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Abstract In this paper, a systematic study of the strong metric subregularity property
of mappings is carried out by means of a variational tool, called steepest displacement
rate. With the aid of this tool, a simple characterization of strong metric subregular-
ity for multifunctions acting in metric spaces is formulated. The resulting criterion
is shown to be useful for establishing stability properties of the strong metric sub-
regularity in the presence of perturbations, as well as for deriving various conditions,
enabling one to detect such a property in the case of nonsmooth mappings. Some of
these conditions, involving several nonsmooth analysis constructions, are then applied
in studying the isolated calmness property of the solution mapping to parameterized
generalized equations.

Keywords Strong metric subregularity · Steepest descent rate · Sharp minimality ·
Isolated calmness · Injectivity constant · First-order ε-approximation · Outer
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1 Introduction

Several remarkable advances in optimization have been made possible in recent years
thanks to a deepened understanding of stability properties of multifunctions. In fact,
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their study has gained a well-recognized place within modern variational analysis.
Among the properties of multifunctions mainly applied in optimization and related
topics, those describing a Lipschitzian behaviour play a crucial role. Under this cate-
gory falls metric regularity, which is most likely the best known and widely employed.
Nonetheless, it turns out that metric regularity is not strictly requested in certain
circumstances, while its work can be done by a weaker property called metric sub-
regularity, of course at a lower price in terms of problem assumptions. Consider, for
instance, the algebraic characterization of the tangent space to a manifold, which is
defined by an equation expressed by a smooth mapping. According to a standard argu-
ment, this is the key tool for deriving the Euler–Lagrange multiplier rule in nonlinear
optimization, often presented among the consequences of the celebrated Lyusternik’s
theorem (see [1–3]). In order to establish the nontrivial inclusion (the kernel of the
derivative is contained in the tangent space), metric regularity is usually invoked, even
though the mere metric subregularity would be enough. As another example, consider
the exact penalization principle for constrained optimization problem with Lipschitz
objective function (see [4,5]). It happens that this principle can be invoked, provided
that a certain error bound inequality is valid, and for the latter circumstance, the metric
subregularity of the constraining mapping is enough. A further important application
concerns the subdifferential calculus theory within nonsmooth analysis, where metric
subregularity provides for the best qualification conditions in basic calculus rules (see
[6,7]).

All of this contributed to raise a large interest in metric subregularity, on which a
dedicated vast literature does now exist (see [8–20] and references therein).

The main drawback of metric subregularity is its lack of robustness under (even
small) perturbations. More precisely, it has been observed that such property happens
to be broken if adding to a metrically subregular mapping (even single-valued and
smooth) a Lipschitz term, yet with a small Lipschitz constant. This well-known phe-
nomenon explains the difficulty in employing perturbation schemes, when studying
criteria for detecting metric subregularity. In this paper, a systematic study is proposed
of a special variant of metric subregularity, called strongmetric subregularity, which is
known to exhibit a notable robustness quality, while keeping rather low requirements
in comparison with metric regularity. In particular, the present study concentrates on
sufficient conditions for the strong metric subregularity of (possibly) nonsmooth map-
pings. The analysis of this topic is performed bymaking use of a variational tool called
steepest displacement rate that enables to formulate a general criterion already in a
metric space setting. Such an approach leads to a unifying scheme of analysis and
emphasizes the connection of the property under study with the notion of local sharp
minimality. Strong metric subregularity along with its stability properties and related
infinitesimal characterizations have been considered recently by several authors. For
an account on various aspects of the emerging theory of strongmetric subregularity, the
reader may refer to [9], whereas for applications to stability properties of generalized
equations arising in concrete models, one may refer to [21–23].

The contents of the paper are exposed according to the following structure. In
Sect. 2, after the notion of strong metric subregularity is presented and its reformu-
lation in terms of isolated calmness property for the inverse mapping is recalled,
the notion of steepest displacement rate is introduced and exploited to establish the
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basic characterization. The connection with local sharp minimality is also discussed,
while several situations arising in different topics are illustrated, aimed at providing
motivations for the interest in the main subject of the paper. In Sect. 3, two relevant
manifestations of the robustness behaviour of strong metric subregularity are embed-
ded in the framework of the steepest displacement rate analysis. In Sect. 4, several
known tools of nonsmooth analysis are combined with the main criterion in order to
obtain conditions for the strong metric subregularity of nonsmooth mappings. Some
of these results are then applied in Sect. 5 to investigate the isolated calmness property
of the solution mapping to parameterized generalized equations, with base and field
term. A final section is reserved for general comments on the exposed achievements.

2 Strong Metric Subregularity and Its Equivalent Reformulations

Let us start with recalling the main properties under study. This will be done in a
metric space setting, which is the natural environment where the Lipschitzian analysis
of stability of multifunctions can be conducted. In a metric space (X, d), the distance
from a point x ∈ X to a subset S ⊆ X is denoted by dist (x, S), with the convention
that dist (x,∅) = +∞, while B(x, r) denotes the closed ball with centre x and radius
r .

Definition 2.1 (i) A set-valued mapping F : X ⇒ Y between metric spaces is called
metrically subregular at (x̄, ȳ) ∈ graph F if there exist κ ≥ 0 and r > 0 such that

dist
(
x, F−1(ȳ)

)
≤ κ dist (ȳ, F(x)) , ∀x ∈ B(x̄, r). (1)

Denote by

subreg F(x̄, ȳ) = inf{κ ≥ 0 : ∃r > 0 satisfying (1)}

the modulus of subregularity of F at (x̄, ȳ). Whenever F is single-valued, the
simpler notation subreg F(x̄) will be used.

(ii) A set-valued mapping F : X ⇒ Y between metric spaces is called strongly
metrically subregular at (x̄, ȳ) ∈ graph F if F is metrically subregular at (x̄, ȳ)
and, in addition, x̄ is an isolated point of F−1(ȳ) or, equivalently, if there exist
κ ≥ 0 and r > 0 such that

d(x, x̄) ≤ κ dist (ȳ, F(x)) , ∀x ∈ B(x̄, r). (2)

Roughly speaking, whereas thewell-knownmetric regularity property of amapping
F near (x̄, ȳ) ∈ graph F can be viewed as a quantitative form of local solvability for
the inclusion y ∈ F(x), the strong metric subregularity corresponds to a quantitative
form of local uniqueness for the solution x̄ to the particular inclusion ȳ ∈ F(x). The
independence of these two properties is illustrated in the next example.
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Example 2.1 Let X = Y = IR be equipped with its usual Euclidean metric structure.
Consider the mapping F1 : IR ⇒ IR defined by

F1(x) =
{ [0, 1/2[, if x = 0,

[1,+∞[, otherwise.

Clearly, F1 is strongly metrically subregular at (0, 0), with subreg F1(0, 0) = 0, but it
fails to be metrically regular near the same point. Notice that F1 has not closed graph
and it is not upper hemicontinuous at 0.

In the same setting, consider the mapping F2 : IR ⇒ IR defined by F2(x) =
[x,+∞[. This multifunction is metrically regular near (0, 0), but it is not strongly
metrically subregular at the same point.

The basic tool of analysis in use throughout the present section is introduced in the
next definition.

Definition 2.2 (i) Given a function ϕ : X −→ IR ∪ {±∞} defined on a metric space
and an element x̄ ∈ dom f , the value (possibly infinite)

ϕ↓(x̄) = lim inf
x→x̄

ϕ(x) − ϕ(x̄)

d(x, x̄)

is called the steepest descent rate of ϕ at x̄ .
(ii) Let F : X ⇒ Y be a set-valued mapping between metric spaces and let (x̄, ȳ) ∈

graph F . The (nonnegative, possibly infinite) quantity

|F |↓(x̄, ȳ) = dist (ȳ, F(·))↓ (x̄)

is called the steepest displacement rate of F at (x̄, ȳ).

Remark 2.1 The steepest descent rate is evidently connectedwith the notionof (strong)
slope, even though they are not completely equivalent in describing the variational
behaviour of a given function. The employment of such kind of tools in connection
with variational problems is witnessed since [24], whereas their application to non-
differentiable optimization goes back at least to [25]. Starting with Demyanov, the
steepest descent rate became steadily exploited for formulating optimality conditions
in metric space settings, as a starting point for more involved nonsmooth analysis
constructions (see [26–31]). The use of the distance function from images of a given
multifunction to characterize its Lipschitzian properties follows the spirit of [32].

A first basic characterization of strong metric subregularity is established next as a
positivity condition on the steepest displacement rate of a given multifunction.

Proposition 2.1 A set-valued mapping F : X ⇒ Y is strongly metrically subregular
at (x̄, ȳ) ∈ graph F if and only if

|F |↓(x̄, ȳ) > 0. (3)

123



J Optim Theory Appl (2016) 171:573–599 577

Moreover, whenever inequality (3) holds true, it results in

subreg F(x̄, ȳ) = 1

|F |↓(x̄, ȳ)
, (4)

with the convention that 1/ + ∞ = 0.

Proof Necessity: according to Definition 2.1(ii), corresponding to an arbitrary κ >

subreg F(x̄, ȳ) there exists r > 0 such that

dist (ȳ, F(x))

d(x, x̄)
≥ 1

κ
, ∀x ∈ B(x̄, r)\{x̄},

whence

|F |↓(x̄, ȳ) ≥ 1

κ
.

This evidently implies inequality (3) and, by arbitrariness of κ , the inequality

subreg F(x̄, ȳ) ≥ 1

|F |↓(x̄, ȳ)
. (5)

Sufficiency: according to Definition 2.2(ii), in the case |F |↓(x̄, ȳ) = +∞, for every
η > 0 there exists rη > 0 such that

1

η
dist (ȳ, F(x)) ≥ d(x, x̄), ∀x ∈ B(x̄, rη).

Thus F is strongly metrically subregular at (x̄, ȳ) with subreg F(x̄, ȳ) ≤ 1/η, which
leads to subreg F(x̄, ȳ) = 0. In the case |F |↓(x̄, ȳ) < +∞, for an arbitrary ε ∈
]0, |F |↓(x̄, ȳ)[, there is rε > 0 such that

1

|F |↓(x̄, ȳ) − ε
dist (ȳ, F(x)) ≥ d(x, x̄), ∀x ∈ B(x̄, rε),

which shows that F is strongly metrically subregular at (x̄, ȳ) and, by arbitrariness of
ε, leads to

subreg F(x̄, ȳ) ≤ 1

|F |↓(x̄, ȳ)
. (6)

Then, as inequalities (5) and (6) are both valid now, one obtains (4), thereby completing
the proof. �
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Remark 2.2 Let us recall that, after [33], an element x̄ ∈ dom ϕ is said to be a local
sharp minimizer of a function ϕ : X −→ IR∪{±∞} defined on a metric space if there
exist positive ζ and r such that

ϕ(x) ≥ ϕ(x̄) + ζd(x, x̄), ∀x ∈ B(x̄, r).

Clearly, x̄ is a local sharp minimizer of ϕ if and only if ϕ↓(x̄) > 0. Thus, on account
of Definition 2.2 and of Proposition 2.1, a set-valued mapping F is strongly metrically
subregular at (x̄, ȳ) if and only if x̄ is a local sharp minimizer of the displacement
function x �→ dist (ȳ, F(x)). Notice that the positivity of the steepest descent rate of
a function is a circumstance essentially connected, in more structured settings, with
nonsmoothness (see [34]).

Another characterization of the main property under study for a multifunction
F : X ⇒ Y can be obtained through the following stability behaviour of its inverse
F−1 : Y ⇒ X , i.e. F−1(y) = {x ∈ X : y ∈ F(x)}.
Definition 2.3 (i) A set-valued mapping G : X ⇒ Y between metric spaces is called

calm at (x̄, ȳ) ∈ graphG if there exists κ ≥ 0 and r > 0 such that

sup
y∈G(x)∩B(ȳ,r)

dist (y,G(x̄)) ≤ κ d(x, x̄), ∀x ∈ B(x̄, r). (7)

Denote by

clmG(x̄, ȳ) = inf{κ ≥ 0 : ∃r > 0 satisfying (7)}

the calmness modulus of G at (x̄, ȳ) (clmG(x̄) whenever G is a single-valued
mapping).

(ii) A set-valued mapping G : X ⇒ Y between metric spaces is said to have the
isolated calmness property at (x̄, ȳ) ∈ graphG if G is calm at (x̄, ȳ) and, in
addition, ȳ is an isolated point of G(x̄).

(iii) A function ϕ : X −→ IR ∪ {±∞} is called calm from below at x̄ ∈ dom f if

ϕ↓(x̄) > −∞.

Isolated calmness seems to have made its first formal appearance in [35], where it
was called “upper-Lipschitz property at a point” (see also [9]).

Theorem 2.1 ([9])A set-valuedmapping F : X ⇒ Y is stronglymetrically subregular
at (x̄, ȳ) ∈ graph F if and only if F−1 has the isolated calmness property at (ȳ, x̄). In
this case, it holds

clm F−1(ȳ, x̄) = subreg F(x̄, ȳ).

Below several situations, connecting different topics of optimization and variational
analysis, are illustrated, where the strong metric subregularity naturally emerges. A
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further relevant motivation for being interested in strong metric subregularity has to
do with the analysis of the solution mapping to generalized equations. This topic will
be discussed in Sect. 5.

Example 2.2 FromRemark 2.2, it should be clear that every scalar function ϕ : X −→
IR ∪ {±∞} defined in a metric space is strongly metrically subregular at each of its
local sharp minimizers (if any). As an obvious consequence, the related epigraphical
set-valued mapping Fϕ : X ⇒ IR, defined as

Fϕ(x) = [ϕ(x),+∞[,

is strongly metrically subregular at (x̄, ϕ(x̄)), whenever x̄ is a local sharp minimizer
of ϕ. It is worth noting that if ϕ is calm from below at x̄ , then it can be perturbed
in such a way to have the point x̄ as a local sharp minimizer. Indeed, if for some
l > 0 it is ϕ↓(x̄) > −l, then function ϕ + ld(·, x̄) admits a local sharp minimizer
at x̄ . Now, for a lower semicontinuous (henceforth, for short, l.s.c.) proper function
ϕ : X −→ IR ∪ {+∞} defined in a complete metric space, the set of all points at
which ϕ is calm from below is large enough. In fact, as a direct consequence of the
Ekeland variational principle, it is possible to prove that such set is dense in dom ϕ.
All of this should show that it is not difficult to generate situations where strong metric
subregularity appears.

Example 2.3 Let L(X,Y) denote the space of all linear bounded operators between
two normed spaces, having null vector 0. Given Λ ∈ L(X,Y), its injectivity constant
is defined as

α(Λ) = inf‖u‖=1
‖Λu‖

(see, for instance, [36]). By linearity, for any pair (x̄, ȳ) ∈ X × Y, with ȳ = Λx̄ , one
finds

|Λ|↓(x̄, ȳ) = |Λ|↓(0, 0) = lim inf
x→0

‖Λx‖
‖x‖ = α(Λ). (8)

While any bounded linear operatorΛ is known to be metric subregular at each point of
its graph, according to Proposition 2.1 it is stronglymetrically subregular iff α(Λ) > 0
and

subregΛ(x̄, ȳ) = subregΛ(0, 0) = 1

α(Λ)
.

Notice that, whenever X and Y are finite-dimensional spaces, α(Λ) > 0 holds iff
KerΛ = Λ−1(0) = {0}, that is iff Λ is injective. This fact fails to remain true in
abstract normed space. Consider, for instance, the identity operator Id : 	1 −→ 	∞
(the immersion of 	1 into 	∞), which is injective, and define for each n ∈ IN the
elements xn = {xnk } ∈ 	1 as follows
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xnk =
{
1/n, for 1 ≤ k ≤ n,

0, for k ≥ n + 1,
n ∈ IN.

It is clear that ‖xn‖	1 = 1, whereas ‖xn‖	∞ = 1/n for every n ∈ IN. Consequently,
one has

α(Id) = inf‖u‖
	1=1

‖Id u‖	∞ ≤ inf
n∈IN ‖xn‖	∞ = 0,

so Id is not strongly metrically subregular (anywhere). On the other hand, it is clear
that Id : 	1 −→ 	1 is strongly metrically subregular, with subreg Id(x) = 1, for every
x ∈ 	1.

Recall that the injectivity constant is connected with the Banach constant of linear
operators, through transposition. Namely, given Λ(X,Y), one defines

β(Λ) = α(Λ�),

where Λ� stands for the transpose of Λ. This allows one to link the notion of strong
metric subregularity with that of metric regularity, which is well known to amount to
openness (at a linear rate) in the case of linear operators. More precisely, whenever Λ

is open, one has 0 < β(Λ) = α(Λ�), so that Λ� is strongly metrically subregular.
For more details, see [36]. The current example helps also to illustrate the fact that,
whereas the appearance of sharp minimality for a given function is a symptom of
nonsmoothness, strong metric subregularity is a property that may happen to take
place for very nice (even linear) mappings.

Example 2.4 Let ϕ :X −→ IR ∪ {+∞} be a proper, l.s.c. convex function defined
on a Banach space X, whose dual is indicated by X∗. Let us denote by ∂ϕ(x̄) the
subdifferential of ϕ at x̄ ∈ dom ϕ in the sense of convex analysis. Generalizing a
previous result valid in Hilbert spaces, in [37] it is has been proved that the set-valued
mapping ∂ϕ :X ⇒ X∗ is strongly metrically subregular at (x̄, x̄∗) ∈ graph ∂ϕ if and
only if there exist positive γ and r such that

ϕ(x) ≥ ϕ(x̄) + 〈x̄∗, x − x̄〉 + γ ‖x − x̄‖2, ∀x ∈ B(x̄, r),

where 〈·, ·〉 :X∗ × X −→ IR denotes the duality pairing X∗ and X. In particular, in
the case of a (global) minimizer x̄ of ϕ, ∂ϕ is strongly metrically subregular at (x̄, 0∗),
where 0∗ stands for the null vector of X∗, iff

ϕ(x) ≥ ϕ(x̄) + γ ‖x − x̄‖2, ∀x ∈ B(x̄, r).

The last inequality formalizes a variational behaviour known as quadratic growth con-
dition, which has been studied in connectionwith second-order sufficient conditions in
nonlinear programming (see [38]). Notice that, if a function admits a sharp minimizer,
it satisfies the quadratic growth condition around that point, but the converse may not
be true. Similar characterizations of various metric regularity properties have been

123



J Optim Theory Appl (2016) 171:573–599 581

recently extended to the Mordukhovich subdifferential mapping (see [39]). Investiga-
tions by means of second-order variational analysis tools revealed that they are also
interrelated to the tilt stability of local minimizer (see [39,40]).

Remark 2.3 From Example 2.4, it is possible to see at once that if ϕ is a proper, l.s.c.
convex function, whose subdifferential mapping is strongly metrically subregular at
(x̄, 0∗), where x̄ ∈ dom ϕ is a minimizer of ϕ, then x̄ turns out to be Tykhonov well-
posed, namely every minimizing sequence {xn} of ϕ converges to x̄ . Now, it is worth
noting that the notion of strong metric subregularity generalizes, yet in a local form,
such a behaviour to solutions of equations/inclusions. More precisely, if a set-valued
mapping F : X ⇒ Y , defining with ȳ the inclusion ȳ ∈ F(x), is strongly metrically
subregular at (x̄, ȳ), then for every sequence {yn} in Y , with yn −→ ȳ as n → ∞,
and for every sequence {xn} in X of solutions of the inclusions with data perturbed
yn ∈ F(x), according to (2) one finds

d(xn, x̄) ≤ κdist (ȳ, F(xn)) ≤ κd(ȳ, yn),

so xn −→ x̄ , provided that the elements of {xn} fall in a proper neighbourhood of x̄ .

3 Perturbation Stability

As it happens for other Lipschitzian properties of multifunctions, a method for estab-
lishing criteria or conditions for the validity of strong metric subregularity consists
in analysing its stability in the presence of perturbations. Two results of this type are
presented in what follows, which are both proved through the criterion discussed in
Sect. 2.

Theorem 3.1 Let F : X ⇒ Y be a set-valued mapping between metric spaces and
let g : Z −→ X a mapping defined on a metric space. Let z̄ ∈ Z and let (g(z̄), ȳ) ∈
graph F. Suppose that:

(i) g is continuous at z̄ and strongly metrically subregular at z̄;
(ii) F is strongly metrically subregular at (g(z̄), ȳ).

Then, their composition F ◦ g : Z ⇒ Y is strongly metrically subregular at (z̄, ȳ), and
it results in

subreg (F ◦ g)(z̄, ȳ) ≤ subreg g(z̄) · subreg F(g(z̄), ȳ).

Proof Set x̄ = g(z̄). Since F is stronglymetrically subregular at (x̄, ȳ), corresponding
to an arbitrary κF > subreg F(x̄, ȳ), there exists r > 0 such that

dist (ȳ, F(x)) ≥ 1

κF
d(x, x̄), ∀x ∈ B(x̄, r). (9)

123



582 J Optim Theory Appl (2016) 171:573–599

Owing to hypothesis (i), corresponding to an arbitrary κg > subreg g(x̄), there exists
δ > 0 such that, up to a further reduction of its value, if needed,

d(x̄, g(z)) ≥ 1

κg
d(z, z̄) and g(z) ∈ B(x̄, r), ∀z ∈ B(z̄, δ). (10)

From inequalities (10) and (9), one obtains

dist (ȳ, F(g(z)))

d(z, z̄)
≥ d(g(z), x̄)

κFd(z, z̄)
≥ 1

κFκg
, ∀z ∈ B(z̄, δ)\{z̄},

whence |F ◦ g|↓(z̄, ȳ) ≥ (κFκg)
−1 > 0 follows. To complete the proof, it remains to

apply Proposition 2.1. �
The following example shows that the continuity assumption on the inner mapping

cannot be dropped out, in general.

Example 3.1 Let Z = X = Y = IR be endowed with the usual Euclidean metric
structure. Consider the functions g : IR −→ IR and F : IR −→ IR, defined, respec-
tively, by

g(z) =
{
0, if z = 0,
2, otherwise,

and F(x) =
{ |x |, if |x | ≤ 1,
2 − |x |, otherwise.

Here z̄ = x̄ = ȳ = 0. It is evident that both g and F have a sharp minimizer at 0,
whereas their composition F ◦ g ≡ 0 does not.

Strong metric subregularity is not preserved under composition of set-valued map-
pings, as shown by the next counterexample.

Example 3.2 In the same setting as in Example 3.1, let G : IR ⇒ IR be defined by

G(z) =
{
IR, if z = 0,
{2}, otherwise,

and let F be as in the previous example. As one readily checks,G is stronglymetrically
subregular at (0, 0). If composing G and F , one finds

(F ◦ G)(z) =
{ ] − ∞, 1], if z = 0,

{0}, otherwise.

It is easily seen that F ◦ G fails to be strongly metrically subregular at (0, 0). Notice
that multifunction G, the inner term of the composition, is upper hemicontinuous at
0.

For the next result, a slightly more structured setting is needed.
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Theorem 3.2 Let F : X ⇒ Y be a set-valued mapping defined on a metric space X
and taking values in a linear metric space Y , whose metric is shift invariant. If F is
strongly metrically subregular at (x̄, ȳ) ∈ graph F, then for any mapping g : X −→ Y
such that subreg F(x̄, ȳ) · clm g(x̄) < 1, the set-valued mapping F + g is strongly
metrically subregular at (x̄, ȳ + g(x̄)) and it results in

subreg (F + g)(x̄, ȳ + g(x̄)) ≤ subreg F(x̄, ȳ)

1 − subreg F(x̄, ȳ) · clm g(x̄)
. (11)

Proof Notice that, by virtue of the shift invariance of the metric on Y , for any x ∈ X
one has

dist (ȳ, F(x)) ≤ dist (ȳ + g(x̄), F(x) + g(x)) + d(g(x), g(x̄)).

Consequently, one obtains

|F + g|↓(x̄, ȳ + g(x̄)) ≥ lim inf
x→x̄

dist (ȳ, F(x)) − d(g(x), g(x̄))

d(x, x̄)

≥ |F |↓(x̄, ȳ) − lim sup
x→x̄

d(g(x), g(x̄))

d(x, x̄)

≥ 1

subreg F(x̄, ȳ)
− clm g(x̄) > 0.

The strong metric subregularity of F + g at (x̄, ȳ + g(x̄)) follows at once by the char-
acterization provided in Proposition 2.1, whereas the estimate (11) is a straightforward
consequence of (4). �

Remark 3.1 (i) The result provided by Theorem 3.2 on the persistence of strongmetric
subregularity under calm additive perturbations can be found in [9] (see Theorem3I.6),
formulated for multifunctions acting in finite-dimensional spaces, with a different
proof. It is worth noting that, since neither the Ekeland variational principle nor the
convergence of iteration procedures are used in the proof of Theorem 3.2, metric
completeness plays no role in the above robustness phenomenon. Instead, it may be
viewed as a direct consequence of a stability behaviour for the local sharp minimality
called superstability, which was observed already by Polyak (see [33]). Essentially,
it means that a point preserves its local minimality even in the presence of additive
calm perturbations. This makes the robustness of strong metric subregularity different
from the corresponding behaviour of metric regularity, requiring on the one hand
metric completeness and on the other hand the Lipschitz property of perturbations
(see [9,41]). A result similar to Theorem 3.2, obtained in a more specific context,
appears in [23] (see Theorem 3).

(ii) Note that the shift invariance assumption on the metric of Y is not actually
restrictive. Indeed, a result due to Kakutani ensures that any linear metric space can
be equivalently remetrized by a shift-invariant metric (see Theorem 2.2.11 in [42]).
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4 Strong Metric Subregularity of Nonsmooth Mappings

The main subject of this paper is the strong metric subregularity of (possibly) non-
smooth mappings f :X −→ Y. To deal with them, throughout this section (X, ‖ · ‖)
and (Y, ‖ · ‖) are supposed to be normed (vector) spaces. The (closed) unit ball and
the unit sphere in any normed space are indicated by B and S, respectively, whereas,
in the case of dual spaces, they are indicated by B∗ and S∗, respectively.

4.1 A Criterion Via First-Order ε-Approximations

Differentiability is a wise combination of linearity and approximation. The approach
of analysis considered in this subsection relies on the employment of positively homo-
geneous (for short, p.h.) mappings as an appealing substitute of derivatives (that are
linear operators), while calmness replaces the classical convergence of the remainder
term. To do so, set

H(X,Y) = {h :X −→ Y : p.h. and continuous at 0}.

Definition 4.1 Let f :X −→ Y be a mapping between normed spaces, let x̄ ∈ X and
let ε > 0. A mapping h ∈ H(X,Y) is said to be a first-order ε-approximation of f at
x̄ if

clm ( f − h(· − x̄))(x̄) < ε.

Remark 4.1 Whenever h is a first-order ε-approximation of f at x̄ , themapping f (x̄)+
h(· − x̄) is a special case of what is called in [9] an “estimator”. Of course, first-order
ε-approximation is a nonsmooth analysis notion, which allows to include (Fréchet)
differentiability. Indeed, note that if f is Fréchet differentiable at x̄ , with derivative
Df (x̄) ∈ L(X,Y), then Df (x̄) is a first-order ε-approximation of f at x̄ , for every
ε > 0. P.h. functions and mappings, or some special classes of them, have been
utilized as a rough material for constructing generalized derivatives since the very
birth of nonsmooth analysis (see, for instance, [43,44]). On the other hand, the idea of
studying properties of nonlinear mappings by means of “approximate differentials”,
which avoid differentiability assumptions, precedes even nonsmooth analysis (see, for
instance, [45]).

After having replaced linear operators with p.h. mappings, the next step consists in
extending toH(X,Y) the definition of injectivity constant, by letting

α0(h) = inf‖u‖=1
‖h(u)‖.

Remark 4.2 By applying Proposition 2.1, it is readily seen that h ∈ H(X,Y) is
strongly metrically subregular at 0 if and only if it holds α0(h) > 0. It is to be noted,
however, that, in contrast with the linear case, such a characterization is not valid for
the strong metric subregularity of h at every point of X. Consider, for instance, the

123



J Optim Theory Appl (2016) 171:573–599 585

norm function ‖ ·‖ :X −→ IR, with the dimension ofX being greater than 1 (possibly
infinite). Clearly, it is α0(‖ · ‖) = 1. Taking any element ū in the unit sphere S of X,
one finds

‖ · ‖↓(ū) = lim inf
x→ū

|‖x‖ − ‖ū‖|
‖x − ū‖ ≤ sup

δ>0
inf

x∈S∩B(ū,δ)\{ū}
|‖x‖ − ‖ū‖|

‖x − ū‖ = 0,

and hence ‖ · ‖ fails to be strongly metrically subregular at ū, even though it is so at 0.

Theorem 4.1 Let f :X −→ Y be a mapping between normed spaces and let x̄ ∈ X.
If f is first-order ε-approximated at x̄ by h ∈ H(X,Y), with α0(h) > ε, then f is
strongly metrically subregular at x̄ , and

subreg f (x̄) ≤ 1

α0(h) − ε
.

Vice versa, if f is strongly metrically subregular at x̄ , then for any mapping h ∈
H(X,Y) first-order ε-approximating f at x̄ , with ε < subreg f (x̄), it results in

α0(h) ≥ 1

subreg f (x̄) − ε
,

so h is strongly metrically subregular at 0.

Proof According to Definition 4.1, for both the assertions of the thesis the respective
hypotheses imply

clm ( f − h(· − x̄))(x̄) = clm (h(· − x̄) − f )(x̄) < ε.

To prove the first assertion, it suffices to apply Theorem 3.2, with F and g given by

F(x) = f (x̄) + h(x − x̄) and g(x) = f (x) − f (x̄) − h(x − x̄),

respectively, and to observe that F is strongly metrically subregular at x̄ iff h is so at
0, while clm g(x̄) = clm ( f − h(· − x̄))(x̄).

Analogously, to prove the second assertion, it suffices to apply once again Theorem
3.2, now with

F(v) = f (x̄ + v) + f (x̄) and g(v) = h(v) − f (x̄ + v) − f (x̄).

Indeed, f is strongly metrically subregular at x̄ iff F is so at 0, whereas

clm g(0) = clm (h(· − x̄) − f )(x̄).

The quantitative estimates complementing the thesis are direct consequences of
inequality (11). �
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As a special case of Theorem 4.1, it is possible to derive the following criterion for
smooth mappings.

Corollary 4.1 AFréchet differentiable mapping f :X −→ Y between normed spaces
is strongly metrically subregular at x̄ ∈ X if and only if α(Df (x̄)) > 0 and

subreg f (x̄) ≤ 1

α(Df (x̄))
.

In particular, if X and Y are finite-dimensional spaces, f is strongly metrically sub-
regular at x̄ if and only if

Ker Df (x̄) = {0}.

4.2 A Sufficient Condition Via Outer ε-Prederivative

In order to introduce the next tool of nonsmooth analysis to be used, recall that a
set-valued mapping F :X ⇒ Y is said to be p.h. if 0 ∈ F(0) and F(t x) = t F(x)
for all x ∈ X and t > 0. In [46] p.h. set-valued mappings have been used to define
a notion of generalized derivative. Below, a generalization of it, which seems to be
adequate for the purposes of the present analysis, is introduced.

Definition 4.2 Let f :X −→ Y be a mapping between normed spaces, let x̄ ∈ X and
let A :X ⇒ Y a p.h. homogeneous set-valued mapping. Given ε > 0,A is said to
be an outer (Fréchet) ε-prederivative of f at x̄ if there exists δ > 0 and a function
r : δB −→ [0, ε] such that

f (x̄ + v) − f (x̄) ∈ A(v) + r(v)‖v‖B, ∀v ∈ δB. (12)

Remark 4.3 Recall that, according to [46], A is said to be an outer prederivative of
f at x̄ if (12) holds true with a function r : δB −→ [0, ε] such that lim

v→0
r(v) = 0. In

such an event, A is an outer ε-prederivative of f at x̄ , for every ε > 0. It is worth
noting that set-valued homogeneous approximations of single-valued mappings have
been recently utilized in connection with primal estimates of metric regularity of
single-valued mappings (see [47]).

Given a p.h. set-valuedmappingA :X ⇒ Y, to detect its strongmetric subregularity
at (0, 0), it seems to be natural to introduce a injectivity constant notion as follows

α(A) = inf‖u‖=1
dist (0,A(u)) .

In the light of Proposition 2.1, it is readily seen thatA is strongly metrically subregular
at (0, 0) if and only α(A) > 0 and, upon this condition, it is

subregA(0, 0) = 1

α(A)
.
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By employing the above nonsmooth analysis tools, one can establish the following
sufficient condition for strong metric subregularity.

Theorem 4.2 Suppose that a mapping f :X −→ Y between normed spaces admits
an outer ε-prederivative A :X ⇒ Y at x̄ , such that α(A) > ε. Then, f is strongly
metrically subregular at x̄ and

subreg f (x̄) ≤ 1

α(A) − ε
.

If, in particular, A is an outer prederivative of f at x̄ , then stricter estimate holds

subreg f (x̄) ≤ 1

α(A)
.

Proof Let positive ε, δ and r : δB −→ [0, ε] be as in Definition 4.2. Then one obtains
for every x ∈ B(x̄, δ)

‖ f (x̄) − f (x)‖ = d(0, f (x) − f (x̄))

≥ dist (0,A(x − x̄) + r(x − x̄)‖x − x̄‖B) , (13)

On the other hand, observe that for any v ∈ δB\{0} it is

dist (0,A (v/‖v‖) + r (v)B) = inf
y∈A(v/‖v‖), u∈B

‖y + r(v)u‖
≥ inf

y∈A(v/‖v‖), u∈B
[‖y‖ − |r(v)|‖u‖]

≥ dist (0,A(v/‖v‖)) − r(v).

Therefore, letting ȳ = f (x̄), from inequality (13), it follows

| f |↓(x̄, ȳ) ≥ lim inf
x→x̄

dist (0,A(x − x̄) + r(x − x̄)‖x − x̄‖B)

‖x − x̄‖
≥ lim inf

x→x̄
dist

(
0,A

(
x − x̄

‖x − x̄‖
)

+ r(x − x̄)B
)

≥ inf‖u‖=1
dist (0,A(u)) − lim sup

x→x̄
r(x − x̄) = inf‖u‖=1

dist (0,A(u)) − ε.

Thus, to show the first assertion in the thesis, it suffices to apply the characterization
stated in Proposition 2.1, along with the estimate (4). For the second assertion, on
account of Remark 4.3 and of the last inequalities, one has that

| f |↓(x̄, ȳ) ≥ α(A) − ε, ∀ε ∈]0, α(A)[.

which leads immediately to the estimate to be proved. �
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Remark 4.4 Among the p.h. set-valued mappings that can be used as prederivatives,
one can consider in particular those generated by a convex weakly closed set of linear
operators. In other terms, given a set U ⊆ L(X,Y) convex and closed with respect to
the weak topology, let

A(x) = {y ∈ Y : y = Λx, Λ ∈ U}.

According to [46], this is an example of fan. In this case, one has

α(A) = inf
Λ∈U

α(Λ).

Notice that, whenever f is Fréchet differentiable at x̄ , Definition 4.2 applies with
A(v) = {Df (x̄)v} and r(v) = ‖ f (x̄ + v) − f (x̄) − Df (x̄)v‖/‖v‖, being now
U = {Df (x̄)}. Therefore, the sufficient part of Corollary 4.1 can be achieved also
from Theorem 4.2.

4.3 A Scalarization Approach

Let (Y, ‖ · ‖) be now a normed space, which is partially ordered by a relation ≤Y or,
equivalently, by a convex cone Y+ ⊆ Y, in the sense that

y1 ≤Y y2 iff y2 − y1 ∈ Y+.

In this setting, a mapping f :X −→ Y is said to be Y+-convex if

f (t x1 + (1 − t)x2) ≤Y t f (x1) + (1 − t) f (x2), ∀t ∈ [0, 1], ∀x1, x2 ∈ X.

Y+-convex mappings are found quite easily in nature. For instance, if f :X −→ IRm

is given by f (x) = ( f1(x), . . . , fm(x)), with each function fi :X −→ IR being
convex, then f is IRm+-convex, where IRm+ = {y ∈ IRm : yi ≥ 0, i = 1, . . . ,m}. One
immediately sees that if f is Y+-convex and if y∗ ∈ Y∗+ = {y∗ ∈ Y∗ : 〈y∗, y〉 ≥
0, ∀y ∈ Y+}, then each scalar function y∗ ◦ f :X −→ IR is convex.

Since the scalarization approach to strong metric subregularity exploits the con-
nection of that property with the sharp minimality of scalarized terms, the following
characterization of a sharpminimizer for a convex functionwill be useful in the sequel.

Lemma 4.1 Let ϕ :X −→ IR ∪ {+∞} be a proper convex function. An element
x̄ ∈ dom ϕ is a (global) sharp minimizer of ϕ if and only if 0∗ ∈ int ∂ϕ(x̄). Moreover,
it results in

ϕ↓(x̄) = sup
{
ρ > 0 : ρB∗ ⊆ ∂ϕ(x̄)

}
.
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Proof Necessity: suppose point x̄ to be a sharpminimizer ofϕ and take ε ∈ (0, ϕ↓(x̄)).
Then, setting ρ = ϕ↓(x̄) − ε, one gets

ϕ(x) − ϕ(x̄)

‖x − x̄‖ ≥ ρ ≥
〈
x∗, x − x̄

‖x − x̄‖
〉
, ∀x∗ ∈ ρB∗, ∀x ∈ X\{x̄}.

This means that ρB∗ ⊆ ∂ϕ(x̄) and, by arbitrariness of ε, that ϕ↓(x̄) ≤ sup{ρ >

0 : ρB∗ ⊆ ∂ϕ(x̄)}.
Sufficiency: from the definition of subgradient of ϕ at x̄ , it is possible to deduce

ϕ(x) − ϕ(x̄)

‖x − x̄‖ ≥ sup
x∗∈∂ϕ(x̄)

〈
x∗, x − x̄

‖x − x̄‖
〉
, ∀x ∈ X\{x̄}.

Since by hypothesis there exists ρ > 0 such that ρB∗ ⊆ ∂ϕ(x̄), it is true that

sup
x∗∈∂ϕ(x̄)

〈x∗, u〉 ≥ sup
x∗∈ρB∗

〈x∗, u〉 = ρ, ∀u ∈ X : ‖u‖ = 1.

From this and the previous inequality, it is possible to conclude that

ϕ↓(x̄) ≥ ρ > 0.

Actually, this shows that ϕ↓(x̄) ≥ sup{ρ > 0 : ρB∗ ⊆ ∂ϕ(x̄)}. The proof is complete.
�

To formulate the next condition for the strong metric subregularity of aY+-convex
mapping f :X −→ Y at x̄ ∈ X, define

�( f )(x̄) = sup
{
ρ > 0 : ρB∗ ⊆ ∂

(
y∗ ◦ f

)
(x̄), y∗ ∈ S∗ ∩ Y∗+

}
.

Theorem 4.3 Let f :X −→ Y be amapping between normed spaces, withY partially
ordered by a cone Y+, and let x̄ ∈ X. Suppose that f is Y+-convex and

0∗ ∈
⋃

y∗∈S∗∩Y∗+

int ∂(y∗ ◦ f )(x̄).

Then f is strongly metrically subregular at x̄ . Moreover, one has

subreg f (x̄) ≤ 1

�( f )(x̄)
.

Proof From the well-known dual representation of a norm

‖v‖ = sup
y∗∈B∗

〈y∗, v〉 = sup
y∗∈S∗

〈y∗, v〉,
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one obtains

‖ f (x̄) − f (x)‖
‖x − x̄‖ = sup

y∗∈S∗

〈
y∗, f (x) − f (x̄)

‖x − x̄‖
〉

≥ sup
y∗∈S∗∩Y∗+

(y∗ ◦ f )(x) − (y∗ ◦ f )(x̄)

‖x − x̄‖ , ∀x ∈ X\{x̄}.

Since by hypothesis there exist ρ > 0 and y∗
0 ∈ S∗∩Y∗+ such that ρB∗ ⊆ ∂(y∗

0 ◦ f )(x̄)
and function y∗

0 ◦ f is convex, then in the light of Lemma 4.1, x̄ is a sharp minimizer
of y∗

0 ◦ f . Consequently, setting ȳ = f (x̄), from the last inequality one has

| f |↓(x̄, ȳ) ≥ (
y∗
0 ◦ f

)↓
(x̄) ≥ ρ.

The proof of all assertions in the thesis is therefore completed by applying Proposition
2.1. �

Theorem 4.3 demonstrates a typical use of the scalarization method in the presence
of convexity assumption. It should be clear that this method extends its potential far
beyond convexity and can be employed in combination with more general subdiffer-
ential constructions. For example, by utilizing the (Fréchet) regular subdifferential,
defined as

∂̂ϕ(x̄) =
{
x∗ ∈ X∗ : lim inf

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0

}

(for more details, the reader is referred to [2,41,48–50]), the following finite-
dimensional generalization of Lemma 4.1 has been proved in [34] (see Theorem 4
therein).

Lemma 4.2 Let ϕ : IRn −→ IR∪{±∞} and x̄ ∈ dom ϕ. Then ϕ↓(x̄) > 0 if and only
if 0∗ ∈ int ∂̂ϕ(x̄).

The above lemma allows one to obtain the next result valid for mappings defined
in a finite-dimensional space.

Theorem 4.4 Given a mapping f : IRn −→ Y and x̄ ∈ IRn, if

0∗ ∈
⋃
y∗∈S∗

int ∂̂(y∗ ◦ f )(x̄),

then f is strongly metrically subregular at x̄ .

Proof The thesis can be achieved through the same argument as in the proof of The-
orem 4.3. Indeed, by hypothesis there exists y∗

0 ∈ S∗ such that 0∗ ∈ int ∂̂(y∗
0 ◦ f )(x̄).

In the light of Lemma 4.2, this implies

(
y∗
0 ◦ f

)↓
(x̄) > 0. (14)
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Since it is

‖ f (x̄) − f (x)‖
‖x − x̄‖ = sup

y∗∈S∗

〈
y∗, f (x) − f (x̄)

‖x − x̄‖
〉

≥
(
y∗
0 ◦ f

)
(x) − (

y∗
0 ◦ f

)
(x̄)

‖x − x̄‖ , ∀x ∈ X\{x̄},

by virtue of inequality (14), it follows

| f |↓(x̄, ȳ) ≥ (
y∗
0 ◦ f

)↓
(x̄) > 0.

Proposition 2.1 allows one to complete the proof. �

5 An Application

Anapplication of the above exposed ideas and techniques is going to be illustrated now,
which concerns the stability behaviour of solution mappings to generalized equations.
A generalized equation is a rather general problem that is able to provide a proper
framework for studying several specific issues in mathematical analysis, having or
not having a variational nature. Among the others, let us mention optimality condi-
tions in constrained or unconstrained optimization, various types of constraint systems,
variational inequalities and complementarity problems, equilibrium problems and dif-
ferential inclusions.

Here, parameterized generalized equations are considered that can be formalized
as follows

0 ∈ f (p, x) + T (x), (GE)

where f : P × X −→ Y (sometimes referred to as the base of (GE)) and T :X ⇒
Y (referred to as the field) are the problem data. (P, d) is a metric space where
the parameters vary, whereas (X, ‖ · ‖) and (Y, ‖ · ‖) are supposed to be normed
vector spaces. The solution mapping associated with (GE) is the (generally) set-valued
mapping implicitly defined by

S f,T (p) = {x ∈ X : 0 ∈ f (p, x) + T (x)}.

In this context, an issue of interest is how to certify and to quantify a certain stability
behaviour of S f,T , near a solution x̄ ∈ S f,T ( p̄). More precisely, here the stability
behaviour quantitatively described by the isolated calmness property is investigated.
This amounts to establish for solutions to (GE) lying near a reference one a reaction,
which is (directly) proportional to the parameter variations. Following the spirit of
classical and more recent implicit function theorems, this question is approached
by analysing a simplified variant of (GE), called approximated generalized equation
(AGE), on which the main regularity assumption is made. Of course, a (AGE) can
be defined in several ways, depending on the features of the problem data. In what
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follows, dealing with a nonsmooth analysis setting, the use of an adaptation of the
outer ε-prederivative is proposed.

Definition 5.1 Given ε > 0, a p.h. set-valued mapping A :X ⇒ Y is said to be a
partial outer ε-prederivative of a mapping f : P ×X −→ Y at ( p̄, x̄), uniformly with
respect to p, if there exist positive δ and ζ and a function r : P × δB −→ [0, ε] such
that

f (p, x) ∈ f (p, x̄) + A(x − x̄) + r(p, x − x̄)‖x − x̄‖B, ∀x ∈ B(x̄, δ), ∀p ∈ B( p̄, ζ ).

Now, assuming that the base f of (GE) admits, for some ε > 0, as a partial outer
ε-prederivative at ( p̄, x̄) a mapping A, one can associate with (GE) an approximated
generalized equation defined by

0 ∈ f ( p̄, x̄) + A(x − x̄) + T (x). (AGE)

It turns out that the strong metric subregularity of the mapping A + T is a key
assumption to guarantee the isolated calmness property of S f,T , as below stated.

Theorem 5.1 With reference to a generalized equation (GE), let x̄ ∈ S f,T ( p̄). Suppose
the data of (GE) to satisfy the following assumptions:

(i) function f (·, x̄) is calm at p̄ with modulus clm f (·, x̄)( p̄);
(ii) f admits a partial outer ε-prederivative A at ( p̄, x̄), uniformly with respect to

p;
(iii) the set-valued mapping x ⇒ f ( p̄, x̄) +A(x − x̄) + T (x) is strongly metrically

subregular at (x̄, 0), with modulus subreg (A + T )(x̄, 0), such that

ε · subreg (A + T )(x̄, 0) < 1. (15)

Then, S f,T has the isolated calmness property at ( p̄, x̄) and the below estimate holds

clm S f,T ( p̄, x̄) ≤ clm f (·, x̄)( p̄) · subreg (A + T )(x̄, 0)
1 − ε · subreg (A + T )(x̄, 0)

. (16)

Proof Take an arbitrary η such that

0 < η <
1

ε
− subreg (A + T )(x̄, 0),

which is possible by virtue of condition (15). By the assumption (i), corresponding to
η there exists ζ > 0 such that

‖ f (p, x̄) − f ( p̄, x̄)‖ ≤ (clm f (·, x̄)( p̄) + η)d(p, p̄), ∀p ∈ B( p̄, ζ ).
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By the assumption (ii), there exist ζ̃ ∈]0, ζ [, δ > 0 and a function r : P×δB −→ [0, ε]
such that

f (p, x) ∈ f (p, x̄) + A(x − x̄) + r(p, x − x̄)‖x − x̄‖B, ∀x ∈ B(x̄, δ), ∀p ∈ B( p̄, ζ̃ ).

Consequently, one obtains

dist (0, f (p, x) + T (x))

≥ dist (0, f (p, x̄) + A(x − x̄) + r(p, x − x̄)‖x − x̄‖B + T (x))

≥ dist (0, f (p, x̄) + A(x − x̄) + T (x)) − ε‖x − x̄‖
≥ dist (0, f ( p̄, x̄) + (clm f (·, x̄)( p̄) + η)d(p, p̄)B + A(x − x̄) + T (x))

−ε‖x − x̄‖
≥ dist (0, f ( p̄, x̄) + A(x − x̄) + T (x)) − (clm f (·, x̄)( p̄) + η)d(p, p̄) − ε‖x − x̄‖

for every x ∈ B(x̄, δ) and p ∈ B( p̄, ζ̃ ), wherefrom it follows

dist (0, f ( p̄, x̄) + A(x − x̄) + T (x)) ≤ dist (0, f (p, x) + T (x))

+(clm f (·, x̄)( p̄) + η)d(p, p̄) + ε‖x − x̄‖.

Now, according to assumption (iii), since x̄ is evidently a solution to (AGE), corre-
sponding to η > 0 there exists δ̃ ∈ (0, δ) such that

‖x − x̄‖ ≤ (subreg (A + T )(x̄, 0) + η)dist (0, f ( p̄, x̄) + A(x − x̄) + T (x))

≤ (subreg (A + T )(x̄, 0) + η)

(
dist (0, f (p, x) + T (x))

+(clm f (·, x̄)( p̄) + η)d(p, p̄) + ε‖x − x̄‖
)

and hence

(1 − ε(subreg (A + T )(x̄, 0) + η))‖x − x̄‖ ≤ (subreg (A + T )(x̄, 0) + η)

×
(
dist (0, f (p, x) + T (x)) + (clm f (·, x̄)( p̄) + η)d(p, p̄)

)

for every x ∈ B(x̄, δ̃) and p ∈ B( p̄, ζ̃ ). As a consequence, whenever it is x ∈
S f,T (p) ∩ B(x̄, δ̃), it results in

‖x − x̄‖ ≤ (subreg (A + T )(x̄, 0) + η) · (clm f (·, x̄)( p̄) + η)

(1 − ε(subreg (A + T )(x̄, 0) + η))
d(p, p̄),
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for every p ∈ B( p̄, ζ̃ ). The last inequality shows that S f,T has the isolated calmness
property at ( p̄, x̄) with

clm S f,T ( p̄, x̄) ≤ (subreg (A + T )(x̄, 0) + η) · (clm f (·, x̄)( p̄) + η)

(1 − ε(subreg (A + T )(x̄, 0) + η))
.

From the last inequality and the arbitrariness of η, it is possible to deduce the estimate
in the thesis, thereby completing the proof. �
Corollary 5.1 With reference to a generalized equation (GE), let x̄ ∈ S f,T ( p̄). Sup-
pose the data of (GE) to satisfy the following assumptions:

(i) function f (·, x̄) is calm at p̄ with modulus clm f (·, x̄)( p̄);
(ii’) f has a partial outer prederivative A at ( p̄, x̄), uniformly with respect to p;
(iii) the set-valued mapping x ⇒ f ( p̄, x̄) +A(x − x̄) + T (x) is strongly metrically

subregular at (x̄, 0), with modulus subreg (A + T )(x̄, 0).

Then S f,T has the isolated calmness property at ( p̄, x̄) and the stricter estimate

clm S f,T ( p̄, x̄) ≤ clm f (·, x̄)( p̄) · subreg (A + T )(x̄, 0) (17)

holds.

Proof The thesis can be easily achieved by applying Theorem 5.1. Recall indeed that
with assumption (ii’) being valid, A is an outer partial ε-prederivative of f at ( p̄, x̄),
for any ε > 0. Then, it suffices to observe that, since ε can be taken arbitrarily “small”,
condition (15) is fulfilled independently of the value of subreg (A + T )(x̄, 0). �
Remark 5.1 A result quite close to Theorem 5.1, called “implicit mapping theorem
with strongmetric subregularity”, can be found in [9] (Theorem3I.12). Instead of pred-
erivatives, partial estimators (i.e. first-order ε-approximations) are employed there. In
this regard, it is must be noted that the technique of proof in Theorem 5.1 can be readily
adapted to derive a version of it, employing partial first-order ε-approximations of the
base term. Characterizations of the isolated calmness property of solution mappings in
the specific context of generalized equations arising in parametric cone programming
have been recently established in [51,52]. These results have been achieved following
a different approach, which relies on the Levy’s full characterization of isolated calm-
ness for closed-graph multifunctions between finite-dimensional spaces (see [53]).
Such an approach, requiring involved elements of second-order variational analysis,
has been devised on the base of the specific structure of generalized equations express-
ing optimality conditions in cone programming and seems not to be easily embedded
in the theory resulting from Theorem 5.1.

Theorem 5.1 reduces the study of the isolated calmness property of S f,T to the
certification of the strong metric subregularity of the set-valued mapping defining
(AGE). The latter question is expected to be easier to be faced than a direct study
of S f,T , inasmuch as the former set-valued mapping is explicitly defined in terms of
problem data or their approximation, while S f,T can be hardly calculated in practice.
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Besides, in some special case, the study of the strong metric subregularity of the set-
valued mapping defining (AGE) may happen to be particularly simple. Let us consider,
as an example, the case in which the field term T happens to be single-valued near x̄ .

Corollary 5.2 Let x̄ ∈ S f,T ( p̄) be a solution to (GE). Suppose that:

(i) function f (·, x̄) is calm at p̄ with modulus clm f (·, x̄)( p̄);
(ii) f admits a partial outer ε-prederivative A at ( p̄, x̄), uniformly with respect to

p;
(iii) T is single-valued near x̄ and calm at x̄ , with modulus clm T (x̄);
(iv) the following condition holds

α(A) − clm T (x̄) > ε. (18)

Then S f,T has the isolated calmness property at ( p̄, x̄) and the following modulus
estimate holds

clm S f,T ( p̄, x̄) ≤ clm f (·, x̄)( p̄)
α(A) − clm T (x̄) − ε

.

Proof Observe first of all that A(· − x̄) is strongly metrically subregular at (x̄, 0) iff
A is so at (0, 0), and one has

subregA(· − x̄)(x̄, 0) = subregA(0, 0).

Under the current assumptions, it is possible to apply Theorem 3.2, with F = A(·− x̄)
and g = f ( p̄, x̄) + T . Indeed, it is clear that

clm ( f ( p̄, x̄) + T )(x̄) = clm T (x̄),

so, in force of condition (18), it holds

subregA(· − x̄)(x̄, 0) · clm ( f ( p̄, x̄) + T )(x̄) = clm T (x̄)

α(A)
< 1.

Consequently, the set-valued mapping x ⇒ f ( p̄, x̄) + A(x − x̄) + T (x) turns out to
be strongly metrically subregular at (x̄, 0), with

subreg (A + T )(x̄, 0) ≤ 1

α(A) − clm T (x̄)
.

One is therefore in a position to apply Theorem 5.1, as the validity of condition (15)
is ensured by the assumption (18). Thus the proof is complete. �

In the remaining part of this section, while continuing to assume T to be single-
valued, a further result is presented, which can be obtained via the scalarization
approach.
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Theorem 5.2 With reference to a generalized equation (GE), let x̄ ∈ S f,T ( p̄). Suppose
that:

(i) T is single-valued near x̄ and calm at x̄ , with modulus clm T (x̄);
(ii) f (·, x) is calm at p̄, uniformly with respect to x near x̄ , with modulus

clm f (·, x)( p̄);
(iii) the space (Y, ‖ · ‖) is partially ordered by a cone Y+ and the mapping f ( p̄, ·)

is Y+-convex;
(iv) both the conditions

0∗ ∈
⋃

y∗∈S∗∩Y∗+

int ∂(y∗ ◦ f )(x̄) (19)

and

clm T (x̄)

�( f ( p̄, ·))(x̄) < 1 (20)

hold true.

Then S f,T has the isolated calmness property at ( p̄, x̄) and the following modulus
estimate holds

clm S f,T ( p̄, x̄) ≤ clm f (·, x)( p̄)
�( f ( p̄, ·))(x̄) − clm T (x̄)

.

Proof Hypothesis (iii) and condition (19) allow one to apply Theorem 4.3 to the
mapping f ( p̄, ·). According to it, f ( p̄, ·) turns out to be stronglymetrically subregular
at x̄ and it results in

subreg f ( p̄, ·)(x̄) ≤ 1

�( f ( p̄, ·))(x̄) .

Now, since owing to condition (20), it is

subreg f ( p̄, ·)(x̄) · clm T (x̄) < 1,

Theorem 3.2 guarantees that the mapping x �→ f ( p̄, x)+ T (x) is strongly metrically
subregular at (x̄, 0) and that it results in

subreg ( f ( p̄, ·) + T )(x̄, 0) ≤ 1

�( f ( p̄, ·))(x̄) − clm T (x̄)
.

This means that, corresponding to η > 0, there exists r > 0 such that

‖x − x̄‖ ≤ (1 + η)‖ f ( p̄, x) + T (x)‖
�( f ( p̄, ·))(x̄) − clm T (x̄)

, ∀x ∈ B(x̄, r).
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By taking account of hypothesis (i), one has that for some ζ > 0 and r̃ ∈ (0, r) it
holds

‖x − x̄‖ ≤ (1 + η)‖ f ( p̄, x) − f (p, x)‖ + ‖ f (p, x) + T (x)‖
�( f ( p̄, ·))(x̄) − clm T (x̄)

≤ (1 + η)[(clm f (·, x)( p̄) + η)d(p, p̄) + ‖ f (p, x) + T (x)‖]
�( f ( p̄, ·))(x̄) − clm T (x̄)

for every x ∈ B(x̄, r̃) and p ∈ B( p̄, ζ ). Thus, if taking x ∈ B(x̄, r̃) ∩ S f,T (p), one
finds

‖x − x̄‖ ≤ (1 + η)(clm f (·, x)( p̄) + η)

�( f ( p̄, ·))(x̄) − clm T (x̄)
d(p, p̄), ∀p ∈ B( p̄, ζ ).

The last inequality shows that S f,T fulfils the isolated calmness property at ( p̄, x̄), and
by arbitrariness of η, it allows one to achieve the asserted modulus estimation. �

6 Conclusions

The approach of analysis proposed in this paper shows that several techniques for
detecting strong metric subregularity of nonsmooth mappings can be derived from a
unique elementary criterion, based on the notion of steepest displacement rate, which
can be formulated already in a metric space setting. This criterion, besides providing a
unifying scheme of analysis with transparent proofs, emphasizes the variational nature
of the property under study. Optimization (especially, nondifferentiable optimization)
is well recognized as a field where many results and constructions of set-valued analy-
sis are fruitfully applied. The findings of the present study should contribute to make it
evident that, symmetrically, nondifferentiable optimization can provide useful insights
and methods for investigating properties of multifunctions; some of them not neces-
sarily related to extremum problems. This seems to agree with the very spirit of the
Euler’s variational faith.

Acknowledgments The author thanks both the anonymous referees for their valuable remarks and com-
ments.
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