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Abstract In the last 15 years, tumor anti-angiogenesis became an active area of re-
search in medicine and also in mathematical biology, and several models of dynamics
and optimal controls of angiogenesis have been described. We use the Hamilton–
Jacobi approach to study the numerical analysis of approximate optimal solutions to
some of those models earlier analysed from the point of necessary optimality condi-
tions in the series of papers by Ledzewicz and Schaettler.

Keywords Dynamic programming · ε-Optimal control problems · ε-Value
function · Hamilton–Jacobi inequality · Cancer therapy

1 Introduction

The search for therapy approaches that would avoid drug resistance is of tantamount
importance in medicine. Two approaches that are currently being pursued in their ex-
perimental stages are immunotherapy and anti-angiogenic treatments. Immunother-
apy tries to coax the body’s immune system to take action against the cancerous
growth. Tumor anti-angiogenesis is a cancer therapy approach that targets the vas-
culature of a growing tumor. Contrary to traditional chemotherapy, anti-angiogenic
treatment does not target the quickly duplicating and genetically unstable cancer
cells, but instead the genetically stable normal cells. It was observed in experimental
cancer that there is no resistance to the angiogenic inhibitors [1]. For this reason, tu-
mor anti-angiogenesis has been called a therapy “resistant to resistance” that provides
a new hope for the treatment of tumor-type cancers [2]. In the last 15 years, tumor
anti-angiogenesis became an active area of research not only in medicine [3, 4], but
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also in mathematical biology [5–7], and several models of dynamics of angiogenesis
have been described, e.g., by Hahnfeldt et al. [5] and d’Onofrio [6, 7]. In a sequence
of papers [8–11], Ledzewicz and Schaettler completely described and solved cor-
responding to them, optimal control problems from a geometrical optimal control
theory point of view. In most of the mentioned papers, the numerical calculations of
approximate solutions are presented. However, in none of them are proved assertions
that calculated numerical solutions that are really near the optimal one. The aim of
this paper is an analysis of the optimal control problem from the Hamilton–Jacobi–
Bellman point of view, i.e., using a dynamic programming approach, and to prove
that, for calculated numerically solutions the functional considered takes an approxi-
mate value with a given accuracy.

2 Formulation of the Problem

In the paper, the following free terminal time T problem

(P): minimize J (p,q,u) := p(T ) + κ

∫ T

0
u(t) dt (1)

over all Lebesgue measurable functions u : [0, T ] → [0, a] = U that satisfy a con-
straint on the total amount of anti-angiogenic inhibitors to be administered

∫ T

0
u(t) dt ≤ A, (2)

subject to

ṗ = −ξp ln

(
p

q

)
, p(0) = p0, (3)

q̇ = bp − (
μ + dp

2
3
)
q − Guq, q(0) = q0 (4)

is investigated. The term
∫ T

0 u(t) dt is viewed as a measure for the cost of the treat-
ment or related to side effects. The upper limit a in the definition of the control set
U = [0, a] is a maximum dose at which inhibitors can be given. Note that the time T

does not correspond to a therapy period. However, instead the functional (1) attempts
to balance the effectiveness of the treatment with cost and side effects through the
positive weight κ at this integral. The state variables p and q are, respectively, the
primary tumor volume and the carrying capacity of the vasculature. Tumor growth is
modelled by a Gompertzian growth function with a carrying capacity q , by (3), where
ξ denotes a tumor growth parameter. The dynamics for the endothelial support is de-
scribed by (4), where bp models the stimulation of the endothelial cells by the tumor

and the term dp
2
3 q models the endogenous inhibition of the tumor. The coefficients

b and d are growth constants. The terms μq and Guq describe, respectively, the loss
to the carrying capacity through natural causes (death of endothelial cells, etc.), and
the loss due to extra outside inhibition. The variable u represents the control in the
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system and corresponds to the angiogenic dose rate, while G is a constant that repre-
sents the anti-angiogenic killing parameter. More details on the descriptions and the
discussion of parameters in (1)–(4) can be found in [9, 10]. They analyzed the above
problem using first-order necessary conditions for optimality of a control u given by
the Pontryagin maximum principle and the second order: the so-called strengthened
Legendre–Clebsch condition and geometric methods of optimal control theory.

3 Hamilton–Jacobi Approach

For problems (1)–(4), we can construct the following Hamiltonian:

Ĥ (p, q, y,u) := κu − y1ξp ln

(
p

q

)
+ y2

(
bp − (

μ + dp
2
3
)
q − Guq

)
,

where y = (y1, y2). The true Hamiltonian is

H(p,q, y) := min
u∈[0,a] Ĥ (p, q, y,u).

In spite that Ĥ is linear in u, the control may not be determined by the minimum con-
dition (detailed discussions are in [8]). Following [8], to exclude discussions about
the structure of optimal controls in regions where the model does not represent the
underlying biological problem, we confine ourselves to the biologically realistic do-
main

D := {
(p, q) : 0 < p ≤ p̄,0 < q ≤ q̄

}
,

where p̄ = (
b−μ

d
)3/2, q̄ = p̄. Thus, the Hamiltonian H is defined in D ×R2. We shall

call trajectories admissible iff they satisfy (3), (4) (with control u ∈ [0, a]), and are
lying in D. Along any admissible trajectory, defined on [0, T ], satisfying necessary
conditions—maximum Pontryagin principle [12], we have

H
(
p(T ), q(T ), y(T )

) = 0, i.e. H
(
p(t), q(t), y(t)

) ≡ 0 in [0, T ].
However, as the problems (1)–(4) are free final time, we cannot apply directly the dy-
namic programming approach. The main reason is that in the dynamic programming
formulation, the value function must satisfy the Hamilton–Jacobi equation (the first-
order PDE) together with the end condition in final time. Thus, the final time should
be fixed, or at least it should belong to a fixed end manifold. To this effect, we follow
the trick of Maurer [12] and transform problems (1)–(4) into a problem with fixed
final time T̃ = 1. The transformation proceeds by augmenting the state dimension
and by introducing the free final time as an additional state variable. Define the new
time variable τ ∈ [0,1] by

t := τ · T , 0 ≤ τ ≤ 1.

We shall use the same notation p(τ) := p(τ · T ), q(τ) := q(τ · T ) and u(τ) :=
u(τ · T ) for the state and the control variable with respect to the new time variable τ .
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The augmented state

p̃ = p ∈ R1, q̃ =
(

q

r

)
∈ R2, r = T ,

satisfies the differential equations

dp/dτ = −T ξp ln

(
p

q

)
, p(0) = p0,

dq/dτ = T
(
bp − (

μ + dp
2
3
)
q − Guq

)
, q(0) = q0,

dr/dτ = 0.

As a consequence, we shall consider the following augmented control problem (P̃)
on the fixed time interval [0,1]:

minJ (p̃, q̃, u) := minJ (p,q, r, u) = min

(
p̃(1) + rκ

∫ 1

0
u(τ) dτ

)

s.t.

dp̃/dτ = −rξp ln

(
p

q

)
, p̃(0) = p0, (5)

dq̃/dτ =
(

r(bp − (μ + dp
2
3 )q − Guq)

0

)
, q̃(0) = (q0, r). (6)

We shall call the trajectories (p̃, q̃) (with control u ∈ [0, a]) admissible if they satisfy
(5), (6), and (p, q) are lying in D. The transformed problem (P̃) on the fixed inter-
val [0,1] falls into the category of control problems treated in [13]. Thus, we can
apply the dynamic programming method developed therein.

The Hamiltonian for the problem (P̃) becomes

H̃ (p̃, q̃, ỹ, u) := rκu − y1rξp ln

(
p

q

)
+ y2r

(
bp − (

μ + dp
2
3
)
q − Guq

) + y3 · 0

= T

(
κu − y1ξp ln

(
p

q

)
+ y2

(
bp − (

μ + dp
2
3
)
q − Guq

))

= T · Ĥ (p, q, y,u),

where ỹ = (y1, y2, y3).
Define D̃ := [0,1] × D and on it define the value function for the problem (P̃)

S(τ,p, q) := inf

(
p̃(1) + rκ

∫ 1

τ

u(s) ds

)
, (7)
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where the infimum is taken over all admissible trajectories starting at (τ,p, q) ∈ D̃.
If it happens that S is of C1, then it satisfies the Hamilton–Jacobi–Bellman equa-
tion [13]:

∂

∂τ
S(τ,p, q) + min

u∈[0,a] H̃
(

p̃, q̃,
∂

∂p
S,

∂

∂q
S,u

)
= 0, (8)

with a terminal value

S(1,p, q) = p, (p, q) ∈ D. (9)

Since the problems of the type (8)–(9) are difficult to solve explicitly in the pa-
per [14] introduced the so-called ε-value function. For any ε > 0, we call a function
(τ,p, q) → Sε(τ,p, q), defined in D̃, an ε-value function iff

S(τ,p, q) ≤ Sε(τ,p, q) ≤ S(τ,p, q) + ε, (τ,p, q) ∈ D̃, (10)

p ≤ Sε(1,p, q) ≤ p + ε, (p, q) ∈ D. (11)

It is also well known that there exists a Lipschitz continuous ε-value function and
that it satisfies the Hamilton–Jacobi inequality:

−ε

2
≤ ∂

∂τ
Sε(τ,p, q) + min

u∈U

{
− ∂

∂p̃
Sε(τ,p, q)rξp ln

(
p

q

)

+ ∂

∂q
Sε(τ,p, q)r

(
bp − (

μ + dp
2
3
)
q − Guq

) + rκu

}
≤ 0.

Conversely [14]:
Each Lipschitz continuous function w(τ,p, q) satisfying

−ε

2
≤ ∂

∂τ
w(τ,p, q) + min

u∈U

{
− ∂

∂p
w(τ,p, q)rξp ln

(
p

q

)

+ ∂

∂q
w(τ,p, q)r

(
bp − (

μ + dp
2
3
)
q − Guq

) + rκu

}
≤ 0, (12)

p ≤ w(1,p, q) ≤ p + ε, (p, q) ∈ D,

is an ε-value function; i.e., it satisfies (10)–(11).
In the next section, we describe a numerical construction of a function w satisfy-

ing (12).

4 Numerical Approximation of Value Function

This section is an adaptation of the method developed by Pustelnik in his Ph.D. the-
sis [15] for the numerical approximation of value function for the Bolza problem
from optimal control theory. The main idea of that method is an approximation of
the Hamilton–Jacobi expression from (12) by a piecewise constant function. How-
ever, we do not know the function w. The essential part of the method is that we start
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with a quite arbitrary smooth function g and then shift the Hamilton–Jacobi expres-
sion with g by the piecewise constant function to get an inequality similar to that as
in (12). Thus, let D̃ � (τ,p, q) → g(τ,p, q) be an arbitrary function of class C2 in D̃,
such that g(1,p, q) = p, (p, q) ∈ D. For a given function g, we define in D̃ × R+ ×
U(τ, p̃, q̃, u) → Gg(τ, p̃, q̃, u) as

Gg(τ, p̃, q̃, u) := ∂

∂τ
g(τ,p, q) − ∂

∂p
g(τ,p, q)rξp ln

(
p

q

)

+ ∂

∂q
g(τ,p, q)r

(
bp − (

μ + dp
2
3
)
q − Guq

) + rκu. (13)

Next, we define the function (τ, p̃, q̃) → Fg(τ, p̃, q̃) as

Fg(τ, p̃, q̃) := min
{
Gg(τ, p̃, q̃, u) : u ∈ U

}
. (14)

Note that the function Fg is continuous in D̃ and even Lipschitz continuous in D̃,
and denote its Lipschitz constant by MFg . By the continuity of Fg and compactness

of D̃, there exist kd and kg such that

kd ≤ Fg(τ, p̃, q̃) ≤ kg for (τ, p̃, q̃) ∈ D̃ × R+.

The first step of approximation is to construct the piecewise constant function hη,g

which approximate the function Fg . To this effect, we need some notations and no-
tions.

4.1 Definition of Covering of D̃

Let η > 0 be fixed and {qη
j }j∈Z be a sequence of real numbers such that q

η
j = jη,

j ∈ Z (Z—set of integers). Denote

J := {
j ∈ Z : there is (τ, p̃, q̃) ∈ D̃ × R+, jη < Fg(τ, p̃, q̃) ≤ (j + 1)η

}
,

i.e.

J := {
j ∈ Z : there is (τ, p̃, q̃) ∈ D̃ × R+, q

η
j < Fg(τ, p̃, q̃) ≤ q

η
j+1

}
.

Next, let us divide the set D̃ into the sets P
η,g
j , j ∈ J , as follows:

P
η,g
j := {

(τ, p̃, q̃) ∈ D̃ × R+ : qη
j < Fg(τ, p̃, q̃) ≤ q

η
j+1

}
, j ∈ J.

As a consequence, we have for all i, j ∈ J , i �= j , P
η,g
i ∩ P

η,g
j = ∅,

⋃
j∈J P

η,g
j = D̃

an obvious proposition.

Proposition 4.1 For each (τ,p, q) ∈ D̃, there exists an ε > 0, such that a ball with
center (τ,p, q) and radius ε is either contained only in one set P

η,g
j , j ∈ J , or

contained in a sum of two sets P
η,g
j1

, P
η,g
j2

, j1, j2 ∈ J . In the latter case, |j1 − j2| = 1.
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4.2 Discretization of Fg

Define in D̃ × R+ a piecewise constant function

hη,g(τ, p̃, q̃) := −q
η
j+1, (τ, p̃, q̃) ∈ P

η,g
j , j ∈ J. (15)

Then, by the construction of the covering of D̃, we have

−η ≤ Fg(τ, p̃, q̃) + hη,g(τ, p̃, q̃) ≤ 0, (τ, p̃, q̃) ∈ D̃ × R+, (16)

i.e., the function (15) approximates Fg with accuracy η.
The next step is to estimate integral of hη,g along any admissible trajectory by

the finite sum of elements with values from the set {−η,0, η} multiplied by 1 − τi ,
0 ≤ τi < 1. Let (p̃(·), q̃(·), u(·)) be any admissible trajectory starting at the point
(0,p0, q0) ∈ D̃. We show that there exists an increasing sequence of m points
{τi}i=1,...,m, τ1 = 0, τm = 1, such that, for τ ∈ [τi, τi+1],

∣∣Fg

(
τi, p̃(τi), q̃(τi)

) − Fg

(
τ, p̃(τ ), q̃(τ )

)∣∣ ≤ η

2
, i = 1, . . . ,m − 1. (17)

Indeed, it is a direct consequence of two facts: absolute continuity of p̃(·), q̃(·)
and continuity of Fg . From (17), we infer that, for each i ∈ {1, . . . ,m − 1}, if
(τi, p̃(τi), q̃(τi)) ∈ P

η,g
j for a certain j ∈ J , then we have, for τ ∈ [τi, τi+1),

(
τ, p̃(τ ), q̃(τ )

) ∈ P
η,g

j−1 ∪ P
η,g
j ∪ P

η,g

j+1.

Thus, for τ ∈ [τi, τi+1] along the trajectory p̃(·), q̃(·),

hη,g
(
τi, p̃(τi), q̃(τi)

) − η ≤ hη,g
(
τ, p̃(τ ), q̃(τ )

) ≤ hη,g
(
τi, p̃(τi), q̃(τi)

) + η, (18)

and so, for i ∈ {2, . . . ,m − 1},

hη,g
(
τi, p̃(τi), q̃(τi)

) − hη,g
(
τi−1, p̃(τi−1), q̃(τi−1)

) = ηi
p̃(·),q̃(·), (19)

where ηi
p̃(·),q̃(·) is equal to −η or 0 or η. Integrating (18), we obtain, for each i ∈

{1, . . . ,m − 1},
[
hη,g

(
τi, p̃(τi), q̃(τi)

) − η
]
(τi+1 − τi)

≤
∫ τi+1

τi

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

≤ [
hη,g

(
τi, p̃(τi), q̃(τi)

) + η
]
(τi+1 − τi),

and in consequence,
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∑
i∈{1,...,m−1}

[
hη,g

(
τi, p̃(τi), q̃(τi)

)
(τi+1 − τi)

] − η

≤
∫ 1

0
hη,g

(
τ, p̃(τ ), q̃(τ )

)
dτ

≤
∑

i∈{1,...,m−1}

[
hη,g

(
τi, p̃(τi), q̃(τi)

)
(τi+1 − τi)

] + η.

Now, we will present the expression
∑

i∈{1,...,m−1}

[
hη,g

(
τi, p̃(τi), q̃(τi)

)
(τi+1 − τi)

]

in a different, more useful form. By performing simple calculations, we get the two
following equalities:∑

i∈{2,...,m−1}

[
hη,g

(
τi, p̃(τi), q̃(τi)

) − hη,g
(
τi−1, p̃(τi−1), q̃(τi−1)

)]
τm

= −hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
τm + hη,g

(
τm−1, p̃(τm−1), q̃(τm−1)

)
τm,∑

i∈{2,...,m−1}

[
hη,g

(
τi, p̃(τi), q̃(τi)

) − hη,g
(
τi−1, p̃(τi−1), q̃(τi−1)

)]
(−τi) (20)

=
∑

i∈{1,...,m−1}

[
hη,g

(
τi, p̃(τi), q̃(τi)

)
(τi+1 − τi)

]

+ hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
τ1 − hη,g

(
τm−1, p̃(τm−1), q̃(τm−1)

)
τm.

From (20), we get∑
i∈{2,...,m−1}

[
hη,g

(
τi, p̃(τi), q̃(τi)

) − hη,g
(
τi−1, p̃(τi−1), q̃(τi−1)

)]
(τm − τi)

=
∑

i∈{1,...,m−1}

[
hη,g

(
τi, p̃(τi), q̃(τi)

)
(τi+1 − τi)

]

− hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τ1 − τm),

and next, we obtain
∑

i∈{2,...,m−1}

[
hη,g

(
τi, p̃(τi), q̃(τi)

) − hη,g
(
τi−1, p̃(τi−1), q̃(τi−1)

)]
(τm − τi)

+ hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) − η(τm − τ1)

≤
∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

≤
∑

i∈{2,...,m−1}

[
hη,g

(
τi, p̃(τi), q̃(τi)

) − hη,g
(
τi−1, p̃(τi−1), q̃(τi−1)

)]
(τm − τi)

+ hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) + η(τm − τ1)
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and, taking into account (19), we infer that

∑
i∈{2,...,m−1}

ηi
p̃(·),q̃(·)(τm − τi) + hη,g

(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) − η(τm − τ1)

≤
∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

≤
∑

i∈{2,...,m−1}
ηi

p̃(·),q̃(·)(τm − τi)

+ hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) + η(τm − τ1). (21)

We would like to stress that (21) is very useful from a numerical point of view: We
can estimate the integral hη,g(·, ·, ·) along any trajectory p̃(·), q̃(·) as a sum of finite
number of values, where each value consists of a number from the set {−η,0, η}
multiplied by τm − τi .

The last step is to reduce the infinite number of admissible trajectories to finite one.
To this effect, we say that for two different trajectories: (p̃1(·), q̃1(·)), (p̃2(·), q̃2(·)),
the expressions

∑
i∈{2,...,m−1}

ηi
p̃1(·),q̃1(·)(τm − τi) + hη,g

(
τ1, p̃1(τ1), q̃1(τ1)

)
(τm − τ1)

and ∑
i∈{2,...,m−1}

ηi
p̃2(·),q̃2(·)(τm − τi) + hη,g

(
τ1, p̃2(τ1), q̃2(τ1)

)
(τm − τ1)

are identical iff

(
p1(τ1), q1(τ1)

) = (
p2(τ1), q2(τ1)

) = (p0, q0) (22)

and

ηi
p̃1(·),q̃1(·) = ηi

p̃2(·),q̃2(·) for all i ∈ {2, . . . ,m − 1}. (23)

The last one means that in the set B of all trajectories p̃(·), q̃(·) we can introduce an
equivalence relation r: We say that two trajectories (p̃1(·), q̃1(·)) and (p̃2(·), q̃2(·))
are equivalent iff they satisfy (22) and (23). We denote the set of all disjoint equiv-
alence classes by Br. The cardinality of Br, denoted by ‖Br‖, is finite and bounded
from above by 3m+1.

Define

X := {
x = (x1, . . . , xm−1) : x1 = 0, xi = ηi

p̃j (·),q̃j (·),

i = 2, . . . ,m − 1,
(
p̃j (·), q̃j (·)

) ∈ Br, j = 1, . . . ,‖Br‖
}
.

It is easy to see that the cardinality of X is finite.
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Remark 4.1 One can wonder whether the reduction of an infinite number of admissi-
ble trajectories to finite one makes computational sense, especially if the finite num-
ber may mean 3m+1. In the theorems below, we can always take infimum and supre-
mum over all admissible trajectories and the assertions will be still true. However,
from a computational point of view, they are examples in which it is more easily and
effectively to calculate infimum over finite sets.

The considerations above allow us to estimate the approximation of the value func-
tion.

Theorem 4.1 Let (p̃(·), q̃(·)) be any admissible pair such that

(
p(τ1), q(τ1)

) = (p0, q0).

Then we have the following estimate:

−η + inf
(p̃(·),q̃(·))∈Br

(
−

∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

)

≤ inf
(p̃(·),q̃(·))∈Br

(
p̃(1) + rκ

∫ τm

τ1

u(τ) dτ

)
− g(0, p̃0, q̃0)

≤ sup
(p̃(·),q̃(·))∈Br

(
−

∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

)
.

Proof By inequality (16),

−η ≤ Fg(τ, p̃, q̃) + hη,g(τ, p̃, q̃) ≤ 0,

we have

−η − hη,g(τ, p̃, q̃) ≤ Fg(τ, p̃, q̃) ≤ −hη,g(τ, p̃, q̃).

Integrating the last inequality along any (p̃(·), q̃(·)) in the interval [τ1, τm], we get

−η(τm − τ1) −
∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

≤
∫ τm

τ1

(
∂

∂τ
g
(
τ,p(τ), q(τ )

)

+ inf
u∈[0,a]

{
− ∂

∂p
g
(
τ,p(τ), q(τ )

)
rξp(τ) ln

(
p(τ)

q(τ )

)

+ ∂

∂q
g
(
τ,p(τ), q(τ )

)
r
(
bp(τ) − (

μ + dp
2
3 (τ )

)
q(τ) − Guq(τ)

) + rκu

})
dτ

≤ −
∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ.
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Thus, by a well-known theorem [16],

−η(τm − τ1) −
∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

≤ inf
u(·)

∫ τm

τ1

(
∂

∂τ
g
(
τ,p(τ), q(τ )

) − ∂

∂p
g
(
τ,p(τ), q(τ )

)
rξp ln

(
p(τ)

q(τ )

)

+ ∂

∂q
g
(
τ,p(τ), q(τ )

)
r
(
bp(τ) − (

μ + dp
2
3 (τ )

)
q(τ) − Gu(τ)q(τ )

)

+ rκu(τ)

)
dτ

≤ −
∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ.

Hence, we get two inequalities:

−η(τm − τ1) + inf
(p̃(·),q̃(·))∈Br

(
−

∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

)

≤ inf
(p̃(·),q̃(·))∈Br

inf
u(·)

∫ τm

τ1

(
∂

∂τ
g
(
τ,p(τ), q(τ )

)

− ∂

∂p
g
(
τ,p(τ), q(τ )

)
rξp(τ) ln

(
p(τ)

q(τ )

)

+ ∂

∂q
g
(
τ,p(τ), q(τ )

)
r
(
bp(τ) − (

μ + dp
2
3 (τ )

)
q(τ) − Gu(τ)q(τ )

)

+ rκu(τ)

)
dτ

and

sup
(p̃(·),q̃(·))∈Br

inf
u(·)

∫ τm

τ1

(
gτ

(
τ,p(τ), q(τ )

) − gp

(
τ,p(τ), q(τ )

)
rξp ln

(
p(τ)

q(τ )

)

+ ∂

∂q
g
(
τ,p(τ), q(τ )

)
r
(
bp(τ) − (

μ + dp
2
3 (τ )

)
q(τ) − Gu(τ)q(τ )

)

+ rκu(τ)

)
dτ

≤ sup
(p̃(·),q̃(·))∈Br

(
−

∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

)
.

Both inequalities imply that

inf
(p̃(·),q̃(·))∈Br

inf
u(·)

∫ τm

τ1

(
∂

∂τ
g
(
τ,p(τ), q(τ )

)

− ∂

∂p
g
(
τ,p(τ), q(τ )

)
rξp(τ) ln

(
p(τ)

q(τ )

)
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+ ∂

∂q
g
(
τ,p(τ), q(τ )

)
r
(
bp(τ) − (

μ + dp
2
3 (τ )

)
q(τ) − Gu(τ)q(τ )

)

+ rκu(τ)

)
dτ

≤ inf
u(·)

∫ τm

τ1

(
∂

∂τ
g
(
τ,p(τ), q(τ )

)

− ∂

∂p
g
(
τ,p(τ), q(τ )

)
rξp ln

(
p(τ)

q(τ )

)

+ ∂

∂q
g
(
τ,p(τ), q(τ )

)
r
(
bp(τ) − (

μ + dp
2
3 (τ )

)
q(τ) − Gu(τ)q(τ )

)

+ rκu(τ)

)
dτ

≤ sup
(p̃(·),q̃(·))∈Br

inf
u(·)

∫ τm

τ1

(
∂

∂τ
g
(
τ,p(τ), q(τ )

)

− ∂

∂p
g
(
τ,p(τ), q(τ )

)
rξp(τ) ln

(
p(τ)

q(τ )

)

+ ∂

∂q
g
(
τ,p(τ), q(τ )

)
r
(
bp(τ) − (

μ + dp
2
3 (τ )

)
q(τ) − Gu(τ)q(τ )

)

+ rκu(τ)

)
dτ.

As a consequence of the above, we get

−η + inf
(p̃(·),q̃(·))∈Br

(
−

∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

)

≤ inf
(p̃(·),q̃(·))∈Br

(
p̃(1) + rκ

∫ τm

τ1

u(τ) dτ

)
− g(0,p0, q0)

≤ sup
(p̃(·),q̃(·))∈Br

(
−

∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

)

and thus the assertion of the theorem follows. �

Now, we use the definition of equivalence class to reformulate the theorem above
in a way that is more useful in practice. To this effect, let us note that, by definition
of the equivalence relation r, we have

inf
(p̃(·),q̃(·))∈Br

{
−

∑
i=2,...,m−1

ηi
p̃(·),q̃(·)(τm − τi)

}
= inf

x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}

and

sup
(p̃(·),q̃(·))∈Br

{
−

∑
i=2,...,m−1

ηi
p̃(·),q̃(·)(τm − τi)

}
= sup

x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}
.
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Taking into account (21), we get

inf
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}
+ hη,g

(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) − η(τm − τ1)

≤ inf
(p̃(·),q̃(·))∈Br

{
−

∫ τm

τ1

hη,g
(
τ, p̃(τ ), q̃(τ )

)
dτ

}

≤ inf
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}

+ hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) + η(τm − τ1),

and a similar formula for supremum. Applying that to the result of the theorem above,
we obtain the following estimation:

inf
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}
+ hη,g

(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) − η(τm − τ1)

≤ inf
(p̃(·),q̃(·))∈Br

(
p̃(1) + rκ

∫ τm

τ1

u(τ) dτ

)
− g(0,p0, q0)

≤ sup
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}

+ hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) + η(τm − τ1). (24)

Thus, we come to the main theorem of this section, which allows us to reduce an
infinite dimensional problem to the finite dimensional one.

Theorem 4.2 Let η > 0 be given. Assume that there is θ > 0, such that

sup
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}

+ hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) − η(τm − τ1)

≤ inf
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}

+ hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) + η(τm − τ1) + θ(τm − τ1). (25)

Then

(η + θ)(τm − τ1) + hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1)

+ g(0,p0, q0) + inf
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}
(26)

is εoptimal value at (τ1,p0, q0) for ε = 2η + θ .
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Proof From the formulae (24), (25), we infer

inf
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}

+ hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) − η(τm − τ1)

≤ inf
(p̃(·),q̃(·))∈Br

(
p̃(r) + rκ

∫ τm

τ1

u(τ) dτ

)
− g(0,p0, q0)

≤ inf
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)

}

+ hη,g
(
τ1, p̃(τ1), q̃(τ1)

)
(τm − τ1) + η(τm − τ1) + θ(τm − τ1).

Then, using the definition of value function (7), we get (26). �

Example 4.1 Let the total amount of anti-angiogenic inhibitors A = 300 mg (2). Take
for initial values of tumor p0 = 15502 and vasculature q0 = 15500, κ = 1. With
u = 10 (we assume maximum dose at which inhibitors can be given a = 75 mg),
taking an approximate solution of (3), (4), we jump to singular arc [8], and then
follow it (in discrete way) until all inhibitors available are being used up, then final
p = 9283.647 and q = 5573.07. We construct a function g numerically such that
g(0,p0, q0) = 9283.647 and assumption (25) is satisfied with θ = 0, η = 0.1 and
hη,g(τ1, p̃(τ1), q̃(τ1)) = 0.

5 Conclusions

The paper treats the free final-time optimal control problem in cancer therapy through
the ε-dynamic programming approach stating that every Lipschitz solution of the
Hamilton–Jacobi inequality is an ε-optimal value of the cost of the treatment. Then a
numerical construction of the ε-optimal value is presented. As a final result, a com-
putational formula for the ε-optimal value is given.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Boehm, T., Folkman, J., Browder, T., O’Reilly, M.S.: Antiangiogenic therapy of experimental cancer
does not induce acquired drug resistance. Nature 390, 404–407 (1997)

2. Kerbel, R.S.: A cancer therapy resistant to resistance. Nature 390, 335–336 (1997)
3. Kerbel, R.S.: Tumor angiogenesis: past, present and near future. Carcinogenesis 21, 505–515 (2000)
4. Klagsburn, M., Soker, S.: VEGF/VPF: the angiogenesis factor found? Curr. Biol. 3, 699–702 (1993)
5. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Tumor development under angiogenic signaling:

a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59,
4770–4775 (1999)



J Optim Theory Appl (2013) 156:365–379 379

6. D’Onofrio, A.: Rapidly acting antitumoral anti-angiogenic therapies. Phys. Rev. E, Stat. Nonlinear
Soft Matter Phys. 76(3), 031920 (2007)

7. D’Onofrio, A., Gandolfi, A.: Tumour eradication by antiangiogenic therapy: analysis and extensions
of the model by Hahnfeldt et al. (1999). Math. Biosci. 191, 159–184 (2004)

8. Ledzewicz, U., Schättler, H.: Optimal bang-bang controls for a 2-compartment model in cancer
chemotherapy. J. Optim. Theory Appl. 114, 609–637 (2002)

9. Ledzewicz, U., Schättler, H.: Anti-angiogenic therapy in cancer treatment as an optimal control prob-
lem. SIAM J. Control Optim. 46(3), 1052–1079 (2007)

10. Ledzewicz, U., Schättler, H.: Optimal and suboptimal protocols for a class of mathematical models
of tumor anti-angiogenesis. J. Theor. Biol. 252, 295–312 (2008)

11. Ledzewicz, U., Oussa, V., Schättler, H.: Optimal solutions for a model of tumor anti-angiogenesis
with a penalty on the cost of treatment. Appl. Math. 36(3), 295–312 (2009)

12. Maurer, H., Oberle, J.: Second order sufficient conditions for optimal control problems with free final
time: the Riccati approach. SIAM J. Control Optim. 41(2), 380–403 (2002)

13. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York
(1975)

14. Nowakowski, A.: ε-Value function and dynamic programming. J. Optim. Theory Appl. 138(1), 85–93
(2008)

15. Pustelnik, J.: Approximation of optimal value for Bolza problem. Ph.D. Thesis (2009). (in Polish)
16. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Math.,

vol. 580. Springer, New York (1977)


	A Dynamic Programming Approach for Approximate Optimal Control for Cancer Therapy
	Abstract
	Introduction
	Formulation of the Problem
	Hamilton-Jacobi Approach
	Numerical Approximation of Value Function
	Definition of Covering of D
	Discretization of Fg

	Conclusions
	References


