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Abstract We consider processes of the form [s, T ] � t �→ u(t,Xt ), where (X,Ps,x)

is a multidimensional diffusion corresponding to a uniformly elliptic divergence form
operator. We show that if u ∈ L2(0, T ;H 1

ρ ) with ∂u
∂t

∈ L2(0, T ;H−1
ρ ) then there is a

quasi-continuous version ũ of u such that ũ(t,Xt ) is a Ps,x-Dirichlet process for
quasi-every (s, x) ∈ [0, T ) × R

d with respect to parabolic capacity, and we describe
the martingale and the zero-quadratic variation parts of its decomposition. We also
give conditions on u ensuring that ũ(t,Xt ) is a semimartingale.
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1 Introduction

In the present paper, we study the structure of additive functionals (AFs for short) of
the form Xu = {Xu

s,t ≡ u(t,Xt )−u(s,Xs);0 ≤ s ≤ t ≤ T }, where u : QT ≡ [0, T ]×
R

d → R and X = {(X,Ps,x); (s, x) ∈ QT } is a Markov family corresponding to the
operator

Lt = 1

2

d∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
+

d∑

i=1

bi

∂

∂xi

(1.1)
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with measurable coefficients a : QT → R
d ⊗ R

d , b : QT → R
d such that

λ|ξ |2 ≤
d∑

i,j=1

aij (t, x)ξiξj ≤ Λ|ξ |2, aij = aji,
∣∣bi(t, x)

∣∣ ≤ Λ1, ξ ∈ R
d

(1.2)
for some 0 < λ ≤ Λ and Λ1 > 0 (see [26, 29, 37]).

It is known (see [22, 32]) that for every (s, x) ∈ Q
T̂

≡ [0, T ) × R
d the process

Xs,· ≡ X· − Xs is under Ps,x a continuous Dirichlet process on [s, T ] in the sense
of Föllmer [14]. In the paper, we first develop some stochastic calculus for time-
dependent functionals of X. Secondly, we give mild regularity conditions on u under
which the functional Xu

s,· is a Dirichlet process under Ps,x and, if this is the case,
we describe the martingale part Mu and the zero-quadratic variation part Au of its
decomposition

Xu
s,t = Mu

s,t + Au
s,t , t ∈ [s, T ], Ps,x-a.s. (1.3)

Finally, we characterize the class of u such that Xu
s,· is a semimartingale under Ps,x .

It is known that general Dirichlet processes are stable under C1 transformations
(see [4, 9]). C1-regularity of u is too strong in applications we have in mind. Our
main motivation to investigate functionals of the form Xu comes from the fact that
they appear in probabilistic analysis of strong solutions to parabolic PDEs or varia-
tional inequalities involving the operator Lt (see [20, 33, 34]). Therefore, the natural
assumption on u is that it belongs to some Sobolev space and in general is even not
continuous.

Time-independent functionals of time-homogeneous diffusions are quite well in-
vestigated. Let X be a locally compact separable metric space and let m be a pos-
itive Radon measure on X such that supp [m] = X . Let {(X,Px);x ∈ X } be an m-
symmetric Hunt process with Dirichlet form (E ,D(E )) on L2(X ,m). It is known (see
[18]) that for every u ∈ D(E ) there exists an E -quasi-continuous version of u (still
denoted by u) such that Xu admits the so-called Fukushima decomposition, i.e.,

Xu
t = Mu

t + Au
t , t ∈ [0, T ], Px-a.s.

for E -q.e. x ∈ X , where Mu is a continuous martingale AF of finite energy and Au

is a continuous AF of zero energy. A simple calculation (see [18, p. 201]) shows that
Au has zero-quadratic variation on [0, T ] under the measure Pν(·) = ∫

X Px(·) dν(x)

along dyadic partitions of [0, T ] for every Radon measure ν 	 m. Hence, to prove
that Xu is a Dirichlet process in the sense of Föllmer, one should weaken the assump-
tion on the absolute continuity of ν and on the sequence of partitions. In [12], the
authors weakened the assumption on the starting measures ν in the case of Dirichlet
form (E ,D(E )) on L2(R

d ,m) with the Lebesgue measure m, defined by

E (u, v) = 1

2
〈a∇u,∇v〉2, u, v ∈ D(E ) = H 1(

R
d
)
, (1.4)

where a(t, x) = a(x), x ∈ R
d . The class of measures considered in [12] includes

in particular the Dirac measure δ{x} for E -q.e. x ∈ R
d , which shows that Xu is a

Dirichlet process on [0, T ] under Px for E -q.e. x ∈ R
d along dyadic partitions. It is
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worth mentioning that in the case of non-symmetric diffusions the approach of [12]
breaks down.

A different approach to the problem of investigating Xu in case

E (u, v) = 1

2
〈a∇u,∇v〉2 + 〈b∇u,v〉2, u, v ∈ D(E ) = H 1(

R
d
)
, (1.5)

with a(t, x) = a(x), b(t, x) = b(x) was adopted in [31]. In [31], it is shown that if
u ∈ W 1

q (Rd) with q > 2 then Xu is a continuous Dirichlet process in the sense of
Föllmer for E -q.e. x ∈ R

d (see also [29, 32] where time-inhomogeneous diffusions
are also considered).

In the case of a one-dimensional Wiener process W, it is known (see [16]) that
Wu is a continuous Dirichlet process in the sense of Föllmer for every starting point
x ∈ R if u ∈ H 1(R), and it appears that this condition is necessary (see [7]). In the
case of a multidimensional Wiener process, one can deduce from [15] that Wu is a
continuous Dirichlet process in the sense of Föllmer on [0, T ] for q.e. starting points
x ∈ R

d if u ∈ H 1(Rd).
To our knowledge, in the case where u depends on time, only few results are

available. In [22], diffusions corresponding to Lt are considered. It is shown there
that Xu is a continuous Dirichlet process on [s, T ] in the sense of Föllmer for every
(s, x) ∈ Q

T̂
if supt∈[0,T ](‖∇u(t)‖p + ‖ ∂u

∂t
(t)‖p) < ∞ for some p > d ∧ 2. In [8],

necessary and sufficient conditions on u for Xu to be a semimartingale are given in
the case where X is a one-dimensional Wiener process.

We will now briefly describe the content of the paper. As already mentioned, we
are interested in solutions to parabolic PDEs or parabolic variational inequalities in-
volving Lt . Therefore, our basic assumption on u is that u ∈ Wρ , where Wρ = {u ∈
L2(0, T ;H 1

ρ ); ∂u
∂t

∈ L2(0, T ;H−1
ρ )} (ρ is some weight), i.e., u belongs to the natural

space for strong solutions of such problems. Let capL : 2Q
T̂ → R

+ ∪ {+∞} be the
parabolic capacity associated with Lt (see [28]) or, equivalently, a restriction to Q

T̂
of the capacity generated by the time-dependent Dirichlet form

E (u, v) =
{∫

R
E (t)(u(t), v(t)) dt − ∫

R
〈 ∂u

∂t
(t), v(t)〉, u ∈ W , v ∈ L2(R;H 1),∫

R
E (t)(u(t), v(t)) dt + ∫

R
〈 ∂v

∂t
(t), u(t)〉, v ∈ W , u ∈ L2(R;H 1),

where W denotes Wρ with ρ ≡ 1,

E (t)(u, v) = 1

2

〈
a(t)∇u,∇v

〉
2 + 〈

b(t)∇u,v
〉
2, t ∈ [0, T ],

E (t)(u, v) = E (0)(u, v) for t ≤ 0 and E (t)(u, v) = E (T )(u, v) for t ≥ T . In the paper,
we provide various conditions on u ensuring that for capL-quasi every (q.e. for short)
(s, x) ∈ Q

T̂
the process Xu

s,· is under Ps,x a continuous Dirichlet process on [s, T ] in
the sense of Föllmer or is a continuous semimartingale.

For the convenience of the reader, we begin in Sect. 2 with basic information on
various definitions of parabolic capacity associated with Lt .

In Sect. 3, we formulate Fukushima’s and Lyons–Zheng’s decomposition of X

under Ps,x . Using the latter decomposition, we investigate additive functionals of
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the form
∫

div f̄ (θ,Xθ ) dθ , where div f̄ stands for the divergence of the vector field
f̄ = (f 1, . . . , f d) such that f i ∈ L

loc
2 (QT ), i = 1, . . . , d . It is known that in the case

of time-homogeneous diffusions {(X,Px);x ∈ R
d} corresponding to Lt with time-

independent coefficients, such functionals may be defined under the measure Pm as
a forward–backward integral with respect to martingales from the Lyons–Zheng de-
composition of Xu (see [36]). We show that the functionals can be well defined for
time-inhomogeneous diffusions and what is more important, under the measure Ps,x

for q.e. (s, x) ∈ Q
T̂

(see [34] for similar results). We also show that if u ∈ H 1(Rd)

then under some additional regularity conditions on the coefficient a, Xu is a contin-
uous Dirichlet process in the sense of Föllmer under Px for E -q.e. x ∈ R

d , where E
is given by (1.4).

In Sect. 4, we show that each u ∈ Wρ has a quasi-continuous version, still denoted
by u, such that Xu

s,· is a Dirichlet process on (s, T ] under Ps,x for every (s, x) ∈ Q
T̂

.
Under mild additional regularity conditions on u, it is a Dirichlet process on [s, T ]
for capL-q.e. (s, x) ∈ Q

T̂
. We also describe the martingale and the zero-quadratic

variation parts of the decomposition (1.3) and show that (1.3) implies the Fukushima
decomposition of Xu into martingale AF of finite energy and CAF of zero energy.

In Sect. 5, we introduce the definition of the integral with respect to continuous
additive functionals (CAFs for short) of X of zero-quadratic variation associated with
functionals in L2(0, T ;H−1

ρ ). The key result here says that given such a CAF A and
a bounded η ∈ Wρ one can find a sequence {An} of square-integrable CAFs of finite
variation such that for q.e. (s, x) ∈ Q

T̂
,

Es,x sup
s≤t≤T

∣∣∣∣
∫ t

s

η(θ,Xθ ) dAn
s,θ −

∫ t

s

η(θ,Xθ ) dAs,θ

∣∣∣∣ → 0.

This approximation result enables us to handle integrals with respect to CAFs corre-
sponding to functionals in L2(0, T ;H−1

ρ ). As a first application, we show that such
CAFs are uniquely determined by their Laplace transforms.

In Sect. 6, we are concerned with the problem of finding minimal conditions on
u ∈ Wρ under which Xu is a semimartingale. Our main result proven here says that
Xu

s,· is a locally finite semimartingale under Ps,x for q.e. (s, x) ∈ Q
T̂

if and only if
( ∂
∂t

+ Lt)u is a signed Radon measure.
Finally, in Sect. 6 we collect some useful estimates for diffusions X and related

estimates on the fundamental solution p and weak solutions of the Cauchy problem
associated with Lt .

In the paper, we will use the following notation:

Qst = [s, t] × R
d, Qt = [0, t] × R

d, Q
T̂

= [0, T ) × R
d ,

∇ =
(

∂

∂x1
, . . . ,

∂

∂xd

)
.

Cc(QT ) (Cc(R
d)) is the space of all continuous functions with compact support

in QT (in R
d ).

Lp(Rd) is the usual Banach space of measurable functions on R
d with the norm

‖u‖p = (
∫

Rd |u(x)|p dx)1/p , Lp,q(QtT ) is the Banach space of measurable functions
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on QtT with the norm ‖u‖p,q,t,T = (
∫ T

t
(
∫

Rd |u(s, x)|p dx)p/q ds)1/q , Lp(QtT ) =
Lp,p(QtT ), ‖u‖p,p,t,T = ‖u‖p,t,T , and ‖u‖p,T = ‖u‖p,0,T .

Let ρ ∈ RI . By Lp,ρ(Rd) (Lp,q,ρ(QtT )) we denote the space of functions u

such that uρ ∈ Lp(Rd) (uρ ∈ Lp,q(Qt,T )) equipped with the norm ‖u‖p,ρ = ‖uρ‖p

(‖u‖p,q,ρ,t,T = ‖uρ‖p,q,t,T ). We write K ⊂⊂ X if K is a compact subset of X. By
〈·, ·〉2 we denote the usual inner product in L2(R

d) and by 〈·, ·〉2,ρ the inner product
in L2,ρ(Rd).

W 1
p,ρ is the Banach space consisting of all elements u of Lp,ρ(Rd) having gener-

alized derivatives ∂u
∂xi

, i = 1, . . . , d , in Lp,ρ(Rd) with the dual space W−1
p,ρ . We denote

H 1
ρ = W 1

2,ρ . Wρ is the subspace of L2(0, T ;H 1
ρ ) consisting of all elements u such

that ∂u
∂t

∈ L2(0, T ;H−1
ρ ), where H−1

ρ is the dual space to H 1
ρ (see [23] for details).

By 〈·, ·〉ρ we denote the duality pairing between spaces H 1
ρ , H−1

ρ and by ‖ · ‖∗ we
denote the norm in Banach space L2(0, T ;H−1

ρ ).
By f̄ we denote the vector function (f 1, . . . , f d). We write f̄ ∈ L2,ρ(QT ) if

f i ∈ L2,ρ(QT ), i = 1, . . . , d . By M (M+) we denote the set of all Radon measures
(positive Radon measures) on QT , and by M+([0, T ]) the set of positive Radon
measures on [0, T ]. B(E) (Bb(E), Bloc

b (E), B+(E)) denotes the set of all Borel
(bounded, locally bounded, positive) real functions on a topological space E.

By C we denote a general constant which may vary from line to line, but depends
only on fixed parameters.

2 Parabolic Capacity

Let d ≥ 1 and let R denote the space of all functions ρ : R
d → R of the form ρ(x) =

(1 + |x|2)−α , x ∈ R
d , for some α ∈ R, and let RI be the space of all ρ ∈ R such that∫

Rd ρ(x) dx < ∞. Unless otherwise stated, in the sequel we will always assume that
ρ ∈ RI . We also write ρx(y) = ρ(y − x), y ∈ R

d .
Let Φ ∈ L2(0, T ;H−1

ρ ). It is well known that Φ admits the decomposition
Φ = f 0 +divf̄ for some f 0, f̄ ∈ L2,ρ(QT ), i.e., Φ(η) = 〈f 0, η〉2,ρ −〈f̄ ,∇(ρ2η)〉2.
This decomposition is not unique, but it is known that for every such decomposition
‖Φ‖∗ ≤ ‖f 0‖2,ρ,T + ‖f̄ ‖2,ρ,T and there exists a pair which realizes the norm. If, in
addition, Φ ≥ 0, i.e., Φ(η) ≥ 0 for any positive η ∈ L2(0, T ;H 1

ρ ), then by Riesz’s
theorem there is a Radon measure μ on QT such that

Φ(η) =
∫

QT

η dμ (2.1)

for every η ∈ C∞
0 (QT ). Let us observe that

μ
({t} × R

d
) = 0, t ∈ [0, T ]. (2.2)

Indeed, if {ηn} ⊂ C∞
0 (QT ) is a sequence of positive functions such that ηn ↓ 1{t}×Rd

pointwise and in L2(0, T ;H 1
ρ ), then

0 = Φ(η) = lim
n→∞Φ(ηn) = lim

n→∞

∫

Q̌T

ηn dμ = μ
({t} × R

d
)
.
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Let us define the capacity of E ⊂⊂ Q̌T ≡ (0, T ) × R
d by

cap
Q̌T

(E) = inf

{∫

QT

∣∣∇η(t, x)
∣∣2

dt dx +
∫

QT

∣∣η(t, x)
∣∣2

dt dx :

η ∈ C∞
0

(
Q̌T

)
, η ≥ 1E

}
.

The capacity can be extended in a standard way to the Borel σ -field B(Q̌T ) of subsets
of Q̌T . For E ⊂⊂ Q̌T and η ∈ C∞

0 (Q̌T ) such that η ≥ 1E , we have

μ(E) ≤
∫

QT

η dμ = Φ(η) =
∫

QT

ηf 0ρ2 −
∫

QT

f̄ ∇(
ρ2η

)

≤ C
(‖∇η‖2,ρ,T + ‖η‖2

2,ρ,T

)
.

Thus, μ 	 cap
Q̌T

. Now, for E ⊂⊂ R
d define

capRd (E) = inf

{∫

Rd

∣∣∇η(x)
∣∣2

dx +
∫

Rd

∣∣η(x)
∣∣2

dx : η ∈ C∞
0

(
R

d
)
, η ≥ 1E

}
,

and extend it in the standard way to B(Rd). From [5] it follows that for every B ∈
B(Q̌T ),

cap
Q̌T

(B) =
∫ T

0
capRd (Bt ) dt,

where Bt = {x ∈ R
d ; (t, x) ∈ B}. Since μ 	 cap

Q̌T
, using the well known fact

that elements of H 1
ρ have quasi-continuous versions defined up to the sets of

capRd -measure zero (see [18, Chap. 2]), we may extend formula (2.1) to all η ∈
L2(0, T ;H 1

ρ ).
It is worth noting that in the definition of capacity capQT

and in the representation
theorem for functionals in L2(0, T ;H−1

ρ ) derivatives with respect to the time variable
do not appear. Therefore, various facts on functionals μ ∈ L2(0, T ;H−1

ρ ) ∩ M can
be proven by making obvious changes in proofs of corresponding facts concerning
elliptic capacity and functionals in H−1

ρ . In particular, slightly modifying arguments
from [6] and [10], one can prove the following theorems.

Theorem 2.1 Let μ ∈ M. If μ 	 capQT
then there exist γ1, γ2 ∈ L2(0, T ;H−1

ρ ) ∩
M+ and positive αi ∈ L1,loc(QT , γi), i = 1,2 such that dμ = α1 dγ1 − α2 dγ2.

Theorem 2.2 A Radon measure μ vanishes on sets of zero capQT
capacity if and

only if it admits the decomposition

μ = Φ + k,

where Φ ∈ L2(0, T ;H−1
ρ ) and k ∈ L

loc
1 (QT ).
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In the paper, we will also use another notion of capacity, the so-called parabolic
capacity, which appears when considering the natural space of strong solutions of
variational inequalities, i.e., the space Wρ .

Let Ω = C([0, T ],R
d) denote the space of continuous R

d -valued functions on
[0, T ] equipped with the topology of uniform convergence and let X be the canonical
process on Ω . It is known that for a given operator Lt defined by (1.1) with a and
b satisfying (1.2) one can construct a weak fundamental solution p for Lt and then
a Markov family X = {(X,Ps,x); (s, x) ∈ Q

T̂
} for which p is the transition density

function, i.e.,

Ps,x(Xt = x;0 ≤ t ≤ s) = 1, Ps,x(Xt ∈ Γ ) =
∫

Γ

p(s, x, t, y) dy, t ∈ (s, T ]

for any Γ ∈ B(Rd) (see [29, 37]). We define the parabolic capacity of an open set
B ⊂ Q

T̂
by

capL(B) =
∫ T

0
Ps,m

(∃ t ∈ (s, T ) : (t,Xt ) ∈ B
)
ds, (2.3)

where m is the Lebesgue measure on R
d and

Ps,m(Γ ) =
∫

Rd

Ps,x(Γ )dx, Γ ∈ G.

It is known (see [18, Theorem A.1.2, Lemma A.2.5, A.2.6]) that such a defined set
function might be uniquely extended to a Choquet capacity on B(Q

T̂
) and it satisfies

(2.3) for every compact set K ⊂ Q
T̂

. In what follows, we say that some property is
satisfied quasi-everywhere (q.e. for short) if it is satisfied except of a Borel set of zero
capacity capL.

Remark 2.3 It follows directly from the definition of capL that capL({s}×B) > 0 for
every s ∈ (0, T ) and B ∈ B(Rd) such that m(B) > 0. Hence, if some property holds
for q.e. (s, x) ∈ Q

T̂
, then it holds for a.e. x ∈ R

d for every s ∈ (0, T ).

From [27] and [28], it follows that the parabolic capacity capL is equivalent to the
following parabolic capacity cap2 in the analytical sense.

Definition 2.4 Let V ⊂ Q
T̂

be an open set. We set

cap2(V ) = inf
{‖u‖Wρ

: u ∈ Wρ,u ≥ 1V a.e.
}

with the convention that inf∅ = ∞. The parabolic capacity of a Borel set B ⊂ Q
T̂

is
defined by

cap2(B) = inf
{
cap2(V ) : V is an open subset of QT ,B ⊂ V

}
.

From [28, Proposition 2], it follows that cap2 is a Choquet capacity.
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Remark 2.5 If capL is a Choquet capacity, it follows in particular (see [18, Theorem
A.1.1.]) that for any B ∈ B(Q

T̂
),

capL(B) = sup
K⊂B,K-compact

capL(K),

which implies that capL(B) = 0 iff capL(K) = 0 for every compact subset K of B .

Definition 2.6 We say that u : QT → R is quasi-continuous if u is Borel measurable
and [0, T ] � t �→ u(t,Xt ) is a continuous process under the measure Ps,x for q.e.
(s, x) ∈ Q

T̂
.

The notion of quasi-continuity defined above is equivalent to the following one:
for every ε > 0 there exists an open set Uε ⊂ Q̌T such that u|Q̌T \Uε

is continuous and
cap2(Uε) < ε (see Remark 3.6 and Proposition 3.7 in [35]). Let us also note that it is
known that every u ∈ Wρ has a quasi-continuous version (see [27]).

3 Diffusions Corresponding to Divergence Form Operators

Set F s
t = σ(Xu,u ∈ [s, t]), F̄ s

t = σ(Xu,u ∈ [T + s − t, T ]) and define G as the com-
pletion of F s

T with respect to the family P = {Ps,μ : μ is a probability measure on
B(Rd)}, where Ps,μ(·) = ∫

Rd Ps,x(·)μ(dx), and define Gs
t (Ḡs

t ) as the completion of
F s

t (F̄ s
t ) in G with respect to P .

We will say that a family A = {As,t ,0 ≤ s ≤ t ≤ T } of random variables is an
additive functional (AF) of X if As,· is a ({Gs

t },Ps,x)-measurable càdlàg process
and Ps,x(As,t = As,u + Au,t , s ≤ u ≤ t ≤ T ) = 1 for q.e. (s, x) ∈ Q

T̂
. If, in addi-

tion, As,· has Ps,x -almost all continuous trajectories for q.e. (s, x) ∈ Q
T̂

, then A is
called a continuous AF (CAF), and if As,· is an increasing process under Ps,x for q.e.
(s, x) ∈ Q

T̂
, it is called an increasing AF or positive AF. If M is an AF such that

for q.e. (s, x) ∈ Q
T̂

, Es,x |Ms,t |2 < ∞ and Es,xMs,t = 0 for t ∈ [s, T ] (Es,x is the
expectation with respect to Ps,x ), it is called a martingale AF (MAF). We say that A

is an AF (CAF, increasing AF, MAF) in the strict sense if the corresponding property
holds for every (s, x) ∈ Q

T̂
. Finally, we say that A is a quasi-strict AF (CAF, increas-

ing AF, MAF) if the corresponding property holds under Ps,x for every (s, x) ∈ Q
T̂

on (s, T ] and for q.e. (s, x) ∈ Q
T̂

on [s, T ]. Since in what follows, except for Propo-
sition 3.3, we will consider exclusively quasi-strict AFs, we will call it briefly additive
functionals.

3.1 Fukushima’s Decomposition and Decomposition in the Sense of Föllmer

It is known (see [22, 32]) that there exist a CAF A in the strict sense and a continuous
MAF M in the strict sense such that

Xt − Xs = Ms,t + As,t , t ∈ [s, T ], Ps,x-a.s., (3.1)
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for every (s, x) ∈ Q
T̂

, and moreover, Ms,· is a ({Gs
t },Ps,x)-square-integrable martin-

gale on [s, T ] with the covariation given by

〈
Mi

s,·,M
j
s,·

〉
t
=

∫ t

s

aij (θ,Xθ ) dθ, t ∈ [s, T ], i, j = 1, . . . , d, (3.2)

while As,· is a process of Ps,x -zero-quadratic variation on [s, T ], i.e., As,s = 0 and

∑

ti∈Πm

|As,ti+1 − As,ti |2 → 0 in probability Ps,x (3.3)

for any sequence {Πm = {t0, t1, . . . , ti(m)}} of partitions of [s, T ] such that s = t0 <

t1 < · · · < ti(m) = T and ‖Πm‖ = max1≤i≤i(m) |ti − ti−1| → 0 as m → ∞. In par-
ticular, X· − Xs is a ({Gs

t },Ps,x)-Dirichlet process in the sense of Föllmer. One can
also show that M is an MAF of locally zero-energy and A is a CAF of locally finite
energy (see [32] and [30, 31] for time-homogeneous diffusions), i.e., (3.1) coincides
with Fukushima’s decomposition for X.

Observe that if σσ ∗ = a then, by (3.2),

Bs,t =
∫ t

s

σ−1(θ,Xθ ) dMs,θ , t ∈ [s, T ] (3.4)

is a ({Gs
t },Ps,x)-Wiener process.

3.2 Lyons–Zheng’s Decomposition

Additional information on the structure of A of decomposition (3.1) provides the
Lyons–Zheng’s decomposition for X. Let (s, x) ∈ Q

T̂
. For s ≤ u ≤ t ≤ T we set

α
s,x,i
u,t =

d∑

j=1

∫ t

u

1

2
aij (θ,Xθ )p

−1 ∂p

∂yj

(s, x, θ,Xθ ) dθ, βi
u,t =

∫ t

u

bi(θ,Xθ ) dθ.

In the sequel, for a process Y on [s, T ] and fixed measure Ps,x we write Ȳt =
YT +s−t for t ∈ [s, T ].

From [32] it follows that under Ps,x the canonical process X admits the decompo-
sition

Xt −Xu = 1

2
Mu,t + 1

2

(
N

s,x
s,T +s−t −N

s,x
s,T +s−u

)−α
s,x
u,t +βu,t , s ≤ u ≤ t ≤ T , (3.5)

where Ms,· is the martingale of (3.1) and N
s,x
s,· is a ({Ḡs

t },Ps,x)-martingale such that

〈
Ns,x,i

s,· ,N
s,x,j
s,·

〉
t
=

∫ t

s

aij

(
θ̄ , X̄θ

)
dθ, t ∈ [s, T ], i, j = 1, . . . , d. (3.6)

Observe that the covariation of Ns,x does not depend on x ∈ R
d .
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Remark 3.1 From (2.7) in [29] it follows that

Es,x

(
Ñs,x

u1,u2

∣∣Ḡs
T +s−u2

) = 0, s ≤ u1 ≤ u2 ≤ T ,

where Ñ
s,x
u,t = N

s,x
s,T +s−t − N

s,x
s,T +s−u. Hence, if we put

M̄
s,x
u,t = −(

N
s,x
s,T +s−t − N

s,x
s,T +s−u

)
,

then for every t ∈ [s, T ), {M̄t+s−u,t , u ∈ [s, t]} is a ({Ḡt+s−u
T }u∈[s,t],Ps,x)-martingale

and under Ps,x the process X admits the decomposition

Xt − Xu = 1

2
Mu,t − 1

2
M̄

s,x
u,t − α

s,x
u,t + βu,t , s ≤ u ≤ t ≤ T

considered in [24].

3.3 Forward–Backward Integrals

Let f̄ = (f1, . . . , fd) : QT → R
d and let S be some class of real functions defined

on QT . To simplify notation, in what follows we write f̄ ∈ S if fi ∈ S, i = 1, . . . , d .
Let f̄ ∈ Bloc

b (QT ). Similarly to [34, 36], using (3.5) we set under the measure Ps,x ,

∫ t

r

f̄ (θ,Xθ ) d∗Xθ ≡ −
∫ t

r

f̄ (θ,Xθ )
(
dMs,θ + dα

s,x
s,θ

) −
∫ T +s−r

T +s−t

f̄
(
θ̄ , X̄θ

)
dN

s,x
s,θ

(3.7)

for s ≤ u ≤ t ≤ T , where θ̄ = T + s − θ . By Proposition 7.6, all integrals on the
right-hand side of (3.7) are well defined for every (s, x) ∈ Q

T̂
. The interest in the

integral defined above comes from the fact that if f̄ is regular then

∫ t

u

divf̄ (θ,Xθ ) dθ =
∫ t

u

a−1f̄ (θ,Xθ ) d∗Xθ, s ≤ u ≤ t ≤ T , Ps,x-a.s. (3.8)

(see [34]), which enables one to extend the integral on the left-hand side of (3.8) to
f̄ ∈ Bloc

b (QT ).
Our first goal is to extend the class of functions for which (3.7) is well defined for

q.e. (s, x) ∈ Q
T̂

. In view of (1.2), (3.2), (3.6), Proposition 7.6 and Corollary 3.4, to
define integrals with respect to the forward and backward martingales it suffices to
assume that f ∈ L2,ρ(QT ). The main problem is to define the integral with respect
to αs,x because the gradient of p is not square-integrable (see [1]) and αs,x depends
on (s, x). The latter fact makes difficulties in applying the Markov property of X to
get the existence of the integral.

We start with the investigation of integrals with respect to αs,x in case of time-
homogeneous diffusions. Let {(X,Px);x ∈ R

d} be a Hunt process associated with
the Dirichlet form (1.5).
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It is known that if a is piecewise smooth (see [11] for details) then there exists an
M > 0 such that

∣∣∇xp(t, x, y)
∣∣ ≤ M

t(d+1)/2
exp

(
−|y − x|2

2Mt

)
.

Hence, by the elementary calculations,

Ex

∫ T

0

∣∣f (Xt )
∣∣d

∣∣αx
∣∣
t
≤ C

∫

Rd

f (y)|y − x|1−d dy.

On the right-hand side of the above inequality, we recognize the Riesz potential of
order 1. Therefore, repeating the arguments from the proof of [15, Proposition 3.6]
shows that for every f ∈ L2,loc(R

d),

Px

(∫ T

0

∣∣f (Xt )
∣∣d

∣∣αx
∣∣
t
< ∞

)
= 1 (3.9)

for E -q.e. x ∈ R
d .

The following example shows that in the time-dependent case the condition f ∈
L2,ρ(QT ) is insufficient to guarantee (3.9) even if a is smooth.

Example 3.2 Let d = 1, a = 1, b = 0, so that Xt , t > s, has under Ps,x the normal
distribution with mean x and variance t − s. Then

α
s,x
s,t = 1

2

∫ t

s

p−1 ∂p

∂y
(s, x, θ,Xθ ) dθ = 1

2

∫ t

s

x − Xθ

θ − s
dθ.

Suppose that f is nonnegative and does not depend on x. Then

w(s, x) = Es,x

∫ T

s

f (θ) d
∣∣αs,x

s,·
∣∣
θ

= Es,x

∫ T

s

f (θ)
|x − Xθ |

θ − s
dθ

= C

∫ T

s

f (θ)

(θ − s)1/2
dθ,

i.e., w(s, x) does not depend on x. Now, let us fix t0 ∈ (0, T ). Since the function
(t0, T ) � t �→ (t − t0)

−1/2 does not belong to L2(t0, T ), one can find f ∈ L2(0, T )

such that
∫ T

t0
f (θ)(θ − t0)

−1/2 = ∞. Then w = ∞ on the set {t0} × R
d and from

Remark 2.3 it follows that capL({t0} × R
d) > 0.

We will extend the integral side of (3.7) to f̄ ∈ L2,ρ(QT ) by using approximation.

Proposition 3.3 Let p > 0 and let A,An, n ∈ N, be CAFs of X such that

Es,x sup
s≤t≤T

∣∣An
s,t − As,t

∣∣p → 0 (3.10)

for a.e. (s, x) ∈ Q
T̂

. Then there exists a subsequence {n′} of {n} such that (3.10) holds
along {n′} for q.e. (s, x) ∈ Q

T̂
.
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Proof Set B = {(s, x) : Es,x sups≤t≤T |An
s,t − As,t |p � 0} and let τ = inf{t ∈ [s, T ) :

(t,Xt ) ∈ K}, where K is a compact subset of B . Since (X,Ps,x) is a Feller process,
τ is a {Gs

t }-stopping time. Hence, by the strong Markov property with random shift
and additivity of An and A,

Ps,x(τ < ∞) = Ps,x

(
Eτ,Xτ sup

τ≤t≤T

∣∣An
τ,t − Aτ,t

∣∣p � 0, τ < ∞
)

= Ps,x

(
Es,x

(
sup

τ≤t≤T

∣∣An
τ,t − Aτ,t

∣∣p
∣∣∣Gs

τ

)
� 0, τ < ∞

)

≤ Ps,x

(
2p∧1Es,x

(
sup

s≤t≤T

∣∣∣An
s,t − As,t

∣∣p∣∣Gs
τ∧T

)
� 0

)
.

Set

Tn,m(s, x,ω) = Es,x

(
sup

s≤t≤T

∣∣An
s,t − As,t

∣∣p
∣∣∣Gs

τ∧T

)
(ω).

By (3.10), Tn,m → 0 in L1(QT × Ω,Π), where Π is the finite measure defined by
the formula

Π(B) =
∫

QT

(
Es,x1B(s, x)

)
ρ(x)ds dx.

Using the Borel–Cantelli lemma, we can choose a subsequence (still denoted
by {n}) such that Tn,m → 0, Π -a.e. In particular, Tn,m(s, x) → 0, Ps,x -a.s. for
a.e. (s, x) ∈ QT . Hence Ps,x(τ < ∞) = 0 for a.e. (s, x) ∈ QT , and consequently
capL(K) = 0. Hence, by the fact that capL is a Choquet capacity, capL(B) = 0. �

Corollary 3.4 Let p > 0 and let A be a CAF of X such that

Es,x sup
s≤t≤T

|As,t |p < ∞ (3.11)

for a.e. (s, x) ∈ Q
T̂

. Then (3.11) holds for q.e. (s, x) ∈ Q
T̂

.

Proposition 3.5 Let f̄ ∈ L2,ρ(QT ). Then there exists a unique CAF D of X such
that for every sequence {f̄n} ⊂ Bb(QT ) convergent to f̄ in L2,ρ(QT ) there exists a
subsequence (still denoted by {n}) such that

Es,x sup
s≤t≤T

∣∣∣∣
∫ t

s

f̄n(θ,Xθ ) d∗Xθ − Ds,t

∣∣∣∣ → 0 (3.12)

for q.e. (s, x) ∈ Q
T̂

.

Proof Put An
s,t = ∫ t

s
f̄n(θ,Xθ ) d∗Xθ . By Proposition 7.6,

∫

QT

(
Es,x sup

s≤t≤T

∣∣An
s,t − Am

s,t

∣∣
)
ρ(x)dx → 0. (3.13)
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Hence, by Proposition 3.3, there exists a subsequence (still denoted by {n}) and some
process Ds,x such that Es,x sups≤t≤T |An

s,t − D
s,x
s,t | → 0 for q.e. (s, x) ∈ Q

T̂
. Using

arguments from the proof of [18, Lemma A.3.2], one can choose a version of Ds,x

which does not depend on (s, x).
To prove uniqueness, suppose that D̃ is another process having the properties of D.

Let ḡn, f̄n ∈ Bb(QT ), f̄n, ḡn → f̄ in L2,ρ(QT ). Let {n} be a subsequence such that
(3.12) holds with the pairs (f̄n,D), (ḡn, D̃) and (f̄n, ḡn). For the latter pair, it is
possible thanks to Proposition 3.3 and the following convergence

∫

QT

(
Es,x sup

s≤t≤T

∣∣∣∣
∫ t

s

f̄n(θ,Xθ ) d∗Xθ −
∫ t

s

ḡn(θ,Xθ ) d∗Xθ

∣∣∣∣

)
ρ(x)dx → 0,

which is a consequence of convergence of {f̄n}, {ḡn} and Proposition 7.6. Finally, for
q.e. (s, x) ∈ Q

T̂
,

Es,x sup
s≤t≤T

∣∣Ds,t − D̃s,t

∣∣

≤ lim
n→∞Es,x sup

s≤t≤T

∣∣∣∣
∫ t

s

f̄n(θ,Xθ ) d∗Xθ − Ds,t

∣∣∣∣

+ lim
n→∞Es,x sup

s≤t≤T

∣∣∣∣
∫ t

s

f̄n(θ,Xθ ) d∗Xθ −
∫ t

s

ḡn(θ,Xθ ) d∗Xθ

∣∣∣∣

+ lim
n→∞Es,x sup

s≤t≤T

∣∣∣∣
∫ t

s

ḡn(θ,Xθ ) d∗Xθ − D̃s,t

∣∣∣∣ = 0,

and the proof is complete. �

Remark 3.6 For every (s, x) ∈ Q
T̂

and s < r ≤ t ≤ T , the integrals on the right-hand
side of (3.7) are well defined Ps,x -a.s. This follows from Aronson’s estimates and
Proposition 7.4(ii) because

Es,x

∫ T

r

∣∣f̄ (θ,Xθ )
∣∣2

dθ =
∫

QrT

∣∣f̄ (θ, y)
∣∣2

p(s, x, θ, y) dθ dy

≤ C

∫

QrT

1

(θ − s)d/2

∣∣f̄ (θ, y)
∣∣2 exp

(−|y − x|
C(θ − s)

)

≤ C
ρ−1(x)

(r − s)d/2

∥∥f̄
∥∥2

2,ρ,T
(3.14)

and

Es,x

∫ t

r

∣∣f̄ (θ,Xθ )
∣∣d

∣∣αs,x
s,·

∣∣
θ

≤
∫

Qr,T

∣∣f̄ (θ, y)
∣∣∣∣∇xp

∣∣(s, x, θ, y) dθ dy

≤ ∥∥f̄
∥∥

2,ρ,T

∥∥∇p(s, x)
∥∥

2,ρ−1,r,T
. (3.15)
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Proposition 3.7 Let f̄ ∈ L2,ρ(QT ) and let D be the CAF of Proposition 3.5. Then
Ps,x -a.s.,

Dr,t = −
∫ t

r

f̄ (θ,Xθ )
(
dMs,θ + dα

s,x
s,θ

) −
∫ T +s−r

T +s−t

f̄
(
θ̄ , X̄θ

)
dN

s,x
s,θ , s < r ≤ t ≤ T

for q.e. (s, x) ∈ Q
T̂

.

Proof Let {f̄n} ⊂ Bb(QT ) be such that (3.12) holds q.e. Then by (3.7),

∫ t

r

f̄n(θ,Xθ ) d∗Xθ = −
∫ t

r

f̄n(θ,Xθ )
(
dMs,θ + dα

s,x
s,θ

) −
∫ T +s−r

T +s−t

f̄n

(
θ̄ , X̄θ

)
dN

s,x
s,θ ,

and the result follows from (3.12), (3.14), and (3.15). �

Put N = N1 ∪ N2, where

N1 =
{
(s, x) ∈ Q

T̂
;Ps,x

(∫ T

s

∣∣f̄ (t,Xt )
∣∣2

dt < ∞
)

= 1

}c

,

N2 =
{
(s, x) ∈ Q

T̂
; p.v. -

∫ T

s

f̄ (t,Xt ) dα
s,x
s,t exists and is finite Ps,x-a.s.

}c

and

p.v.-
∫ T

s

f̄ (t,Xt ) dα
s,x
s,t ≡ lim

δ→0+

∫ T

s+δ

f̄ (t,Xt ) dα
s,x
s,t .

Corollary 3.8 If f ∈ L2,ρ(Q
T̂
) then capL(N) = 0.

Proof Follows directly from Proposition 3.5 and Proposition 3.7. �

Let f̄ ∈ L2,ρ(QT ). For a fixed (s, x) ∈ Q
T̂

, we set

∫ t

r

f̄ (θ,Xθ ) d∗Xθ = −
∫ t

r

f̄ (θ,Xθ )
(
dMs,θ + dα

s,x
s,θ

) −
∫ T +s−r

T +s−t

f̄
(
θ̄ , X̄θ

)
dN

s,x
s,θ

(3.16)
for all 0 ≤ s < r ≤ t ≤ T , and for a fixed (s, x) ∈ Nc we set

∫ t

s

f̄ (θ,Xθ ) d∗Xθ = −
∫ t

s

f̄ (θ,Xθ ) dMs,θ

+ p.v.-
∫ t

s

f̄ (θ,Xθ ) dα
s,x
s,θ −

∫ T

T +s−t

f̄
(
θ̄ , X̄θ

)
dN

s,x
s,θ (3.17)

for all 0 ≤ s ≤ t ≤ T .
Under stronger integrability conditions on f , all integrals on the right-hand side

of (3.7) are defined for q.e. (s, x).
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Proposition 3.9 If f ∈ Lp,ρ(QT ) for some p > 2 then for q.e. (s, x) ∈ Q
T̂

,

∫ t

s

f̄ (θ,Xθ ) d∗Xθ = −
∫ t

s

f̄ (θ,Xθ )
(
dMs,θ + dα

s,x
s,θ

)

−
∫ T

T +s−t

f̄
(
θ̄ , X̄θ

)
dN

s,x
s,θ , t ∈ [s, T ], Ps,x-a.s.

Proof By (7.3),

Es,x

∫ T

s

∣∣f̄ (t,Xt )
∣∣d

∣∣αs,x
s,·

∣∣
t
≤ C(p)

(
Es,x

∫ T

s

∣∣f̄ (t,Xt )
∣∣p dt

)2/p

.

From Proposition 7.6, it follows that the right-hand side is finite for a.e. (s, x) ∈ Q
T̂

.
Hence, by Corollary 3.4, it is finite for q.e. (s, x) ∈ Q

T̂
. The result now follows from

Corollary 3.8. �

Proposition 3.10 Let {f̄n} ⊂ L2,ρ(QT ) and f̄n → f̄ in L2,ρ(QT ). Then

(i) For every (s, x) ∈ Q
T̂

and r ∈ (s, T ],

Es,x sup
r≤t≤T

∣∣∣∣
∫ t

r

f̄n(θ,Xθ ) d∗Xθ −
∫ t

r

f̄ (θ,Xθ ) d∗Xθ

∣∣∣∣ → 0;

(ii) There exists a subsequence (still denoted by {n}) such that for q.e. (s, x) ∈ Q
T̂

,

Es,x sup
s≤t≤T

∣∣∣∣
∫ t

s

f̄n(θ,Xθ ) d∗Xθ −
∫ t

s

f̄ (θ,Xθ ) d∗Xθ

∣∣∣∣ → 0.

Proof (i) follows easily from (3.14) and (3.15). (ii) follows from Proposition 3.3
because

∫

QT

(
Es,x sup

s≤t≤T

∣∣∣∣
∫ t

s

f̄n(θ,Xθ ) d∗Xθ −
∫ t

s

f̄ (θ,Xθ ) d∗Xθ

∣∣∣∣

)
ρ(x)dx

≤ ∥∥f̄n − f̄
∥∥2

2,ρ,T

by Proposition 7.6. �

4 Time-Inhomogeneous Additive Functionals and Dirichlet Processes

In this section, we will be concerned with conditions on u under which the functional
Xu = {Xu

s,t ≡ u(t,Xt ) − u(s,Xs);0 ≤ s ≤ t ≤ T } is a Dirichlet process in the sense
of Föllmer.

Let ρ ∈ RI . For s ∈ [0, T ), we set Ps,ρ(·) = ∫
Rd Ps,x(·)ρ2(x) dx.
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Definition 4.1 We say that a CAF A of finite variation is locally finite (resp., square-
integrable) if for every η ∈ C+

0 (QT ),

∫ T

0
Es,ρ

∫ T

0
η(t,Xt ) d|As,·|t ds < ∞

(
resp.,

∫ T

0
Es,ρ |As,·|2T ds < ∞

)
.

Definition 4.2 (i) Let (s, x) ∈ Q
T̂

and r ∈ [s, T ]. We say that a {Gs
t }-adapted process

Y is a continuous Dirichlet process on [r, T ] under Ps,x if

Yt = Mt + At, t ∈ [r, T ], Ps,x-a.s., (4.1)

where M is a continuous ({Gs
t },Ps,x)-square-integrable martingale on [r, T ] and A

is a continuous {Gs
t }-adapted process on [r, T ] such that 〈A〉Tr = 0 in the sense of

(3.3). We say that Y is a continuous Dirichlet process on (s, T ] under Ps,x if it is a
continuous Dirichlet process on [r, T ] under Ps,x for every r ∈ (s, T ].

(ii) Let {Πm = {t0, t1, . . . , ti(m)}} be a sequence of partitions of [s, T ] whose mesh-
size converges to zero as m → ∞. If Y admits decomposition of the form (4.1) with
a continuous {Gs

t }-adapted process A on [r, T ] such that 〈A〉Tr = 0 along {Πm} then
we call it a continuous Dirichlet process along {Πm}.

Given u ∈ Wρ set

Mu
s,t ≡

∫ t

s

∇u(θ,Xθ ) dMs,θ =
∫ t

s

σ∇u(θ,Xθ ) dBs,θ , 0 ≤ s ≤ t ≤ T , (4.2)

where B is defined by (3.4).

Theorem 4.3 Assume that u ∈ Wρ . Then there exists a quasi-continuous version of
u (still denoted by u) such that

(i) For every (s, x) ∈ Q
T̂

the functional Xu is a continuous Dirichlet process on
(s, T ] under Ps,x with the decomposition

Xu
r,t = Mu

r,t + Au
r,t , s < r ≤ t ≤ T , Ps,x-a.s., (4.3)

where

Au
r,t =

∫ t

r

f 0(θ,Xθ ) dθ +
∫ t

r

a−1f̄ (θ,Xθ ) d∗Xθ, s < r ≤ t ≤ T , Ps,x-a.s.

(4.4)
with f 0, f̄ ∈ L2,ρ(QT ) such that Lu = f 0 + div f̄ , where L = ∂

∂t
+ Lt .

(ii) For q.e. (s, x) ∈ Q
T̂

decomposition (4.3), (4.4) holds true with r = s.

(iii) If ∂u
∂t

∈ L2,ρ(QT ) + Lp′(0, T ;W−1
p

′
,ρ

) with p > 2 then for q.e. (s, x) ∈ Q
T̂

, Xu

is a Dirichlet process on [s, T ] under Ps,x with decomposition (4.3) for r = s.
(iv) For every sequence {Πm} of partitions of [0, T ] whose mesh-size converges to

zero as m → ∞ there exists a subsequence {Πm′ } such that Xu is a continuous
Dirichlet process on [s, T ] along {Πs,T

m′ = Πm ∩ [s, T ]} for q.e. (s, x) ∈ Q
T̂

admitting decomposition (4.3) for r = s.
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Proof (i) First, note that it is known that if u ∈ Wρ then there exist f 0, f̄ ∈ L2,ρ(QT )

such that Lu = f 0 + div f̄ . Let us fix (s, x) ∈ Q
T̂

. Let Φε = f 0
ε + div f̄ε , where f i

ε ,
i = 0, . . . , d , are standard mollifications of f i , and let f̄ε = (f 1

ε , . . . , f d
ε ). Let uε(T )

be the standard mollification of u(T ) and un be a continuous version on QT of a
weak solution of the Cauchy problem

(
∂

∂t
+ Lt

)
un = Φn, un(T ) = un(T ), (4.5)

where Φn = Φε, un(T ) = uε with ε = 1/n. From [33] we know that Ps,x -a.s.,

X
un
r,t = M

un
r,t + A

un
r,t , (4.6)

for s ≤ r ≤ t ≤ T , where

A
un
r,t =

∫ t

r

(
f 0

n + divf̄n

)
(θ,Xθ ) dθ

Let us define a version of u (still denoted by u) as follows: u(s, x) = limn→∞ un(s, x)

if the limit exists, and zero otherwise. It is known (see [21]) that un → u in Wρ . Next,
let

Au
r,t =

∫ t

r

f 0(θ,Xθ ) dθ +
∫ t

r

a−1f̄ (θ,Xθ ) d∗Xθ, s ≤ r ≤ t ≤ T .

By Proposition 3.3 and (3.14), for every (s, x) ∈ Q
T̂

and r ∈ (s, T ], X
un
r,t → Xu

r,t ,
M

un
r,t → Mu

r,t , A
un
r,t → Au

r,t in L1(Ω,Ps,x) uniformly in t ∈ [r, T ]. Therefore, passing
to the limit in (4.6), we get (4.3), (4.4). By (3.16), for every (s, x) ∈ Q

T̂
and r ∈

(s, T ],
〈∫ ·

r

a−1f̄ (θ,Xθ ) d∗Xθ

〉T

r

=
〈∫ ·

r

a−1f̄ (θ,Xθ ) dMs,θ +
∫ T +s−r

T +s−·
a−1f̄

(
θ̄ , X̄θ

)
dN

s,x
s,θ

〉T

r

under Ps,x . Let {f̄n} ⊂ C∞
0 (QT ) be a sequence such that f̄n → f̄ in L2,ρ(QT ). Then

Es,x

∑

ti∈Π
r,T
m

∣∣∣∣
∫ t2

t1

(
f̄ − f̄n

)
(θ,Xθ ) dMs,θ +

∫ T +s−t1

T +s−t2

(
f̄ − f̄n

)(
θ̄ , X̄θ

)
dN

s,x
s,θ

∣∣∣∣
2

≤ CEs,x

∫ T

r

∣∣f̄n − f̄
∣∣2

(θ,Xθ ) dθ ≤ Cρ−2(x)(r − s)−d/2
∥∥f̄n − f̄

∥∥
2,ρ,T

. (4.7)

From this and the fact that 〈∫ ·
r
f̄n(θ,Xθ ) d∗Xθ 〉Tr = 0, r ∈ (s, T ], Ps,x -a.s. for every

(s, x) ∈ Q
T̂

, we get the first assertion of (i). To prove (ii), it suffices to pass to the
limit with r → s+ in (4.3) (if the limit exists) and use Corollary 3.4. Since from (i)
it follows that 〈∫ ·

r
f̄ (θ,Xθ ) d∗Xθ 〉Tr = 0, r ∈ (s, T ], Ps,x -a.s. for every (s, x) ∈ Q

T̂
,
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to prove (iii), it suffices to show that for q.e. (s, x) ∈ Q
T̂

there exists the covari-
ation 〈∫ ·

s
a−1f̄ (θ,Xθ ) d∗Xθ 〉Ts under Ps,x . But the last statement is a direct con-

sequence of Proposition 3.9. Finally, to prove (iv), let us set B = {(s, x) ∈ QT :
lim supm→∞ Es,x

∑
ti∈Πm

|As,ti+1 −As,ti |2 > 0} and τ = inf{t ∈ [s, T ) : (t,Xt ) ∈ K},
where K is a compact subset such that K ⊂ B . Then by the strong Markov property
with random shift and additivity of A,

Ps,x(τ < ∞) = Ps,x

(
lim sup
m→∞

Eτ,Xτ

∑

ti∈Πm

|Aτ,ti+1 − Aτ,ti |2 > 0, τ < ∞
)

= Ps,x

(
lim sup
m→∞

Es,x

( ∑

ti∈Πm

|Aτ,ti+1 − Aτ,ti |2
∣∣∣∣Gs

τ

)
> 0, τ < ∞

)

≤ Ps,x

(
lim sup
m→∞

Es,x

( ∑

ti∈Πn

|As,ti+1 − As,ti |2
∣∣∣∣Gs

τ∧T

)
> 0

)
.

Set

Tm(s, x,ω) = Es,x

( ∑

ti∈Πm

|As,ti+1 − As,ti |2
∣∣∣∣Gs

τ∧T

)

and define the measure Π as in the proof of Proposition 3.5. Since we know al-
ready that 〈As,·〉Ts = 0 under Ps,x for a.e. (s, x) ∈ QT , it follows that Tn ∧ M → 0 in
L1(QT × Ω,Π), and hence that there exists a subsequence (still denoted by m) such
that Tm → 0, Π -a.e. Therefore, Tm(s, x) → 0, Ps,x -a.s. for a.e. (s, x) ∈ QT , which
proves that capL(K) = 0, hence that capL(B) = 0 by Remark 2.5. �

Corollary 4.4 For every Φ ∈ L2(0, T ;H−1
ρ ) there exists a unique CAF A of zero

quadratic variation such that

Ar,t =
∫ t

r

f 0(θ,Xθ ) dθ +
∫ t

r

a−1f̄ (θ,Xθ ) d∗Xθ, s < r ≤ t ≤ T , Ps,x-a.s.

for any decomposition of Φ of the form Φ = f 0 + div f̄ , f 0, f̄ ∈ L2,ρ(QT ).

In the sequel, we write
∫ t

r
Φ(θ,Xθ ) dθ = Ar,t , s ≤ r ≤ t ≤ T , or Φ ∼ A, if A is

the CAF corresponding to Φ ∈ L2(0, T ;H−1
ρ ) in the sense of the above corollary.

Remark 4.5 From the linearity of the operator Lt , it follows immediately that the
mapping Wρ � u → Au, where Au is the functional of Theorem 4.3, is linear.

It is worth mentioning that the decomposition (4.3) implies Fukushima’s decom-
position of Xu into a martingale AF of finite energy and a CAF of zero energy (for
related results for time-independent u, see [32]). To state the result, let us recall first
the definition of energy of time-inhomogeneous additive functionals of X and its ba-
sic properties.
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Definition 4.6 Let A,B be CAFs of X. We define the mutual energy of A and B by

e(A,B) = lim
h→0+

1

h

∫ T −h

0
Es,ρAs,s+hBs,s+h ds

(whenever the limit exists), and we put e(A) = e(A,A).

One can check that the energy has the following properties:

(i) e(A + B) = e(A) + e(B) + 2e(A,B) ≤ 2(e(A) + e(B)),
(ii) If e(A) = 0 and e(B) < ∞, then e(A,B) = 0 and e(A + B) = e(B).

Lemma 4.7 If Φ ∈ L2(0, T ;H−1
ρ ) then

e

(∫
Φ(θ,Xθ) dθ

)
≤ C‖Φ‖2∗ .

Proof Let s ∈ (0, T ), h ∈ (0, T − s) and let u ∈ Wρ be a solution of PDE(0,Φ) on
[s, s + h]. By Theorem 4.3 and Remark 2.3, there exists a quasi-continuous version
of u (still denoted by u) such that for a.e. x ∈ R

d ,

Xu
s,t = Mu

s,t + Au
s,t , t ∈ [s, s + h], Ps,x-a.s.,

where

Au
s,t =

∫ t

s

Φ(θ,Xθ ) dθ, t ∈ [s, s + h], Ps,x-a.s.

Hence, by Proposition 7.6 and Theorem 7.1,

Es,ρ

∣∣∣∣
∫ s+h

s

Φ(θ,Xθ ) dθ

∣∣∣∣
2

≤ C
(‖∇u‖2

2,ρ,s,s+h + sup
s≤t≤s+h

∥∥u(t)
∥∥2

2,ρ

)

≤ C
(∥∥f 0

∥∥
2,ρ,s,s+h

+ ∥∥f̄
∥∥

2,ρ,s,s+h

)
,

where f 0, f̄ ∈ L2,ρ(QT ) are such that Φ = f 0 + div(f̄ ). From the above inequality,
the result easily follows. �

Corollary 4.8 Let Mu,Au be AFs of the decomposition (4.3). Then e(Mu) < ∞,
e(Au) = 0.

Proof Using (4.2) and Proposition 7.6, one can check that e(Mu) ≤ C‖∇u‖2
2,ρ,T

< ∞. To prove that e(Au) = 0, let us write Lu = Φ and define Φn, Aun as in the
proof of Theorem 4.3. Since the CAF Aun has finite variation, direct calculation
shows that e(Aun) = 0. From this, Lemma 4.7 and property (i), it follows that

e
(
Au

) ≤ 2e
(
Au − Aun

) ≤ C
(∥∥f 0 − f 0

n

∥∥2
2,ρ,T

+ ∥∥f̄ − f̄n

∥∥2
2,ρ,T

)

for n ∈ N, which completes the proof. �
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5 Continuous Additive Functionals of Zero-Quadratic Variation

Given a CAF A, we set

D(A) = {
(s, x) ∈ Q

T̂
: As,· is continuous and additive on [s, T ] under Ps,x

}

and

D0(A) =
{
(s, x) ∈ D(A);Es,x

∫ T

s

|As,t |2 dt < ∞
}
.

For instance, if As,t = ∫ t

s
f (θ,Xθ ) dθ , 0 ≤ s ≤ t ≤ T , for some f ∈ L1,ρ(QT )

then {(s, x) ∈ Q
T̂
;Ps,x(

∫ T

s
|f (t,Xt )|dt < ∞) = 1} ⊂ D(A), and if

As,t =
∫ t

s

f̄ (θ,Xθ ) d∗Xθ, 0 ≤ s ≤ t ≤ T , (5.1)

for some f̄ ∈ L2,ρ(QT ) then Nc ⊂ D(A), where N is defined in Corollary 3.8.

Lemma 5.1 Let f̄ ∈ L2,ρ(QT ) and let A be defined by (5.1). Then capL((D0(A))c)

= 0.

Proof Let u ∈ Wρ be a solution of PDE(0,Φ), where Φ = div(a−1f̄ ). By Theorem
4.3 and Remark 2.3, there exists a quasi-continuous version of u (still denoted by u)
such that for every s ∈ (0, T ) and a.e. x ∈ R

d ,

Xu
s,t = Mu

s,t + Au
s,t , s ≤ t ≤ T , Ps,x-a.s.,

where

Au
s,t =

∫ t

s

f̄ (θ,Xθ ) d∗Xθ, s ≤ t ≤ T , Ps,x-a.s.

Hence, by Proposition 7.6 and Theorem 7.1,

Es,ρA2
s,t ≤ C‖Φ‖∗, 0 < s ≤ t ≤ T .

Consequently, Es,x

∫ T

s
|As,t |2 dt < ∞ for a.e. (s, x) ∈ Q

T̂
, and hence for q.e. (s, x) ∈

Q
T̂

by Corollary 3.4. �

Let Φ ∈ L2(0, T ;H−1
ρ ), A ∼ Φ , and let f 0, f̄ ∈ L2,ρ(QT ) be such that Φ =

f 0 + div f̄ . Our next goal is to define the integral with respect to A and show that A

is determined by its α-potential.
Given η ∈ Wρ ∩ Bb(QT ), we set

(η · A)r,t =
∫ t

r

η(θ,Xθ ) dAs,θ ≡
∫ t

r

ηf 0(θ,Xθ ) dθ −
∫ t

r

∇ηf̄ (θ,Xθ ) dθ

+
∫ t

r

a−1f̄ η(θ,Xθ ) d∗Xθ, 0 ≤ s < r ≤ t ≤ T . (5.2)



J Theor Probab (2013) 26:437–473 457

Observe that from (3.14), (3.15) it follows that all the integrals on the right-hand side
of (5.2) are well defined. Moreover, setting

N2 =
(

D

(∫
ηf 0 dt

))c

∪
(

D

(∫
∇ηf̄ dt

))c

∪
(

D

(∫
a−1f̄ η d∗X

))c

,

we see that capL(N2) = 0 and for every (s, x) ∈ Nc
2 the right-hand side of (5.2) con-

verges Ps,x -a.s. to a finite limit as r → s+. Thus, (5.2) defines a CAF of X.
From the following proposition, it follows in particular that η · A does not depend

on the choice of f 0, f̄ in the decomposition of Φ .

Proposition 5.2 Let Φ ∈ L2(0, T ,H−1
ρ ) and let A ∼ Φ .

(i) For every bounded η ∈ Wρ , there exists a sequence {An} of locally finite CAFs
of finite variation such that for q.e. (s, x) ∈ Q

T̂
,

Es,x sup
s≤t≤T

∣∣∣∣
∫ t

s

η(θ,Xθ ) dAn
s,θ −

∫ t

s

η(θ,Xθ ) dAs,θ

∣∣∣∣ → 0.

(ii) There exists a sequence {An} of locally finite CAFs of finite variation such that
for every bounded η ∈ Wρ , (s, x) ∈ Q

T̂
and r ∈ (s, T ],

Es,x sup
r≤t≤T

∣∣∣∣
∫ t

r

η(θ,Xθ ) dAn
r,θ −

∫ t

r

η(θ,Xθ ) dAr,θ

∣∣∣∣ → 0.

Proof Let An = Aun , where Aun is defined as in the proof of Theorem 4.3. Then the
second part follows immediately from the definition of η ·An, η ·A and (3.14), (3.15).
To prove the first part, let us observe that by Proposition 7.6,

∫

QT

(
Es,x sup

s≤t≤T

∣∣(η · An
)
s,t

− (η · A)s,t
∣∣
)
ρ(x)dx → 0,

so the result follows from Proposition 3.3. �

Remark 5.3 Notice that from Proposition 5.2 it follows that if A is a CAF of fi-
nite variation corresponding to some Φ ∈ L2(0, T ;H−1

ρ ) then the usual Lebesgue–
Stieltjes integral

∫ ·
s
η(t,Xt ) dAs,t and the integral in the sense of (5.2) coincide.

Using the definition (5.2) of the integral with respect to additive functionals of
zero-quadratic variation, we can define the Laplace transform of such an additive
functional.

For α > 0, we put

Uα
A(s, x) = Es,x

∫ T

s

e−α(t−s) dAs,t , (s, x) ∈ D
(
e−(·−s) · A)

and

Uα
Aη(s, x) = Es,x

∫ T

s

e−α(t−s)η(t,Xt ) dAs,t , (s, x) ∈ D
(
e−(·−s)η · A)

(5.3)
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for η ∈ Wρ ∩ Cb(QT ). In case A is a CAF of finite variation, the integral in (5.3) is
the usual Lebesgue–Stieltjes integral which is well defined for all η ∈ Cb(QT ).

In the sequel, we denote D(e−(·−s)η · A) by D(Uα
Aη). If As,t = t − s, then we

denote Uα
Aη by Uαη.

Let {Rα;α ≥ 0} denote the resolvent of L on L2,ρ(QT ). Notice that if ξ ∈ Bb(QT )

then Rαξ ∈ Wρ ∩ Bb(QT ) and ∇Rαξ ∈ Bb(QT ). Indeed, the first assertion follows
immediately from the fact that Rαξ is a strong solution of the Cauchy problem
(α + L)u = −ξ , u(T ) = 0 and the representation formula

Rαξ(s, x) = Es,x

∫ T

s

e−α(θ−s)ξ(θ,Xθ ) dθ, (s, x) ∈ Q
T̂

.

The second assertion follows from the formula

∇Rαξ(s, x) =
∫

QsT

e−α(θ−s)ξ(θ, y)∇xp(s, x, θ, y) dθ dy, (s, x) ∈ Q
T̂

and integrability of ∇xp(s, x, ·, ·) proven in [1, Theorem 10].

Proposition 5.4 Let A be CAF associated with some Φ ∈ L2(0, T ;H−1
ρ ). Then

D0(A) ⊂
⋂

ξ∈Bb(QT ),α,β≥0

D0
(
e−α(·−s) · Rβ(ξ) · A)

.

Proof Let η ∈ Rβ(Bb(QT )) and ξ ∈ Bb(QT ) be such that η = Rβξ . By Proposi-
tion 5.2, for every (s, x) ∈ Q

T̂
and r ∈ (s, T ],

Es,x sup
r≤t≤T

∣∣∣∣
∫ t

r

e−α(θ−s)η(θ,Xθ ) dAn
r,θ −

∫ t

r

e−α(θ−s)η(θ,Xθ ) dAr,θ

∣∣∣∣ → 0

for some sequence {An} of CAFs of finite variation. By the results proved in [33] and
elementary calculations, for every (s, x) ∈ Q

T̂
we have

η(t,Xt ) =
∫ T

t

e−β(θ−s)ξ(θ,Xθ ) dθ

−
∫ T

t

e−β(θ−s)σ∇η(θ,Xθ) dBs,θ , t ∈ [s, T ], Ps,x-a.s.

Hence applying the integration by parts formula to An
r,·(e−α(·−s)η(·,X·)) and letting

n → ∞, we conclude that for every (s, x) ∈ Q
T̂

under the measure Ps,x ,

∫ t

r

e−α(θ−s)η(θ,Xθ ) dAr,θ

=
∫ t

r

e−(α+β)(θ−s)ξ(θ,Xθ )Ar,θ dθ −
∫ t

r

e−(α+β)(θ−s)∇η(θ,Xθ )Ar,θ dBs,θ

− α

∫ t

r

e−(α+β)(θ−s)η(θ,Xθ )Ar,θ dθ + η(t,Xt )e
−α(t−s)Ar,t (5.4)



J Theor Probab (2013) 26:437–473 459

for s < r ≤ t ≤ T . Since η,∇η ∈ Bb(QT ) and r �→ η(r,Xr) is continuous, letting
r → s+ we get (5.4) for (s, x) ∈ D(A). From (5.4) with r = s, the proposition easily
follows. �

Proposition 5.5 Let A,D be CAFs associated with some functionals in
L2(0, T ,H−1

ρ ) such that Uα
Dη = Uα

Aη on D0(U
α
Dη) ∩ D0(U

α
Aη) for every α > 0 and

η ∈ Wρ ∩ Cc(QT ). Then A = D.

Proof Without lost of generality, we may assume that Uα
Dη = Uα

Aη on D(Uα
Dη) ∩

D(Uα
Aη) for every η ∈ Wρ ∩Cb(QT ) because we can consider functionals f ·A,f ·D

with f ∈ Wρ ∩ Cc(QT ) and from the equality f · A = f · D for every such f one
can deduce that A = D. First, we show that

Uα
A

(
Uαη

)
(s, x) = Es,x

∫ T

s

e−α(t−s)η(t,Xt )As,t dt, (s, x) ∈ D0(A).

It is well known (see [21]) that Uαη ∈ Wρ ∩ Cb(QT ), so the above equality makes
sense. Using the Markov property, Proposition 5.2 and Fubini’s theorem, we have
that for every (s, x) ∈ Q

T̂
and r ∈ (s, T ]

Es,x

∫ T

r

e−α(t−s)Uαη(t,Xt ) dAr,t

= lim
n→∞Es,x

∫ T

r

e−α(t−s)Uαη(t,Xt ) dAn
r,t

= lim
n→∞Es,x

∫ T

r

e−α(t−s)

(
Et,Xt

∫ T

t

e−α(θ−t)η(θ,Xθ ) dθ

)
dAn

r,t

= lim
n→∞Es,x

∫ T

r

e−α(t−s)Es,x

(∫ T

t

e−α(θ−t)η(θ,Xθ ) dθ

∣∣∣∣Gs
t

)
dAn

r,t

= lim
n→∞Es,x

∫ T

r

e−α(t−s)η(t,Xt )A
n
r,t dt = Es,x

∫ T

r

e−α(t−s)η(t,Xt )Ar,t dt.

Passing to the limit with r → s+ for every (s, x) ∈ D0(A), we get that

Uα
A

(
Uαη

)
(s, x) = Es,x

∫ T

s

e−α(t−s)η(t,Xt )As,t dt, (s, x) ∈ D0(A).

By the above and the assumptions, it follows that

Es,x

∫ T

s

e−α(t−s)η(t,Xt )As,t dt = Es,x

∫ T

s

e−α(t−s)η(t,Xt )Ds,t dt,

(s, x) ∈ D0(A).
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Hence

Es,xη(t,Xt )As,t = Es,xη(t,Xt )Ds,t , t ∈ [s, T ]
for (s, x) ∈ D0(A) by the well known properties of the Laplace transform. Conse-
quently, using the Markov property and additivity of A, D for every 0 ≤ s ≤ s′ ≤ t ′ ≤
t ≤ T we have

Es,xη
(
t ′,Xt ′

)
As′,t = Es,xη

(
t ′,Xt ′

)
As′,t ′ + Es,xη

(
t ′,Xt ′

)
At ′,t

= Es,x

(
Es′,Xs′

(
η
(
t ′,Xt ′

)
As′,t ′

)) + Es,x

(
η
(
t ′,Xt ′

)
E

t
′
,Xt ′

At ′,t
)

= Es,x

(
Es′,Xs′

(
η
(
t ′,Xt ′

)
Ds′,t ′

)) + Es,x

(
η
(
t ′,Xt ′

)
Et ′,Xt ′ (Dt ′,t )

)

= Es,xη
(
t ′,Xt ′

)
Ds′,t .

By induction, we get

Es,x

k∏

i=1

η(ti ,Xti )At ′,t = Es,x

k∏

i=1

η(ti ,Xti )Dt ′,t

for 0 ≤ s ≤ t ′ ≤ t1 ≤ · · · ≤ tk ≤ t ≤ T from which the lemma follows. �

6 The Semimartingale Structure of Additive Functionals

In this section, we proceed with the study of the structure of the functional Xu. We
will be concerned with additional conditions on u ∈ Wρ under which Xu is a semi-
martingale.

Let Sc denote the set of all positive measures on QT such that μ|Q̌T
	 cap and

μ({0} × R
d) = μ({T } × R

d) = 0, and let Sc
0 be the set of measures μ ∈ Sc for which

there exists Φ ∈ L2(0, T ;H−1
ρ ) such that (2.1) holds for every η ∈ C∞

c (QT ). First,

we assume that Lu ≡ ∂u
∂t

+ Ltu ∈ Sc
0 − Sc

0 and then we consider the case where
Lu ∈ M. Of course, the first assumption implies the second one, but in general the
converse implication is not true (see, e.g., [19, Example I.1]). Let us also remark that
in general the functional Lu is not a measure. For instance, if d = 1, and Lu = f ′,
then Lu is a measure iff f is locally of finite variation (see, e.g., [2, Proposition
3.6]). Finally, it is worth noting that the first assumption on the decomposition of Lu

appears naturally when considering obstacle problems (see, e.g., [25] and references
therein).

Proposition 6.1 Assume that u ∈ Wρ , Lu ∈ Sc
0 − Sc

0. Then there exist a quasi-
continuous version of u (still denoted by u) and square-integrable positive CAFs
C,R such that for every (s, x) ∈ Q

T̂
,

Xu
r,t = Mu

r,t + Cr,t − Rr,t , 0 ≤ s < r ≤ t ≤ T , Ps,x-a.s., (6.1)

Es,x |Cr,T |2 ≤ C
ρ2(x)

(r−s)d/2 ‖μ1‖∗, Es,x |Rr,T |2 ≤ C
ρ2(x)

(r−s)d/2 ‖μ2‖∗ (6.2)
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and

Es,x

∫ T

r

ξ(t,Xt ) dCr,t =
∫

QrT

ξ(t, y)p(s, x, t, y) dμ1(t, y), (6.3)

Es,x

∫ T

r

ξ(t,Xt ) dRr,t =
∫

QrT

ξ(t, y)p(s, x, t, y) dμ2(t, y) (6.4)

for all ξ ∈ C0(QT ), where μ1,μ2 ∈ Sc
0 are such that Lu = μ1 − μ2. Moreover, for

q.e. (s, x) ∈ Q
T̂

, (6.1), (6.3), (6.4) hold with r = s.

Proof By Theorem 4.3, there exists a CAF Au such that (4.3) holds. We are going to
show that Au is a CAF of finite variation. Since μ1,μ2 ∈ Sc

0, there exist f 0, g0, f̄ , ḡ ∈
L2,ρ(QT ) such that μ1 = f 0 + div f̄ , μ2 = g0 + div ḡ. Let f 0

n , g0
n, f̄n, ḡn denote

the standard mollifications of f 0, g0, f̄ , ḡ, respectively, and let μn
1 = f 0

n + div f̄n,
μn

2 = g0
n + div ḡn. It is clear that μn

1,μn
2 are positive and μn

1,μ
n
2 ∈ L2,ρ(QT ). Set

Cn
s,t =

∫ t

s

(
f 0

n + div f̄n

)
(θ,Xθ ) dθ, Rn

s,t =
∫ t

s

(
g0

n + div ḡn

)
(θ,Xθ ) dθ,

for 0 ≤ s ≤ t ≤ T and

Cr,t =
∫ t

r

f 0(θ,Xθ ) dθ +
∫ t

r

a−1f̄ (θ,Xθ ) d∗Xθ, (6.5)

Rr,t =
∫ t

r

g0(θ,Xθ ) dθ +
∫ t

r

a−1ḡ(θ,Xθ ) d∗Xθ (6.6)

for 0 ≤ s < r ≤ t ≤ T . It is clear that for every (s, x) ∈ Q
T̂

,

Au
r,t = Cr,t − Rr,t , 0 ≤ s < r ≤ t ≤ T , Ps,x-a.s.

By (3.14), (3.15), for every (s, x) ∈ Q
T̂

and r ∈ (s, T ],

Es,x sup
r≤t≤T

(∣∣Cn
r,t − Cr,t

∣∣ + ∣∣Rn
r,t − Rr,t

∣∣) → 0, (6.7)

which implies (6.1). Now, let v ∈ Wρ be such that Lv = μ1 and v(T ) = 0. By (6.1),
there exists a CAF C̃ such that Xv = Mv + C̃ in the sense of (6.1). Since C, C̃ satisfy
(6.5), C = C̃. Hence, by Aronson’s upper estimate and a priori estimates for PDEs,

Es,x |Cr,T |2 ≤ C
(
Es,x

∣∣Mv
r,T

∣∣2 + Es,x

∣∣v(r,Xr)
∣∣2)

≤ C
ρ2(x)

(r − s)d/2

(
‖∇v‖2

2,ρ,T + sup
0≤t≤T

∥∥v(t)
∥∥2

2,ρ

)
≤ C

ρ2(x)

(r − s)d/2
‖μ1‖∗ ,

which proves (6.2). To show (6.3), (6.4) let us fix (s, x) ∈ Q
T̂

, r ∈ (s, T ] and choose
ξ ∈ C∞

0 (QT ) so that ξ1Qs+δ = 0 for some δ ∈ (0, T − s). Then, by Proposition 7.4,
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η = ξp(s, x, ·, ·) ∈ L2(0, T ;H 1
ρ ) and

Es,x

∫ T

s+δ

ξ(t,Xt ) dCs,t = lim
n→∞Es,x

∫ T

s+δ

ξ(t,Xt ) dCn
s,t

= lim
n→∞Φn

1 (η) = Φ1(η) =
∫ T

s+δ

∫

Rd

ξ(t, y)p(s, x, t, y) dμ1

by (6.2), (6.7) and the fact that μn
1 → μ1 in L2(0, T ;H−1

ρ ). From this we easily get
(6.3) and (6.4). Passing to the limit with r → s+ in (6.1) and using (6.5), (6.6) and
Corollary 3.4, we get (6.1) with r = s for q.e. (s, x) ∈ Q

T̂
. Similarly, passing to the

limit with r → s+ in (6.3) and (6.4) and using (2.2) we get (6.3) and (6.4) with r = s

for q.e. (s, x) ∈ Q
T̂

. �

From now on, we write C ∼ μ if the CAF C is associated with the measure μ

in the sense of (6.3). From the above theorems, we get in particular the well known
Revuz correspondence for smooth measures. However, in the case of the diffusion
(X,Ps,x), this correspondence may be expressed via density of the process which we
present in the following corollary.

Remark 6.2 Repeating proofs of Lemmas 2.2.8 and 2.2.9 in [18], one can show that
if μ ∈ Sc then there exists a sequence {Fn} (called nest) of closed subsets of Q̌T such
that μ(Q̌T \ ⋃+∞

n=1 Fn) = 0, limn→∞ cap(K − Fn) = 0 for every compact K ⊂ Q̌T

and 1Fndμ ∈ Sc
0 for every n ∈ N.

Definition 6.3 We say that dK : Ω × B([0, T ]) → R is a random measure if

(a) dK(ω) is a measure for every ω ∈ Ω ,
(b) ω �→ dK(ω) is (G, B(M[0, T ]))-measurable,
(c)

∫ t

s
dKθ is Gs

t -measurable for every 0 ≤ s ≤ t ≤ T .

Remark 6.4 By the results proven in [26], one can associate with the operator L
a Hunt process {(Zt , P̃z), t ≥ 0, z ∈ R

d+1}. Actually, it follows from [26] that P̃z

coincides with Ps,x for z = (s, x) ∈ Q
T̂

and that Zt = (τ (t),Xτ(t)), where τ is the
uniform motion to the right, i.e., τ(t) = τ(0) + t and τ(0) = s under Ps,x .

Lemma 6.5 Let {dKn} be a sequence of random measures. Assume that for
(s, x) ∈ F ⊂ Q

T̂
there exist random elements dKs,x : (Ω, G) → (M+([0, T ]),

B(M+([0, T ])) such that

dKn(·,X·) → dKs,x in M+([0, T ]) in probability Ps,x.

Then there exists a random measure dK such that

dKs,x = dK, Ps,x-a.s.

for every (s, x) ∈ F .
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Proof Let n0(s, x) = 0 and let

nk(s, x) = inf
{
m > nk−1(s, x), sup

p,q≥m
Ps,x

(
dM

(
dKp,dKq

)
> 2−k

)
< 2−k

}

for k ≥ 1. By induction, nk ∈ B(Q
T̂
) for every k ≥ 0, and hence dLs,x,k = dKnk(s,x)

is B(Q
T̂
) ⊗ G/B(M+([0, T ])) measurable. Put

dLs,x(ω) =
{

limk→∞ dLs,x,k(ω) in M+([0, T ]) if the limit exists,
0 otherwise.

(6.8)

By the Borel–Cantelli lemma, for every (s, x) ∈ F the limit in (6.8) exists Ps,x -a.s.
and dLs,x = dKs,x , Ps,x -a.s. Putting dK(ω) = dLZ0(ω), we get a random measure
having the desired properties. �

Let μ ∈ Sc . In what follows, by dμ(·,X·) we denote a random measure such that
for q.e. (s, x) ∈ Q

T̂
,

Es,x

∫ T

s

ξ(t,Xt ) dμ(t,Xt ) =
∫

QsT

ξ(t, y)p(s, x, t, y) dμ(t, y) (6.9)

for every ξ ∈ B+(QT ).

Corollary 6.6 For every μ ∈ Sc there exists a unique random measure dμ(·,X·).
Moreover, for every μ ∈ Sc

0 and s ∈ [0, T ),

Es,ρ

(∫ T

s

dμ(t,Xt )

)2

≤ C‖μ‖2∗. (6.10)

Proof Uniqueness follows from Proposition 5.5 and Remark 6.2. Let μ ∈ Sc
0 and let

u be a unique solution of PDE(0,μ). By Proposition 4.3, there exist a unique positive
CAF Aμ such that Aμ ∼ μ and a version of u (still denoted by u) such that for every
(s, x) ∈ Q

T̂
and r ∈ (s, T ],

u(r,Xr) = A
μ
r,T − Mu

r,T , 0 ≤ s < r ≤ T , Ps,x-a.s. (6.11)

By Theorem 4.3, the random measures

dKn(ω) =
{

Φn(t,Xt (ω)) dt if
∫ T

0 Φn(t,Xt (ω)) dt < ∞,

0 otherwise,

where Φn are defined as in the proof Theorem 4.3, satisfy the assumptions of
Lemma 6.5. Hence there exists a unique random measure dμ(·,X·) such that∫ t

s
dμ(θ,Xθ ) = A

μ
s,t , s ≤ t ≤ T , Ps,x -a.s. for q.e. (s, x) ∈ Q

T̂
. Therefore, by (6.11),

u(r,Xr) =
∫ T

r

dμ(θ,Xθ ) − Mu
r,T , 0 ≤ s < r ≤ T , Ps,x-a.s. (6.12)
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Integrating (6.12) with respect to ρ2 dm and using Proposition 7.2 yields

Es,ρ

(∫ T

r

dμ(θ,Xθ)

)2

≤ C
(∥∥u(r)

∥∥2
2,ρ,T

+ ‖∇u‖2
2,ρ,T

) ≤ C‖μ‖2∗

for every r ∈ (s, T ], the last inequality being a consequence of Theorem 7.1. The
result now follows from Fatou’s lemma. Now, let μ ∈ Sc . Then, by Remark 6.2, there
exists a nest {Fn} such that μn = 1Fn dμ ∈ Sc

0. By what has already been proven,
for each n ∈ N there exists the random measure dμn(·,X·). Let us observe that if
n ≤ m then 1Fn dμm = dμn, which implies that 1Fn dμm(·,X·) = dμn(·,X·). There-
fore, dμm(·,X·) ≥ dμn(·,X·). By Lemma 6.5, it follows that there exists a random
measure dK such that dK = limn→∞ dμn(·,X·) in M+([0, T ]) in probability Ps,x

for q.e. (s, x) ∈ Q
T̂

. It is clear that dK satisfies (6.9). Therefore, dK = dμ(·,X·). �

Remark 6.7 Let u satisfy the assumptions of Proposition 6.1. Then by (6.1) and a
priori estimates for BSDEs (see [13]), for every (s, x) ∈ Q

T̂
and r ∈ (s, T ],

Es,x sup
r≤t≤T

∣∣u(t,Xt )
∣∣2 + Es,x

∫ T

r

|∇u|2(θ,Xθ ) dθ

≤ C

(
Es,x

∣∣u(T ,XT )
∣∣2 + Es,x

(∫ T

r

dμ1(θ,Xθ )

)2

+ Es,x

(∫ T

r

dμ2(θ,Xθ )

)2)
.

Hence, if Es,x(
∫ T

r
dμ1(θ,Xθ ))

2 + Es,x(
∫ T

r
dμ2(θ,Xθ ))

2 < ∞, then (6.1), (6.3),
(6.4) are satisfied with r = s. Consequently, by Corollary 6.6, for each fixed s ∈
[0, T ), (6.1), (6.3), (6.4) are satisfied for a.e. x ∈ R

d . If s ∈ (0, T ), this also follows
from the fact that capL({s} × B) > 0 for every B ∈ B(QT ) such that m(B) > 0.

Definition 6.8 We say that Xu is a locally finite semimartingale if it is a semimartin-
gale under Ps,x for q.e. (s, x) ∈ QT and its finite variation part is a locally finite
CAF.

Let us remark that the class of locally finite semimartingales appears naturally
when considering Revuz duality for additive functionals (see [17]).

The next theorem shows that the condition Lu ∈ M is necessary and sufficient for
Xu to be a locally finite semimartingale.

Theorem 6.9 Let u ∈ Wρ .

(i) Lu ∈ M iff Xu is a locally finite semimartingale.
(ii) Assume that Lu ∈ M. Let μ = Lu and let Au denote the finite variation part

of Xu. Then dAu = dμ(·,X·).

Proof Suppose that Lu ∈ M and let μ = Lu. From Theorem 2.2, it follows that
μ 	 cap. Let μ = μ+ − μ− be the canonical decomposition. Of course, μ+μ− 	
cap. Hence, by Theorem 2.1, there exist γ1, γ2 ∈ Sc

0 and α1, α2 ∈ L
+
1,loc(QT ) such
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that μ+ = α1 dγ1, μ− = α2 dγ2. Put

Du
s,t =

∫ t

s

α1(θ,Xθ ) dγ1(θ,Xθ ) −
∫ t

s

α2(θ,Xθ ) dγ2(θ,Xθ ), 0 ≤ s ≤ t ≤ T .

By Aronson estimates, for every η ∈ C0(QT ),

∫

QT

(
Es,x

∫ T

s

ηαi(t,Xt ) dγi(t,Xt )

)
≤ C

∫

QT

ηαi dγi, i = 1,2.

From the above and Proposition 3.3, it follows that for q.e. (s, x) ∈ Q
T̂

the functional

Du is well defined and Es,x

∫ T

s
ηαi(t,Xt ) dγi(t,Xt ) < ∞ for every η ∈ C0(QT ). By

Theorem 4.3,

Xu
s,t = Mu

s,t + Au
s,t , t ∈ [s, T ], Ps,x-a.s.

for q.e. (s, x) ∈ Q
T̂

with Au,Mu as in Theorem 4.3. We shall show that Au = Du.
In view of Proposition 5.5, to prove this it suffices to show that for every η ∈ Wρ ∩
Cc(QT ),

Es,x

∫ T

s

η(t,Xt ) dAu
s,t = Es,x

∫ T

s

η(t,Xt ) dDu
s,t (6.13)

for (s, x) ∈ D0(η · Au) ∩ D0(η · Du). Given δ ∈ (0, T − s), write

Lδ = Es,x

∫ T

s+δ

η(t,Xt ) dAu
s,t , Rδ = Es,x

∫ T

s+δ

η(t,Xt ) dDu
s,t . (6.14)

Then by Theorem 4.3,

Lδ =
∫

Qs+δ,T

ηf 0(t, y)p(s, x, t, y) dt dy −
∫

Qs+δ,T

∇ηf̄ (t, y)p(s, x, t, y) dt dy

+
∫

Qs+δ,T

ηf̄ (t, y)∇yp(s, x, t, y) dt dy

and

Rδ =
∫

Qs+δ,T

α1η(t, y)p(s, x, t, y) dγ1(t, y)

−
∫

Qs+δ,T

α2η(t, y)p(s, x, t, y) dγ2(t, y).

Since ηp(s, x, ·, ·) ∈ C0(Qs+δ,T ) ∩ L2(s + δ, T ;H 1
ρ ), it follows from the assumption

that Lδ = Rδ for every δ > 0. Letting δ → 0+ for (s, x) ∈ D0(η · Au) ∩ D0(η · Du),

we get L0 = R0.
Now, assume that Xu is a locally finite semimartingale. Without loss of general-

ity, we may and will assume that b = 0. The general case can be handled easily by
using Girsanov’s theorem because under the change of measure removing the drift
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term in the decomposition of Xu new terms of finite variation appear (see, e.g., [34,
Sect. 4] for details). Then Au from the decomposition of Xu of Theorem 4.3 is of
finite variation. Given η ∈ Cc(QT ), put

μ(η) =
∫

Rd

(
E0,x

∫ T

0
η(θ,Xθ ) dA0,θ

)
.

By our assumptions, the above integral is well defined and the functional μ is contin-
uous with respect to the uniform convergence on compacts, which implies that μ is a
measure. We shall show that Lu = μ. Let η ∈ Rα(C∞

c (QT )) ⊂ D(L) ⊂ Wρ , where
Rα is the resolvent of L. Then, by Theorem 4.3,

η(t,Xt ) = η(T ,XT ) −
∫ T

t

Lη(θ,Xθ ) dθ −
∫ T

t

σ∇η(θ,Xθ) dBs,θ , t ∈ [s, T ]

Ps,x -a.s. for q.e. (s, x) ∈ Q
T̂

. Integrating by parts, we get

E0,xu(0,X0)η(0,X0) =E0,xu(T ,XT )η(T ,XT ) − E0,x

∫ T

0
u(t,Xt )Lη(t,Xt ) dt

− E0,x

∫ T

0
η(t,Xt ) dA0,t − E0,x

∫ T

0
〈a∇η,∇u〉(t,Xt ) dt.

(6.15)

Notice that Rαξρ−2 ∈ L2(QT ) if ξ ∈ C∞
c (QT ). This follows from Proposition 7.2

and the fact that

Rαξ(s, x) = Es,x

∫ T

0
1[0,T ](s + t)e−αt ξ(s + t,Xs+t ) dt

(see, e.g., [27]). Integrating (6.15) with respect to x and using symmetry of the oper-
ator Lt , we get

〈
u(0), η(0)

〉
2 = 〈

u(T ), η(T )
〉
2 −

〈
u,

∂η

∂t

〉

2,T

+ 〈u,Ltη〉2,T −
∫

QT

η dμ,

which proves that 〈Lu,η〉2,T = ∫
QT

η dμ for all η ∈ Rα(C∞
c (QT )). That Lu = μ

now follows from the strong continuity of the resolvent. �

Using Theorem 6.1, one can prove a useful estimate for the first moment of the
supremum of Xu in terms of the norm of u in Wρ .

Corollary 6.10 If u ∈ Wρ then there is a quasi-continuous version of u (still denoted
by u) such that for every s ∈ (0, T )

Es,
√

ρ sup
s≤t≤T

∣∣u(t,Xt )
∣∣ ≤ C‖u‖Wρ

.
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Proof Since ∂u/∂t ∈ L2(0, T ;H−1
ρ ), u admits the representation

∂u

∂t
+ Ltu = f 0 + div

(
f̄

) + 1

2
div(a∇u) + b∇u (6.16)

for some f 0, f̄ ∈ L2,ρ(QT ). From Theorem 4.3, it follows that there exists a quasi-
continuous version of h (still denoted by h) such that

Xu
s,t = Mu

s,t +
∫ t

s

f 0(θ,Xθ ) dθ +
∫ t

s

a−1f̄ (θ,Xθ ) d∗Xθ

+ 1

2

∫ t

s

∇u(θ,Xθ ) d∗Xθ +
∫ t

s

∇u(θ,Xθ ) dβs,θ

for q.e. (s, x) ∈ Q
T̂

. By Doob’s L2-inequality,

Es,x sup
s≤t≤T

∣∣u(t,Xt )
∣∣ ≤ C

(
Es,x

(∣∣u(T ,XT )
∣∣2 +

∫ T

s

(∣∣f 0
∣∣2 + |∇u|2)(θ,Xθ ) dθ

))1/2

+ sup
s≤t≤T

∣∣∣∣
∫ T

t

(
a−1f̄ + ∇u

)
(θ,Xθ ) d∗Xθ

∣∣∣∣.

Multiplying the above inequality by ρ and using Proposition 7.6, we obtain

Es,
√

ρ sup
s≤t≤T

∣∣u(t,Xt )
∣∣ ≤ C

(∥∥u(T )
∥∥

2,ρ
+ ∥∥f 0

∥∥
2,ρ,T

+ ∥∥f̄
∥∥

2,ρ,T
+ ‖∇u‖2,ρ,T

)
.

Taking the infimum over all f 0, f̄ ∈ L2,ρ(QT ) such that (6.16) is satisfied yields

Es,
√

ρ sup
s≤t≤T

∣∣u(t,Xt )
∣∣ ≤ C

(∥∥u(T )
∥∥

2,ρ
+

∥∥∥∥
∂u

∂t

∥∥∥∥∗
+ ‖∇u‖2,ρ,T

)
.

This proves the desired estimate because the imbedding of Wρ into the vector space
C([0, T ],L2,ρ(Rd)) is continuous (see, e.g., [23]). �

To estimate the second moment of the supremum of Xu, we assume that Lu ∈
Sc

0 − Sc
0. It is worth noting that solutions of parabolic equations with the right-hand

side in L2,ρ(QT ) and solutions of unilateral or bilateral problems satisfy that assump-
tion.

Corollary 6.11 Let u ∈ Wρ and Lu ∈ Sc
0 − Sc

0. Then there is a quasi-continuous
version of u (still denoted by u) such that for every s ∈ (0, T ),

Es,ρ sup
s≤t≤T

∣∣u(t,Xt )
∣∣2 ≤ C

(∥∥μ+∥∥2
∗ + ∥∥μ−∥∥2

∗
)
,

where μ+,μ− ∈ Sc
0 and Lu = μ+ − μ−.

Proof By Theorem 6.1, Xu admits the decomposition (6.1) for q.e. (s, x) ∈ Q
T̂

.
Therefore, one can prove the desired estimate by the same method as in the proof
of Corollary 6.10. �
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Appendix

For the convenience of the reader, we collect here some estimates for diffusions X

associated with Lt and related estimates on the fundamental solution p of Lt and
weak solutions of the Cauchy problem

∂u

∂t
+ Ltu = −Φ, u(T ) = ϕ (7.1)

(PDE(ϕ,Φ) for short), where Φ ∈ L2(0, T ;H−1
ρ ). Recall that u ∈ Wρ is a strong

solution of PDE(ϕ,Φ) if for any η ∈ L2(0, T ;H 1
ρ ),

∫ T

t

〈
∂u

∂s
(s), η(s)

〉

ρ

ds − 1

2

∫ T

t

〈
a(s)∇u(s),∇(

ρ2η(s)
)〉

2 ds

+
∫ T

t

〈
b(s)∇u(s), η(s)

〉
2,ρ,T

=
∫ T

t

〈
f 0(s), η(s)

〉
2,ρ

ds −
∫ T

t

〈
f̄ (s),∇(

ρ2η(s)
)〉

2 ds

for all t ∈ [0, T ], where f 0, f̄ ∈ L2,ρ(QT ) are such that Φ = f 0 + div f̄ .
For the proof of the following theorem, see, e.g., [21, 23].

Theorem 7.1 For every Φ ∈ L2(0, T ,H−1
ρ ) there exists a unique strong solution

u ∈ Wρ of PDE(ϕ,Φ) and

sup
0≤t≤T

∥∥u(t)
∥∥2

2,ρ
+ ‖∇u‖2

2,ρ,T ≤ C
(‖ϕ‖2

2,ρ + ‖Φ‖2∗
)
.

Proposition 7.2 Let ρ ∈ R. There exist 0 < C1 ≤ C2 depending only on λ,Λ,Λ1, d,

T and ρ such that

C1

∫ T

t

∫

Rd

∣∣ψ(θ, x)
∣∣ρ(x)dθ dx ≤

∫ T

t

∫

Rd

Es,x

∣∣ψ(θ,Xθ )
∣∣ρ(x)dθ dx

≤ C2

∫ T

t

∫

Rd

∣∣ψ(θ, x)
∣∣ρ(x)dθ dx

for any ψ ∈ L1,ρ(QT ) and t ∈ [s, T ].
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Proof Follows from Proposition 5.1 in Appendix in [3] because, by Aronson’s esti-
mates (see [1, Theorem 7]), there exist c0, c1, c2 > 0 depending only on λ,Λ,d,T

such that for every θ ∈ (s, T ],

c0

∫

Rd

E
∣∣ψ(θ, x + Xc1(θ−s))

∣∣ρ(x)dx ≤
∫

Rd

Es,x

∣∣ψ(θ,Xθ)
∣∣ρ(x)dx

≤ c2

∫

Rd

E
∣∣ψ(θ, x + Xc2(θ−s))

∣∣ρ(x)dx,

where E denotes expectation with respect to the standard Wiener measure on Ω . �

We now provide useful estimates for moments of X.

Lemma 7.3 For every p ≥ 1 there is C depending only on λ,Λ,d,T and p such
that

Es,x sup
s≤t≤T

|Xt |p ≤ C(p)
(
1 + |x|)p

.

Proof By [37], there exist C1,C2 > 0 such that for every (s, x) ∈ Q
T̂

and r ≥ 0,

Ps,x

(
sup

s≤t≤T

|Xt − x| > r
)

≤ C1 exp

(−C2r
2

T − s

)
.

From this we conclude that for every p ≥ 0

Es,x sup
s≤t≤T

|Xt − x|p ≤ C(p),

from which the result follows. �

The following estimates for p and weak solutions of (7.1) are known, but origi-
nally stated in terms of Lp,q,ρ -norms with ρ ≡ 1. At the expense of minor technical
changes, their proofs my be adapted to the case of spaces with weight ρ such that
ρ−1 is a polynomial. For the first proposition, see Theorems 5, 7 and 10; and for the
second one, Theorems 5 and 10 in [1].

Proposition 7.4 Assume that p,q ∈ (1,+∞], d
2p

+ 1
q

< 1. Then for any (s, x) ∈ Q
T̂

,

(i) ‖p(s, x, ·, ·)‖
p

′
,q

′
,ρ−1

x
+ ‖∇p(s, x, ·, ·)‖

(2p)
′
,(2q)

′
,ρ−1

x
< C,

(ii) p(s, x, ·, ·),∇p(s, x, ·, ·) ∈ L2,ρ−1(Qs+δ,T ) for every δ ∈ (0, T − s].

Proposition 7.5 Let p,q satisfy the assumption of Proposition 7.4. Then there exists
a continuous version u of a weak solution of (7.1), and

∣∣u(t, x)
∣∣ ≤ Cρ−1(x)

(‖ϕ‖∞,ρ + ‖f ‖p,q,ρ + ∥∥f̄
∥∥

2p,2q,ρ

)
, (t, x) ∈ Q

T̂
.

Proposition 7.6 Assume that p,q ∈ (1,∞], d
2p

+ 1
q

< 1
2 .
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(i) For every (s, x) ∈ Q
T̂

and f ∈ Lp,q,ρ(QT ),

Es,x

∫ T

s

∣∣f (t,Xt )
∣∣2

dt ≤ Cρ−2(x)‖f ‖p,q,ρ .

(ii) For every (s, x) ∈ Q
T̂

and f̄ ∈ L2p,2q,ρ(QT ), the integral (3.7) is well defined
and

Es,x sup
s≤t≤T

∣∣∣∣
∫ t

s

f̄ (θ,Xθ ) d∗Xθ

∣∣∣∣
2

≤ Cρ−2(x)
∥∥f̄

∥∥
2p,2q,ρ

.

(iii) For every s ∈ [0, T ) and f ∈ L2,ρ(QT ),

Es,ρ

∫ T

s

∣∣f (t,Xt )
∣∣2

dt ≤ C‖f ‖2,ρ,T .

(iv) If f̄ ∈ L2,ρ(QT ) then the integral (3.7) is well defined for a.e. (s, x) ∈ Q
T̂

,

∫

QT

(
Es,x

∫ T

s

∣∣f̄ (t,Xt )
∣∣d

∣∣αs,x
s,·

∣∣
t

)
ρ(x)dx ds ≤ C

∥∥f̄
∥∥

2,ρ,T
(7.2)

and

∫

QT

(
Es,x sup

s≤t≤T

∣∣∣∣
∫ t

s

f̄ (θ,Xθ ) d∗Xθ

∣∣∣∣

)
ρ(x)dx ds ≤ C

∥∥f̄
∥∥

2,ρ,T
.

Proof (i) Since ρ−1(x + y) ≤ Cρ−1(x)ρ−1(y), applying Hölder’s inequality gives

∫

QsT

∣∣f (t, y)
∣∣2

p(s, x, t, y) dt dy ≤Cρ−2(x)

∫

QsT

∣∣f (t, y)
∣∣2

ρ2(y)p(s, x, t, y)

× ρ−2
x (y) dt dy

≤Cρ−2(x)‖f ‖2
p,q,ρ

∥∥p(s, x, ·, ·)ρ−2
x

∥∥
(p/2)

′
,(q/2)

′ ,

and the result follows from Proposition 7.4.
(ii) By (i), integrals with respect to backward and forward martingale are well

defined. As for the finite variation part, observe that

Es,x

∫ T

s

∣∣f̄
∣∣(θ,Xθ ) d

∣∣αs,x
s,·

∣∣
θ

=
∫

Qs,T

∣∣f̄ (θ, y)
∣∣|∇p|(s, x, θ, y) dθ dy

≤ Cρ−1(x)
∥∥f̄

∥∥
2p,2q,ρ

∥∥∇p(s, x, ·, ·)∥∥
(2p)

′
,(2q)

′
,ρ−1

x

which is finite for every (s, x) ∈ Q
T̂

by Proposition 7.4. Now, let u be a weak solution

of the Cauchy problem (7.1) with f̄ = 0, ϕ = 0. Then Es,x

∫ T

s
|∇u(θ,Xθ )|2 dθ ≤

Cρ−2(x)‖f ‖2
2p,2q,ρ by [34, Theorem 4.1], and |u(s, x)| ≤ ρ−1(x)C‖f ‖2p,2q,ρ by
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Proposition 7.5. Moreover, from [34] we know that

u(t,Xt ) =
∫ T

t

a−1f̄ (θ,Xθ ) d∗Xθ −
∫ T

t

∇u(θ,Xθ ) dMs,θ , t ∈ [s, T ], Ps,x-a.s.

By the above estimates and Doob’s L2-inequality,

Es,x

∣∣∣∣
∫ T

s

f (t,Xt ) d∗Xt

∣∣∣∣
2

≤ C
(
Es,x sup

s≤t≤T

ρ−2(Xt ) + ρ−2(x)
)
‖f ‖2

2p,2q,ρ

≤ 2Cρ−2(x)‖f ‖2
2p,2q,ρ ,

the last inequality being a consequence of Corollary 7.3.
(iii) Follows from Proposition 7.2.
(iv) The fact that integrals with respect to backward and forward martingales are

well defined follows directly from (iii). Modifying slightly [31, Lemma 5.2] to the
case of time-inhomogeneous diffusions, we have for α > 0,

∣∣∣∣Es,x

∫ T

s

∣∣f̄ (t,Xt )
∣∣d

∣∣αs,x
s,·

∣∣
t

∣∣∣∣
2

≤
∣∣∣∣
∫

QsT

|f |
∣∣∣∣
∂p

∂yj

∣∣∣∣(s, x, t, y) dt dy

∣∣∣∣
2

≤ CEs,x

∫ T

s

(t − s)−α
∣∣f̄ (t,Xt )

∣∣2
dt

×
d∑

i,j=1

∫

QsT

(t − s)αp−1aij

∂p

∂yi

∂p

∂yj

(s, x, t, y) dt dy

≤ CEs,x

∫ T

s

(t − s)−α
∣∣f̄ (t,Xt )

∣∣2
dt. (7.3)

Multiplying this inequality by ρ and using the fact that the measure ρ dm is finite on
R

d , we obtain by Jensen’s inequality that

I ≡
∫

QT

(
Es,x

∫ T

s

∣∣f̄ (t,Xt )
∣∣d

∣∣αs,x
s,·

∣∣
t

)
ρ(x)dx ds

≤ C

(∫ T

0

∫ T

s

(t − s)−α

(∫

Rd

Es,x

∣∣f (t,Xt )
∣∣2

ρ2(x) dx

)
dt ds

)1/2

.

Write r(t) = ‖f (t)‖2
2,ρ . From the above with α = 1/2 and (iii), we get

I 2 ≤ C

∫ T

0

∫ T

s

(t − s)−1/2r(t) dt ds = C

∫ T

0

(∫ t

0
(t − s)−1/2 ds

)
r(t) dt

≤ CT 1/2
∫ T

0
r(t) dt = CT 1/2

∥∥f̄
∥∥2

2,ρ,T
,
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which proves the result. The second assertion is a direct consequence of (iii) and
(7.2). �
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