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Abstract Let u be a Poisson random measure, let IF be the smallest filtration satis-
fying the usual conditions and containing the one generated by p, and let G be the
initial enlargement of F with the o-field generated by a random variable G. In this
paper, we first show that the mutual information between the enlarging random vari-
able G and the o -algebra generated by the Poisson random measure p is equal to the
expected relative entropy of the G-compensator relative to the F-compensator of the
random measure p. We then use this link to gain some insight into the changes of
Doob—Meyer decompositions of stochastic processes when the filtration is enlarged
from F to G. In particular, we show that if the mutual information between G and the
o-algebra generated by the Poisson random measure u is finite, then every square-
integrable F-martingale is a G-semimartingale that belongs to the normed space S'!
relative to G.
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1 Introduction

The perception of a random process changes if events of its future development are
anticipated. Such anticipations can be modeled in terms of enlargements of the filtra-
tion representing the perspective from which the random process is observed. Recall
that an enlargement of a filtration F = (F;) is a filtration G = (G;) containing F, i.e.,
a filtration satisfying G; D F; for all # > 0. An introduction into the theory of enlarge-
ments of filtrations is provided in the final chapter of [15]. Other standard references
are [11, 12], and [14].

From the perspective of enlarged filtrations the course of a random process is dis-
torted. For example, if one anticipates what value a Brownian motion B will take
at time 1, then B will no longer appear as a martingale but rather as a stochas-
tic process with the dynamics of a Brownian bridge. More generally, let M be an
F-martingale, and G an enlargement of F. Then the question arises whether M re-
mains a semimartingale with respect to G, and if yes, how the semimartingale de-
compositions relative to G can be derived.

Suppose that M is a continuous martingale relative to a filtration F and that one can
compensate M in such a way that it remains a martingale with respect to an enlarge-
ment G, by what we mean that one can subtract a G-predictable finite-variation (FV)
process A from M so that M — A is a martingale with respect to G. Without mak-
ing any assumption on the kind of enlargement, [2] provides sufficient conditions for
the FV process A to possess a density with respect to the quadratic variation process
[M, M], defined as information drift in [8]. For initial enlargements of the Wiener fil-
tration, it is shown in [8] that the information drift can be interpreted as a logarithmic
stochastic derivative of conditional probabilities of the enlarging information with
respect to the Wiener filtration. This has been generalized to arbitrary enlargements
in [2]. Moreover, it is known that there exists a link between the square norm of the
information drift and the so-called mutual information between the enlarging infor-
mation and the smaller filtration. In [16] it is shown that given a Brownian motion
with a Brownian filtration initially enlarged by a countable partition, the L>-norm of
the information drift of the Brownian motion is equal to the entropy of the partition.
For arbitrary initial enlargements, the link has been analysed in [3], and for noninitial
enlargements, in [2]. We recall that the mutual information coincides with the square
norm of the information drift of any martingale, as long as it satisfies the predictable
representation property (PRP).

So far only a few papers deal with how to compute semimartingale decomposition
of discontinuous martingales with respect to enlarged filtrations. Suppose that M is a
stochastic integral with respect to a compensated random measure and hence a purely
discontinuous martingale relative to the filtration generated by the random measure.
In [9] sufficient conditions are given for M to remain a semimartingale with respect
to an initial enlargement G, and the correcting G-predictable drift A, making M — A
into a G-martingale, is characterized in terms of the density of the G-compensator
relative to the F-compensator of the random measure. Reference [1] is concerned with
arbitrary enlargements on the Poisson space and interprets the correction drift density
as a logarithmic variational derivative of conditional probabilities of the enlarging
information. In [6] and [7] initial enlargements of the Poisson filtration are interpreted
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using a Bayesian approach, where the enlarging random variable acts as a random
parameter in some statistical experiment.

In the present paper we will pursue the analysis of enlargements on the Poisson
space and show how semimartingale norms with respect to enlarged filtrations are
linked to the entropy of the new information. To get the foot in the door we mostly
restrict the analysis to initial enlargements, say by the o -algebra generated by a ran-
dom variable G. The analysis of more general enlargements is planned for future
research.

As mentioned above, in the continuous framework, such as provided by a Brown-
ian motion, the entropy of an initially enlarging random variable equals the square
norm of the information drift associated to any martingale verifying the PRP. On the
Poisson space, all martingales can be represented as stochastic integrals relative to a
compensated Poisson random measure but, in general, not as integrals with respect
to a single reference martingale. Consequently, the entropy of an initially enlarging
random variable can only match an entropy defined on the level of random measures.
In the following we will show that this is indeed the case. To this end we assume
that w is a Poisson random measure, IF is the smallest extension of the filtration
generated by p with the usual conditions, and G = (G;) is the initial enlargement
G = ﬂs>, 0 (G) v F;. The mutual information between the enlarging random vari-
able G and the o -algebra generated by the Poisson random measure p is shown to be
equal to the relative entropy of the G-compensator relative to the F-compensator. We
thus manage to establish a link between two different ways of measuring the new in-
formation contained in the enlarged filtration. In many examples the mutual informa-
tion between G and FL, the o -algebra generated by the Poisson random measure s,
can be easily calculated. On the other hand, the density of the G-compensator relative
to the F-compensator is the fundamental ingredient to compute for any F-martingale
M its G-predictable correcting density « that turns M — fot o ds into a G-martingale.
The link allows us to estimate the norm of the correction drift I fooo los | ds against
the mutual information between G and FL,, and the L2%-norm of the martingale M.

As a further consequence, we obtain that if the mutual information between o (G)
and FY is finite, then every F-semimartingale is also a semimartingale with respect
to G. This conclusion can already be drawn from results of the seminal paper [9]. In-
deed, if the mutual information between G and FL, is finite, then a condition, referred
to as Jacod’s condition (see (5.2)) is satisfied, and consequently the semimartingale
property is always preserved when passing from F to G (see the paragraph after
Theorem 5.11 for details). However, assuming finiteness of the mutual information
between G and FJ, allows us to go a step further and to prove that the set of square-
integrable F-martingales, denoted by H2(IF), can be continuously embedded into the
space of G-semimartingales with finite S' norm.!

The paper is organized as follows. In Sect. 2 we specify the basic setup and collect
some definitions of notions used thereafter. In particular, we recall some properties
of Poisson random measures and their compensators, which will be a central object
we focus on. In Sect. 3 we investigate the relation of Radon—Nikodym densities of
compensators and information drifts for enlarged filtrations. Section 3 deals mainly

IFor a definition of the spaces H” and SP, see Definitions 5.3 and 5.6 or [15], p. 154.
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with arbitrary enlargements, but starting from Sect. 4, we restrict the analysis to ini-
tial enlargements. A key theorem (Theorem 4.7) is shown, which links the expected
relative entropy between compensators, with the mutual information between the en-
larging o -algebra and the original filtration. This allows us, in Sect. 5, to prove the
inclusion H?(F)  S!(G) if the mutual information is finite. We distinguish between
finite and infinite time horizons and between finite and infinite jump measures v. We
conclude with some examples, showing the usage of our results.

2 Preliminaries

Let (£2, F,P) be a probability space, and v a o-finite measure on a standard Borel
space (E, £). Denote by A the Lebesgue measure, and let .« be a homogeneous Pois-
son random measure on (R; x E, A ® v). By this we mean, in accordance with
Definition 1.20 in Chap. II of [10], that p is an integer-valued random measure such
that

e forall A € B(Ry)®E with A\® v(A) < 00, the random variable u(w; A) is Poisson
distributed with intensity A ® v(A),

e forall A and B € B(Ry) ® £ with AN B =, the random variables u(w; A) and
u(w; B) are independent.

Throughout by F0 = (}"to )r>0 we denote the filtration generated by the homogeneous
Poisson random measure , i.e.,

f?:o({u(a); [0, 5] x U) 5c}|ce]R,s §t,U€5).

The smallest filtration satisfying the usual conditions® and containing F® will be de-
noted by F.

In our study of the semimartingale spaces with respect to I and their enlargements,
the notion of a compensator of p will turn out to be of crucial importance. For the
convenience of the reader, we next recall its definition.

Lemma and Definition 2.1 Let H be a filtration containing F. We denote by P (H)
the predictable o -field on 2 x R4 associated with H and, for any t > 0, by P; (H) its
restriction to 2 x [0, t]. Then, there exists a unique (up to a P-null set) predictable
random measure 7w, called the compensator of u relative to H, which satisfies the

condition
E(/ /q&(s,z)u(dz,ds)):]E(/ f¢(s,z)nH(dz,ds)> 2.1
o JE o JE

for every nonnegative P(H) ® £-measurable function ¢.

2Recall that a filtration F is said to satisfy the usual conditions if

(i) Fo contains all P-null sets of F,
(ii) T is right continuous, i.e., Fy =), Fu forall 0 <t < oco.

@ Springer



J Theor Probab (2011) 24: 93-117 97

It is straightforward to show that the compensator of © with respect to the filtration
F is the deterministic measure

nF=k®v.

In the following we will often use the abbreviation W= — 7 for the
H-compensated measure. Moreover, we will use the following notation.

Definition 2.2 Let n be a random measure. Then we denote by 1 x [P the measure on
F @ B(Ry) ® & defined by

(n xP)(A) :]E// la(w, s, 2)n(w,dz,ds), AeFRQBR;)QE.

Moreover, given a measurable process ¥, we will sometimes write (Y * n); =
fé f £ V(s,2)n(dz, ds) if the integral is defined either in the Lebesgue or stochastic
sense.

In the case v(E) = oo, it will be sometimes necessary to approximate E with
measurable subsets of finite measure. Since v is o-finite, there exist E,, € £, n =
1,2,...,such that E, t E and v(E,) < co. We define F"* = (F/');=0,n=1,2,...,
as the smallest filtration satisfying the usual conditions and containing the filtration
FOn = (F2");=0, where

F'=o({u(@; 10,51 x A) <c}|ceR,s <1,A€ ENE,). 2.2)

It is straightforward to see that \/ }}O M= f? and that the F-compensators of the

Poisson random measures

n>1

n () = p(-NRy x Ey)
have the following form:
75 =aF (- NRy x Ep). (2.3)
We will adopt the analogous notation of approximating filtrations and compensators
for enlarged filtrations G.
Finally, we recall the well-known fact that the compensated Poisson random mea-
sure 1 satisfies the predictable representation property (PRP) with respect to the

filtration T, i.e., for any locally square-integrable (IF, P)-martingale M = (M;);>0,
there exists a P(F) ® £-measurable process ¥ € L2(7 x P), such that

t
M,:Mo—i—// Y(s, 2)u" (dz,ds) = Mo+ (y x "),
0JE
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3 Information Drifts for Pure Jump Martingales

In this section we address the question under which conditions some given (F, P)-
local martingale remains a semimartingale with respect to an arbitrary enlarged fil-
tration, without making any assumption on the kind of the enlargement. Throughout
let G = (G;);=0 be an enlargement of the filtration IF' that satisfies the usual condi-
tions.

During the whole section, we assume that

I xP<af xP onP(G)RE. 3.1

In accordance with the literature (see [8]), we will use the following notion of infor-
mation drift.

Definition 3.1 Let X = (X;);>0 be an (IF, P)-local martingale, and let G = (G;);>0
be a filtration containing F. An information drift of X with respect to G is a
G-predictable process « such that the Lebesgue integral fot agds is a.s. defined for

all# > 0 and
t
X,—/ ogds
0

is a (G, P)-local martingale.

We will now define the process which will turn out to be the crucial object for
determining the information drifts with respect to enlarged filtrations.

Definition 3.2 Let 7€ x P be absolutely continuous with respect to 7F x P on

P(G)®E, and let ‘;((ZE :g)) lP@)ee be the Radon—Nikodym density. Throughout by §

we denote the process given by

5w, s, 7) = w —1 (32)
d(n" x P) PG)SE

The following lemma gives a first result concerning the form of the information
drift with respect to the filtration G.

Lemma 3.3 Ler ¢ € L2(nF x P) N L' (#F x P), and X be the square-integrable

martingale defined by X, = fé Jp (s, uf(dz, ds). Then v8 € LY(zF x P), and
the process defined by

t
M, =X, — / f ¥ (s.2)8(s. )" (dz. ds)
0JE
is a (G, P)-martingale.
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Proof Let 0 <s <t and B € G;. Notice that the G-predictable process 1p15 ¥
belongs to L' (1 x IP) and hence also to L'(n® x P) and that

t t
E[lg / / w<s,z>u<dz,ds>]=1E[1B / f ws,z)nG(dz,ds)}
s+JE s+JE

(see (2.1)). As a consequence, we may write

t
E[lB(Xt—Xs)]zE[IB// w(s,z)(nG—nF)(dz,ds)}
sJE

t
=E[IB// w(s,z)S(s,z)n]F(dz,ds)],
sJE

which implies the result. g

If we drop the assumption of Lemma 3.3 that ¢ € L'z x P), then ¥§ is
not necessarily integrable with respect to 7' x PP, and hence the Lebesgue inte-
gral fot f gV (s,2)8(s, ¥ (dz, ds) may not be defined. However, one can subtract
from any square-integrable F-martingale M, a continuous square-integrable and
G-predictable process so that M remains a martingale with respect to the enlarged
filtration G.

Lemma 3.4 Let € L*(n¥ x P) be F-predictable and put M, = (¥ % uF),. Then
there exists a continuous square-integrable and G-predictable process A such that
M, — A, is a G-martingale.
Proof Let y(w,s,2) = fi((f;:g))
quence of measurable sets in E such that Un E,=FE and v(E,) <ocoforalln>1.
We define the integrands v, (, s, z) = 1g, (2)¥ (v, 5, 2) and set M}' = (Yy" s ).
Note that ¥ (s, z)1j0,11(s) € L'(zF x P), and since it is F-predictable, it is also
in L'(z® x P). Therefore, we obtain from the equality "8 = "y — ¥" that
Y (s,2)8(s, 2) 10,1 (s) € L7 x P). Thus, we may define the Lebesgue integrals

lpG)ee(w,s,z), and let E, be an increasing se-

t
Af:// V' (s, 2)8(s, 2)7" (ds, dz).
0JE

By Lemma 3.3 we know that M = M — A" is a martingale with respect to the
filtration G.
Notice that for any pair n, m € N,

E sup (A7 — A7) <2E[ sup (M= M)’ + sup (11 —1}")’].
tel0,T] 1€[0,T] tel0,T]

and hence the Burkholder—Davis—Gundy inequality implies that for some constant
CeRy,

T
B sup (4= 4" <CE [ [ —ymatasan. 63
1€[0,T] 0+JE
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The right hand side of (3.3) converges to 0 as n, m — oo. Consequently, the sequence
A" is a Cauchy sequence converging to a continuous G-predictable process A satis-
fying EsuptE[O,T] At2 < 00. Moreover, for 0 <s <t and B € Gy, we have

E[15(M; — My)] = imE[15 (M} — M{)] =limE[15 (A} — AY)]
=E[15(4 - A))],
which proves that M; — A; is a G-martingale. 0

If we assume that 18 € L' (" x P), then Lemma 3.4 immediately implies the fol-
lowing result that provides our first general criterion for square integrable martingales
to possess information drifts with respect to enlarged filtrations.

Theorem 3.5 Let v € L>(7 x P) be F-predictable and put M; = (r % u%),. If
vs € LY (7T x P), then M is a (G, P)-semimartingale, and the process fE v(t,z7) X
3(t, z)v(dz) is its information drift with respect to G.

In general it may be very difficult to verify directly whether ¥/8 € L' (¥ x P).
In case of initial enlargements we will show that there is a very simple criterion that
allows one to deduce whether ¥/§ € L (JTF x IP) or not. More precisely, if G is an
initial enlargement of F by a random variable G, and the mutual information (see
Definition 4.2) between o (G) and F is finite, then for all ¥ € L?(z¥ x IP), we have
that ¥§ € Ll(JT]F x P). Before we can show this, we need some further auxiliary
results which are gathered in the remaining of this section.

Notice that § is not necessarily integrable with respect to 7" x P. However, we
have the following property of the process 4, stated as a lemma since it will be needed
later.

Lemma 3.6 Assume that the jump measure v satisfies v(E) < oo. Then, forallt > 0,
the process (8 % t¥), is integrable, and

t
IE(// SS(z,w,w)n]F(dz,ds))=0.
0JE

Proof Let M, := uf (w; [0, 1] x E). Since v(E) < 00, we have that M is square inte-
grable. We also know that

t
M,:M,—//5s(z,a),a))n]F(dz,ds)
0JE
is a (G, P)-martingale. Thus,
t
// 8s(z, w, )" (dz,ds) € L'(P),
0JE

so that, finally,

t
O=IE(M¢)=IE(// 53(2,0),0))7TF(dZ,dS)>. 0
0JE
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We close this section by recalling that the process &, defined in (3.2), can be inter-
preted as a logarithmic variational derivative of conditional probabilities of P. This
alternative representation has been employed in [1] as a mean to calculate explicitly
information drifts for examples of enlargements.

If we write P; for the regular conditional probability relative to ]_-lo’ then for any
A € Fr,the process (t, w) - P;(w, A) is an ]Fo-martingale, and by the representation
property quoted above, there exists a P (F) ® £-measurable process kg (w, z, A) such
that for all + > 0, we have P-a.s.

t
P,(-,A):P(A)+// ks (-, 2, Ay (dz, ds). G4
0JE

We first consider the case where G is an initial enlargement of [F by a finite partition.
More precisely, let P ={Ay, ..., A,} be a finite partition of £2 into measurable sets,
and let

G =()Fs Vo(P). 3.5)

s>t

Then one has the following simple representation of §.

Lemma 3.7 The process § defined in (3.2) satisfies, 1™ *F-a.s.,

n
k(s,z, A;)
S(w,s,2) =) lp———".
; Ps_(A))

Proof Let ¥ be P(F) ® £-measurable such that E[(|y| + |¥]?) % ] < co. Then for
any i € {1,...,n}, we have

E[(1a 9+ 1")]

=F <]P’(Ai)+/ /k(s,z,Ai)uF(ds,dz)>/ /llf,u]F(ds,dz)}
L 0 E 0 E

=F /oo/ k(S,Z,Ai)w(S,Z)ﬂ]F(ds,dz):|

=FE / //IA( )k(]; (ZAA)) S(a),da)/)l/f(S,Z)T[F(dS,dz)],

Fubini’s theorem further yields

E[ (14, * u")] |:1A/ /k(I; (ZAIL;)Ilf(s,z)nF(ds,dz)}

which implies

n

k(s,z, A;
E[(lAlw// *M)] =E|14¥G6. 01+ Z lAiM w«7" (ds, dz) |.
i1 Py (A7)
Finally a monotone class argument shows the result. g
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Now suppose again that G is an arbitrary enlargement. Moreover assume that
there exists a countably generated filtration G* = (Q,O)tzo such that G is the smallest
filtration containing G° and satisfying the usual conditions. The next lemma, a gen-
eralization of Lemma 3.7, summarizes some results shown in [1].

Lemma 3.8 If k;(w, z, ) is a signed measure on g,o_, such that k;(w, z, ')|g§L <

Pr(w,)lgo , (¥ x P)-a.s., then there exists an F ® G-predictable process B such
0
that

ki(w,z,do’
ﬂ(a),a)/,t,z)=7t(w 2 dw)
Pi(w,do’) G0

for 7F x P-a.a. (w, t, 2). Moreover, the process & defined in (3.2) is equal to the
diagonal of B, i.e., we have, 7F x P-a.s.,

B(w,w,t,7) =8w,t, 7).

Proof See Lemma 2.5 and Theorem 2.6 in [1]. O

4 Entropy of Compensators Relative to Initially Enlarged Filtrations

In this section we will have a closer look at initial enlargements. Throughout let G
be a random variable and assume that G = (G;) is obtained by enlarging IF initially

with o (G), i.e., that G, = (), ,(F; vV 0 (G)). We will see that in this case the relative

entropy of the compensator 7€ with respect to the compensator ¥ coincides with

the mutual information between the enlarging random variable G and the o -field
generated by the Poisson random measure p. Thus, two different ways of quantifying
the new relative information contained in the enlarging random variable G are shown
to provide the same result.

We start by recalling some definitions and basic results that will be used later.
Apart from that, we will use the same notation as in the previous sections.

Definition 4.1 Let Q! and Q be finite measures on a measure space (A, A), and let
BB be a sub-o-field of A. The relative entropy of Q! with respect to Q? on the o -field
B is defined by

[ log (% |B)d(@l if Q! « Q? on B,

o0 else.

Hp(Q'1Q?) =

Definition 4.2 Let A, B be two sub-o-algebras of F. Suppose that there exists a
regular conditional probability of P with respect to B, denoted by P(-|5). Then, the
mutual information between A and B is defined as

1(AIB) = EH 4 (P(-|1B)|IP).
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Consequently, if P(:|B) < P on A a.s., then

P(do'|B)(w) ,
1(A|1B) /f ( P A)P(dw|8)ﬂ”(dw).

Lemma 4.3 Let G, H be two random variables, and denote by Pg and Py their
distributions. Moreover let PG p be the joint distribution of G and H. Setting A =
0(G) and B=0(H), we have

1(A|B) = H(Pg,ulIPc ® Pr).
Proof The statement follows from the fact that

P(H €dx|G=y)  P(Hedx,G edy)
P(H edx)  P(H edx)@P(G edy)’ L

It is well known that the relative entropy satisfies the following monotonicity prop-
erty.

Lemma 4.4 (See, e.g., Theorem 1.30in [13]) Let Q! and Q? be two probability mea-
sures defined on a measure space (A, A), and let (A,) be a sequence of increasing
sub-o -fields such that A=\/, A,. Then (H 4, (Q'|Q?)) is an increasing sequence,
and

lim#.4,(Q'10%) = HA(Q'1Q%).

Lemma 4.4 immediately yields that the mutual information between two
o-algebras can be approximated by mutual information between finite sub-o-
algebras.

Lemma 4.5 Let A ={Ay,..., Ay} be a partition of §2 into measurable sets. Then,
forallt >0,

n

I(o(Q)IF) =Y E[l4, (log(P: (-, A) — log(P(A)))].

i=1
Moreover, if T, =t Ainf{s > 0: Ps(-, A;) < %for one i}, then

I(U(A)H}}) = supI(U(A)H]-',m).

Proof We may assume that P(A;) > O foralli € {1, ..., n}. Observe that

_ P(dw'|F,) ,
I(G(A)Ilfzm)—/Qlog(ip(dw/) om))IP(dw | P, )dP (@)

[ < , P(A; | Fr,) (@) ,
= [9 l; 1a, (cu)log(W)]P’(dw |7, )dP ()

=Y E[P(Ai|Fy,) logP(A; | Fy,) — P(Ai) log P(A))].
i=1
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Since {P(A;|Fz,) =0} C {P(A;|F;) =0} a.s., we have lim,,, P(A;|F7,) = P(A;|F)
a.s. Consequently, we obtain lim,, I (0 (A)||F%,,) = I(o(A)||F;), and hence the re-
sult. O

The next lemma guarantees that we may also approximate the density of 7€ x P
relative to 77 x P by using finite partitions.

Lemma 4.6 Let v(E) < oo and T € Ry. Let P, be a sequence of finite partitions
of §2 such that Py C Pyy1 and A=\/, -, 0 (Py). Let G;' = (s, (F1 V 0 (Pn)) and
set Gy =y, (Fr V A). IprT(G)@;g(nG x P||7¥ x P) < oo, then the densities of
78 x P relative to 7% x P converge along a subsequence weakly in L' (x¥ x P) to
the density of ©© x P relative to ¥ x P.

7" (ds,dz)
¥ (ds,dz)

a.s. Then sup, EfOTfE yulog(8)m ¥ (ds, dz) < Hp,c)ee (7" < oo, and hence

Proof Let y,, (s, z) be a P(G) ® £-measurable process such that y,, (s, z) =

the sequence (y,) is uniformly integrable in L' (7" x P) (see, e.g., Theorem 4.5.9
in [4]). Consequently, there exists a subsequence, also denoted by (y;,), that converges
weakly in L! (¥ x P) to a function y € L (z¥ x P) (see, e.g., Theorem 4.7.19 in [4]).
Now let N € N, and let f be a bounded and nonnegative P(G") ® £-measurable
process. Then, due to the weak convergence,

T
(e r =tmE(r 27, =E [ [ s, a0
n 0JE

T
=1E//fynF(ds,dz).
0JE

Moreover, by the definition of the G-compensator 7©, we have E(f % u)r =
E(f = 7©)r, and hence

T
E(f*nG)T:E//fyﬂF(dS,dZ). 4.1)
0JE

With a monotone limit theorem one can show that (4.1) holds for any nonnegative
P(G) ® £-measurable process f, from which we obtain that y is the density of
7€ x P relative to 7F x P. O

We are now in a position to state the main result of this section, establishing the
link between the relative entropy of 7€ and 7F, and the mutual information between
the enlarging information G and the old information represented by F.

Theorem 4.7
(1) If T e Ry and v(E) < o0, then

Hpr@)xe (7 x Pla” x P) = 1(0(G) |1 Fr).
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(1) Let T, € Ry such that T,, 1 oo, and E1, E3, ... an increasing sequence of sets in
E with E,, t E and v(E,) < 00. Then we have

supHp,, @)xenen (T x Pl x P) = I(0(G)l| Foo).
n

We first show the theorem for filtrations that are initially enlarged by finitely many
measurable sets. The proof of the general result will then be based on the fact that any
initial enlargement can be approximated by initial enlargements with finite partitions.

Lemma 4.8 Assume that T € Ry and v(E) < 00. Let A ={Aq, ..., A,} be a parti-
tion of §2 into measurable sets, and consider the enlargement of the form

G =F'Vva(Al ..., A.

Again, let G be the smallest filtration containing G° and satisfying the usual condi-
tions. Then, the relative entropy of 1€ x P with respect to ¥ x P on Pr(G) ® £ is
given by

Hpp@)xe(®® x P’ x P) = I(0 ()| Fr).
Proof Lete > 0. Then foranyi =1, ..., n, from Itd’s formula we obtain

log(IP’t(-, Aj) +e)

bdPg(-, Ap)
= log(P(A; el A L
og(P( )+6)+/o+1P’s_(~,A,~)+e
AP (-, A
+ Z {log(Ps('aAi)—f-G)—IOg(Ps—(wAi)‘l'f)—ﬁIM_ie}
O<s<t S=A A
With (3.4) we further get
log(IP’,(~, A+ e)
ks(-,z, A ]F
=log(P(A;) +¢€) /()+f (. A)+ (ds,dz)
AP (-, Aj) AP (-, Aj)
+0§J1og(1 "B A +e) TP A) +e}
ks(-,z, A}) uF
=1 IF’A ds,d
o2(F(4) +¢) /OJIP’ Ay elt @d

ks (o 2, A ks (-, 2, A7)
+/0+/E{log<l * Ps—(-, Ai) —l—e) P, A +e }M(ds’dz)'

Using It6’s isometry and the fact that P, (-, A;) is an Lz—martingale, one can deduce

that for all i € {1,...,n}, we have ky(w, z, A;) € ]]_42(7r]F x P), and therefore also
el cL2(xf x P).
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Consider, for all m > 1, the stopping times

1
T =T/\inf{t20:]P’t(-,A,-) < - foronei}.

By Lemma 3.7,
S NCED!
s\ <5 A
dsnty, = Z L4, ml[o,rm](s)»
i=1
which yields that 1o, rm](s)%ﬁs (z, ) belongs to L'(#F x P). In particular,

the integral fome ks (( ZAAH)_E (n® — 7%)(ds, dz) is defined. Denoting by MtG’i the

(G, P)-local martlngale fOJE %MG(&S, dz), we get

log(]P’fm(-, A+ e) — log(IP’(Ai) + e)
— MG 4 ks(.2,A) ¢
M /0+/IF’ 3 A)+e(ﬂ n)(ds,dz)

m ks(',ZvAi) ks(',Z, Al)
+/(;+/E{10g<1 - Ps— (-, Ai) +6) P (L Aj) fe }M(ds’dz)'

Taking the expectations, we obtain the equality

E(Z 14, [log(Py, (-, Aj) + €) —log(P(A;) + e)])

i=1

= kg(-,z, Ap) .
E<Z/0+/ lA'P (,A) +e€ 95 (z, 0, )10 (dz,ds)>
; k(- 2, Aj)
HE(,-;L/U {log( Py (- A)—l—e)

kS('y Z, Al) G
B m}ﬂ (ds,dz)>,

where § is defined as in (3.2). Observe that the expectation can be further simplified
to

‘ ks(-, 7, Ap)
E[§f+/1A,P A ie 85(z, w, w) (dz, ds)
tm ks(',Z,Ai) ks('stAi)
14.41 1 —
/0/ Al{°g< +IP>S<-,A1-)+€> Ps<-,A,-)+e}

x (14 85(z, , a)))nF(dZ, dS)j|
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Tm kS( Z A) F
_+]E<Zf /IA log<1+P CA)te )(I—I—SS(z,a),a)))n (dz,ds))
k?( z, A ) 7F
—E dz,ds) ).
(Z/OJ YB_Gap+er “))

We now let e converge to 0 on both sides of the previous equation. First note that, as
¢ | 0, the left-hand side converges to

E(Xn: 14, [log(Ps, (-, A)) — 1og(IP>(A,~))]> =1(c(A)||F,).

i=1

Moreover, it follows from dominated convergence and Lemma 3.6 that
. ks(-, 2, Aj) IF
limE dz,d
JI‘S( //( P, (A>+> @ d
=1E< / f 5s(z,w)ﬂ]F(dz,dS)>
0+JE

=0.
This yields
I(o (M) Fy,)
T ks(-,z, A;) F
_ISIB‘E(Z/OJ b l°g< B (A +e >(]+5X(Z’w))” (dz’ds)>

4.2)

Now suppose that 1f 1, (1 + &) log(1 + 8) is integrable with respect to 7% x P. It is
easy to verify that

<la

k
1+8)log( 14+ ——
a+ptog(14 5

and hence, by dominated converge we may interchange integration and limits in (4.2),
which yields

I(O(A)Hffm):E/ m/ log(1+ (s, 2))7 % (ds. d2).
0 E

Finally, suppose that 1j9 (1 4+ §)log(1 + §) is not integrable. In this case, Fatou’s
lemma implies

o k(- 2, Ay)
hrén&)nf]E< / /1,4 log<1+]P) A )+€)(1+8Ay(z,w,w))nﬂ’(dz,ds))
zEf /log(1+5(s,z))JTG(ds,dz)=oo
0 JE
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To sum up, we have shown that for all m > 1,

o d(x® x P)
(o (M) Fy,) = / / <d(n FxP)

By letting m — oo and using Lemma 4.5, we obtain the result. g

) C(ds, dz).
Pr(®E

Corollary 4.9 Let G be an Fr-measurable random value taking only finite number
of values g1, ..., gn. Consider the initial enlargement of the form Q,O = .7:,0 Vo (G).
Then

Hpr@xe(TE x Pl x P) = ZP(G gi) log(P(G = g)).
i=l1

Proof 1t suffices to observe that the initial enlargement by G is given as an enlarge-
ment by partition of the form A; = {G = g;}. Then, Theorem 4.8 completes the
proof. d

For the proof of Theorem 4.7, we need some further auxiliary results. We start
with the following one.

Lemma 4.10 Assume that v(E) < oo, T € Ry, and let H = (H;) and G = (G;) be
two filtrations such that F; C H; C G; forallt € [0, T]. Then A xP=rg"xPon
the o -algebra P(H) ® &, and

Hppaxe (T x Pla™ x P) < Hp,cyxe (7€ x Plz™ x P).
Proof Let f be a nonnegative P (H) ® £-measurable process. Then
E(f "), =E(f * w1 =E(f x7%),

which implies that 7™ x PP coincides with 7& x > on P(H) ® £. Moreover, by using
Lemma 4.4, we get

HPT(H)®€(”H X IP”T[]F X IP>) = HPT(H)@,g(ﬂG X ]P’||7tIF X ]P’)
< Hp,@ee(r® x Plr" x P),

and hence the result. O

We proceed by showing that if E, E», ... is a sequence with E, 1 E and v(E,) <
00, then Hp, (@)~ (En En)(JTG x P|7® x P) is an increasing sequence with a limit not
depending on the choice of the approximating sequence E,. To simplify the nota-
tio% we will use the abbreviation H, (7€ x P||z® x P) = Hp, (G)X(gnEn)(nG x P
|l x P).

Lemmad4.11 Let T € Ry, andlet E1, E», ... be a sequence of measurable sets with

E, t Eandv(E,) < 0o.ThenH, (7C xP7C xP) isan increasing sequence. More-
over, its supremum does not depend on the choice of the approximating sequence E,.
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Proof Let A € £ with v(A) < o0, and let ¢ = nF([O, T] x A). Note that also
7€([0, T] x A) = c. By Jensen’s inequality we have

3

c

d(7C x P) d#xC® xP)\ d=F x P)
c F lo T >0
2x[0,T]xA d(@" x P) d(m* xP)

which implies that H,, (7 x P|7C x P) is an increasing sequence.
Let (E,) and (D,,) be two increasing sequences of measurable sets with | J,, E,, =
U, Dm = E, v(E,) < 00, and v(D,,) < oo for all n,m > 1. Then, by dominated

convergence,
d(#xC x P) -
1g 1 ——)d P

d(7x® x P) P
ZSSPSLJ})/IEanm log<m d(7" x P)

d(#xC x P) G
= 1 1 ——|d P

drC® xP
ZSEP/IDm log<%>d(n(@ xIP’),

which completes the proof. g

Proof of Theorem 4.7 First assume that 7 € R and v(E) < oco. Let P, be a se-
quence of finite partitions of £2 such that P,, C P41 and A = \/nzl o(Pp).Let G} =

Ny~ (Fi V o (Py)) and set G" = (G'). Then, by Lemma 4.8, Hp, Gngs (r®" x P
|7 x P) = I(6(P,)||Fr). Moreover, Lemmas 4.4 and 4.10 yield

I(AIIfT) = supl(o (Pn)”./TT) = sup Hp, (G"RE (nGn x P x ]P’)
n n
= sup Hp,emee (7€ x Pllr™ x P)
n
=Hp,@oe (¢ x Pzt x P),
which proves statement (i) of Theorem 4.7.

Now suppose that v(E) = oo, and let Ey, E3, ... be a sequence of sets in £ with
E, 1t E and v(E,) < oco. Let " be the associated approximating sequence of filtra-
tions as defined in (2.2), and let G" = (G}") be defined by G' =(,.,(F7 V 0 (G)).
Then

1(0(G)1F}) = Hppeneent, (19 x Pla™ x P).
which, due to (2.3) and Lemma 4.10, simplifies to

(o (G)IF}) = HppemeEnen) (78 x Plr™ x P).
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If T,, € R, are such that T,, 1 oo, then Lemma 4.4 implies
1(0 (G| Foo) = supHpy, @maene, (77 x Pla® x P)

n

— G F

= supsup Hp,, GmeEnEy) (T X Pllr" x P)
n m

= sup Hpy, @) Eney (17 X Pllr’ x P),
n

and hence statement (ii) of Theorem 4.7. O

5 Embeddings

In this section we will analyse some standard norms on the set of semimartingales
and see how they depend on the filtration relative to which they are defined. We shall
see how the results from the preceding section can be used in order to give some
general estimates of changes in the semimartingale norms when enlarging F to a
filtration G. In particular we show that if G is an initial enlargement of F by some
random variable G with finite entropy, then every square integrable (IF, P)-martingale
is a (G, P)-semimartingale and possesses an information drift which is L!(A x P)-
integrable. We will start with an easy observation concerning the preservation of the
semimartingale property.

Theorem 5.1 Let v(E) < 00, and let G be an arbitrary (not necessarily initial) en-
largement of F. Then, every (F, P)-semimartingale is also a (G, P)-semimartingale.

Proof Let X be an (IF, P)-semimartingale with Doob—Meyer decomposition X; =
M; 4 A,. From the predictable representation property of u we deduce the existence
of an F-predictable process i such that

t
M,:M0+// w(s,z),u]F(dz,ds).
0JE

If v(E) < 0o, then one can show that ¢ € L' (¥ x P) (see Theorem 4.37 in Chap. IIT
of [10]). This means that X is a finite-variation process and hence a semimartingale
with respect to G. O

Definition 5.2 Let X be an (F, P)-semimartingale. Given the semimartingale decom-
position X =M + A, forall 1 < p <ooand T € [0, oo], we define

1 T
Jpr (M, A) = H (M, M]3 + /0 A, |

L

Further, we shall simply denote j, oo by jp.
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Definition 5.3 For given 1 < p < 00, the space of all (F, P)-semimartingales X such
that

inf M, A ,
XM A Jp1( ) <00

where the infimum is taken over all semimartingale decompositions, is denoted
by S7. We will adopt the notation S? := S%,.

Let 1 < p < 0o. One can show that every semimartingale in S}’ is special, which
means that there exists a decomposition X = M’ + A’ such that A’ is F-predictable
and A =0.

Definition 5.4 We define a norm on S}’ by
IXllsr = jp.r (M, A).
Lemma 5.5 There exists a constant C = C(p), such that

ClIX < inf j,M,A <|X|s»r.
IXllsr = inf jp(M, A) < [ Xllss

Proof See Remark (c) of Sect. 98 in Chap. VII of [5] for the case T = oo. The proof
in the case T < oo is analogous. 0

Definition 5.6 The subspace of Sg consisting of martingales will be denoted as Hl;.

Definition 5.7 Let f : R — R U {400} be a convex function on the real line. The
function f*: R — R U {400} defined by

F*() = sup(xy — f(x))
xeR
is called the Legendre transform of f.
We recall here the well-known Young inequality, which uses Legendre transforms.
It states that for convex f and its Legendre transform f*, the following inequality

holds:

xy < f)+ ).

From Young’s inequality we easily obtain the following lemma.
Lemma 5.8 Forall x e R and y > —1, we have
xy<e' —x—1+(y+Dlogly+1)—y.

Proof Tt suffices to apply Young’s inequality to the function f(x) =e¢* —x — 1, and
a straightforward calculation yields the result. O
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We now use the preceding results to prove the following embedding theorems.
First, let us begin with the following easy lemma.

Lemma 5.9 Consider an arbitrary enlargement G of F with finite time horizon
T < 00, and assume that v(E) < 0o. Then H*(F) C S'(G). Moreover, the inclusion
mapping X +— X is continuous.

Proof First, observe that if X € HzT (), then X is a finite-variation process. Indeed,
by Jensen’s inequality we obtain

T T
E/ |dXX|§2E<//|1//(s,z)|7rF(dz,ds))
0 0JE
T 5 :
<2 TV(E)(//|¢<S,Z>| nF)
0JE

=2/TV(E) X3z sy

Therefore, X, = 0 + X, is a semimartingale decomposition with respect to filtra-
tion G. Hence, by Lemma 5.5 there exists a constant ¢ € R such that

1Xllg1 ) < Cin.7(0. X).

Combining this with the previous inequality, we obtain

”XHS}(G) <2Cy TV(E)”X”HZ(]F),
which ends the proof. g

Although from Theorem 5.1 we know that for v(E) < 0o, if X € H2(F), then X
is a (G, P)-semimartingale, it is not true that H2(F) C S'(G) in general. The next
example shows that the assumption 7' < oo cannot be omitted in Lemma 5.9.
Example 5.10 Let v be a deterministic function given by (s, z) = 1# and, as

+s°
usual, let X; = f(;fE W (s, 2)u¥ (dz, ds). Then

”X”HZ(IF):E(/ / ! JTF(dZ,ds)> =|)(E)/ L < 00
0 Je (1492 0 (1+5)?

On the other hand, if we take G; = Fo, then

1Xls1 6 /0 14| /0 o

Thus, a natural question arises: what happens if we relax the assumption of 7 < 0o
or V(E) < 00? The next theorem gives some answer to this question.

@ Springer



J Theor Probab (2011) 24: 93-117 113

Theorem 5.11 Consider the initial enlargement of the form G = (., Fs V 0(G)
for some random variable G. If the mutual information between o (G) and Fo is
finite, i.e., I (6 (G)||Fxo) < 00, and v is o -finite, then

(i) Every X € H?(F) possesses an integrable information drift with respect to the
enlarged filtration G. More precisely, if X; = Xo + féfE W (s, 2)u¥ (dz, ds), with
Vv € L>(7¥ x P) being F-predictable, then 1, = fE ¥ (s, z2)8(s, 2)v(dz) is the
associated G-information drift.

(i) H2(F) c SL(G).

Proof Notice first that I (6 (G)||Fxo) < 00, together with Theorem 4.7, implies con-
dition (3.1), and hence the process § is defined (see Definition 3.2).

Let us begin with part (i). Let X € H2(F) with X, = Xo+ fy [ ¥ (s, 2)uF (dz, ds),
and set ot(s,z) = W(S»Z)l{hﬁ(s,z)lil} and ,B(S,Z) = ¢(sz)1{|1/f(s,z)|>1}- Observe
first that B8 € L'(zF x P). Indeed, since B2(s,z) > |B(s,z)|, we have that

BeL'(x¥ xP)NL2(nF x P), and we can apply Lemma 3.3.
Let 7, € Ry with T, 1 oo, and let E,, € £ be an increasing sequence such that
E, 1 E and v(E,) < oco. Then monotone convergence implies

o Tn
]E(f /|a(s,z)5(s,z)|nF(dz,ds)>gsupﬂ«:(// |a(s,z)5(s,z)|nF(dz,ds)>.
0 JE n 0 JE,

Now, from Lemma 5.8, we get
Tu
E(/ / |oc(s, 2)8 (s, z)|n1F(dz, ds))
0 E,
Ty
= E(f / (el 2NsenC2) — 1 — [y (s, 2)| sgn(8 (s, 2))) Ly @z, ds)>
0 E,

Tn
—HE(/ / (8(s,2) +1)log(8(s, 2) + 1) — 8(s, )" (dz, ds)).
o JE,
Observe that

Hpy, ©)eENE, (JTG x Pz¥ x [P)
Tn
= E(/ / (S(S, 7))+ l)log(a(s,z) + 1)7TF(dZ, ds)),
o JE,

which, together with Lemma 3.6 and Theorem 4.7, shows that
Ty
IE(/ / (5(s,2) + 1) log(8(s, ) + 1) — 8(s, )m" (dz, ds>> < 1(0(G) | Foo)-
0 n
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Moreover, we have

Ty
E(/ f (e\ilf(s,z)\sgn(S(s,z)) 11— |¢(S,Z)| Sgn((S(S,Z)))1{|1/,|51}7TF(dz,ds))

T, k
_E< / /E (W(S,z)lsgl((S(s,z))) Lipis oy ¥z, ds)>

" k=2

<E<// T N )

<(e—2)E/ /|1ﬁ(s z)\ 7% (dz, ds) = (e — 2)||X||H2(F)

Thus,
E(/O /E|a(s,z)5(s,z)|nF(dz,ds)> < I(G(G)H]:oo)+(e—2)||X||$_[2(lF), 5.1

This further yields that /6 = a8 + B8 belongs to L' (7" x IP), and we can use Theo-
rem 3.5 in order to deduce that f £ ¥dv(dz) is the required information drift.
Now, let us proceed with part (ii). We decompose X into

X, =X%+Xx?,
where

t
Xf‘=xo+f/ als, 2" (dz, ds),
0JE

1
Xf:/f B(s, Dk (dz, ds).
0JE

Observe that X?# is of finite variation. Indeed, we have

E(/ |de|> < 2]E</ / |1/f(s,z)’1{|1/,(5,z)|>1}/i(d11ds))
0 o JE
< 2]E</0 \/;¢2(S, Z)l{|W(s,z)|>]}M(dZv ds))
< 21E< / oo/ Y2 (s, 2)pldz, ds))
o JE

=2E[X, Xloo = 2 XI55

where in the first inequality we used the fact that total variation of a sum (or dif-
ference) of two processes is not greater than the sum of total variations of these
processes. Thus, by Lemma 5.5 we obtain that there exists a constant C € R, such
that

% | = Cn(0, %) = ci( [ " ax?]).
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This implies that

On the other hand, we know that the norm || X®|| s1 g, can be estimated by

| x“] 516, = E[X. X“]éo + ZIE(‘/(; /E |ee(s, 2)8(s, 2) 7" (dz, ds)).

By combining this with inequality (5.1) we get

1
1% 516y < EIX, X1& +2(e = DX 3 5, + 21 (0(G) [ Fox)
< VEIX, Xloo +2(e = DI X 5 + 21 (0(G) | Fx)
= IXlypq +2@ = DIX 3 + 21 (0 () Fx0),

where the second inequality follows from Jensen’s inequality. Finally, we obtain

IXls1e) < X s1 6y + 1XP | 516,

< X @ +2(e =2+ O X3 + 21 (0(G) | Fos).

()

which completes the proof. O

We remark that if /(o0 (G)||Fso) is finite, then a condition introduced in [9], and
often referred to as Jacod’s condition, is satisfied. Let P;(w, -) denote a version of
the regular conditional distribution of G with respect to F;. The condition introduced
in [9] states that for all ¢, there exists a positive o-finite measure 7; on (R, B(R))
such that

Pi(w, ) < n () 5.2)

for P-a.a. w. It is shown in [9] that (5.2) implies that every F-semimartingale also is
a G-semimartingale.

In Theorem 5.11, Jacod’s condition is replaced with the stronger assumption
1(0(G)||Fso) < 00, thus allowing us to obtain some estimates of the FV part in the
G-Doob-Meyer decompositions in terms of the mutual information.

We close this section with some examples, verifying whether the assumption
I1(0(G)||Fxo) < 00 is satisfied.

Example 5.12 Let ¢ € L'(z¥) be a deterministic positive function and define

G = fooof £ V(s,2)u(ds,dz). Then G is Poisson distributed with parameter A =

fooof gV (s, ¥ (ds, dz) € R . The mutual information between G and F, is given
by

M Al
I(a(G)||.7-'oo) =— Ze*)‘i—‘ log(eki>,
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which is easily shown to be finite. Consequently, by Theorem 5.11, every square-
integrable F-martingale possesses a G-information drift and belongs to the class of
semimartingales S!(G), where the filtration G = (G,) is defined by

G =% Vo(G).

s>t

Example 5.13 Let t be the first jump time of a standard Poisson process N = (N;);>0
defined on our probability space. The mutual information between 7 and F is infi-
nite, since the distribution of 7 is absolutely continuous with respect to the Lebesgue
measure. By adding some noise, however, the mutual information may become fi-
nite again. More precisely, let X be centered Gaussian random variable, independent
of Fuo, with distribution that is absolutely continuous with respect to the Lebesgue
measure. Let T =7 + X, and consider the enlargement

Gi=()F Vo).

s>t
According to Lemma 6.2 in [2], the mutual information satisfies

. 1 Var(t) 4+ Var(X)
I(o (D)1 Fx0) < EIOg(T(X)> <

Notice that the variance Var(t) is defined since 7 is exponentially distributed.
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