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Abstract The affine group of a homogeneous tree is the group of all its isometries
fixing an end of its boundary. We consider a random walk with law μ on this group
and the associated random processes on the tree and its boundary. In the drift-free
case there exists on the boundary of the tree a unique μ-invariant Radon measure. In
this paper we describe its behaviour at infinity.
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1 Introduction

Let T = Tq be a homogeneous tree of degree q + 1. We denote by Aff(T) the group
of affine transformations of the tree T, that is the group of isometries of the tree that
fix an end ω of the boundary. This group is locally compact, totally disconnected,
amenable and non-unimodular. The group Aff(T) is an analogue of the real affine
group acting on the hyperbolic plane H

2 by isometries and fixing a boundary point.
However, its structure is much more difficult. If q is a prime number p, then the group
Aff(T) contains on one side the affine group of p-adic numbers Aff(Qp) (i.e. the
group of matrices of the form

[
a b
0 1

]
, where a, b are p-adic numbers and a is nonzero),

which in some sense is similar to Aff(R), but on the other hand it contains groups
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having completely different structure like the lamplighter group or automata groups
(see [4] for further information on the structure of Aff(T)).

In this paper we study random walks on the affine group and related random
processes on the tree T and its boundary ∂T. Our goal is to describe asymptotic
properties of its invariant measure. Given a probability measure μ on Aff(T) we
consider the left and the right random walk on Aff(T), i.e. sequences of random
variables on the group Ln = Xn . . .X1 and Rn = X1 . . .Xn, where Xi are i.i.d. with
law μ. Choosing a point o ∈ T one can define random processes on the tree Ln · o

and Rn ·o. Cartwright, Kaimanovich and Woess [4] proved that if the random process
has a drift in a proper direction (all the details will be given in Sect. 2.4), then Rn · o
converges almost surely to a random element of ∂∗

T = ∂T \ {ω}. The limit defines
a harmonic probability measure, whose asymptotic properties has been recently de-
scribed by Kolesko [6]. If the measure μ has a drift towards the end ω or has no drift,
then Rn · o converges to ω a.s. However, to obtain more precise information about
the random walk on Aff(T) one has to consider its action on the boundary ∂∗

T. In
the drift-free case Brofferio [1] proved, under some additional assumptions, that there
exists an invariant Radon measure ν on ∂∗

T, i.e. a measure such that

ν(f ) = μ ∗ ν(f ) =
∫

Aff(T)

∫

∂∗T

f (γ u)ν(du)μ(dγ ) (1.1)

for any f ∈ C(T). This measure is unique (up to a multiplicative constant) and is
unbounded on ∂∗

T. The measure ν in a natural way appears in the renewal theorem
for the affine group, namely its small modifications are limits of the potential kernel
(see [1] for more details). Therefore in the context of studying random walks on affine
groups of homogeneous trees it is necessary to ask about precise description of the
measure ν.

The main goal of this paper is to study asymptotic behaviour of the measure ν. In
terms of a natural ultrametric distance on the boundary, our main result (Theorem 2.2)
says that, on annuli of fixed centre and constant width, the invariant measure is as-
ymptotically constant, and nonzero. Our proof bases partially on methods developed
in [2, 3], where similar problems concerning the random difference equation on R

d

were studied.

2 Random Walk Walks on the Affine Group of a Tree and the Main Theorem

2.1 Oriented Tree

The homogeneous tree T = Tq+1 of degree q + 1 is the connected graph without
any cycles whose vertices have exactly q + 1 neighbours. For any couple of vertices
x and y there exists exactly one sequence of successive vertices without repetition
x = x0, x1, . . . , xk = y denoted by xy. Then we say that the distance between x and
y is equal to k and we write d(x, y) = k. A geodesic ray is an infinite sequence
of successive neighbours x0, x1, x2, . . . without repetition. Two rays are equivalent
if they differ only by finitely many vertices. An end is an equivalent class of this
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relation, and the set of all ends will be denoted by ∂T. For u ∈ ∂T and x ∈ T there
exists a unique geodesic ray xu which represents u.

We choose and fix once for all an end ω and define ∂∗
T = ∂T \ {ω}. For x, y ∈

T ∪ ∂∗
T by x ∧ y we denote the first common vertex of xω and yω i.e. x ∧ y = z

if xω ∩ yω = zω. We may imagine the oriented tree as a genealogical tree where
ω is a mythical ancestor, every vertex has one ancestor and q children. Let us fix a
reference vertex o in T called origin. The height function h from T to Z is h(x) =
d(x, x ∧ o)− d(o, x ∧ o), also known as Busemann function. The function h induces
an ultra-metric distance Θ on T ∪ ∂∗

T, for x, y ∈ T ∪ ∂∗
T we define

Θ(x,y) :=
{

q−h(x∧y) if x �= y,
0 if x = y.

2.2 The Affine Group

Every isometry of (T, d) has a natural extension to the boundary so we can define the
affine group of the tree T as the group of all isometries fixing the chosen end ω

Aff(T) := {
g ∈ Iso(T) : gω = ω

}
.

The group Aff(T) is equipped with the topology of pointwise convergence. To sim-
plify our notation we will write G instead of Aff(T).

All elements of the affine group preserve the order and the distance, therefore
h(x) − h(y) = h(gx) − h(gy), for any couple x, y ∈ T and g ∈ G. So we may define
a homomorphism φ of G into Z: φ(g) = h(gx) − h(x) = h(go) and by the remark
above the definition does not depend on the particular choice of x and o. Moreover

Θ(gx,gy) = q−h(gx∧gy) = q−φ(g)Θ(x, y).

The horocyclic group of the tree is the subgroup of the affine group that fixes the
height

Hor(T) := kerφ = {
g ∈ G : h(gx) = h(x), ∀x ∈ T

}
.
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Let us fix a σ ∈ Aff(T) such that φ(σ) = 1 and σ(o) is one of children of o. Every
element g ∈ Aff(T) has a unique decomposition as a product of an element of the
horocyclic group and a power of σ :

g = (
gσ−φ(g)

)
σφ(g).

We identify the group generated by σ with Z. The affine group can be decomposed
into the semidirect product of Hor(T) and Z

Hor(T) � Z ∼= Aff(T)

(β,m) 
→ βσm,

where the action of Z on Hor(T) is given by mβ = m(β) := σmβσ−m. Then the
multiplication in the affine group is given by the following formula:

(β1,m1)(β2,m2) = β1σ
m1β2σ

m2 = β1σ
m1β2σ

−m1σm1+m2 = (β1m1β2,m1 + m2).

Notice that the decomposition of Aff(T) depends on the choice of the element σ .
We say that a subgroup Γ of Aff(T) is exceptional if Γ ⊆ Hor(T) or if Γ fixes

an element of ∂∗
T. In this paper we will always consider closed and non-exceptional

subgroups Γ . It is known that Γ is non-exceptional if and only if it is non-unimodular.
In this case the limit set ∂Γ of Γ , i.e. the set of accumulation points of an orbit Γ o

in ∂T, is uncountable and ω ∈ ∂Γ . Moreover for u ∈ ∂Γ \{ω} the orbit Γ u is dense
in ∂Γ (see [4]).

2.3 Length Functions

Notice that there exists an unique f = fσ ∈ ∂∗
T such that σ(fσ ) = fσ . Indeed, f is

represented by the geodesic ray o,σo,σ 2o, . . . . Then σ acts by the translation on fω.
We define length functions on the boundary ∂∗

T and on the affine group:

|u| = Θ(u, f), u ∈ ∂∗
T,

‖γ ‖ = Θ(γ f, f), γ ∈ G.

Observe that the group Z is included in the kernel of ‖ · ‖ and for any γ = (β,m) ∈ G

we have ‖γ ‖ = ‖β‖ = ‖β−1‖.
We decompose both the boundary and the affine group with respect to the value of

the corresponding length function. For j ∈ Z we define

Aj = {
u ∈ ∂∗

T : |u| = qj
}= {

u ∈ ∂∗
T : u ∧ f = σ−j o

}
,

Gj = {
g ∈ G : ‖g‖ = qj

}= {
g ∈ G : gf ∈ Aj

}
.

Then ∂∗
T = {f} ∪⋃

j∈Z
Aj , and G = {g ∈ G : gf = f} ∪⋃

j∈Z
Gj . It is a worthwhile

observing that the stabiliser {g ∈ Hor(T) : gf = f} plays the same role as the group
of rotations in the real case. However, contrary to the case where the stabiliser of a
point is just the similarity group of euclidean space, the stabiliser of the point in the
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boundary of the tree is much more complex since its elements do not commute with
the reference homothety σ .

We will use later some properties of the sets defined above, which are formulated
in the following lemma.

Lemma 2.1 Suppose that (β,m) ∈ Gj for some j ∈ Z, then

(i) Both β and β−1 preserve Ak and σ−ko for every k > j .
(ii) If u ∈ Aj , then βu ∈ Ak for some k ≤ j .

(iii) If u ∈ Ak for some k < j , then βu ∈ Aj .

Proof Follows easily from

|u| = Θ(f,u) = Θ(βf, βu) ≤ max
{
Θ(βf, f),Θ(βu, f)

}= max
{‖β‖, |βu|}

and

|βu| ≤ max
{‖β‖, |u|}. �

2.4 Random Walks on Aff(T) and the Main Theorem

Let μ be a probability measure on Aff(T). We will assume that the closed semigroup
Γ generated by the support of μ is non-exceptional. For sake of simplicity we will
also assume that φ(Γ ) = Z.

We define the left and the right random walk on G by Ln = XnXn−1 · . . . · X1,
Rn = X1X2 · . . . · Xn, and L0 = R0 = e (e is the identity in G). Notice that both
processes have different trajectories, but they have the same law, i.e. Ln =d Rn. Since
Γ is non-exceptional it is non-unimodular, hence the random walks Ln and Rn are
transient. By μ we denote the image of the measure μ on Z, i.e. μ(k) = μ(φ−1{k}).
Then φ(Ln) = φ(Rn) = φ(X1) + · · · + φ(Xn) is a sum of i.i.d. random variables
with law μ. If the measure μ has the first moment then by m1 we denote its mean
m1 = ∑

k∈Z
kμ(k). The value m1 is called drift of μ and it describes behaviour of

the random processes both on the tree and its boundary generated by the action of
the group. It was proved in [1, 4] that if m1 < 0, then Rn · o converges a.s. to ω, Lnv

converges to ω for every v ∈ ∂∗
T and the Markov chain {Lnv} is transient. If m1 > 0

and E[|X1|] < ∞ then Rn · o converges a.s. to some random variable ξ∞ defined on
∂∗

T. Then the law η of ξ∞ is a unique stationary measure of the random process
{Lnξ∞} on ∂∗

T, which is positive recurrent (see Brofferio [1]).
The most interesting is the drift-free case, when m1 = 0. Then, if E[|X1|] < ∞,

Rn · o converges a.s. to ω. In this situation Brofferio [1] proved that if E[φ(X1)
2 +

|β(X1)|2+ε] < ∞, then the chain {Lnv} is recurrent and there exists a unique (up
to a multiplicative constant) μ-invariant Radon measure ν on ∂∗

T, i.e. the measure
satisfying (1.1). The measure ν is crucial to obtain the renewal theorem on the affine
group. The main purpose of this paper is to describe behaviour of the measure ν at
infinity. Our main result is the following

Theorem 2.2 Let μ be a probability measure on the affine group G. Assume
∫

G

φ(g)μ(dg) = 0, (2.1)



194 J Theor Probab (2012) 25:189–204

∫

G

(
qδm + q−δm + ‖β‖δ

)
μ(dβ,dm) < ∞ for some δ > 0, (2.2)

the subgroup generated by the support of μ is non-exceptional, (2.3)

the subgroup generated by the support of μ = φ(μ) is Z. (2.4)

Then

lim
k→+∞ν

{
u : |u| = qk

} = C+,

for some strictly positive constant C+.

3 Proof of Theorem 2.2

3.1 First Properties of the Measure ν

To simplify our notation we define a function v : Z 
→ R by the formula v(k) =
ν(Ak). We are going to prove that limk→+∞ v(k) = C+ > 0. First we will justify that
without any loss of generality, we may assume additionally that for any 1 < d < q:

∑

k∈Z

d−kv(k) < ∞. (3.1)

We begin with the following lemma.

Lemma 3.1 There exists n ∈ Z such that v(i) > 0 for every i ≥ n. Moreover there
exists ε > 0 such that

v(k) ≥ ε|k−l|v(l)

for k, l ≥ n.

Proof In view of (2.1) and (2.4) there exist k+, k− ∈ N, n0 ∈ Z and ε > 0 such that

μ∗k±{
(β,±1) : ‖β‖ < q−n0

}≥ ε.

By Lemma 2.1(i) if ‖β‖ < q−n0 then β−1 preserves sets Ai±1 for every i > n0. Hence
for i > n0

v(i ∓ 1) = ν(Ai∓1) = μ∗k± ∗ ν(Ai∓1)

≥
∫

{(β,±1):‖β‖<q−n0 }

∫

∂∗T

1Ai∓1(βau)ν(du)μ∗k±
(dβ, da)

≥ μ∗k±({
(β,±1) : ‖β‖ < q−n0

})∫

∂∗T

1Ai
(u)ν(du)

≥ εv(i). (3.2)
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Since ν is an unbounded Radon measure, we can find n > n0 such that v(n) > 0.
Therefore in view of (3.2) we have v(i) > 0 for i ≥ n. Moreover, for k, l ≥ n we
obtain

v(k)

v(l)
≤ ε−|k−l|,

which finishes the proof. �

Proposition 3.2 Suppose that the measure μ satisfies (2.1)–(2.4). Then

lim
i→+∞

v(i)

v(i + 1)
= 1. (3.3)

In particular for any γ > 1
∞∑

k=0

v(k)γ −k < ∞.

Proof Take n as in the previous lemma and fix for a moment m ∈ Z. Then by the
lemma the sequence v(m+i)

v(n+i)
is bounded for positive i. Hence we can find a sequence

{ik} tending to +∞ and a real number C(m) such that

lim
k→+∞

v(m + ik)

v(n + ik)
= C(m).

Using the diagonal method we can find a sub-sequence {ikp } such that

lim
p→+∞

v(m + ikp )

v(n + ikp )
= C(m)

for every m ∈ Z. We will prove that the function C on Z, defined above, is μ-
harmonic, hence constant.

Notice that if we take (β, a) ∈ G, l ∈ Z and ikp ≥ logq‖β‖ − l then by
Lemma 2.1(i) both β and β−1 preserve Al+ik hence

δikp
∗ δ(β,a) ∗ ν(1Al

) =
∫

∂∗T

1Al
(ikpβau)ν(du) =

∫

∂∗T

1Al+ikp
(βau)ν(du)

=
∫

∂∗T

1Al+ikp
(au)ν(du) =

∫

∂∗T

1Al

(
(ikp + a)u

)
ν(du)

= δikp
∗ δ(0,a) ∗ ν(1Al

),

where 0 denotes the identity element in the group Hor(T). Therefore, by the Fatou
lemma and the invariance of ν, we have

∫

Z

C(l + a)μ(da) =
∫

Z

lim
p→+∞

1

v(n + ikp )
δikp

∗ δ(0,a) ∗ ν(1Al
)μ(da)

=
∫

G

lim
p→+∞

1

v(n + ikp )
δikp

∗ δ(β,a) ∗ ν(1Al
)μ(dβ, da)
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≤ lim inf
p→+∞

1

v(n + ikp )

∫

G

δikp
∗ δ(β,a) ∗ ν(1Al

)μ(dβ, da)

= lim inf
p→+∞

v(l + ikp )

v(n + ikp )
= C(l).

Since the measure μ is recurrent and C is μ-superharmonic, C is μ-harmonic, hence
constant. But C(n) = 1, so it follows that C ≡ 1. Summarising, we have proved that
for any subsequence {ik} of integers there exists its subsequence {ikl

} such that

lim
l→+∞

v(m + ikl
)

v(n + ikl
)

= 1,

for every m ∈ Z. Therefore

lim
i→+∞

v(m + i)

v(n + i)
= 1

and taking m = n− 1 we obtain (3.3). The second statement follows now easily from
the ratio criterion. �

Lemma 3.3 For any 1 < d < q there exists β0 ∈ Hor(T) such that the measure ν̃ =
δβ0 ∗ ν satisfies:

∑

k∈Z

d−kṽ(k) < ∞.

Proof Let us observe that the translated measure ν̃ = δβ ∗ ν has the same behaviour
at infinity as the measure ν. Indeed, by Lemma 2.1(i) for k > log‖β‖,

ν̃(Ak) = ν(Ak).

In view of Proposition 3.2 it is enough to consider only the sum over negative k’s.
Let mr be the right Haar measure on G. By Soardi and Woess [7], G is non-

unimodular with the modular function g 
→ qφ(g) for g ∈ G, hence mr(gAg−1) =
q−φ(g)mr(A) for any Borel set A. By H let us denote the stabilizer of o in G. If
we write H−∞ = {β ∈ Hor(T) : βf = f} and Hk = Gk ∩ Hor(T) for k ∈ Z, then
H = H−∞ ∪ ⋃

k≤0 Hk .
Since H is open and compact its Haar measure is strictly positive and finite. More-

over from

mr(Hk) = mr

(
σ−kH0σ

k
) = q−k · mr(H0) (3.4)

and

mr(H−∞) = mr

(⋂

k≤0

σ−kHσk

)
= lim

k→−∞qkmr(H) = 0 (3.5)

it follows that mr(H) = q
q−1mr(H0).
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Fix 0 < γ < 1. For every u ∈ U = {|u| < 1} there exists βu ∈ H satisfying βuf =
u. Since Hβu = H , |βf|−γ is positive and mr -a.e. finite, we have

∫

H

1

|βu|γ mr(dβ) =
∫

H

1

|ββuf|γ mr(dβ) =
∫

Hβu

1

|βf|γ mr(dβ) =
∫

H

1

|βf|γ mr(dβ).

Now we can write
∫

H

∫

U

1

|βu|γ ν(du)mr(dβ)

=
∫

U

∫

H

1

|βu|γ mr(dβ)ν(du) = ν(U)

∫

H

1

|βf|γ mr(dβ)

= ν(U)
∑

k≤0

∫

Hk

1

|βf|γ mr(dβ) = ν(U)
∑

k≤0

∫

Hk

q−kγ mr(dβ)

= ν(U)m(H0)
∑

k≤0

qk−kγ < ∞. (3.6)

Take arbitrary β0 ∈ H , 1 < d < q and denote γ = logq d . If β0u ∈ Ak , then
dk = |β0u|γ . Thus

∑

k≤0

d−k · δβ0 ∗ ν(Ak) =
∑

k≤0

∫

∂∗T

d−k1Ak
(β0u)ν(du)

=
∫

∂∗T

[
1

|β0u|γ
∑

k≤0

1Ak
(β0u)

]
ν(du) =

∫

U

1

|β0u|γ ν(du)

and by (3.6) there exists β0 ∈ H0 such that the value above is finite. �

Take β0 as in the lemma. Then the translated measure ν̃ = δβ0 ∗ ν has the same
behaviour at infinity as the measure ν. But the measure ν̃ is the unique invariant
measure of μ̃ = δβ0 ∗μ∗δ

β−1
0

, and obviously μ̃ satisfies conditions (2.1)–(2.4). Hence

to prove Theorem 2.2 it is enough to consider measures ν̃ and μ̃ instead of ν and μ.
However to simplify our notation we will just use symbols ν, μ and assume that (3.1)
is satisfied.

3.2 The Poisson Equation

In order to prove Theorem 2.2 we will consider v as a solution of the Poisson equation

μ ∗ v(k) = v(k) + ψ(k), (3.7)

for ψ defined by the equation above, i.e. ψ = μ ∗ v − v. It was proved by Spitzer [8]
that if the function ψ is sufficiently good, there exists an explicit formula describing
all nonnegative solutions of the Poisson equation.
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Lemma 3.4 Suppose that hypotheses (2.1)–(2.4) and condition (3.1) are fulfilled.
Then the function ψ = μ ∗ v − v satisfies

∑

k∈Z

∣∣kψ(k)
∣∣ < ∞ (3.8)

and
∑

k∈Z

ψ(k) = 0. (3.9)

Proof In view of Lemma 2.1, the function ψ can be written as follows

ψ(k) = μ ∗ ν(1Ak
) − ν(1Ak

) = μ ∗ ν(1Ak
) − μ ∗ ν(1Ak

)

=
∫

G

∫

∂∗T

(
1Ak

(mu) − 1Ak
(βmu)

)
ν(du)μ(dβ,dm)

=
∑

j≥k

∫

Gj

∫

∂∗T

(
1Ak

(mu) − 1Ak
(βmu)

)
ν(du)μ(dβ,dm).

Next we write ψ ≤ ψ1 + ψ2, where

ψ1(k) =
∑

j>k

∫

Gj

∫

∂∗T

∣∣1Ak
(βmu) − 1Ak

(mu)
∣∣ν(du)μ(dβ,dm),

ψ2(k) =
∫

Gk

∫

∂∗T

∣
∣1Ak

(βmu) − 1Ak
(mu)

∣
∣ν(du)μ(dβ,dm).

We will show that both kψ1(k) and kψ2(k) are summable. First we will prove that

∑

k∈Z

|k|ψ2(k) < ∞. (3.10)

Notice that if β ∈ Gk, then by Lemma 2.1 we have

∣
∣1Ak

(βu) − 1Ak
(u)

∣
∣ ≤ 1⋃

j≤k Aj
(u).

Take δ as in (2.2), fix δ′ < δ
2 and let d = qδ′

. Then we have

∑

k∈Z

|k|ψ2(k) ≤
∑

k

|k|
∫

Gk

∫

∂∗T

1⋃
j≤k Aj

(mu)ν(du)μ(dβ,dm)

=
∑

k∈Z

|k|
∫

Gk

∫

∂∗T

1⋃
j≤k Aj+m

(u)ν(du)μ(dβ,dm)

=
∑

k∈Z

|k|
∫

Gk

∑

j≤k

v(j + m)μ(dβ,dm)
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=
∑

k∈Z

∫

Gk

dm|k|
∑

j≤k

dj d−(j+m)v(j + m)μ(dβ,dm)

≤
∑

k∈Z

∫

Gk

dm|k|dk

(∑

j∈Z

d−(j+m)v(j + m)

)
μ(dβ,dm)

≤
(∑

j∈Z

d−j v(j)

)∑

k∈Z

∫

Gk

dm|k|dkμ(dβ,dm).

In view of (3.1) the first expression is finite. To prove finiteness of the second one
recall that if β ∈ Gk , then k = logq ‖β‖ and write

∑

k∈Z

∫

Gk

dm|k|dkμ(dβ,dm)

=
∫

G

qδ′m∣∣logq ‖β‖∣∣‖β‖δ′
μ(dβ,dm)

≤
(∫

G

q2δ′mμ(dβ,dm)

) 1
2 ·

(∫

G

(
log2

q ‖β‖)‖β‖2δ′
μ(dβ,dm)

) 1
2

.

By (2.2) the expression above is bounded and we obtain (3.10).
Now we are going to prove that

∑

k∈Z

|k|ψ1(k) < ∞. (3.11)

Notice first that

ψ1(k) ≤ ψ1
1 (k) + ψ2

1 (k),

where

ψ1
1 (k) =

∑

j>k

∫

Gj

∫

∂∗T

1Ak
(βmu)ν(du)μ(dβ,dm),

ψ2
1 (k) =

∑

j>k

∫

Gj

v(k + m)μ(dβ,dm).

To prove that
∑

k∈Z
|k|ψ2

1 < ∞ we use exactly the same estimates as above. To esti-
mate ψ1

1 we deal first with negative k. Then by (3.1) we have

∑

k<0

|k|ψ1
1 (k) =

∑

k<0

|k|
∑

j>k

∫

Gj

∫

∂∗T

1Ak
(βmu)ν(du)μ(dβ,dm)

≤
∑

k<0

|k| · μ ∗ ν(Ak) =
∑

k<0

|k|v(k) < ∞.
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Finally, for δ′′ ≤ δ
2 , δ′ < δ′′, d = qδ′′

∑

k>0

kψ1
1 (k) =

∑

k>0

k
∑

j>k

∫

Gj

∫

∂∗T

1Ak
(βmu)ν(du)μ(dβ,dm)

≤
∑

j>0

∫

Gj

∑

0<k<j

j

∫

∂∗T

1Ak
(βmu)ν(du)μ(dβ,dm)

≤
∑

j>0

∫

Gj

j2
∫

∂∗T

1Aj
(mu)ν(du)μ(dβ,dm)

=
∑

j>0

∫

Gj

j2v(j + m)μ(dβ,dm)

≤
∫

G

‖β‖δ′′ ∑

j>0

(
d−j j2v(j + m)

)
μ(dβ,dm)

≤ C

∫

G

‖β‖δ′′
qδ′m

(∑

j∈Z

q−δ′(j+m)v(j + m)

)
μ(dβ,dm)

≤ C

(∑

j∈Z

q−δ′j v(j)

)∫

G

‖β‖δ′′
qδ′mμ(dβ,dm).

By (3.1) and (2.2) the expression above is finite and we obtain (3.11). The arguments
used above give also

∑

k∈Z

∫

G

∫

∂∗T

|1Ak
(βmu) − 1Ak

(mu)|ν(du)μ(dβ,dm) < ∞,

therefore by the Fubini theorem

∑

k

∫

G

∫

∂∗T

(
1Ak

(βmu) − 1Ak
(mu)

)
ν(du)μ(dβ,dm)

=
∫

G

∫

∂∗T

∑

k∈Z

(
1Ak

(βmu) − 1Ak
(mu)

)
ν(du)μ(dβ,dm) = 0.

�

3.3 Proof of Theorem 2.2—Existence of the Limit

The result follows from a theorem of Spitzer [8, p. 375], who proved that if σ 2 =∑
k∈Z

k2μ(dk) < ∞ and
∑

k∈Z
|kψ(k)| < ∞, then all positive solutions of the Pois-

son equation (3.7) are of the form

v(k) = ψ ∗ a(k) + c2k + c3.
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In the formula above a is the recurrent potential defined by the formula

a(k) = lim
n→∞

n∑

i=1

(
μ∗i (0) − μ∗i (k)

)

and c2 is some constant satisfying

σ 2|c2| ≤
∑

k∈Z

ψ(k).

In fact, the theorem was proved for finitely supported functions ψ , neverthe-
less the proof is valid also under weaker assumptions i.e. for functions satisfying∑

k∈Z
|kψ(k)| < ∞ (see the second paragraph on p. 376 in [8] and also the Appen-

dix in [3]).
Since

∑
k∈Z

ψ(k) = 0, the constant c2 must be zero. We will need the following
property of a:

lim
k→±∞

(
a(k + n) − a(k)

) = ∓ n

σ 2
.

By (3.1), limk→−∞ v(k) = 0, therefore

0 = lim
k→−∞v(k) = lim

k→−∞
∑

n∈Z

ψ(n)a(k − n) + c3

= lim
k→−∞

∑

n∈Z

ψ(n)(a(k − n) − a(k)) + c3 = − 1

σ 2

∑

n∈Z

nψ(n) + c3.

So we obtain c3 = 1
σ 2

∑
n∈Z

nψ(n). Finally we compute

lim
k→+∞v(k) = lim

k→+∞
∑

n∈Z

ψ(n)a(k − n) + c3

= lim
k→+∞

∑

n∈Z

ψ(n)
(
a(k − n) − a(k)

) + c3 = 2

σ 2

∑

n∈Z

nψ(n) = C+.

3.4 Proof of Theorem 2.2—Positivity of the Limiting Constant

Now we are going to prove that the constant C+ is strictly positive. We will apply to
our settings arguments given in [2] for the real affine group. Notice that it is enough
to prove that there exists C > 0 and M such that for any positive nonincreasing and
bounded sequence {ak}k∈Z

∑

k∈Z

akv(k) ≥ C

∞∑

k=M

ak. (3.12)

Indeed, assume that limk→+∞ v(k) = 0. Then for any ε > 0 there exists N such that
v(k) < ε for k > N . Let us substitute ak = 1 for k ≤ n and ak = 0 for k > n. Since ν
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is the Radon measure,
∑N−1

k=−∞ v(k) = ν{u ∈ ∂∗
T : |u| ≤ qN−1} < ∞, therefore

lim
n→+∞

1

n

∑

k∈Z

akv(k) = lim
n→+∞

1

n

n∑

k=N

v(k) + lim
n→+∞

1

n

N−1∑

k=−∞
v(k) ≤ ε,

but

lim
n→+∞

C

n

∞∑

k=M

ak = C.

Therefore, in view of (3.12), 0 < C ≤ ε, but this inequality cannot be true for arbitrary
small ε. So we deduce lim supk→∞ v(k) > 0.

In order to prove (3.12) we will use an explicit construction of the measure ν. Let
us define strictly ascending ladder epochs i.e. a sequence of stopping times ln+1 =
inf{k > ln : Sk > Sln}, l0 = 0, where Sk = φ(Lk) (see [5, p. 391]). Then Lln is a
random walk on G with a positive drift, therefore there exists a probability measure
η on ∂∗

T, which is the unique stationary measure of the process {Lln} (see [1] for
more details). The measure ν can be written (up to a multiplicative constant) as

ν(f ) =
∫

∂∗T

[
l1−1∑

k=0

f (Lk · u)

]

η(du).

Now take any nonincreasing, positive, bounded sequence {an}n∈Z and define a func-
tion on the sequence {qn}n∈Z: f (qk) = ak . Take a ball B = {u : |u| ≤ qM} for some
M and such that η(B) = ε > 0. Then

∑

k∈Z

akv(k) =
∫

∂∗T

f
(|u|)ν(du) ≥

∫

B

E

[
l1−1∑

k=0

f
(|Lk · u|)

]

η(du)

=
∫

B

E

[
l1−1∑

k=0

f
(∣∣βkσ

mkβk−1σ
mk−1 . . . β1σ

m1 · u∣
∣)

]

η(du).

Notice that for u ∈ B

∣∣βkσ
mkβk−1σ

mk−1 . . . β1σ
m1 · u∣∣

= ∣∣σSkσ−Skβkσ
Skσ−Sk−1βk−1σ

Sk−1 . . . β1 · u∣∣

≤ q−Sk max
{∥∥σ−Skβkσ

Sk
∥∥, . . . ,

∥∥σ−S1β1σ
S1

∥∥, qM
}

= q−Sk max
{
qSk‖βk‖, . . . , qS1‖β1‖, qM

}

≤ q−Sk max
{‖βk‖, . . . ,‖β1‖, qM

}
.

Therefore, applying an extended version for time reversible functions (see [2,
Lemma 5.3] for more details and precise statement of the duality lemma) of the clas-
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sical duality lemma (see [5, XII.2, p. 394])

∑

k∈Z

akv(k) ≥
∫

B

E

[
l1−1∑

k=0

f
(

max
u∈B

∣∣βkσ
mkβk−1σ

mk−1 . . . β1σ
m1 · u∣∣

)]

η(du)

≥ εE

[
l1−1∑

k=0

f
(
q−Sk max

{‖βk‖,‖βk−1‖,‖βk−2‖, . . . ,‖β1‖, qM
})

]

= εE

[ ∞∑

k=0

f
(
q−STk max

{‖β1‖, . . . ,‖βTk
‖, qM

})
]

,

where {Tk}k∈N is a sequence of stopping times: T0 = 0, Tk = inf{n > Tk−1 : Sn <

STk−1}. Observe that the random variables

Wk = −(STk
− STk−1) + max

Tk−1<i≤Tk

{
logq‖βi‖

}∨M

are i.i.d., positive, integrable (cf. Proposition 4 in the Appendix in [4]) and satisfy

q−STk max
{‖β1‖, . . . ,‖βTk

‖, qM
}≤ q

∑k
i=1 Wi .

Therefore by the renewal theorem there exist p and N such that

inf
i≥N

∑

k≥0

P

[
k∑

j=1

Wj ∈ [i, i + p)

]

≥ δ > 0.

Finally

∑

k∈Z

akv(k) ≥ ε

∞∑

k=0

E

[
f

(
q

∑k
i=1 Wi

)] ≥ ε

∞∑

k=0

∞∑

j=N

ajP

[
k∑

i=1

Wi = j

]

≥ ε

∞∑

n=1

aN+pnP

[
k∑

i=1

Wi ∈ [
N + (n − 1)p,N + np

)
]

≥ εδ

∞∑

n=1

aN+np ≥ εδ

p

∞∑

j=N+p

aj ,

which proves (3.12).
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