the duality between W 1
2 (Rd) and its dual space W−1

2 (Rd). Let us
recall that u ∈ W (QT )m is a weak solution of (1.1) if u(T ) = ϕ and

〈
∂ui

∂s
(s),ψ

〉
− ε2

2

∫

Rd

∇ui(s)∇ψ dx =
d∑

k=1

∫

Rd

f i
k (u)

∂ψ

∂xk

dx, i = 1, . . . ,m,

for almost all s ∈ [0, T ] and all ψ ∈ W 1
2 (Rd) (see, e.g., [17, Chap. 2]). Equivalently,

u is a weak solution of (1.1) if

m∑

i=1

∫

Rd

(
ϕiηi(T ) − ui(s)ηi(s)

)
dx −

m∑

i=1

∫ T

s

∫

Rd

(
ui(t)

)∂ηi

∂t
(t) dt dx

+ ε2

2

∫ T

s

∫

Rd

∇ui(t)∇ηi(t) dt dx =
d∑

k=1

m∑

i=1

∫ T

s

∫

Rd

f i
k

(
u(t)

) ∂ηi

∂xk

(t) dt dx

for all η = (η1, . . . , ηm) ∈ W
1,1
2 (QT ) (see [14, p. 572]).

3 Backward SDEs

Let L2(x, s, T )m denote the space of functions u : [s, T ] × R
d → R

m having a finite
norm ‖u‖2

L2(x,s,T )m
= ∫ T

s

∫
Rd |u(t, y)|2pt−s(y −x)dt dy, where pt is the probability

density of Wt , and let W2(x, s, T )m denote the subspace of L2(x, s, T )m consisting
of all elements such that ‖u‖2

W2(x,s,T )m
= ‖u‖2

L2(x,s,T )m
+ ‖∇u‖2

L2(x,s,T )m
< ∞.

Proposition 3.1 Assume that ϕ ∈ L2(Rd)m ∩ L∞(Rd)m, f i ∈ C1(Rm)d , i =
1, . . . ,m, and v ∈ W

0,1
2 (QT )m ∩ L∞(QT )m. Then there exists a unique weak so-

lution u ∈ W (QT )m ∩ L∞(QT )m of the problem

∂u

∂s
+ ε2

2
�u = −divf (v), u(T , ·) = ϕ. (3.1)

Moreover, u has a version which is continuous on [0, T ) × R
d . If, in addition,

v ∈ W
0,1
2 (QT )m and v ∈ W2(x, s, T )m for some (s, x) ∈ [0, T ) × R

d , then u ∈
W2(x, s, T )m and the pair

(
Y

s,x
t ,Z

s,x
t

) = (
u
(
t,X

s,x
t

)
, ε∇u

(
t,X

s,x
t

))
, t ∈ [s, T ]

is a solution of the system of linear BSDEs

Y
s,x,i
t = ϕi

(
X

s,x
T

) +
∫ T

t

divf i(v)
(
θ,X

s,x
θ

)
dθ

−
d∑

k=1

∫ T

t

Z
s,x,ik
θ dWk

θ , t ∈ [s, T ], i = 1, . . . ,m. (3.2)
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Proof Since v ∈ L∞(QT )m, we may and will assume that f has compact support.
But then f i(v) ∈ L2(QT )d ∩ L∞(QT )d , i = 1, . . . ,m, so there is a unique weak so-
lution u ∈ WT (QT )m of (3.1) (see, e.g., [15, Theorem 3.1.2] or [14, p. 574]) which
has bounded continuous version on [0, T )×R

d (see, e.g., [3]). Thus, what is left is to
show that u ∈ W2(x, s, T )m and (3.2) is satisfied if v ∈ W

0,1
2 (QT )m ∩ W2(x, s, T )m.

Using mollification one can construct sequences {ϕn}, {gn} of bounded smooth func-
tions such that ϕi

n → ϕi in L2(Rd) and gi
n,k → f i

k (v) in W
0,1
2 (QT ) as n → ∞, and

‖ϕn‖∞ ≤ ‖ϕ‖∞, ‖gn‖∞ ≤ ‖f ◦ v‖∞. Let un be a classical solution of the Cauchy
problem

∂un

∂s
+ ε2

2
�un = −divgn, un(T , ·) = ϕn.

By Itô’s formula, the pair (Y n,Zn
t = (Zn,1, . . . ,Zn,m)) defined by Y

n,i
t = ui

n(t,X
s,x
t ),

Z
n,i
t = ε∇ui

n(t,X
s,x
t ), t ∈ [s, T ], i = 1, . . . ,m, is a solution of the system of BSDEs

Yn
t = ϕn

(
X

s,x
T

) +
∫ T

t

divgn

(
θ,X

s,x
θ

)
dθ −

∫ T

t

Zn
θ dWθ , t ∈ [s, T ]. (3.3)

By the above and (2.4),

ui
n(s, x) = EYn,i

s = Eϕi
n

(
X

s,x
T

) − ε−1E

d∑

k=1

∫ T

s

gi
n,k

(
t,X

s,x
t

)
dV k

s,t .

Hence

∣∣un(s, x)
∣∣ ≤ ‖ϕ‖∞ + ε−1‖f ◦ v‖∞ERs,T ≤ ‖ϕ‖∞ + ε−1‖f ◦ v‖∞ER0,T , (3.4)

where

Rs,T =
d∑

k=1

∫ T

s

|Wk
θ − Wk

s |
θ − s

dθ.

Using once again Itô’s formula we see that

E
∣∣Yn

s

∣∣2 + E

∫ T

s

∥∥Zn
t

∥∥2
dt = E

∣∣ϕn

(
X

s,x
T

)∣∣2 + 2E

m∑

i=1

∫ T

s

Y
n,i
t divgi

n

(
t,X

s,x
t

)
dt.

Since ui
n divgi

n = div(ui
ng

i
n) − ∑d

k=1 gi
n,k(∂ui

n/∂xk), it follows from (2.4) that

E

∫ T

s

Y
n,i
t divgi

n

(
t,X

s,x
t

)
dt = −ε−1E

d∑

k=1

Y
n,i
t gi

n,k

(
t,X

s,x
t

)
dV k

s,t

− ε−1E

d∑

k=1

∫ T

s

Z
n,ik
t gi

n,k

(
t,X

s,x
t

)
dt,
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which when combined with (3.4) shows that supn≥1 E
∫ T

s
‖Zn

t ‖2 dt < ∞. Thus, {un}
is bounded in W2(x, s, T )m and hence is weakly relatively compact. This shows
that u ∈ W2(s, x, T )m, because by the well-known convergence results, un → u

in W
0,1
2 (QT )m. Since (3.4) holds true for all (s, x) ∈ [0, T ] × R

d , the functions
un are uniformly bounded and hence, by Nash’s continuity theorem, equicontinu-
ous. Therefore un → u uniformly in compact subsets of [0, T ) × R

d . Using this
and the fact that divgi

n → divf i(v), ∇ui
n → ∇ui in L2(QT ) for i = 1, . . . ,m, we

conclude from (3.3) that the pair (Y s,x,Zs,x) satisfies (3.2) on [s + δ, T ] for every
δ ∈ (0, T − s). Since f i ◦ v ∈ L2(x, s, T )m if v ∈ W2(x, s, T )m and we already know
that ∇u ∈ L2(x, s, T ), (3.2) is satisfied on the whole interval [s, T ]. �

We are ready to prove existence of solutions of BSDE (1.3) under the following
basic hypothesis:

(H) There exists a unique weak solution v ∈ W (QT )m ∩ L∞(QT )m to the Cauchy
problem (1.1).

The problem of existence and uniqueness of global weak solutions to general sys-
tems of the form (1.1) is subtle and difficult except for the case m = 1. A nice pre-
sentation of recent results on the topic is given in [5]. Some sufficient conditions for
(H) to hold are given in Remark 3.3.

In what follows by H2(s, T )m we denote the space of all {F s
t }t∈[s,T ]-progressively

measurable m-dimensional processes ξ on [s, T ] such that E
∫ T

s
|ξt |2 dt < ∞ and by

H∞(s, T )m the subspace of H2(s, T )m consisting of all processes that are P -a.s.
bounded.

Theorem 3.2 Assume that ϕ ∈ L2(Rd)m ∩ L∞(Rd)m, f i ∈ C1(Rm)d , i = 1, . . . , d ,
and (H) is satisfied. Then v has a version u which is continuous on [0, T ) × R

d

and for each (s, x) ∈ [0, T ) × R
d the pair (Y s,x,Zs,x) ∈ H∞(s, T )m × H2(s, T )md

defined by (1.2) is a solution of BSDE (1.3).

Proof Let M = ‖v‖∞ and let g = (g1, . . . , gm), gi = ζf i , i = 1, . . . ,m, where ζ :
R

d → [0,1] is a smooth function with compact support such that ζ(y) = 1 if |y| ≤
M + 1. Suppose that the pair (Y

s,x
t ,Z

s,x
t ) = (v(t,X

s,x
t ), ε∇v(t,X

s,x
t )), t ∈ [s, T ],

is a solution of (1.1) with f replaced by g. Since
∂f i

k

∂uj (Yt ) = ∂gi
k

∂uj (Yt ), t ∈ [s, T ], it
follows that (Y s,x,Zs,x) solves the original equation (1.3). Therefore we may and will
assume that f is globally Lipschitz-continuous and bounded, i.e. there exist constants
K,L > 0 such that

∣∣f (x)
∣∣ ≤ K, max

1≤i≤m

∣∣f i(x) − f i(y)
∣∣ ≤ L|x − y|, x, y ∈ R

m.

Let λ > 0 and let Vλ denote the space V = W
0,1
2 (QT )m ∩ C([0, T ];L2(Rd)m)

equipped with the norm

‖u‖2
λ = λ−1 sup

0≤t≤T

∥∥uλ(t, ·)
∥∥2

2 + ‖uλ‖2
2;0,T + (2λ)−1ε2‖∇uλ‖2

2;0,T ,
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where uλ(t, x) = eλt/2u(t, x). Since ‖ · ‖λ is equivalent to the usual norm in V , Vλ is
a Banach space. Define the mapping Φ : Vλ → Vλ by putting Φ(v) to be the solution
of (3.1). We shall show that Φ is a contraction for all sufficiently large λ. Let v1, v2

be two elements of Vλ and let u1 = Φ(v1), u2 = Φ(v2), u = u1 − u2. Then for any
ψ ∈ W

0,1
2 (QT ) and i = 1, . . . ,m,

〈
∂ui

∂t
,ψ

〉
− ε2

2

∫

Rd

∇ui(t, x)∇ψ(x)dx =
∫

Rd

(
f i(v1) − f i(v2)

)
(t, x)∇ψ(x)dx

for a.e. t ∈ (0, T ). Since 2eλtui∂ui/∂t = ∂(eλt (ui)2)/∂t −λeλt (ui)2, putting ψ(x) =
eλtui(t, x) and integrating over the interval (t, T ) ⊂ (s, T ) we obtain

eλt
∥∥ui(t, ·)∥∥2

2 +
∫ T

t

eλθ
(
λ
∥∥ui(θ, ·)∥∥2

2 + ε2
∥∥∇ui(θ, ·)∥∥2

2

)
dθ

= −2
∫ T

t

∫

Rd

eλθ
(
f i(v1) − f i(v2)

)∇ui(θ, x) dθ dx

≤ 4L2ε−2
∫ T

t

eλθ
∥∥(v1 − v2)(θ, ·)∥∥2

2 dθ + ε2

4

∫ T

t

eλθ
∥∥∇ui(θ, ·)∥∥2

2 dθ.

Hence

sup
0≤s≤T

eλs
∥∥ui(s, ·)∥∥2

2 +
∫ T

s

eλt

(
λ
∥∥ui(t, ·)∥∥2

2 + ε2

2

∥∥∇ui(t, ·)∥∥2
2

)
dt

≤ 8L2ε−2
∫ T

s

eλt
∥∥(v1 − v2)(t, ·)

∥∥2
2 dt

for i = 1, . . . ,m, which shows that Φ is a contraction if λ > 8dL2ε−2. Set u0 = 0,
un = Φ(un−1), n ∈ N. By the Banach principle, {un} converges in Vλ to the unique
fixed point of Φ , i.e. to the unique weak solution v of (1.1).

Set

Y
n,i
t = ui

n

(
t,X

s,x
t

)
, Z

n,i
t = ε∇ui

n

(
t,X

s,x
t

)
, t ∈ [s, T ], i = 1, . . . ,m.

By Proposition 3.1,

Y
n,i
t = ϕi

(
X

s,x
T

) +
∫ T

t

divf i(un−1)
(
θ,X

s,x
θ

)
dθ −

d∑

k=1

∫ T

t

Z
n,ik
θ dWk

θ , t ∈ [s, T ].
(3.5)

As in the proof of (3.4), from (3.5) we deduce that |un(s, x)| ≤ ‖ϕ‖∞ +Kε−1ER0,T .
Since (3.5) holds true for every (s, x) ∈ [0, T ) × R

d , we see that the functions un are
bounded uniformly in n ∈ N, and hence, by Nash’s continuity theorem, equicontin-
uous. Therefore we may apply the Ascoli–Arzela theorem and choose a sequence
(still denoted by {n}) such that {un} converges uniformly in compact subsets of
[0, T )×R

d to some bounded u ∈ C([0, T )×R
d)m. Of course, u is a version of v. Set
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Y
s,x
t = u(t,X

s,x
t ), t ∈ [s, T ]. Since Yn

t → Y
s,x
t a.s. for t ∈ [s, T ] and Yn are bounded

uniformly in n, applying the Lebesgue dominated convergence theorems gives

E

∫ T

s

∣∣Yn
t − Y

s,x
t

∣∣2
dt → 0, E

∫ T

s

∣∣Yn
t − Y

s,x
t

∣∣2
dRs,t → 0. (3.6)

Since for any n,m ∈ N,

Y
n,i
t − Y

m,i
t =

∫ T

t

div
(
f i(un−1) − f i(um−1)

)(
θ,X

s,x
θ

)
dθ

−
d∑

k=1

∫ T

t

(
Z

n,ik
θ − Z

m,ik
θ

)
dWk

θ ,

applying Itô’s formula and using (2.4) gives

E
∣∣Yn,i

s − Ym,i
s

∣∣2 + E

d∑

k=1

∫ T

s

∣∣Zn,ik
t − Z

m,ik
t

∣∣2
dt

= 2E

∫ T

s

(
ui

n − ui
m

)
div

(
f i(un−1) − f i(um−1)

)(
t,X

s,x
t

)
dt

= −2ε−1E

d∑

k=1

∫ T

s

(
ui

n − ui
m

)(
f i

k (un−1) − f i
k (um−1)

)(
t,X

s,x
t

)
dV k

s,t

− 2E

d∑

k=1

∫ T

s

∂(ui
n − ui

m)

∂xk

(
f i

k (un−1) − f i
k (um−1)

)(
t,X

s,x
t

)
dt

≤ 4Mε−1E

∫ T

s

∣∣Yn,i
t − Y

m,i
t

∣∣2
dRs,t + CE

∫ T

s

∣∣Yn−1,i
t − Y

m−1,i
t

∣∣2
dt

+ 2−1E

d∑

k=1

∫ T

t

∣∣Zn,ik
t − Z

m,ik
t

∣∣2
dt

for some C > 0 not depending on n,m, which when combined with (3.6) shows
that {Zn} is a Cauchy sequence in H2(s, T )m. On the other hand, since un → u in
V , E

∫ T

s+δ
‖Zn

t − ε∇u(t,X
s,x
t )‖2 dt → 0 for every δ ∈ (0, T − s). Thus, if we set

Z
s,x
t = ε∇u(t,X

s,x
t ), t ∈ [s, T ], then

E

∫ T

s

∥∥Zn
t − Z

s,x
t

∥∥2
dt → 0. (3.7)

Letting n → ∞ in (3.5) and using (3.6), (3.7) shows that (Y s,x,Zs,x) solves (1.3). �

Remark 3.3 (i) In case m = 1 existence of a unique weak solution u ∈ W (QT ) ∩
L∞(QT ) to (1.1) is well known (see, e.g., [17, Theorem 2.9]). It is known also that
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‖u‖∞ ≤ ‖ϕ‖∞. Observe that the above results follows from the proof of Theorem 3.2.
Indeed, the function u constructed in the proof is a solution of the problem (1.1) with
f replaced by g, so we only have to show that ‖u‖∞ ≤ ‖ϕ‖∞. The last inequality may
be proved probabilistically as follows. Set M = ‖ϕ‖∞ and denote by L = {Lt ; t ∈
[s, T ]} the local time at zero of the semimartingale Y s,x − M . By the Tanaka–Meyer
formula, we have

(
Y

s,x
T − M

)+ − (
Y

s,x
t − M

)+ =
∫ T

t

1(M,∞)

(
Y

s,x
θ

)
dY

s,x
θ + LT − Lt .

Hence

eλT
∣∣(Y s,x

T − M
)+∣∣2 − eλs

∣∣(Y s,x
s − M

)+∣∣2

= λ

∫ T

s

eλt
∣∣(Y s,x

t − M
)+∣∣2

dt + 2
∫ T

s

eλt
(
Y

s,x
t − M

)+(
dY

s,x
t + dLt

)

+
∫ T

s

eλt1(M,∞)

(
Y

s,x
t

)∣∣Zs,x
t

∣∣2
dt.

Since (Y
s,x
T − M)+ = 0, it follows from the above that

eλsE
∣∣(Y s,x

s − M
)+∣∣2 + λE

∫ T

s

eλt
∣∣(Y s,x

t − M
)+∣∣2

dt

+ E

∫ T

s

eλt1(M,∞)

(
Y

s,x
t

)∣∣Zs,x
t

∣∣2
dt

≤ 2ε−1E

d∑

k=1

∫ T

s

eλt
(
Y

s,x
t − M

)+ ∂fk

∂u

(
Y

s,x
t

)
Z

s,x,k
t dt

≤ 2ε−1LE

∫ T

s

eλt
(
Y

s,x
t − M

)+∣∣Zs,x
t

∣∣dt

≤ CE

∫ T

s

eλt
∣∣(Y s,x

t − M
)+∣∣2

dt + E

∫ T

s

eλt1(M,∞)

(
Y

s,x
t

)∣∣Zs,x
t

∣∣2
dt

for some C depending on ε,L. Putting λ = C we see that E|(Y s,x
s − M)+|2 = 0,

which implies that ‖u‖∞ ≤ M .
(ii) Consider now the system (1.1) in space dimension d = 1. Then (H) is satis-

fied if ϕ ∈ L∞(R) ∩ W 1
2 (R), f ∈ C1(R) and f is Lipschitz-continuous with some

constant L > 0. To prove this we only have to show that the solution u constructed
in the proof of Theorem 3.2 is bounded. Observe also that without loss of gener-
ality we may and will assume that f (0) = 0 (if necessary, we can replace f by
f̃ (y) = f (y) − f (0)).

Applying Itô’s formula to (3.5) and taking expectation gives

E
∣∣Yn,i

s

∣∣2 +
∫ T

s

∣∣Zn,i
t

∣∣2
dt
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= E
∣∣ϕ

(
X

s,x
T

)∣∣2 + 2E

∫ T

s

ui
n

(
t,X

s,x
t

)∂f i ◦ un−1

∂x

(
t,X

s,x
t

)
dt

for i = 1, . . . ,m. Integrating the above equality with respect to x we get

∥∥ui
n(s, ·)

∥∥2
2 + ε2

∫ T

s

∥∥∥∥
∂ui

n

∂x
(t, ·)

∥∥∥∥
2

2
dt

= ∥∥ϕi
∥∥2

2 + 2
∫ T

s

∫

R

ui
n(t, x)

∂f i ◦ un−1

∂x
(t, x) dt dx

≤ ∥∥ϕi
∥∥2

2 − 2
∫ T

s

∫

R

∂ui
n

∂x
(t, x)f i ◦ un−1(t, x) dt dx

≤ ∥∥ϕi
∥∥2

2 + 2−1ε2
∫ T

s

∥∥∥∥
∂ui

n

∂x
(t, ·)

∥∥∥∥
2

2
dt + 2ε−2L2

∫ T

s

∥∥ui
n−1(t, ·)

∥∥2
2 dt.

Since u0 = 0, we deduce from the above that

∥∥ui
n(s, ·)

∥∥2
2 + 1

2

∫ T

s

∥∥∥∥
∂ui

n

∂x
(t, ·)

∥∥∥∥
2

2
dt ≤

n−1∑

k=0

(L2(T − s))k

k!
∥∥ϕi

∥∥2
2

≤ e2L2(T −s)
∥∥ϕi

∥∥2
2 (3.8)

for s ∈ [0, T ]. Put vn = ∂un/∂x. ψ = ∂ϕ/∂x. Since

∂un

∂t
+ ε2

2

∂2un

∂x2
= −∂f ◦ un − 1

∂x
, un(T , ·) = ϕ,

we have

∂vn

∂t
+ ε2

2

∂2vn

∂x2
= −∂f ◦ un − 1

∂x
, vn(T , ·) = ψ.

From this it follows that for i = 1, . . . ,m,

∥∥vi
n(s, ·)

∥∥2
2 + ε2

∫ T

s

∥∥∥∥
∂vi

n

∂x
(t, ·)

∥∥∥∥
2

2
dt

= ∥∥ψi
∥∥2

2 + 2
∫ T

s

∫

R

vi
n(t, x)

∂2f i ◦ un−1

∂x2
(t, x) dt dx

= ∥∥ψi
∥∥2

2 − 2
∫ T

s

∫

R

∂vi
n

∂x
(t, x)

∂f i ◦ un−1

∂x
(t, x) dt dx

≤ ∥∥ψi
∥∥2

2 + ε2
∫ T

s

∥∥∥∥
∂vi

n

∂x
(t, ·)

∥∥∥∥
2

2
dt + ε−2L2

∫ T

s

∥∥∥∥∥

m∑

k=1

∂uk
n−1

∂x
(t, ·)

∥∥∥∥∥

2

2

dt.
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By the above and (3.8) there is c not depending on n such that

∥∥∥∥
∂ui

n

∂x
(s, ·)

∥∥∥∥
2

2
≤ c

∥∥ϕi
∥∥2

W 1
2 (R)

(3.9)

for each i = 1, . . . ,m. Since, by the imbedding theorem, there is c′ > 0 not depending
on n such that ‖un(s, ·)‖∞ ≤ c′‖un(s, ·)‖W 1

2 (R) for s ∈ [0, T ), it follows from (3.8),
(3.9) that supn≥0 ‖un‖∞ ≤ C‖ϕ‖W 1

2 (R), and hence that ‖u‖∞ ≤ C‖ϕ‖W 1
2 (R).

Note that the above proof is a modification of the proof given in Exercise 10 in
Sect. 15.1 of [32] (the proof given in [32] shows in fact that the assumption that f is
Lipschitz-continuous can be weakened).

(iii) In the general case (m ≥ 1, d ≥ 1) existence and uniqueness of global bounded
weak solutions to (1.1) is known to hold if the system is strictly hyperbolic and the
total variation and the supremum norm of the final condition ϕ are sufficiently small
(see [5] and the references therein).

Let us note that in case of scalar conservation laws, i.e. if m = 1, existence of
solutions of (1.3) follows from [13, Theorem 2.3]. Uniqueness holds under some
further restrictions on f .

Theorem 3.4 Let m = 1. Then under assumptions of Theorem 3.2, if moreover f ∈
C2(R)d , for each (s, x) ∈ [0, T )×R

d there exists at most one solution of BSDE (1.3)
in the class H∞(s, T ) × H2(s, T )d .

Proof The proof follows from [13, Theorem 2.6], because the function F(y, z) =∑d
k=1 f ′

k(y)zk , y ∈ R, z ∈ R
d , satisfies hypotheses (H2), (H3) of [13]. �

Remark 3.5 (i) Let (Ω̃, F̃ , P̃ ) be a complete probability space equipped with some
filtration {F̃ s

t }t∈[s,T ] satisfying the usual conditions, and let X̃
s,x
t = x + εW̃t , t ∈

[s, T ], where W̃ is an {F̃ s
t }-Wiener process on (Ω̃, F̃ , P̃ ) starting at time s from 0.

The proof of Theorem 3.2 shows that the pair
(
Ỹ

s,x
t , Z̃

s,x
t

) = (
u
(
t, X̃

s,x
t

)
, ε∇u

(
t, X̃

s,x
t

))
, t ∈ [s, T ], (3.10)

where u is a continuous weak solution of (1.1), is a solution on (Ω̃, F̃ , P̃ ) of the
system

Ỹ
s,x,i
t = ϕi

(
X̃

s,x
T

) + ε−1
d∑

k=1

m∑

j=1

∫ T

t

∂f i
k

∂uj

(
Ỹ

s,x
θ

)
Z̃

s,x,jk
θ dθ

−
d∑

k=1

∫ T

t

Z̃
s,x,ik
θ dW̃ k

θ , t ∈ [s, T ], i = 1, . . . ,m (3.11)

(to see this it suffices to observe that in the proof of (3.2), which is used to prove (3.5),
and in arguments following (3.5) we do not use the fact that the underlying filtration
is generated by a Wiener process).
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(ii) Similarly, since in the proof of the comparison principle [13, Theorem 2.6]
the fact that the solutions under consideration are adapted to the natural filtration
generated by a Wiener process is not used, in case m = 1, f ∈ C2(R)d , the pair
(3.10) is a unique {F̃ s

t }-adapted solution of (3.11) on (Ω̃, F̃ , P̃ ) (with the Wiener
process W̃ ) in the class H∞(s, T ) × H2(s, T )d . Thus, if m = 1 and f ∈ C2(R)d ,
then the solution of (1.3) is weakly unique (for the definition of weak uniqueness see
[16] and Sect. 5).

4 Stochastic Backward Systems

From Theorem 3.2 and (2.3) it follows that under hypothesis (H) the family
{(Y s,x,Zs,x); (s, x) ∈ [0, T ) × R

d} is a solution, in the class H∞ × H2, of the
stochastic backward system associated with ϕ,f in the sense that for every (s, x) ∈
[0, T ) × R

d the pair (Y s,x,Zs,x) ∈ H∞(s, T ) × H2(s, T ) is a solution of the system

{
Y

s,x
t = ϕ(X

s,x
T ) + ε−2

∫ T

t
f (u(θ,X

s,x
θ )) ∗ dX

s,x
θ − ∫ T

t
Z

s,x
θ dWθ , t ∈ [s, T ],

Y
s,x
t = u(t,X

s,x
t ), t ∈ [s, T ].

(4.1)
Let us point out that from the second equation in (4.1) it follows that u(s, x) =

Y
s,x
s a.s., so the function u appearing in (4.1) is determined by the first component

{Y s,x; (s, x) ∈ [0, T ) × R
d} of the system.

We will say that system (4.1) has a unique solution in H∞ × H2 if 1Y
s,x
t = 2Y

s,x
t ,

t ∈ [s, T ], a.s. and E
∫ T

s
|1Zs,x

t − 2Z
s,x
t |2 dt = 0 for every (s, x) ∈ [0, T )×R

d for any
system {(kY s,x, kZs,x); (s, x) ∈ [0, T ) × R

d} ∈ H∞ × H2, k = 1,2, associated with
ϕ,f . Notice also that from the definition of a solution of the stochastic system and
remark preceding formula (2.3) it follows that if f is locally bounded then for each
(s, x) ∈ [0, T ) × R

d the process Y s,x is a Dirichlet process in the sense of Föllmer,
i.e. admits a (unique) decomposition into a continuous square-integrable martingale
and a continuous process of 0-quadratic variation.

Theorem 4.1 Under assumptions of Theorem 3.2 the stochastic system (4.1) has a
unique solution in H∞ × H2.

Proof Suppose that {(kY s,x, kZs,x), (s, x) ∈ [0, T )×R
d}, k = 1,2, are two solutions

of (4.1). Set kY
s,x
s = uk(s, x) and for fixed s, x write Y = 1Y s,x − 2Y s,x , Z = 1Zs,x −

2Zs,x . By Itô’s formula for Dirichlet processes (see [7, Lemma 2.5]),

eλT
∣∣Y i

T

∣∣2 − eλs
∣∣Y i

s

∣∣2 = λ

∫ T

s

eλt
∣∣Y i

t

∣∣2
dt + 2ε−2

∫ T

s

eλtY i
t dH

s,x
t

(
hi

)

+ 2
d∑

k=1

∫ T

s

eλtY i
t Z

ik
t dWk

t +
d∑

k=1

∫ T

s

eλt
∣∣Zik

t

∣∣2
dt,

(4.2)
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where hi = (hi
1, . . . , h

i
d), hi

k = f i
k (u1)−f i

k (u2). Let {Πn = {s = tn0 < · · · < tnn = T }}
be a sequence of partitions of [s, T ] such that max0≤j<n(t

n
j+1 − tnj ) → 0 as n → ∞

and let sn
j = T + s − tnn−j . Since the integral

∫ T

s
eλtY i

t dH
s,x
t (hi) exists as limit in

probability of Riemann sums and t 	→ eλt is of finite variation, for k = 1, . . . , d we
have

∑

s≤tnj <T

e
λtnj Y i

tnj

∫ T +s−tnj

T +s−tnj+1

h̄k

(
t, X̄

s,x
t

)
dBk

s,t

=
∑

s≤sn
j <T

e
λ(T +s−sn

j )
Ȳ i

sn
j

∫ sn
j+1

sn
j

h̄k

(
t, X̄

s,x
t

)
dBk

s,t

+
∑

s≤sn
j <T

e
λ(T +s−sn

j )(
Ȳ i

sn
j+1

− Ȳ i
sn
j

)∫ sn
j+1

sn
j

h̄k

(
t, X̄

s,x
t

)
dBk

s,t

→
∫ T

s

eλt Ȳ i
t h̄k

(
t, X̄

s,x
t

)
dBk

s,t

+
〈
eλ(T +s−·)/2Ȳ i , eλ(T +s−·)/2

∫ ·

s

h̄i
k

(
t, X̄

s,x
t

)
dBk

s,t

〉T

s

(here Ȳ i
t = Y i

T +s−t ). The mutual quadratic variation above can be estimated by

2−1ε
〈
eλ(T +s−·)/2Ȳ i

〉T
s

+ 2−1ε−1
〈
eλ(T +s−·)/2

∫ ·

s

h̄i
k

(
t, X̄

s,x
t

)
dBk

s,t

〉T

s

.

Since Y i is a Dirichlet process with the martingale part
∑d

k=1

∫ ·
s
Zik

θ dWk
θ , it follows

that

〈
eλ(T +s−·)/2Ȳ i

〉T
s

= 〈
e(λ·)/2Y i

〉T
s

=
∫ T

s

eλt
∣∣Zi

t

∣∣2
dt.

Moreover,

〈
eλ(T +s−t ·)/2

∫ ·

s

h̄i
k

(
t, X̄

s,x
t

)
dBk

s,t

〉T

s

=
〈∫ ·

s

eλt/2h̄i
k

(
t, X̄

s,x
t

)
dBk

s,t

〉T

s

=
∫ T

s

eλt
∣∣hi

k

(
t,X

s,x
t

)∣∣2
dt.

By the above,

−2ε−2E

∫ T

s

eλtY i
t dH

s,x
t

(
hi

) ≤ 2ε−1E

d∑

k=1

∫ T

s

eλtY i
t h

i
k

(
t,X

s,x
t

)
dV k

s,t

+ E

∫ T

s

eλt
(∣∣Zi

t

∣∣2 + ε−2
∣∣h

(
t,X

s,x
t

)∣∣2)
dt,
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which when combined with (4.2) gives

eλsE
∣∣Y i

s

∣∣2 + λE

∫ T

s

eλt
∣∣Y i

t

∣∣2
dt ≤ 2ε−1E

d∑

k=1

∫ T

s

eλtY i
t h

i
k

(
t,X

s,x
t

)
dV k

s,t

+ ε−2E

∫ T

s

eλt
∣∣h

(
t,X

s,x
t

)∣∣2
dt. (4.3)

Write u = u1 − u2, gi
k = uihi

k . By elementary calculations, for every t ∈ (s, T ] we
have

∫

Rd

(
Egi

k

(
t,X

s,x
t

)Wk
t − Wk

s

t − s

)
dx

=
∫

Rd

gi
k(t, y)

ε(t − s)

(∫

Rd

(yk − xk)pε2(t−s)(y − x)

)
dx)dy = 0.

Therefore putting λ = Lε−2 and integrating both sides of (4.3) with respect to the
space variables, we conclude that ‖ui(s, ·)‖2

2 = 0 for i = 1, . . . ,m. Thus, u(s, ·) = 0
a.e. on R

d for every s ∈ [0, T ]. Since for fixed (s, x) ∈ [0, T ) × R
d we have

u(s, x) = EYs,x
s = ε−2E

∫ T

s

(
f (u1) − f (u2)

)(
t,X

s,x
t

) ∗ dX
s,x
t

= −ε−1E

d∑

k=1

∫ T

s

(
fk(u1) − fk(u2)

)(
t,X

s,x
t

)Wk
t − Wk

s

t − s
dt,

it follows that

∣∣u(s, x)
∣∣ ≤ ε−1LE

∫ T

s

∣∣u
(
t,X

s,x
t

)∣∣ |Wt − Ws |
t − s

dt = 0.

Consequently, Yt = − ∫ T

t
Zθ dWθ , t ∈ [s, T ], and hence Y = 0, Z = 0, which proves

the theorem. �

5 Forward-Backward BSDEs

It is worth pointing out that in case m = 1 the continuous weak solution u of (1.1)
may be represented by weak solutions of forward-backward stochastic differential
equation (FBSDE)

{
X̃

s,x
t = x + ∫ t

s
f ′(Ỹ s,x

θ ) dθ + ε(W̃t − W̃s), t ∈ [s, T ],
Ỹ

s,x
t = ϕ(X̃

s,x
T ) − ∫ T

t
Z̃

s,x
θ dW̃θ , t ∈ [s, T ] (5.1)

associated with (1.1). Before proving the representation, we give definitions of weak
solution and weak uniqueness for the above FBSDE.
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Following [2, 16], by a weak solution of FBSDE (5.1) we mean a triple (Ω̃, F̃ , P̃ ),
(W̃ , {F̃t }t∈[s,T ]), (X̃s,x, Ỹ s,x, Z̃s,x), where (Ω̃, F̃ , P̃ ) is a complete probability
space, {F̃t }t∈[s,T ] is a filtration of sub-σ -fields of F̃ satisfying the usual conditions,
W̃ is an {F̃ s

t }-Wiener process on (Ω̃, F̃ , P̃ ) starting at time s from 0, the processes
X̃s,x, Ỹ s,x are continuous, all processes X̃s,x, Ỹ s,x, Z̃s,x are {F̃t }t∈[s,T ]-adapted and
(5.1) is satisfied P̃ -a.s.

If, in addition, Ỹ s,x is P̃ -a.s. bounded on [s, T ] and E
P̃

∫ T

s
(|Xs,x

t |2 +|Zs,x
t |2) dt <

∞, we shall say that the weak solution is of class H2,∞,2(s, T ).
We say that weak uniqueness holds for (5.1) in the class H2,∞,2(s, T ) if for

any two weak solutions (Ω̃1, F̃ 1, P̃ 1), (W̃ 1, {F̃ i
t }), (X̃1, Ỹ 1, Z̃1) and (Ω̃2, F̃ 2, P̃ 2),

(W̃ 2, {F̃ 2
t }), (X̃2, Ỹ 2, Z̃2) of (5.1) such that (X̃i, Ỹ i , Z̃i) ∈ H2,∞,2(s, T ) the finite-

dimensional distributions of (X̃1, Ỹ 1, Z̃1) under P̃ 1 are equal to the finite-dimensional
distributions of (X̃2, Ỹ 2, Z̃2) under P̃ 2.

Theorem 5.1 Let m = 1 and let ϕ,f satisfy the assumptions of Theorem 3.2. Then
for each (s, x) ∈ [0, T )× R

d there exists a weak solution of FBSDE (5.1) in the class
H2,∞,2(s, T ). If, in addition, f ∈ C2(Rd), then weak uniqueness holds for (5.1) in
the class H2,∞,2(s, T ), and if (X̃s,x, Ỹ s,x, Z̃s,x) ∈ H2,∞,2(s, T ) is a solution of (5.1)
on some stochastic basis, then

(
Ỹ

s,x
t , Z̃

s,x
t

) = (
u
(
t, X̃

s,x
t

)
, ε∇u

(
t, X̃

s,x
t

))
, t ∈ [s, T ], (5.2)

where u is a continuous weak solution of (1.1).

Proof Existence of weak solutions follows immediately from Theorem 3.2 by Gir-
sanov’s theorem. Indeed, let (Y s,x,Zs,x) be a solution of (1.3) for some (s, x) ∈
[0, T ) × R

d . Let

N
s,x
t = exp

(
1

ε

d∑

k=1

∫ t

s

f ′
k

(
Y

s,x
θ

)
dWk

θ − 1

2ε2

∫ t

s

∣∣f ′(Y s,x
θ

)∣∣2
dθ

)
, t ∈ [s, T ], (5.3)

and let P̃ be a measure on F s
T such that dP̃ /dP = N

s,x
T . Since under P̃ the process

W̃ = (
W 1, . . . ,Wd

)
, W̃ k

t = Wk
t − ε−1

∫ t

s

f ′
k

(
Y

s,x
θ

)
dθ, t ∈ [s, T ]

is an {F s
t }-standard Wiener process starting at time s from 0, it follows from (1.3)

with m = 1 that (Xs,x, Y s,x,Zs,x), (W̃ , {F s
t }) is a solution of (5.1) on (Ω, F , P̃ ).

To prove uniqueness, let us fix (s, x) and suppose that (X̃i, Ỹ i , Z̃i) ∈ H2,∞,2(s, T ),
(W̃ i, {F̃ i

t }), i = 1,2, are two solutions of (5.1) defined on spaces (Ω̃i, F̃ i , P̃ i),
i = 1,2, respectively. Let

Mi
t = exp

(
−1

ε

d∑

k=1

∫ t

s

f ′
k

(
Ỹ i

θ

)
dW̃

i,k
θ − 1

2ε2

∫ t

s

∣∣f ′(Ỹ i
θ

)∣∣2
dθ

)
, t ∈ [s, T ].
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Since Mi is an {F̃ i
t }-martingale on [s, T ] under P̃ i , applying Girsanov’s theorem we

see that under Qi given by (dQi/dP̃ i) = Mi
T the process

Ŵ i = (
Ŵ i,1, . . . , Ŵ i,d

)
, Ŵ

i,k
t = W̃

i,k
t + ε−1

∫ t

s

f ′
k

(
Ỹ i

θ

)
dθ, t ∈ [s, T ] (5.4)

is an {F̃ i
t }-standard Wiener process on (Ω̃i, F̃ i ,Qi) starting at time s from 0. There-

fore (X̃i, Ỹ i , Z̃i), (Ŵ i, {F̃ i
t }) is a solution of the BSDE

{
X̃i

t = x + εŴ i
t , t ∈ [s, T ],

Ỹ i
t = ϕ(X̃i

T ) + ε−1 ∑d
k=1

∫ T

t
f ′

k(Ỹ
i
θ )Z̃

i,k
θ dθ − ∑d

k=1

∫ T

t
Z̃

i,k
θ dŴ

i,k
θ , t ∈ [s, T ]

on (Ω̃i, F̃ i ,Qi). By Remark 3.5,

(
Ỹ i

t , Z̃
i
t

) = (
u
(
t, X̃i

t

)
, ε∇u

(
t, X̃i

t

))
, t ∈ [s, T ], i = 1,2, (5.5)

where u is a continuous weak solution of (1.1). On the other hand, since the distribu-
tions of X̃1 under Q1 and X̃2 under Q2 are equal and for i = 1,2 the density 1/Mi

T

of P̃ i with respect to Qi may be expressed as a functional of (X̃i , Ỹ i ), equality (5.5)
implies that the finite-dimensional distributions of X̃1 under P̃ 1 and X̃2 under P̃ 2 are
equal, which together with (5.5) completes the proof of weak uniqueness and (5.2). �

Notice that existence of weak solutions of (5.1) may be proved without referring
to Girsanov’s theorem. Indeed, we can first find a unique weak solution (Ω̃, F̃ , P̃ ),
(W̃ , {F̃t }), Xs,x of the Itô equation

X̃
s,x,k
t = xk +

∫ t

s

f ′
k

(
u
(
θ, X̃

s,x
θ

))
dθ + ε

(
W̃ k

t − W̃ k
s

)
, t ∈ [s, T ], k = 1, . . . , d,

(5.6)
where u is a continuous weak solution of (1.1), and then as in the proof of Proposi-
tion 3.1 show that the pair (Ỹ

s,x
t , Z̃

s,x
t ) = (ũ(t, X̃

s,x
t ), ε∇ũ(t, X̃

s,x
t )), t ∈ [s, T ], where

ũ is a continuous weak solution of the problem

∂ũ

∂s
+ ε2

2
�ũ +

d∑

k=1

f ′
k(u)

∂ũ

∂xk

= 0, ũ(T , ·) = ϕ,

is a solution of BSDE

Ỹ
s,x
t = ϕ

(
X̃

s,x
T

) −
∫ T

t

Z̃
s,x
θ dW̃θ , t ∈ [s, T ]

on (Ω̃, F̃ , P̃ ). By Proposition 3.1, u = ũ. Hence Ỹ
s,x
t = u(t, X̃

s,x
t ), t ∈ [s, T ], and the

triple (X̃s,x, Ỹ s,x, Z̃s,x) is a solution of (5.1) on (Ω̃, F̃ , P̃ ). The above proof explains
why we consider weak solutions of FBSDEs associated with the problem (1.1). In
general we know only that u is continuous and therefore we do not know whether
there is a strong solution of the forward equation (5.6).
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A strong solution of FBSDE

{
X

s,x
t = x + ∫ t

s
f ′(Y s,x

θ ) dθ + ε(Wt − Ws), t ∈ [s, T ],
Y

s,x
t = ϕ(X

s,x
T ) − ∫ T

t
Z

s,x
θ dWθ , t ∈ [s, T ] (5.7)

exists under additional assumptions on ϕ and f . For instance, from the general theory
of FBSDEs the following result follows.

Theorem 5.2 Let m = 1. Assume that ϕ,f satisfy the assumptions of Theorem 3.2
and, in addition, ϕ and f ′ = (f ′

1, . . . , f
′
d) are Lipschitz-continuous. Then for each

(s, x) ∈ [0, T ) × R
d there exists a unique solution (Xs,x, Y s,x,Zs,x) ∈ H2,∞,2(s, T )

of (5.7).

Proof The proof follows by the method used to prove [21, Theorem 3.3]. �

Notice that existence and uniqueness of strong solutions of (5.7) also hold under
some monotonicity conditions on ϕ,f ′ (see [12]).

Let us observe that putting t = s in the second equation of (5.1) and taking expec-
tation shows that the family {X̃s,x; (s, x) ∈ [0, T )×R

d} is a solution of the following
forward system:

{
X̃

s,x
t = x + ∫ t

s
f ′(u(θ, X̃

s,x
θ )) dθ + ε(W̃t − W̃s), t ∈ [s, T ],

u(s, x) = E
P̃
ϕ(X̃

s,x
T ), (s, x) ∈ [0, T ] × R

d .
(5.8)

Remark 5.3 Using ideas from [31] (see also [1]) one can provide representation sim-
ilar to (5.8) for systems of the form (1.1). To see this, let us denote by I the m × m-
identity matrix and by Fk(y), k = 1, . . . , d , the m × m-matrix defined by

(
Fk(y)

)
ij

= ∂f i
k

∂yj
(y), y ∈ R

m, i, j = 1, . . . ,m.

Let (Y s,x,Zs,x) be a solution of (1.3). By [31, Theorem 1], for each (s, x) ∈ [0, T )×
R

d there exists a unique solution Φs,x of the matrix-valued SDE

Φ
s,x
t = I + ε−1

∫ t

s

〈
Φ

s,x
θ F

(
Y

s,x
θ

)
, dWθ

〉
, t ∈ [s, T ], (5.9)

i.e. Φs,x is an {F s
t }-adapted process on [s, T ] taking values in R

m ⊗ R
m such that∑d

k=1 E
∫ T

s
|Φs,x

t Fk(Y
s,x
t )|2 dt < ∞ and

(
Φ

s,x
t

)
ij

= Iij + ε−1
d∑

k=1

∫ t

s

(
Φ

s,x
θ Fk

(
Y

s,x
θ

))
ij

dWk
θ , t ∈ [s, T ]
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for i, j = 1, . . . ,m. Let Z
s,x,k
t , k = 1, . . . , k, denote the column vector in R

m with
components Z

s,x,ik
t , i = 1, . . . ,m. Since

Y
s,x
t = Y s,x

s − ε−1
d∑

k=1

∫ t

s

Fk

(
Y

s,x
θ

)
Z

s,x,k
θ dθ +

∫ t

s

Z
s,x
θ dWθ,

applying Itô’s formula for matrix-valued processes (see [31, Lemma 1]) yields

Φ
s,x
t Y

s,x
t = Φ

s,x
T ϕ

(
X

s,x
T

) −
d∑

k=1

∫ T

t

(
ε−1Φ

s,x
θ Fk

(
Y

s,x
θ

)
Y

s,x
θ

+ Φ
s,x
θ Z

s,x,k
θ

)
dWk

θ , t ∈ [s, T ].

Write F = (F1, . . . ,Fk). Since we know that u(s, x) = Y
s,x
s a.s., it follows from the

above and (5.9) that there is a solution {Φs,x; (s, x) ∈ [0, T ) × R
d} of the system

{
Φ

s,x
t = I + ε−1

∫ t

s
〈Φs,x

θ F (u(θ,X
s,x
θ )), dWθ 〉, t ∈ [s, T ],

u(s, x) = EΦ
s,x
T ϕ(X

s,x
T ), (s, x) ∈ [0, T ] × R

d .
(5.10)

The above representation may be viewed as a generalization of (5.8). Indeed, if m = 1
then Φ

s,x
t = N

s,x
t , t ∈ [s, T ], where Ns,x is defined by (5.3). Therefore, under P̃ ,

X
s,x,k
t = x +

∫ t

s

f ′
k

(
u
(
θ,X

s,x
θ

))
dθ + ε

(
W̃ k

t − W̃ k
s

)
, t ∈ [s, T ], k = 1, . . . , d,

where W̃ is defined by (5.4), and the second equation in (5.10) may be written in the
form u(s, x) = E

P̃
ϕ(X

s,x
T ).

Systems of the form (5.8), (5.10), in even more general setting, are considered in
[1, 4] by methods completely different from those adopted in the present paper. In
[1, 4] it is proved, among other things, that under some regularity assumptions on
ϕ,f there exists a unique solution of (5.8) and u is a weak solution of (1.1) for some
sufficiently small T > 0.

Remark 5.4 At the expense of minor technical complications one can carry over re-
sults of Sects. 3–5 to systems (Sects. 3–4) or single equations (Sect. 5) of balance
laws of the form (1.7).
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