
Journal of Optimization Theory and Applications (2021) 189:46–65
https://doi.org/10.1007/s10957-021-01819-w

OptiDose: Computing the Individualized Optimal Drug
Dosing Regimen Using Optimal Control

Freya Bachmann1 · Gilbert Koch2 ·Marc Pfister2 · Gabor Szinnai3 ·
Johannes Schropp1

Received: 10 June 2020 / Accepted: 22 January 2021 / Published online: 24 February 2021
© The Author(s) 2021

Abstract
Providing the optimal dosing strategy of a drug for an individual patient is an impor-
tant task in pharmaceutical sciences and daily clinical application. We developed
and validated an optimal dosing algorithm (OptiDose) that computes the optimal
individualized dosing regimen for pharmacokinetic–pharmacodynamicmodels in sub-
stantially different scenarios with various routes of administration by solving an
optimal control problem. The aim is to compute a control that brings the underly-
ing system as closely as possible to a desired reference function by minimizing a
cost functional. In pharmacokinetic–pharmacodynamic modeling, the controls are
the administered doses and the reference function can be the disease progression.
Drug administration at certain time points provides a finite number of discrete con-
trols, the drug doses, determining the drug concentration and its effect on the disease
progression. Consequently, rewriting the cost functional gives a finite-dimensional
optimal control problem depending only on the doses. Adjoint techniques allow to
compute the gradient of the cost functional efficiently. This admits to solve the opti-
mal control problem with robust algorithms such as quasi-Newton methods from
finite-dimensional optimization. OptiDose is applied to three relevant but substan-
tially different pharmacokinetic–pharmacodynamic examples.
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1 Introduction

An optimal drug dosing regimen is a prerequisite to provide the best possible care for
every individual patient. However, a diversity of individual factors need to be consid-
ered including current disease state, patient characteristics and the clinical goal for
this patient. In pediatric patients, developmental changes have to be incorporated addi-
tionally. In (preterm) neonates, we face even more difficulties because fast maturation
processes start immediately after birth which impact the drug effect, see, e.g., [1–3].
Therefore, it is essential to support clinicianswith sophisticatedmathematicalmethods
to compute the optimal dosing regimen for every individual patient.

Mathematical modeling has become an essential tool in drug developing indus-
tries and clinical pharmacology departments in hospitals. The US Food and Drug
Administration recognized such computational modeling and simulation tools as an
improvement in the efficiency for developing safe and effective drugs [4], especially the
so-called pharmacokinetics (PK) and pharmacodynamics (PD)models [5–7], a combi-
nation of mathematical and statistical methods, incorporate biological, physiological
and pharmacological behavior. Roughly speaking, the PK deals with the distribution
and elimination of a drug and the PD characterizes the effect of the drug on a specific
target. PKPD models are formulated with a system of nonlinear differential equations
[7–10].

Up to now, the computation of a “good” dosing regimen for an individual patient
is a laborious and biased task in clinical pharmacology. Often, a large number of
simulations for varying dosing regimens are performed with the developed PKPD
model and the “best” dosing regimen is selected “by hand.” In contrast, e.g., in the
development process of oncology drugs [11], optimal control approaches are already
used to increase the probability of successful phase 2 clinical trials [12]. However, the
research questions in such clinical trials during drug development may differ from the
goals in clinical application, and therefore, often the drug concentration of potential
drug candidates is optimized and not the doses itself that cause the drug concentration.

In clinics, the goal for the individual patient is usually clearly defined by the physi-
cian. For example, in hormonal diseases the aim is not always to return the hormone
levels as quickly as possible to the normal range but to follow a moderate disease
reduction over several weeks. Another situation is to achieve a specific concentration
of a target (e.g., a drug–receptor complex) having the most beneficial impact on the
disease [13].

Although control theory is widely applied in many different engineering fields such
as aerospace (the field where it was originally developed by Pontryagin [14]) or eco-
nomics, its application in daily clinical practice is still quite rare. Various reasons are
possible, e.g., many drugs are promoted as “one size fits all,” and therefore, individual
patient characteristics are completely ignored. Another reasonmight bemuch simpler;
currently, to our knowledge no software for solving optimal control problems (OCP)
is available that is custom-built for PKPD models and addresses the needs in daily
clinical application.

In this paper, we develop a mathematical OCP that is especially designed for PKPD
models and name the software OptiDose. In contrast with many applications [12,
15,16], we are not using the time course of the drug as a continuous control. We

123



48 Journal of Optimization Theory and Applications (2021) 189:46–65

directly optimize the doses for a given time schedule which is the clinical situation
for patients treated with oral, subcutaneous or intravenous bolus administration. This
allows to construct a finite-dimensional reducedOCPwhich can be solved using robust
algorithms from finite-dimensional optimization such as quasi-Newton methods.

Moreover, we will apply nonlinear model predictive control (NMPC), in engineer-
ing also called closed-loop strategy, see [17] for theoretical details and [18] for an
application to hemodialysis. This meets clinical needs as it allows to adapt patient
parameters during the optimization if the covariates change over time, e.g., due to
maturation processes or sudden changes in the disease characteristics, or if more clini-
cal measurements are available. In addition, this strategy enables to react to unforeseen
events such as missed or wrong doses.

Finally, we present three examples of different complexity, a biomarker indirect
response model, a tumor growth inhibition model and a model characterizing various
binding dynamics of a bispecific monoclonal antibody from immuno-oncology.

2 The Pharmacokinetic–Pharmacodynamic Model

In this section, we present the pharmacokinetic–pharmacodynamic (PKPD) model,
usually a system of nonlinear ordinary differential equations describing the dynamics
of a certain disease and the action of a drug, and discuss its unique solvability.

Let us consider the time interval [0, T ] with (possibly large) final time T > 0. We
assume that for i = 1, . . . ,m with m ∈ N the drug doses ui are administered ni ∈ N

times at specific time points ti,l , l = 1, . . . , ni satisfying

0 ≤ t1,1 < . . . < t1,n1 < . . . < tm,1 < . . . < tm,nm < T

orally or subcutaneously (SC), as intravenous (IV) bolus or as IV infusion with a
constant infusion rate for a certain duration Δti , i = 1, . . . ,m. In accordance with the
typical notation in optimal control, we introduce u = (u1, . . . , um) and the associated
finite-dimensional control space U = R

m . As only nonnegative doses or rates with a
given upper bound umax ∈ R

m, umax > 0 can be administered, we define the convex
and compact admissible subset

Uad = {u ∈ U | 0 ≤ u ≤ umax} ⊂ U

where ’≤’ denotes the componentwise comparison. Let u ∈ Uad be arbitrarily chosen.
Then, the PKPDmodel, in the context of optimal control also called the state equation,
describes the model state

y′(t) = g(t, θ, u, y(t)), t ∈ ]0, T ] almost everywhere

y(0) = y0(θ). (1)

Here g : [0, T ]×Θ ×U ×R
n → R

n is the PKPDmechanism, θ the model parameter
in the set Θ of admissible model parameters, y0(θ) ∈ R

n the initial value and u =
(u1, . . . , um) ∈ Uad denotes the administered doses.
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A reliable PKPD model (1) for a population with the same disease has to be vali-
dated thoroughly from measured data, and the model parameter θ has to be estimated
reasonably before addressing the optimal dosing problem. In the optimal dosing step,
the parameter θ is fixed, i.e., θ = θind for a certain individual in a population or
θ = θav characterizing the average value of a population. Without loss of generality,
we thus use

y′(t) = g(t, u, y(t)), t ∈ ]0, T ] almost everywhere

y(0) = y0 (2)

with g : [0, T ]×U ×R
n → R

n as PKPDmodel and initial value y0. Moreover, PKPD
models inherit an additive structure

g(t, u, y) = g̃(t, y) + r(t, u) (3)

between state y and control u from their design principles. In (3), g̃ : [0, T ] × R
n →

R
n describes the pharmacological mechanism and r : [0, T ] × U → R

n the dosing
regimen. For the dosing, we encounter oral or SC administration into an absorption
compartment, or IV bolus injection or IV infusion for a certain duration Δti into the
central compartment characterizing the blood in the body. This leads to

r(t, u) = I n(t, u) e j0

=

⎧
⎪⎨

⎪⎩

∑m
i=1 ui

∑ni
l=1 δ(t − ti,l) e j0 for oral / SC administration

∑m
i=1

ui
V

∑ni
l=1 δ(t − ti,l) e j0 for IV bolus

∑m
i=1

ui
VΔti

∑ni
l=1 1[ti,l ,ti,l+Δti ](t) e j0 for IV infusion

(4)

where I n(t, u) denotes the input function depending on the dosing regimen u, δ is the
Dirac distribution, j0 is the component of y to which the dose will be added to and e j0

denotes the j0-th unit vector. The parameter V describes the volume of distribution of
the body for the specific drug.

Equation (4) implies that solutions of (2) have jumps in the j0-th component with
jump conditions

y j0(t
+
i,l) − y j0(t

−
i,l) =

{
ui for oral /SC administration
ui
V for IV bolus

(5)

for l = 1, . . . , ni , i = 1, . . . ,m where t+i,l and t
−
i,l denote the limits at the dosing time

point ti,l from above and below, respectively. As a result, these routes of administration
lead to impulse ordinary differential equations (ODEs), see [19]. In PKPD modeling,
these impulse ODEs are handled by stopping the integration process at every dosing
time point, adding the dose to the corresponding state (e.g., an absorption or central
compartment) and continuing with the integration to the next dosing time point. In
contrast with that, the IV infusion administration yields an OCP with continuous
piecewise constant controls where no impulse control is present.
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2.1 Unique Solution of the State Equation

A minimal assumption in PKPD analysis is that for every dosing regimen there is
exactly one solution of the state equation which, in addition, has to be sufficiently
smooth. To do so, we formally modify our PKPD model (2) by replacing the Dirac
distribution δ(t − ti,l) in r by the scaled indicator function 1

ε
1[ti,l ,ti,l+ε](t). Hence,

instead of oral / SC and IV bolus administration we apply a short infusion of length
ε. This leads to

g(t, u, y) = g̃(t, y) + r̃(t, u) (6)

with

r̃(t, u) = ˜I n(t, u) e j0

=

⎧
⎪⎨

⎪⎩

∑m
i=1

ui
ε

∑ni
l=1 1[ti,l ,ti,l+ε](t) e j0 for oral / SC administration

∑m
i=1

ui
V ε

∑ni
l=1 1[ti,l ,ti,l+ε](t) e j0 for IV bolus

∑m
i=1

ui
VΔti

∑ni
l=1 1[ti,l ,ti,l+Δti ](t) e j0 for IV infusion

(7)

For any u ∈ Uad the function r̃(·, u) is a step function and r̃(t, ·) is linear in u for t ∈
[0, T ].We assume the pharmacological mechanism g̃ to be continuously differentiable
and globally Lipschitz continuous with respect to y. Then iterative application of
the Picard–Lindelöf theorem implies that for any u there is a unique solution y ∈
C([0, T ],Rn)which is continuously differentiable when restricted to any time interval
I ⊂ [0, T ] on which r̃(t, u), t ∈ I is constant. Due to Example 6.2.5 in [20], the weak
derivative of y exists and y ∈ Y := H1(0, T ;Rn) ∩ C([0, T ],Rn) follows for the
modified state equation (2), (6), (7).

Although mathematically different, from a clinical perspective the two dosing for-
mulas (4) and (7) are practically equivalent.

3 The Optimal Control Problem

Our goal is to achieve a certain outcomeof the disease, e.g., a normal level of a hormone
or tumor eradication. This desired disease progression is specified by a reference
function href : [0, T ] → R. Then, we characterize optimality by minimizing the cost
functional J : Y ×U → R,

J (y, u) = 1

2

∫ T

0
(h(y(t)) − href(t))

2 dt +
m∑

i=1

αi ni ui (8)

with α = (α1, . . . , αm) ≥ 0 and a C1-functional h : Rn → R describing the actual
state of the patient resulting from a particular dosing regimen u. In oncology, h could
be the sum of proliferating and different stages of apoptotic tumor cells. The standard
recommendation is α = 0, but for some PKPD models it can be useful to add a small
α > 0 in favor of a linear dependency [12] to lower drug doses.
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To formulate the optimal control problem, we follow the approach of [21], since it
provides direct access to the adjoint and an efficient method to compute the gradient of
the cost functional. The regularized PKPD model (2), (6), (7) is rewritten as equality
constraint, i.e.,

e : Y ×U → Z , e(y, u) =
(
e1(y, u)

e2(y, u)

)

=
(
y′ − g(·, u, y)
y(0) − y0

)

= 0 ∈ Z

for Z := L2(0, T ;Rn) × R
n . Then, the OCP reads

min J (y, u) subject to e(y, u) = 0, y ∈ Y , u ∈ Uad. (P)

In the sequel, we work with the following set of assumptions:

Assumption Optimal Control Problem

1. Uad ⊂ U is convex, bounded and closed.
2. J : Y × U → R, e : Y × U → Z are continuously Fréchet differentiable and

U ,Y , Z are Banach spaces.
3. For all u ∈ Ũ in a neighborhood Ũ ⊂ U of Uad, the state equation e(y, u) = 0

has a unique solution y = y(u) ∈ Y .
4. ∂

∂ y e(y(u), u) ∈ L(Y , Z) has a bounded inverse for all u ∈ Ũ ⊃ Uad.

The assumptions follow the framework introduced in [21, Ch. 1.7.2], and the addi-
tional property Uad ⊂ U bounded originates from the design of OCPs in PKPD
modeling. Assumption 1) holds by definition of Uad, 2) and 3) are fulfilled due to the
smoothness assumptions of g̃, h and the properties of the step function r̃ . Comput-
ing the Fréchet derivative in assumption 4) for arbitrary but fixed u ∈ Ũ yields the
operator:

T (u) : Y → Z ,

T (u) yδ =
(

∂

∂ y
e(y(u), u)

)

yδ =
(
y′
δ − ∂

∂ y g(·, u, y(u)) yδ
yδ(0)

)

∈ Z

Obviously, T (u) is a linear operator which is bijective due to the Picard–Lindelöf
theorem and the approximation of L2-functions by continuous functions. Moreover,
the Lipschitz continuity of g yields that ‖ ∂

∂ y g(·, u, y(u))‖ is bounded, and therefore,
T (u) is continuous. Then assumption 4) follows by the bounded inverse theorem, cf.
[22].

3.1 Existence of Optimal Controls

Definition 3.1 A control ū ∈ Uad is called optimal for (P) and ȳ = y(ū) ∈ Y is called
the associated optimal state if

J (ȳ, ū) ≤ J (y(u), u) for all u ∈ Uad.
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The assumptions of the OCP admit to introduce the reduced cost functional

Ĵ (u) := J (y(u), u)

and the reduced optimal control problem

min Ĵ (u) subject to u ∈ Uad. (P̂)

The existence of an optimal control ū then follows from the compactness ofUad ⊂ R
m

and theWeierstraß theorem, since the map Ĵ : Uad → R is continuously differentiable
as the solution operator of the state equation u ∈ Ũ �→ y(u) ∈ Y is continuously
differentiable by the implicit function theorem and the assumptions of the OCP.

Remark 3.1 Due to the nonlinearity of the PKPD model and the lacking strictness of
the convexity of J , we cannot guarantee uniqueness of the optimal control in general.

Theorem 5.2.2 in [23] ensures that if ū ∈ Uad is a local solution of the reduced
problem (P̂), then ū satisfies the variational inequality

〈∇ Ĵ (ū), u − ū〉U ≥ 0 for all u ∈ Uad. (9)

Now, we will derive necessary optimality conditions for a local solution ū ∈ Uad.

3.2 Necessary First-Order Optimality Conditions

Following the notation in [21, Ch. 1.6.4], we define the Lagrange function associated
with (P):

L : Y ×U × Z → R, L(y, u, p) = J (y, u) + 〈p, e(y, u)〉Z

Here, we identified Z with its dual space Z∗ and p = ( p̃, p̃0) is the so-called adjoint
state. Moreover, as p̃0 = p̃(0) holds we write p =: p̃. The inner product 〈·, ·〉Z is
given by

〈 p̃, e(y, u)〉Z = 〈 p̃, e1(y, u)〉L2(0,T ;Rn) + 〈 p̃(0), e2(y, u)〉Rn .

If (ȳ, ū) is an optimal solution to the problem (P), then there exists a Lagrange
multiplier p̄ ∈ Z such that the following optimality conditions hold, also called the
KKT conditions after Karush, Kuhn and Tucker [21, Ch. 1.7.2]:

∀u ∈ Uad :
〈

∂

∂u
L(ȳ, ū, p̄), u − ū

〉

U
≥ 0

∂

∂ y
L(ȳ, ū, p̄) = 0
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∂

∂ p
L(ȳ, ū, p̄) = e(ȳ, ū) = 0

For arbitrary uδ ∈ R
m , we compute the Fréchet derivative

∂

∂u
L(y, u, p) uδ =

〈
∂

∂u
J (y, u), uδ

〉

Rm
+

〈
∂

∂u
〈p, e(y, u)〉Z , uδ

〉

Rm

= 〈Nα, uδ〉Rm −
〈∫ T

0
p(t)� ∂

∂u
g(t, u, y(t)) dt, uδ

〉

Rm
(10)

with N = diag(n1, . . . , nm), and analogously for arbitrary yδ ∈ Y we have

∂

∂ y
L(y, u, p) yδ = ∂

∂ y
J (y, u) yδ +

(
∂

∂ y
〈p, e(y, u)〉Z

)

yδ

=
∫ T

0
〈(h(y(t)) − href(t))

∂

∂ y
h(y(t)), yδ〉Rn dt + p(0)�yδ(0)

+
∫ T

0
〈p(t), y′

δ(t)〉Rn − 〈p(t),
(

∂

∂ y
g(t, u, y(t))

)

yδ(t)〉Rn dt .

From the second KKT condition, we can derive the adjoint equation for t ∈ [0, T ]
almost everywhere:

p′(t) = −
(

∂

∂ y
g(t, u, y(t))

)�
p(t) + (h(y(t)) − href(t))

∂

∂ y
h(y(t)),

p(T ) = 0 (11)

Using adjoint techniques and (6), it can be shown [21, Ch. 1.6.4] that

〈∇ Ĵ (u), uδ〉Rm = ∂

∂u
L(y(u), u, p(u))uδ

= 〈Nα, uδ〉Rm −
〈∫ T

0
p(t)� ∂

∂u
r̃(t, u) dt, uδ

〉

Rm
(12)

for all uδ ∈ R
m , and therefore, the variational inequality (9) is the first KKT condition

with the derivative computed in (12). Having a formula for ∇ Ĵ (u), we can now solve
(P̂) numerically using well-known algorithms from finite-dimensional optimization,
e.g., quasi-Newton methods.

Remark 3.2 (a) In contrast with the general, infinite-dimensional setting discussed in
[21] we construct a finite-dimensional OCP by exploiting the design of PKPD
models, see (6), (7). Therefore, the evaluation of ∇ Ĵ (u) comes at very low com-
putational cost.

(b) Second-order sufficient conditions for aminimumcanbeverifiedbyapproximating
the reduced Hessian [23, Thm. 5.3.2] with central differences of the gradients and
computing the eigenvalues.
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3.3 Open-Loop Problems and Convergence Properties

Assuming that all model parameters are known prior to the optimization, we can solve
(P̂) in a so-called open-loop process in which the controls are computed iteratively
until a certain stopping criterion is satisfied. It should be noted that during the iteration
process there is no option to update parameters or react to external perturbations. We
will use a quasi-Newton method with Armijo step size control where the Hessian
∇2 Ĵ (u) is approximated by projected BFGS updates named after Broyden, Fletcher,
Goldfarb and Shanno. For more details on the step size strategy, the algorithm, local
and global convergence results and second-order sufficient conditions we refer the
reader to [23, Ch. 5.5.3].

3.4 Numerical Adaptions for Impulse Optimal Control Problems

In case of oral / SC or IV bolus administration, the solution y = y(t) of the impulse
state equations (2)–(4) is smooth for t ∈ [0, T ]\{t1,1, . . . , tm,nm } and has jumps at the
dosing points t1,1, . . . , tm,nm with jump heights (5). Optimality conditions for impulse
OCPs can be found in [19, Thm. 2.1]. However, following the typical approach in
PKPDmodeling, i.e., stopping the time integration at each dosing time point in order to
add the dose to the corresponding compartment before continuing with the integration,
ensures that

(a) the jump conditions are satisfied, i.e., the state equation is solved correctly,
(b) the adjoint equation (11) coincides with the one presented in [19, Thm. 2.1],
(c) the variational inequality (9) on which the stopping criterion in the algorithm is

based is the same as the one in [19, Thm. 2.1].

Consequently, the impulse OCP is solved.

3.5 The Nonlinear Model Predictive Control Method

For long-term treatments over several years, patient parameters can change over time,
e.g., for pediatric patients due to developmental changes. Then, the OCP (P̂) cannot
be solved as a single open-loop problem and it is inevitable to apply nonlinear model
predictive control (NMPC) techniques. The idea is to optimize the control u on a
sequence of overlapping open-loop problems with short time horizon Ii ⊂ [0, T ]
covering the time interval instead of solving one open-loop problem on the full time
interval. This approach allows parameter adaptions between consecutive open-loop
problems. The time intervals Ii should be chosen in a way such that one dose gets
applied (possibly multiple times), and then, the time horizon is shifted to start just
before the first dosing time point of the next dosing group; therefore, it is sometimes
also called moving horizon method.

Let the i-th time interval Ii := [t0i , t fi ] start at t0i := t−i,1 right before the first dosing
time point of the i-th dosing group and end at t fi := t−i+	,1 for 	 ∈ N right before
the (i + 	)-th dosing group begins. Then for tm+1,1 := T the full time interval [0, T ]
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is covered with short prediction horizons Ii for i = 1, . . . ,m − 	 + 1 each of them
containing 	 dosing groups.

Suppose we are at time t0i for i ≤ m−	+1 and consider the horizon Ii . Previously,
the optimal doses u1, . . . , ui−1 and the associated optimal state trajectory yi−1 from
the last iteration were computed. Therefore, yi0 := yi−1(t0i ) is set as initial value for
the state equation on Ii

(yi )′(t) = g(t, u(i), yi (t)), for t ∈ Ii almost everywhere

yi (t0i ) = yi0

where the control u(i) denotes u(i) = (ui , . . . , ui+	−1) ∈ U (i)
ad and

U (i)
ad := {u(i) ∈ R

	 | 0 ≤ u(i) ≤ u(i)
max}

with u(i)
max = ((umax)i , . . . , (umax)i+	−1) being the corresponding admissible set. On

the prediction horizon Ii , the cost functional

Ji (y
i , u(i)) = 1

2

∫ t fi

t0i

(h(yi (t)) − href(t))
2 dt +

i+	−1∑

k=i

αk nk uk

is used. As before, the reduced cost functional

Ĵi (u
(i)) := Ji (y

i (u(i)), u(i))

with the unique solution to the state equation yi (u(i)) is introduced. The open-loop
problem

min Ĵi (u
(i)) subject to u(i) ∈ U (i)

ad (P̂i )

is solved as in Sect. 3.3 by computing an optimal control vector and predicting the
dynamics on the time horizon [t0i , t fi ]. Now, only the first component of the optimal
control vector ui = (u(i))1 is applied and the time horizon is shifted to the next interval
Ii+1 with initial condition yi+1

0 := yi (t0i+1). Before solving (P̂i+1), it is possible to
update parameters or react to unforeseen perturbations such as dosing errors or missed
doses.

In Algorithm 1, a pseudocode for the described closed-loop technique is displayed.
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Algorithm 1 (The NMPC method)
Require: Initial state y0, initial guess for control u0, number of dose groups in each prediction horizon 	

1: Set u = []; and y10 := y0;
2: for i = 1, . . . ,m − 	 + 1 do
3: Set current observation horizon Ii := [t0i , t fi ];
4: Compute a (numerical) solution ū(i) and the associated state ȳi to the open-loop problem (P̂i ) with

initial condition yi0 and initial guess u(i)
0 = (u0,i , . . . , u0,i+	−1)

5: Save all state values ȳi belonging to [t0i , t0i+1[
6: Save yi+1

0 := ȳi (t0i+1) as new initial condition

7: Save ui , i.e., set u = [u; (ū(i))1];
8: Update parameters if necessary
9: end for

4 Application of OptiDose to Relevant Examples of
Pharmacokinetic–Pharmacodynamic Models and Presentation of
Numerical Results

We present three relevant examples of PKPD models used in drug development and
clinical pharmacology and apply the developed OptiDose algorithm to compute the
optimal dosing regimen.

4.1 The OptiDose Software

For the software OptiDose, the presented open- and closed-loop algorithms were
implemented in MATLAB [24] using the built-in solver ode15s to solve the arising
initial value problems. The open-loop problemswere solved with the projected BFGS-
Armijo method [23, Ch. 5.5.3]. All computations were performed on an ASUSTek
computerwith Intel(R)Core(TM) i7-7700HQCPUprocessorwith 2.80GHzand16GB
RAM.

4.2 Biomarker Indirect ResponseModels: a Test Model for OptiDose

In Fig. 1 a, we display the model schematic for a test example where a biomarker
B is elevated and a drug is administered to return those high biomarker levels to the
normal range. We further assume that the disease cannot be cured, i.e., in absence of
the drug the biomarker will return to its initial state B0 at diagnosis. The test model
is a so-called indirect response model (IDR) which is a fundamental tool in PKPD
modeling, cf., e.g., [25,26]. IDR models consist of a zero-order production rate kin
and a first-order elimination rate kout, and the drug stimulates or inhibits these rates
usually withMichaelis–Menten type of terms [27]. Here the drug will be administered
via IV bolus into the central compartment according to (4). The drug concentration
C is described by a linear one-compartment model with drug elimination rate kel .
Maximal stimulating effect of the drug is Emax, and the drug concentration to produce
the half-maximal effect is EC50. The PKPD model reads
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Fig. 1 Model schematics for the three examples

d

dt
C = I n(t, u) − kelC, C(0) = 0,

d

dt
B = kin − kout

(

1 + EmaxC

EC50 + C

)

B, B(0) = B0 = kin
kout

.

A clinically realistic dosing scenario for non-hospitalized patients is that the doses are
administered daily, but they change only every week (ni = 7, i = 1, . . . ,m). The aim
is to control the biomarker B to follow a predefined reference function characterized
by

Bref(t) =
{

1
(7m1)2

(B0 − Btar) t2 − 2
7m1

(B0 − Btar) t + B0, t ≤ 7m1

Btar, t > 7m1

providing a slow quadratic approach toward the target biomarker level Btar. We choose
α = 0 in the cost functional, a target value of Btar = 10, a loading phase of m1 = 2
weeks and m = 6 weeks in total. Figure 2 shows the optimal solution on the left the
actual and desired biomarker levels and on the right the optimal doses and the resulting
drug concentration.
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Fig. 2 Left: pharmacodynamics of optimal solution in blue and reference function in red. Right: drug
concentration for optimal dosing in blue and doses administered at dosing time points (red crosses)

Starting from an initial guess of u0 = 1 for all doses, the optimal open-loop solution
u∗ was computed within 85 seconds and a cost functional value of Ĵ (u∗) = 3.89 with
norm of the gradient 5.9 · 10−6 and all eigenvalues of the Hessian at the optimal
solution are positive. The same optimal solution is found for different initial guesses
on the doses.

However, in a real scenario the treatment will not stop after the above considered
six weeks as we assumed the disease cannot be cured. The closed-loop algorithm with
an observation horizon of, e.g., three weeks that gets shifted weekly reproduces the
open-loop solution up to neglectable differences.

Individual parameter values used are θind = (V , B0, kout, kin, kel , Emax, EC50) =
(3, 46, 0.02, 0.92, 0.49, 8.8, 0.81).

4.3 Tumor Growth InhibitionModel

Proliferating tumor cells usually grow exponentially in the beginning and transition
later to a linear growth, cf. [28,29].Depending on the tumor type, size and environment,
a saturation of the growth can be observed; however, this is neglected in the following
example. Many drugs act in a cytotoxic manner, meaning that the tumor cells are
attacked by the drug. Attacked cells then undergo apoptosis until they eventually die.
The presented example is based on preclinical oncology drug development in mice,
see [29] for details and Fig. 1 b for the model schematic. The structure of the model
is widely applied in industry and academia for these type of experiments.

Let P be the proliferating tumor cellswith an exponential growth rateλ0 and a linear
growth rate λ1 [29]. The drug C , orally administered into an absorption compartment
Abs with absorption rate ka , acts on the proliferating cells with a linear drug effect
term with potency kpot. The apoptotic cell population is described with three transit
compartments D1, D2, D3 [30], each reflecting a certain age stage of the apoptotic
cells with transit rate kt . The sum of the proliferating and apoptotic cells is the total
tumor weight W = P + D1 + D2 + D3. The PKPD model reads
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d

dt
Abs = I n(t, u) − ka Abs, Abs(0) = 0,

d

dt
C = ka

Abs

V
− kelC, C(0) = 0,

d

dt
P = 2λ0λ1P2

(λ1 + 2λ0P)W
− kpotC · P, P(0) = P0,

d

dt
D1 = kpotC · P − kt D1, D1(0) = 0,

d

dt
Di = kt (Di−1 − Di ), Di (0) = 0, i = 2, 3.

First, the tumor is grown to a specific size, then the drug is administered daily (ni = 1
for all i) from day 12 to 28. The aim is to decrease the tumor weight W toward zero.
For the reference function, we choose a sigmoid shape starting at 0.5 on day 12 and
tending to zero:

Wref(t) = 0.25 (exp(2) − exp(−2))

0.5 (exp(2) − 3 exp(−2)) + exp(0.5t − 8)
, t ≥ 12

As the drug is acting on the proliferating tumor cells via kpotC · P in the third
equation in the PKPD model, its impact decreases as the tumor size shrinks toward
0. In fact, the problem loses its controllability meaning significantly different doses,
e.g., 10, 100, 1000, achieve nearly the same pharmacodynamic behavior. Naturally,
small doses are preferred which is whywe choose α = 10−7 > 0 in the cost functional
in favor of lower doses.

Moreover, we observe that large changes in the doses result in only very small
changes in the cost functional as well as in the gradient which might result in stopping
criteria being satisfied already despite the minimum was not reached yet. Therefore,
for numerical reasons, we minimize the theoretically equivalent cost functional

Ĵγ (u) = γ · Ĵ (u)

by including a scaling factor γ > 0 which pulls through to the gradient and hereby
tightens the stopping criterion that the norm of the projected gradient is small enough.
For the presented example, we choose a scaling factor of γ = 100.

The initial guess for each dose is u0 = 0. We solve the OCP with the NMPC
(i.e., closed-loop) method as described in Algorithm 1 with an observation horizon of
	 = 7 doses which is shifted daily after applying the first of the computed optimal
doses. Altogether, we find the closed-loop solution û, see Fig. 3 within 175 seconds
with cost functional value Ĵγ (û) = 0.2165 and its norm of the gradient 6.52 · 10−5.
In the present case without model parameter changes the closed-loop solution û is a
suboptimal solution compared to the open-loop solution u∗, i.e., computing the optimal
dosing regimen for days 12 to 28 at once.

However, the open loop yields only slightly better results. Within 250 seconds
we get Ĵγ (u∗) = 0.2028 with norm of the projected gradient 7.66 · 10−10 and all
eigenvalues of the reduced Hessian are positive. The open-loop solution (see Fig. 4)
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Fig. 3 Left: optimal closed-loop solution for an observation horizon of 7 days in blue and the sigmoid
reference function in red. Right: drug concentration for optimal dosing in blue (computed for an observation
horizon of 7 days) and administered drug doses û (red crosses)
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Fig. 4 Left: optimal solution from open loop in blue and the sigmoid reference function in red. Right: drug
concentration for optimal dosing in blue (computed with open loop) and administered drug doses u∗ (red
crosses)

provides higher doses on days 16 and especially 17whose necessity the shorter horizon
does not see, but the closed loop (Fig. 3) compensates this with larger doses in the
following days. The difference in the cost functional values is small.

Numerical computations with a variety of different initial values confirm that u∗ is
the unique optimal control. In addition, the algorithm shows good non-local conver-
gence properties. Both findings fit in the framework of optimal control problems with
convex cost functionals.

The parameter values θ = (V , ka, kel , λ0, λ1, kt , kpot, P0) taken from [29] are
V = 2.79, ka = 5, kel = 2.53, λ0 = 0.194, λ1 = 0.246, kt = 0.666, kpot = 0.0077
and the initial state P0 = 0.0098.
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4.4 Binding Kinetics of a Bispecific Antibody and Formation of the Drug–Receptor
Complex

Bispecific antibodies (BsAbs) are promising drug candidates in immuno-oncology
[31], and currently extensive research is performed by both academia and pharmaceu-
tical companies. A BsAb is an artificial protein and exerts the effect, e.g., by bridging
effector T cells and cancer cells. The idea of BsAbs is to use the own human immune
system to attack tumor cells instead of administering cytotoxic drugs as in the previous
example.

Mechanistic modeling of a BsAb is a sophisticated task and includes characteri-
zation of many different binding kinetics [32,33]. A BsAb C binds to two different
receptors RA and RB forming the two binary drug–receptor complexes RCA and RCB .
Both of these complexes further cross-bind to the other receptors to form the ternary
complex RCAB which finally drives the drug effect. The absorption process of the
BsAb is described by Abs. The full BsAb model is schematically displayed in Fig. 1
c and reads (see [13] for details):

d

dt
C = koff1RCA + koff2RCB − (kel + kon1RA + kon2RB + k12)C

+ k21
AP

V
+ ka

Abs

V
,

d

dt
RA = ksynA − (kdegA + kon1C + kon4RCB)RA + koff1RCA + koff4RCAB,

d

dt
RB = ksynB − (kdegB + kon2C + kon3RCA)RB + koff2RCB + koff3RCAB,

d

dt
AP = k12C · V − k21AP,

d

dt
Abs = −ka Abs + I n(t, u)

and the equations for the complexes

d

dt
RCA = kon1C · RA − (koff1 + kintA)RCA − kon3RB · RCA + koff3RCAB,

d

dt
RCB = kon2C · RB − (koff2 + kintB)RCB − kon4RA · RCB + koff4RCAB,

d

dt
RCAB = kon4RA · RCB + kon3RB · RCA − (koff3 + koff4 + kintAB)RCAB .

Briefly, the kon and koff are binding rates, ksyn and kdeg production, resp. degradation
rates, kint internalization rates, kel is the elimination rate of the BsAb and k12, k21
describe the transfer to a peripheral compartment AP . Antibody drugs have a very long
half-life and are often administered via SC injection, cf. (4). Therefore, we consider
the time interval [0, 140] days with administration of the same dose into the absorption
compartment Abs at days 0, 48, 96, i.e., n1 = 3. Initially, we assume the system to be
at baseline, i.e., RA(0) = ksynA/kdegA and RB(0) = ksynB/kdegB and all others are 0.
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Fig. 5 Left: ternary complex RCAB for the optimal solution in blue and reference value 10 in red. Right:
concentration level C as semilogarithmic plot for the optimal solution in blue and administered dose u∗ at
dosing time points (red crosses)

Throughout the whole interval, our goal is to keep the ternary complex RCAB at the
best possible reference value min(ksynA/kdegA, ksynB/kdegB). In the cost functional,
we choose α = 0.

Starting from an initial guess for the dose of 800, we find the optimal (open-loop)
solution u∗ = 663.78within 6 iterations of BFGS-Armijomethod and 21 seconds. The
optimal doses and resulting ternary complex are shown in Fig. 5. The cost functional
value at the optimal solution is Ĵ (u∗) = 5.0, the norm of its gradient is 1.2 · 10−8,
and its Hessian is positive. Starting from an initial guess far from the optimal solution
resulting in a large cost functional value, e.g., u0 = 0 with Ĵ (u0) = 7000 yields the
same optimal solution within 22 iterations and 32 seconds, i.e., the algorithm shows
numerical robustness.

The parameter values taken from a simulation study [13] are kel = 0.1, kon1 =
10, koff1 = 0.01, kon2 = 1, koff2 = 0.01, kon3 = 1, koff3 = 0.01, kon4 = 10, koff4 =
0.01, ksynA = 1, kdegA = 0.1, ksynB = 10, kdegB = 0.1, kintA = 0.05, kintB =
0.05, kintAB = 0.1, k12 = 0, k21 = 0.03, ka = 0.2 and V = 3.

5 Conclusions

We have set up an OCP which is especially designed for PKPD models using the
doses as finite-dimensional control variables (instead of optimizing the drug con-
centration). Therefore, the reduced OCP can be solved by robust algorithms from
finite-dimensional optimization such as quasi-Newton methods. An efficient calcula-
tion of the required derivatives is ensured by the use of adjoint techniques. In addition,
we incorporated closed-loop (NMPC) algorithms which provide, in particular in case
of long-term treatments, the potential to guide patients safely along a desired refer-
ence function href . Application to a variety of PKPDmodels shows the robustness and
efficiency of the software. Thus, the presented OptiDose code is a widely usable tool
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for computing the individualized optimal drug dosing regimen in PKPD and, to our
knowledge, the first calculating the doses directly.

On the other hand, we still need to address some PKPD issues, e.g., a rigorous
sensitivity analysis of the computed optimal doses with respect to uncertainty in the
estimation of the parameter values. Suitable measures to identify sensitive parameters
should be discussed.

Another important issue will be how to handle negative side effects from drug
treatment such as myelosuppression in oncology: The administration of cytotoxic
drugs to attack a tumor also suppresses the production of new blood cells in the bone
marrow leading to low levels of circulating blood cells. As white blood cells play
an important role in the immune system, they need to stay above a certain threshold
in order to not risk the life of the patient. Mathematically, this means to include so-
called state constraints in the OCPmaking it usuallymuch harder to solve numerically.
A promising way is to apply augmented Lagrangian techniques using an additional
penalization term in the cost functional.

Furthermore, in daily clinical routine the available oral doses are typically restricted
to certain sizes which leads to discrete ODE-constrained OCPs. The presented open
issues are both mathematically challenging and of huge interest in applications and
provide a wide field for future research.
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