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Abstract We consider an infinite-horizon optimal control problem with the cost
functional described either by an integral over an unbounded interval (a Lebesgue
integral) or by a limit of integrals (an improper Lebesgue integral). We prove some
theorems on the existence of solutions to such problems. The proofs are based on
appropriate lower closure theorems and some extensions of Olech’s theorem on the
lower semicontinuity of an integral functional; these extensions cover the cases of
functionals described by an integral over an unbounded interval and by a limit of
integrals.

Keywords Infinite-horizon optimal control · Existence of an optimal solution ·
Lower closure theorem · Olech’s theorem

1 Introduction

This paper is devoted to an infinite-horizon optimal control problem described by an
ordinary differential equation. The cost functional is given either by an integral over
an unbounded interval (a Lebesgue integral) or by a limit of integrals (an improper
Lebesgue integral). The next section provides a simple example that illustrates the
difference between the two functionals.

The problem corresponds to many phenomena that are of interest, for instance,
in management science or economics: It can model the relationship between ad-
vertising, sales, and company profit or describe some production-inventory systems;
see [1].
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The first difficulty we encounter when analyzing this problem is how to define
appropriately an optimal pair. The literature offers many different definitions; see, for
example, [2]. We introduce two new concepts of an optimal pair: a classical optimal
pair for the model with an integral over an unbounded interval and an almost strongly
optimal pair for the model with a limit of integrals (an improper Lebesgue integral).
Compared to known definitions, these new concepts are a more natural extension of
the definition of an optimal pair for finite-horizon models. Some relation between
known and new definitions is shown in Sect. 2.

Having adequately defined an optimal pair, we give some conditions that ensure
the existence of an optimal pair in the class of locally absolutely continuous trajec-
tories and measurable controls. Here we use the method presented in [3]. It is based
on the concept of the modified Lagrangian, and on a suitable version of the lower
closure theorem for multifunctions defined over an unbounded domain.

The lower closure theorem, for a bounded domain, can be found in [4, Theo-
rem 10.7.i]. Some variants of this theorem have been obtained in [5] for a special form
of the multifunction and in [6] where the assumptions involve some “equi-behavior”
of integrals over a bounded interval. We prove some versions of this theorem—
Theorem 6.1 and Theorem 6.2—for multifunctions in a general form, defined on
the interval [0,∞[. Such a theorem, with slightly different assumptions, has been
stated in [3] without proof. The proofs of our lower closure theorems are based
on some extensions of the classical Olech’s theorem on the lower semicontinuity
of an integral functional to the case of functions defined on an unbounded domain;
see [7].

Our paper consists of seven main sections. In Sect. 2, we describe the model un-
der study in detail and give an elementary example to justify this paper. Section 3
recalls some properties of locally absolutely continuous functions defined on the in-
terval [0,∞[. Section 4 is devoted to the classical Olech’s theorem on the lower
semicontinuity of an integral functional that involves an integral over a set of finite
measure and some counterparts of this result for the functionals (J∫) and (Jlim) with
integrands that depend on four variables and with an integral over the interval [0,∞[.
Section 5 concerns the concept of the modified Lagrangian and its basic properties. In
Sect. 6, the lower closure theorems for the above-mentioned functionals are proven.
In Sect. 7, theorems on the existence of an optimal solution to system (P) with the cost
functional (J∫) or (Jlim) are derived and some examples that illustrate the existence
theorems are given. In Sect. 8, some optimality principles are given. These principles
say that an optimal solution of the infinite-horizon optimal control problem given by
(P) and (J∫) or (P) and (Jlim) is optimal on each finite time interval, in the usual sense.

2 Motivation

Consider the infinite-horizon control system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = f (t, x(t), u(t)) for a.e. t ∈ [0,∞[,
x(0) = 0,

x(t) ∈ A(t) for t ∈ [0,∞[,
u(t) ∈ U(t, x(t)) for a.e. t ∈ [0,∞[

(P)
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with the cost functional

J∫(x,u) =
∫ ∞

0
F

(
t, x(t), u(t)

)
dt, (J∫)

where f : [0,∞[×R
n × R

m → R
n, F : [0,∞[×R

n × R
m → R, A : [0,∞[ ⇒ R

n1,
and U : GrA ⇒ R

m. The set GrA is the graph of the multifunction A.
All integrals will hereafter signify Lebesgue integration.
A function g : [0,∞[ → R is said to be summable iff the integrals of the positive

part g+ = max{g,0} and the negative part g− = max{−g,0} are finite; the function
g is said to be integrable iff at least one of these integrals is finite. The (proper)
Lebesgue integral of g is

∫ ∞
0 g(t) dt := ∫ ∞

0 g+(t) dt − ∫ ∞
0 g−(t) dt in both cases.

See [8].
If a function f : [0,∞[→ R is summable on each interval ]0, T [ with T positive,

then the improper Lebesgue integral is defined to be the limit limT →∞
∫ T

0 f (x)dx

whenever it exists. See [9, Chap. VII, Sect. 8] or [10, Chap. VIII, Sect. 8].
Using the integral

∫ ∞
0 F(t, x(t), u(t)) dt makes it necessary to impose some con-

ditions that ensure the summability of the function F(·, x(·), u(·)) on the unbounded
interval [0,∞[. Such conditions are restrictive and not always satisfied in real-life ap-
plications; cf. Gale’s cake eating problem in [3] and [4]. It, therefore, seems reason-
able (necessary) to consider another notion of optimality. To weaken the assumptions
on F , consider the functional

Jlim(x,u) := lim
T →∞

∫ T

0
F

(
t, x(t), u(t)

)
dt (Jlim)

instead of J∫. In such a case, it is enough to assume that F(·, x(·), u(·)) is locally
summable (that is, summable on each bounded subinterval of [0,∞[) and there exists
a finite limit limT →∞

∫ T

0 F(t, x(t), u(t)) dt .
The difference between Jlim(x,u) and J∫(x,u) can be better seen if one takes the

function h(t) = sin t
t

: the integral
∫ ∞

0 h(t) dt does not exist, yet limT →∞
∫ T

0 h(t) dt

exists and is equal to π
2 . In other words, the function h is neither summable nor inte-

grable and despite that there the improper Lebesgue integral of this function exists.
To sum up, this paper assumes that there exists one of the integrals: Lebesgue or,

at least, improper Lebesgue. For the sake of the reader’s convenience, we use distinct
notation for them:

∫ ∞
0 for the Lebesgue integral and limT →∞

∫ T

0 for the improper
Lebesgue integral.

The monograph [3] introduces strong optimality: A pair (x∗, u∗) is called strongly
optimal iff

lim
T →∞

∫ T

0
F

(
t, x(t), u(t)

)
dt > −∞

and the inequality

lim
T →∞

∫ T

0

(
F

(
t, x∗(t), u∗(t)

) − F
(
t, x(t), u(t)

))
dt ≤ 0

1We assume that all multifunctions in this paper have nonempty sets as values.



J Optim Theory Appl (2013) 156:650–682 653

holds true for each pair (x,u) which satisfies system (P) and is such that the
function F(·, x(·), u(·)) is locally summable on [0,∞[. It is easy to observe that
strong optimality and the notion of optimality based on the functional (Jlim) (see
Definition 7.8) are not equivalent. More precisely: Suppose that the pair (x,u)

satisfying equation (P) is optimal in the sense of Definition 7.8; only if we as-
sume that the function F(·, x(·), u(·)) is locally integrable on [0,∞[ and the limit
limT →∞

∫ T

0 F(t, x(t), u(t)) dt exists, is it meaningful to speak about the truth of the
inequality in the above definition. We have therefore decided to say that the pair op-
timal in the sense of Definition 7.8 is almost strongly optimal.

To the author’s knowledge, the definition of an optimal pair for problem (P) with
the cost functional (J∫) (i.e., a classical optimal solution) was not considered in the
literature. Different interpretations of the integral

∫ ∞
0 f (t, x(t), u(t)) dt either in the

Lebesgue sense or in the Riemann sense have been discussed in [11].

3 Locally Absolutely Continuous Functions

This section recalls a definition and some properties of locally absolutely continuous
functions defined on the interval [0,∞[.

A function x : [0,∞[ → R is called locally absolutely continuous on [0,∞[ iff
the function x|[0,T ] is absolutely continuous on [0, T ] for each T > 0.

The space of all locally absolutely continuous functions on [0,∞[ will be denoted
by ACloc([0,∞[,R). It follows from the integral representation of absolutely contin-
uous functions on a bounded interval that x belongs to the space ACloc([0,∞[,R) if
and only if there exists a function l ∈ L1

loc([0,∞[,R) and c ∈ R such that

x(t) =
∫ t

0
l(s) ds + c

for t ∈ [0,∞[, where L1
loc([0,∞[,R) is the space of locally summable functions on

[0,∞[. Consequently, each function x ∈ ACloc([0,∞[,R) has the derivative ẋ(t)

almost everywhere (a.e.) on [0,∞[.
We shall consider ACloc([0,∞[,R) endowed with the topology generated by the

family of seminorms

pq(x) ≡
∫ q

0

∣
∣ẋ(s)

∣
∣ds + ∣

∣x(0)
∣
∣,

where x ∈ ACloc([0,∞[,R) and q ∈ Q
+ (the positive rationals). A sequence

{xk}k∈N ⊂ ACloc([0,∞[,R) converges to x ∈ ACloc([0,∞[,R) iff

pq(xk − x) −→ 0, when k → ∞

for each q ∈ Q
+. See [12, Theorem 1.37].

We can prove, in an elementary way,
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Theorem 3.1 Let Φ∗ be a continuous linear functional on ACloc([0,∞[,R). There
exists a function g ∈ L∞([0,∞[,R) and a constant c ∈ R such that g|]T1,∞[ ≡ 0 for
some T1 > 0 and

Φ∗(x) =
∫ ∞

0
g(s)ẋ(s) ds + cx(0) (1)

for x ∈ ACloc([0,∞[,R). Conversely, any functional Φ∗ given by (1) is linear and
continuous on ACloc([0,∞[,R).

The following characterization of weak convergence in ACloc([0,∞[,R) results
from the above theorem.

Theorem 3.2 A sequence {xk}n∈N is weakly convergent to x in ACloc([0,∞[,R) if
and only if the following two conditions are satisfied:

(i) the sequence {ẋk|[0,T ]}k∈N is weakly convergent to ẋ|[0,T ] in L1([0, T ],R) for
any T > 0,

(ii) the sequence {xk(0)}k∈N is convergent to x(0) in R.

This theorem implies the following two results:

Theorem 3.3 If a sequence {xk}k∈N is weakly convergent to x in ACloc([0,∞[,R),
then

(i) the sequence {xk(t)}k∈N is convergent to x(t) for any t ∈ [0,∞[,
(ii) the sequence {xk}k∈N is convergent to x in L1

loc([0,∞[,R).

The following theorem has been proved in [3, Theorem 7.1, p. 158]:

Theorem 3.4 A set B ⊂ ACloc([0,∞[,R) is relatively weakly sequentially compact
iff

(i) the family C1|T = {ẋ|[0,T ] : x ∈ B} is equiabsolutely summable2 on [0, T ] for
any T > 0,

(ii) the set {x(0) : x ∈ B} is bounded in R.

4 Lower Semicontinuity of an Integral Functional

Consider the integral functional

I (x,u) =
∫ T

0
G

(
t, x(t), u(t)

)
dt

where G : [0, T ] × R
n × R

m → R ∪ {+∞}.

2Let E be a Lebesgue measurable and bounded subset of R. A family of summable functions {fs :
E → R; s ∈ S}, where S is an arbitrary nonempty set of indices, is equiabsolutely summable on E iff
for any ε > 0 there exists a δ > 0 such that

∫

F |fs | ≤ ε for any s ∈ S and for any measurable set F ⊆ E

with |F | < δ, where |F | is the Lebesgue measure of F .
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The following theorem has been proved in [7].

Theorem 4.1 If

(i) the function G is a normal integrand3 on [0, T ] × (Rn × R
m),

(ii) the function G(t, x, ·) is convex on R
m for any (t, x) ∈ [0, T ] × R

n,
(iii) there exist a constant M ∈ R and a summable function Ψ : [0, T ] → R such that

G(t, x,u) ≥ Ψ (t) − M
(|x| + |u|)

for any (t, x,u) ∈ [0, T ] × R
n × R

m,

then

lim inf
k→∞ I (xk, uk) ≥ I (x0, u0),

provided that the sequence {xk}k∈N converges to x0 in L1([0, T ],R
n) and the se-

quence {uk}k∈N converges weakly to u0 in L1([0, T ],R
m).

4.1 Case of a (Proper) Lebesgue Integral

Consider the integral functional

I∫(x, ξ, λ) =
∫ ∞

0
l
(
t, x(t), ξ(t), λ(t)

)
dt

where l : [0,∞[×R
n × R

m × R → R ∪ {+∞}.
Theorem 4.2 If

(i) the function l is a normal integrand on [0,∞[×(Rn × R
m+1),

(ii) the function l(t, x, ·, ·) is convex on R
m × R for any (t, x) ∈ [0,∞[×R

n,
(iii) there exist a constant M ∈ R and a summable function Ψ : [0,∞[ → R such

that

l(t, x, ξ, λ) ≥ Ψ (t) + Mλ

for (t, x, ξ, λ) ∈ [0,∞[×R
n × R

m × R,

then

lim inf
k→∞ I∫(xk, ξk, λk) ≥ I∫(x0, ξ0, λ0),

provided that the sequence {xk}k∈N converges to x0 in L1
loc([0,∞[,R

n), the se-
quence {ξk}k∈N converges weakly to ξ0 in L1

loc([0,∞[,R
m), the sequence {λk}k∈N ⊂

L1([0,∞[,R) converges weakly to λ0 ∈ L1([0,∞[,R) in L1
loc([0,∞[,R), and

lim inf
k→∞

∫ ∞

0
Mλk(t) dt ≥

∫ ∞

0
Mλ0(t) dt.

3A function f : [0, T ] × R
k → R ∪ {±∞} is a normal integrand iff it is L([0, T ]) × B(Rk)-measurable

and the function f (t, ·) is lower semicontinuous on R
k for any t ∈ [0, T ]. Here, L([0, T ]) is the family of

Lebesgue measurable subsets of the interval [0, T ] and B(Rk) is the family of Borel subsets of R
k .
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Remark 4.1 If the functions x : [0,∞[ → R
n, ξ : [0,∞[ → R

m, and λ : [0,∞[ → R

are Lebesgue measurable and l is a normal integrand on [0,∞[×(Rn × R
m × R),

then the map [0,∞[ t → l(t, x(t), ξ(t), λ(t)) ∈ R is Lebesgue measurable. See [13,
Corollary 2B].

Proof of Theorem 4.2 Notice that

l
(·, xk(·), ξk(·), λk(·)

) = [
l
(·, xk(·), ξk(·), λk(·)

) − Ψ (·) − Mλk(·)
]

+ [
Ψ (·) + Mλk(·)

]
.

The function l(·, xk(·), ξk(·), λk(·)) is, therefore, integrable on [0,∞[ as the sum of
an integrable function (a nonnegative measurable function–see assumption (iii)) and
a summable one. Consequently, I∫(xk, ξk, λk) is well defined for k = 0,1, . . . .

Step 1. Ψ ≡ 0, M = 0.
The function l(·, xk(·), ξk(·), λk(·)) is nonnegative in this case so

∫ ∞

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt ≥

∫ T

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt (2)

for any T > 0 and k = 1,2, . . . .
The function l|[0,T ]×Rn×Rm×R, treated as a function of (t, x, (ξ, λ)), satisfies the

assumptions of Theorem 4.1. Moreover, the fact that the sequence {xk}k∈N converges
to x0 in L1

loc([0,∞[,R
n) implies that the sequence {xk|[0,T ]} converges to x0|[0,T ]

in L1([0, T ],R
n) for any T > 0. The weak convergence of the sequence {ξk}k∈N to

ξ0 in L1
loc([0,∞[,R

m) and the weak convergence of the sequence {λk}k∈N to λ0 in
L1

loc([0,∞[,R) imply the weak convergence of the sequence {(ξk, λk)}k∈N to (ξ0, λ0)

in L1([0, T ],R
m+1) for any T > 0. Hence, by Theorem 4.1,

lim inf
k→∞

∫ T

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt ≥

∫ T

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt (3)

for any T > 0.
It follows from (2) and (3) that

lim inf
k→∞

∫ ∞

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt

= lim inf
T →∞ lim inf

k→∞

∫ ∞

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt

≥ lim inf
T →∞ lim inf

k→∞

∫ T

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt

≥ lim inf
T →∞

∫ T

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt

= lim
T →∞

∫ T

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt =

∫ ∞

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt.
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The last equality results from the fact that l is nonnegative. Hence, we get the asser-
tion for Ψ ≡ 0 and M = 0.

Step 2. The general case.
Consider the map

A(t, x, ξ, λ) = l(t, x, ξ, λ) − Φ(t, x, ξ, λ) − Υ (t, x, ξ, λ)

where

Φ(t, x, ξ, λ) = Ψ (t) and Υ (t, x, ξ, λ) = Mλ.

The fact that Ψ is summable on [0,∞[ implies that the map (t, x, ξ, λ) → Ψ (t) is
L([0,∞[) × B(Rn × R

m × R)-measurable. It can be inferred from the continuity
of the map (t, x, ξ, λ) → Mλ that it is L([0,∞[) × B(Rn × R

m × R)-measurable.
For this reason, the map A is L([0,∞[) × B(Rn × R

m × R)-measurable. Besides,
A(t, ·, ·, ·) is lower semicontinuous as the sum of the lower semicontinuous map
l(t, ·, ·, ·), the constant map Φ(t, ·, ·, ·), and the continuous map Υ (t, ·, ·, ·). The
map A(t, x, ·, ·) is convex as the sum of the convex function l(t, x, ·, ·), the con-
stant function Φ(t, x, ·, ·), and the linear map Υ (t, x, ·, ·). Further, A(t, x, ξ, λ) ≥ 0
for (t, x, ξ, λ) ∈ [0,∞[×R

n × R
n × R. Using the result obtained in Step 1, it can be

deduced that

lim inf
k→∞

∫ ∞

0
A

(
t, xk(t), ξk(t), λk(t)

)
dt ≥

∫ ∞

0
A

(
t, x0(t), ξ0(t), λ0(t)

)
dt.

As a result,

lim inf
k→∞

∫ ∞

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt

= lim inf
k→∞

∫ ∞

0

[(
l
(
t, xk(t), ξk(t), λk(t)

) − Ψ (t) − Mλk(t)
) + Ψ (t) + Mλk(t)

]
dt

≥ lim inf
k→∞

∫ ∞

0

(
l
(
t, xk(t), ξk(t), λk(t)

) − Ψ (t) − Mλk(t)
)
dt +

∫ ∞

0
Ψ (t) dt

+ lim inf
k→∞

∫ ∞

0
Mλk(t) dt

≥
∫ ∞

0

(
l
(
t, x0(t), ξ0(t), λ0(t)

) − Ψ (t) − Mλ0(t)
)
dt

+
∫ ∞

0
Ψ (t) dt +

∫ ∞

0
Mλ0(t) dt

=
∫ ∞

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt.

The proof is over. �
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4.2 Case of an Improper Lebesgue Integral

Now consider the functional

Ilim(x, ξ, λ) = lim
T →∞

∫ T

0
l
(
t, x(t), ξ(t), λ(t)

)
dt

where l : [0,∞[×R
n × R

m × R → R ∪ {+∞}.

Theorem 4.3 If

(i) the function l is a normal integrand on [0,∞[×(Rn × R
m+1),

(ii) the function l(t, x, ·, ·) is convex on R
m × R for any (t, x) ∈ [0,∞[×R

n,
(iii) there exist a constant M ∈ R and a locally summable function Ψ : [0,∞[ → R

that satisfy limT →∞
∫ T

0 Ψ (t) dt > −∞ and l(t, x, ξ, λ) ≥ Ψ (t) + Mλ for any
(t, x, ξ, λ) ∈ [0,∞[×R

n × R
m × R,

then

lim inf
k→∞ Ilim(xk, ξk, λk) ≥ Ilim(x0, ξ0, λ0),

provided that the sequence {xk}k∈N converges to x0 in L1
loc([0,∞[,R

n); the sequence
{ξk}k∈N converges weakly to ξ0 in L1

loc([0,∞[,R
m); λk ∈ L1

loc([0,∞[,R); there ex-

ists a limit limT →∞
∫ T

0 Mλk(t) dt > −∞ for k = 0,1, . . .; the sequence {λk}k∈N con-
verges weakly to λ0 in L1

loc([0,∞[,R); and

lim inf
k→∞ lim

T →∞

∫ T

0
Mλk(t) dt ≥ lim

T →∞

∫ T

0
Mλ0(t) dt.

Proof It follows from the equality

l
(·, xk(·), ξk(·), λk(·)

) = [
l
(·, xk(·), ξk(·), λk(·)

) − Ψ (·) − Mλk(·)
]

+ [
Ψ (·) + Mλk(·)

]

that the function l(·, xk(·), ξk(·), λk(·)) is locally integrable on [0,∞[ as the sum of
an integrable function (a nonnegative measurable function) and a locally summable
function. The existence of the limits

lim
T →∞

∫ T

0

(
l
(
t, xk(t), ξk(t), λk(t)

) − Ψ (t) − Mλk(t)
)
dt,

lim
T →∞

∫ T

0
Ψ (t) dt, and lim

T →∞

∫ T

0
Mλk(t) dt

implies the existence of the limit limT →∞
∫ T

0 l(t, xk(t), ξk(t), λk(t)) dt . Hence,
Ilim(xk, ξk, λk) is well defined for k = 0,1, . . . .
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Step 1. Ψ ≡ 0, M = 0.
The function l(·, xk(·), ξk(·), λk(·)) is nonnegative in this case so

lim
T →∞

∫ T

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt ≥

∫ S

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt (4)

for any S > 0 and k = 1,2, . . . .
Similarly as in the proof of Theorem 4.2,

lim inf
k→∞

∫ T

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt ≥

∫ T

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt (5)

for any T > 0.
Using (4) and (5)

lim inf
k→∞ lim

T →∞

∫ T

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt

= lim inf
S→∞ lim inf

k→∞ lim
T →∞

∫ T

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt

≥ lim inf
S→∞ lim inf

k→∞

∫ S

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt

≥ lim inf
S→∞

∫ S

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt

= lim
S→∞

∫ S

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt.

This proves the assertion for Ψ ≡ 0 and M = 0.

Step 2. The general case.
Consider the map

A(t, x, ξ, λ) = l(t, x, ξ, λ) − Φ(t, x, ξ, λ) − Υ (t, x, ξ, λ)

with

Φ(t, x, ξ, λ) = Ψ (t) and Υ (t, x, ξ, λ) = Mλ.

The function A satisfies the assumptions of Step 1, much in the same way as in Step 2
of the proof of Theorem 4.2. Hence,

lim inf
k→∞ lim

T →∞

∫ T

0
A

(
t, xk(t), ξk(t), λk(t)

)
dt

≥ lim
T →∞

∫ T

0
A

(
t, x0(t), ξ0(t), λ0(t)

)
dt.
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As a result,

lim inf
k→∞ lim

T →∞

∫ T

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt

= lim inf
k→∞ lim

T →∞

∫ T

0

[(
l
(
t, xk(t), ξk(t), λk(t)

) − Ψ (t) − Mλk(t)
)

+ Ψ (t) + Mλk(t)
]
dt

≥ lim inf
k→∞ lim

T →∞

∫ T

0

(
l
(
t, xk(t), ξk(t), λk(t)

) − Ψ (t) − Mλk(t)
)
dt

+ lim
T →∞

∫ T

0
Ψ (t) dt + lim inf

k→∞ lim
T →∞

∫ T

0
Mλk(t) dt

≥ lim
T →∞

∫ T

0

(
l
(
t, x0(t), ξ0(t), λ0(t)

) − Ψ (t) − Mλ0(t)
)
dt

+ lim
T →∞

∫ T

0
Ψ (t) dt + lim

T →∞

∫ T

0
Mλ0(t) dt

= lim
T →∞

∫ T

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt.

The proof is completed. �

5 Modified Lagrangian

Let A : [0,∞[ ⇒ R
n be a multifunction with a closed graph GrA and let R : GrA ⇒

R
1+m be a multifunction.
The multifunction R is said to have property (K) at a point (t, x0) ∈ GrA with

respect to x iff

R(t, x0) =
⋂

δ>0

cl
(⋃{

R(t, x) : |x0 − x| < δ ∧ x ∈ A(t)
})

.

By definition, the multifunction R has property (K) with respect to x iff it has prop-
erty (K) at each point (t, x0) ∈ GrA with respect to x.

Remark 5.1 If R has property (K) with respect to x then it is obviously closed-
valued.

We say that the multifunction R has property (Π) iff the fact that (η, ξ) ∈ R(t, x)

implies that (η̄, ξ) ∈ R(t, x) for η̄ ≥ η.
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The modified Lagrangian4 is defined to be the function l : [0,∞[×R
n × R

m+1 →
R ∪ {+∞} given by

l(t, x, ξ, λ) ≡
{

inf{η : (η, ξ) ∈ R(t, x), η ≥ λ}, if x ∈ A(t),

+∞, if x /∈ A(t),
(6)

for any multifunction R. By agreement, inf∅ = +∞.

Theorem 5.1 If a multifunction R has the L([0,∞[) × B(Rn × R
m+1)-measurable

graph and enjoys property (K) with respect to x and property (Π), then the modified
Lagrangian l is a normal integrand on [0,∞[×(Rn × R

m+1). Moreover, if R takes
convex values, then the function l(t, x, ·, ·) is convex on R

m+1 for any (t, x) ∈ GrA.

Proof The L([0,∞[) × B(Rn × R
m+1)-measurability of l can be proven using the

same arguments as in the proof of the measurability of a Lagrangian defined on a
bounded interval [0, T ], presented in [5]. A proof of the lower semicontinuity of the
function l(t, ·, ·, ·) can be found in [14]. �

6 Lower Closure Theorems

We shall prove two lower closure theorems for functions defined on the interval
[0,∞[.

6.1 Case of a (Proper) Lebesgue Integral

Theorem 6.1 Assume that A : [0,∞[ ⇒ R
n is a multifunction with a closed

graph GrA and R : GrA ⇒ R
1+m is a convex-valued (L([0,∞[) × B(Rn))|GrA-

measurable multifunction that has property (K) and property (Π). Let ξk : [0,∞[→
R

m, xk : [0,∞[ → R
n, ηk+1 : [0,∞[ → R, and λk : [0,∞[ → R be measurable

functions for k ∈ N ∪ {0} such that

(i) xk(t) ∈ A(t) fort ∈ [0,∞[a.e. and each k ∈ N,
(ii) (ηk(t), ξk(t)) ∈ R(t, xk(t)) for a.e. t ∈ [0,∞[ and each k ∈ N,

(iii) the sequence {xk}k∈N converges to x0 in L1
loc([0,∞[,R

n), the sequence
{ξk}k∈N converges weakly to ξ0 in L1

loc([0,∞[,R
m), λk ∈ L1([0,∞[,R) for

4The modified Lagrangian for optimal control problems was introduced by Erik J. Balder in 1982. The
classical Lagrangian corresponds to λ = −∞ and was used in optimal control problems (see [4]) in con-
nection with the deparameterization procedure. Another similar idea is the Lagrangian auxiliary function
which is defined for (t, x, ξ) ∈ GrA × R

m

L(t, x, ξ) := dist
(
ξ,R(t, x)

)

where dist denotes the Euclidean distance; the details can be found in [5]. It is worth mentioning that there
is a close relationship between an auxiliary function and a separation function, which has been considered
in [15, Chap. 5].
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k = 0,1, . . . , the sequence {λk}k∈N converges weakly to λ0 in L1
loc([0,∞[,R),

and

lim inf
k→∞

∫ ∞

0
λk(t) dt ≥

∫ ∞

0
λ0(t) dt,

(iv) ηk(t) ≥ λk(t) for a.e. t ∈ [0,∞[ and each k ∈ N,
(v) γ := lim infk→∞

∫ ∞
0 ηk(t) dt ∈ R.

Then x0(t) ∈ A(t) for a.e. t ∈ [0,∞[ and there exists a summable function
η0 : [0,∞[ → R such that

(
η0(t), ξ0(t)

) ∈ R
(
t, x0(t)

)
, η0(t) ≥ λ0(t)

for a.e. t ∈ [0,∞[, and lim inf
k→∞

∫ ∞

0
ηk(t) dt ≥

∫ ∞

0
η0(t) dt.

Remark 6.1 Since the multifunction R is (L([0,∞[) × B(Rn))|GrA-measurable,
therefore, its graph is L([0,∞[) × B(Rn) × B(R × R

m)-measurable. This follows
from [13, Theorem 1E, p. 164] and [9, Chap. I, Theorem 7.9, and Exercise 1, p. 325].

Proof of Theorem 6.1 The fact that x0(t) ∈ A(t) for a.e. t ∈ [0,∞[ follows imme-
diately from assumptions (i) and (iii) and from the closedness of the set A(t). Let
l : [0,∞[×R

n × R
m+1 → R ∪ {+∞} be the modified Lagrangian given by (6). By

Theorem 5.1, l is normal and l(t, x, ·, ·) is convex on R
m+1 for (t, x) ∈ GrA. More-

over, it follows from the definition of l that

l(t, x, ξ, λ) ≥ λ (7)

for (t, x, ξ, λ) ∈ [0,∞[×R
n × R

m+1. Since the assumptions of Theorem 4.2 are sat-
isfied, with Ψ ≡ 0 and M = 1, therefore,

lim inf
k→∞

∫ ∞

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt ≥

∫ ∞

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt.

It can be deduced from assumptions (ii), (iv), and (6) that

ηk(t) ≥ l
(
t, xk(t), ξk(t), λk(t)

)

for a.e. t ∈ [0,∞[ and for each k ∈ N. Hence, by (7),

lim inf
k→∞

∫ ∞

0
ηk(t) dt ≥ lim inf

k→∞

∫ ∞

0
l
(
t, xk(t), ξk(t), λk(t)

)
dt

≥
∫ ∞

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt ≥

∫ ∞

0
λ0(t) dt. (8)

Further, the last inequality and the summability of the function λ0 on [0,∞[ imply
that

∫ ∞

0
l
(
t, x0(t), ξ0(t), λ0(t)

)
dt > −∞. (9)
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Put

η0(t) := l
(
t, x0(t), ξ0(t), λ0(t)

)

for t ∈ [0,∞[. By assumption (v) and by (8),

R  γ = lim inf
k→∞

∫ ∞

0
ηk(t) dt ≥

∫ ∞

0
η0(t) dt.

In view of (9), this implies the summability of the function η0 on [0,∞[. Hence, η0
is finite a.e. on [0,∞[. As a result,

{
η̃ : (η̃, ξ0(t)

) ∈ R
(
t, x0(t)

)
, η̃ ≥ λ0(t)

} �= ∅
for a.e. t ∈ [0,∞[. Hence, for a.e. t ∈ [0,∞[ there exists a sequence {ηk}k∈N, de-
pending on t , such that (ηk, ξ0(t)) ∈ R(t, x0(t)), ηk ≥ λ0(t), and limk→∞ ηk = η0(t).
By the closedness of the set R(t, x0(t)),

R
(
t, x0(t)

)  lim
k→∞

(
ηk, ξ0(t)

) = (
η0(t), ξ0(t)

)

for t ∈ [0,∞[ a.e. Obviously,

η0(t) ≥ λ0(t)

for t ∈ [0,∞[ a.e. Moreover, as was proven before,

lim inf
k→∞

∫ ∞

0
ηk(t) dt ≥

∫ ∞

0
η0(t) dt.

The proof is completed. �

6.2 Case of an Improper Lebesgue Integral

Theorem 6.2 Assume that A : [0,∞[ ⇒ R
n is a multifunction with a closed

graph GrA and R : GrA ⇒ R
1+m is (L([0,∞[) × B(Rn))|GrA-measurable, takes

convex values, and has property (K) and property (Π). Let ξk : [0,∞[ → R
m,

xk : [0,∞[ → R
n, ηk+1 : [0,∞[ → R, and λk : [0,∞[ → R be measurable func-

tions for k ∈ N ∪ {0} such that

(i) xk(t) ∈ A(t) for a.e. t ∈ [0,∞[ and each k ∈ N,
(ii) (ηk(t), ξk(t)) ∈ R(t, xk(t)) for a.e. t ∈ [0,∞[ and each k ∈ N,

(iii) the sequence {xk}k∈N converges to x0 in L1
loc([0,∞[,R

n), the sequence {ξk}k∈N

converges weakly to ξ0 in L1
loc([0,∞[,R

m), λk ∈ L1
loc([0,∞[,R), there exists

a limit limT →∞
∫ T

0 λk(t) dt > −∞ for k = 0,1, . . . , the sequence {λk}k∈N con-
verges weakly to λ0 in L1

loc([0,∞[,R), and

lim inf
k→∞ lim

T →∞

∫ T

0
λk(t) dt ≥ lim

T →∞

∫ T

0
λ0(t) dt,
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(iv) ηk(t) ≥ λk(t) for a.e. t ∈ [0,∞[ and each k ∈ N,
(v) the functions ηk are locally summable and

γ := lim inf
k→∞ lim

T →∞

∫ T

0
ηk(t) dt ∈ R.

Then x0(t) ∈ A(t) for a.e. t ∈ [0,∞[, and there exists a locally summable function
η0 : [0,∞[ → R such that

lim
T →∞

∫ T

0
η0(t) dt ∈ R,

(
η0(t), ξ0(t)

) ∈ R
(
t, x0(t)

)
,

η0(t) ≥ λ0(t) for a.e. t ∈ [0,∞),

and lim inf
k→∞ lim

T →∞

∫ T

0
ηk(t) dt ≥ lim

T →∞

∫ T

0
η0(t) dt.

Remark 6.2 Observe that the existence of the limit limT →∞
∫ T

0 ηk(t) dt for k ∈ N

follows from assumption (iv), the local summability of λk , and the existence of the
limit limT →∞

∫ T

0 λk(t) dt for k ∈ N.

Proof The proof of Theorem 6.2 is based on Theorem 5.1. It is essentially the
same as the proof of Theorem 6.1. The local summability of the function η0(t) =
l(t, x0(t), ξ0(t), λ0(t)) on [0,∞[ and the existence of the limit limT →∞

∫ T

0 η0(t) dt ∈
R follow from the inequalities

η0(t) ≥ λ0(t) for a.e. t ∈ [0,∞[ and lim
T →∞

∫ T

0
η0(t) dt ≤ γ

and from the fact that the function λ0 is locally summable, and there exists a limit
limT →∞

∫ T

0 λ0(t) dt > −∞. �

7 Existence of a Classical Optimal Pair

This section contains the main results of the paper.
Let us consider the infinite-horizon optimal control system (P) with the cost func-

tional (J∫). For this system, we introduce the definition of an admissible pair and of
a classical optimal solution.

Assume that

(I1) the multifunctions A : [0,∞[ ⇒ R
n and U : GrA ⇒ R

m have closed graphs
GrA and GrU ;

(I2) the set
⋃

x∈Z U(t, x) is bounded for each point t ∈ [0,∞[ and each bounded
set Z ⊂ R

n;
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(I3) f : [0,∞[×R
n × R

m → R
n is a Carathéodory function5 with respect to t ∈

[0,∞[ and (x,u) ∈ R
n × R

m and satisfies the following growth condition: for
any T > 0 there exist a nonnegative summable function ΨT : [0, T ] → R and a
constant A ≥ 0 such that

∣
∣f (t, x,u)

∣
∣ ≤ ΨT (t) + A|x|

for each (t, x,u) ∈ GrU ;
(I4) F : [0,∞[×R

n × R
m → R is a Carathéodory function with respect to t ∈

[0,∞[ and (x,u) ∈ R
n × R

m;
(I5) the multifunction Q : GrA ⇒ R

1+n given by

Q(t, x) := {
(η, ξ) : there exists a u ∈ U(t, x)

such that η ≥ F(t, x,u), ξ = f (t, x,u)
}

(10)

takes convex values.

The following elementary result holds true:

Theorem 7.1 If assumption (I1) is satisfied, then the multifunction U : GrA ⇒ R
m

is (L([0,∞[) × B(Rn))|GrA-measurable.

Proof Notice that if GrU is a closed set, then the set6 U−1(C) is closed in
GrA for every compact set C ⊂ R

m; see [13, p. 165]. Next, consider an arbitrary
compact set C ⊂ R

m. Since the set U−1(C) is closed in [0,∞[×R
n, therefore,

it is B([0,∞[×R
n)-measurable and consequently L([0,∞[) × B(Rn)-measurable.

Hence, U−1(C) is an (L([0,∞[) × B(Rn))|GrA-measurable set. By [13, Proposi-
tion 1A, p. 160], the closedness of GrU implies the closedness of the values of
the map U , which permits us to infer that the map U is (L([0,∞[) × B(Rn))|GrA-
measurable. �

The measurability part of Theorem 7.2 has been proven in [5]. That proof is based
on the Castaing representation theorem for multifunctions. The proof presented in
this paper is based on properties of some special multifunctions. Property (K) of Q

may be deduced from the fact that the modified Lagrangian is a normal integrand. We
shall prove this property in a direct way.

Theorem 7.2 If assumptions (I1)–(I5) are satisfied, then the multifunction Q :
GrA ⇒ R

1+n given by (10) is (L([0,∞[) × B(Rn))|GrA-measurable and has prop-
erty (K) and property (Π).

Proof Consider a multifunction Q̃ : GrA ⇒ R
1+n+m given by

Q̃(t, x) = {
(η, ξ, u) : u ∈ U(t, x), η ≥ F(t, x,u), ξ = f (t, x,u)

}
.

5A function f : [0,∞[×R
n × R

m → R
n is said to be a Carathéodory function iff f (·, x,u) is measurable

for any (x,u) ∈ R
n × R

m and f (t, ·, ·) is continuous for any t ∈ [0,∞[.
6U−1(C) := {(t, x) ∈ GrA : U(t, x) ∩ C �= ∅}.
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Next, let Q̃1 : GrA ⇒ R
1+n+m, Q̃2 : GrA ⇒ R

1+n+m, and Q̃3 : GrA ⇒ R
1+n+m

be given by

Q̃1(t, x) = {
(η, ξ, u) : f1(t, x, η, ξ, u) ∈ U(t, x)

}
,

Q̃2(t, x) = {
(η, ξ, u) : f2(t, x, η, ξ, u) ≤ 0

}
,

Q̃3(t, x) = {
(η, ξ, u) : f3(t, x, η, ξ, u) = 0

}
,

where

f1 : GrA × R
1+n+m → R

m and f1(t, x, η, ξ, u) = u,

f2 : GrA × R
1+n+m → R and f2(t, x, η, ξ, u) = F(t, x,u) − η,

f3 : GrA × R
1+n+m → R

n and f3(t, x, η, ξ, u) = f (t, x,u) − ξ.

It follows from the continuity of the function f1 that it is a Carathéodory function
with respect to (t, x) ∈ GrA and (η, ξ, u) ∈ R

1+n+m, i.e., the function f1(·, ·, η, ξ, u)

is measurable with respect to the σ -algebra (L([0,∞[) × B(Rn))|GrA for each
(η, ξ, u) ∈ R

1+n+m, and the function f1(t, x, ·, ·, ·) is continuous on R
1+n+m for each

(t, x) ∈ GrA. It can be inferred from Theorem 7.1 that the map U : GrA ⇒ R
m is

measurable. Since the graph GrU is closed, the values of U are closed. Hence, by
[13, Corollary 1Q], the map Q̃1 is (L([0,∞[) × B(Rn))|GrA-measurable and takes
closed values.

Consider the map

GrA × R
1+n+m  (t, x, η, ξ, u) → F(t, x,u) ∈ R.

It can be deduced from assumption (I4) and [13, Proposition 2A and Proposition 2C]
that this map is a Carathéodory function with respect to (t, x) ∈ GrA and (η, ξ, u) ∈
R × R

n × R
m—and so is the map f2, as a consequence. It means that the map Q̃2

is (L([0,∞[) × B(Rn))|GrA-measurable and closed-valued by [13, Theorem 2I]; the
fact that f2 is a normal integrand follows from [13, Theorem 2C]. Similarly, the
map f3 is a Carathéodory function with respect to (t, x) ∈ GrA and (η, ξ, u) ∈ R ×
R

n × R
m.

Consider, for i = 1, . . . , n, the maps

Q̃i
3 : GrA ⇒ R × R

n+m and P̃ i
3 : GrA ⇒ R × R

n+m

given by

Q̃i
3(t, x) = {

(η, ξ, u) : f i
3 (t, x, η, ξ, u) ≤ 0

}
,

P̃ i
3(t, x) = {

(η, ξ, u) : − f i
3 (t, x, η, ξ, u) ≤ 0

}
,

where f i
3 is the ith coordinate function of f3. It follows from [13, Theorem 2I] that

the maps Q̃i
3 and P̃ i

3 are (L([0,∞[) × B(Rn))|GrA-measurable and closed-valued.
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Thus, the map

Q̃3(t, x) =
n⋂

i=1

(
Q̃i

3(t, x) ∩ P̃ i
3(t, x)

)

is (L([0,∞[) × B(Rn))|GrA-measurable and closed-valued by [13, Corollary 1M].
Obviously,

Q̃(t, x) = Q̃1(t, x) ∩ Q̃2(t, x) ∩ Q̃3(t, x)

for (t, x) ∈ Gr(A). Consequently, [13, Corollary 1M] implies that the map Q̃ is
(L([0,∞[) × B(Rn))|GrA-measurable and closed-valued.

Now choose any (t, x) ∈ GrA and consider the continuous map G(t,x) : R ×
R

n+m → R × R
n given by

G(t,x)(η, ξ, u) = (η, ξ).

It follows from the continuity of G(t,x) that its graph is closed. As a result, the graph
of the multifunction

G̃(t,x) : R × R
n+m  (η, ξ, u) ⇒

{
(η, ξ)

} ∈ R × R
n

is closed. Further, the constant multifunction

GrA  (t, x) ⇒ Gr G̃(t,x) ∈ R × R
n+m × R × R

n

is closed-valued and (L([0,∞[)× B(Rn))|GrA-measurable; see [13, Proposition 1A].
It can be inferred directly from the definitions that

Q(t, x) = G̃(t,x)

(
Q̃(t, x)

)

for (t, x) ∈ GrA. Since the set U(t, x) is compact (see assumptions (I1) and (I2)),
therefore, the set G̃(t,x)(Q̃(t, x)) is closed, i.e.,

Q(t, x) = cl G̃(t,x)

(
Q̃(t, x)

)

for (t, x) ∈ GrA. By [13, Theorem 1N], applied to the maps Q̃ and G̃(t,x), the map
Q is (L([0,∞[) × B(Rn))|GrA-measurable and closed-valued.

We shall show that the multifunction Q has property (K). Indeed, consider an
arbitrary point (t, x0) ∈ GrA. Obviously,

Q(t, x0) ⊆
⋂

δ>0

cl
(⋃{

Q(t, x) : |x − x0| < δ ∧ x ∈ A(t)
})

.

To prove the reverse inclusion, consider an arbitrary point (η, ξ) ∈ R × R
n such that

(η, ξ) ∈
⋂

δ>0

cl
(⋃{

Q(t, x) : |x − x0| < δ ∧ x ∈ A(t)
})

.
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Then

(η, ξ) ∈ cl
(⋃{

Q(t, x) : |x − x0| < δ ∧ x ∈ A(t)
})

for any δ > 0. Hence, for any k ∈ N there exists a point

(ηk, ξk) ∈
⋃{

Q(t, x) : |x − x0| < 1

k
∧ x ∈ A(t)

}

such that |(η, ξ) − (ηk, ξk)| < 1
k

. As a result,

lim
k→∞(ηk, ξk, ) = (η, ξ)

and, for any k ∈ N, there exists xk such that

|xk − x0| < 1

k
∧ xk ∈ A(t) ∧ (ηk, ξk) ∈ Q(t, xk).

Hence, the sequence {xk}k∈N converges to x0. It follows from the closedness of GrA
that x0 ∈ A(t). Next, by the definition of Q there exists a sequence {uk}k∈N such that

uk ∈ U(t, xk), ηk ≥ F(t, xk, uk), and ξk = f (t, xk, uk)

for any k ∈ N. It can be inferred from the boundedness of the sequence {xk}k∈N and
from assumption (I2) that there exists a subsequence of the sequence {uk}k∈N, still
denoted by {uk}k∈N, that converges to some u0. It follows from the closedness of
the graph GrU and the convergence of the sequence {xk}k∈N that u0 ∈ U(t, x0). The
continuity of the function F(t, ·, ·) implies

η = lim
k→∞ηk ≥ lim

k→∞F(t, xk, uk) = F(t, x0, u0).

The continuity of the function f (t, ·, ·) leads to the conclusion that

ξ = lim
k→∞ ξk = lim

k→∞f (t, xk, uk) = f (t, x0, u0).

Thus, (η, ξ) ∈ Q(t, x0), which means that Q has property (K).
The fact that Q has property (Π) follows immediately from the definition of Q. �

Using Gronwall’s lemma, one can prove the following.

Theorem 7.3 If a function f : [0,∞[×R
n × R

m → R
n satisfies assumption (I3),

then the set of all admissible trajectories is a relatively sequentially weakly compact
subset of ACloc([0,∞[,R

n) (this set may be empty).

Remark 7.1 A similar theorem has been proven in [3] under a stronger assumption
on f , the so-called growth condition (γ ). The set of all admissible trajectories is
nonempty under that assumption; see [6]. By applying an analogous method, we can
obtain the compactness of the set of admissible trajectories under the weaker assump-
tion (I3). However, (I3) does not ensure that the set of all admissible trajectories is
nonempty.
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7.1 Existence of a Classical Optimal Solution

In this section, we can state and prove a theorem on the existence of a classical opti-
mal solution to the problem described by (P) and (J∫).

Definition 7.4 A pair of functions (x,u) : [0,∞[ → R
n × R

m is called admissible
for the optimal control problem given by (P) and (J∫) if x ∈ ACloc([0,∞[,R

n), u

is measurable, the pair (x,u) satisfies system (P), and the function F(·, x(·), u(·)) is
integrable on [0,∞[ (not necessarily summable).

The set of all admissible pairs (x,u) introduced in Definition 7.4 is denoted by Ω∫.
A function x ∈ ACloc([0,∞[,R

n) is called an admissible trajectory if there exists a
measurable function u such that (x,u) ∈ Ω∫.

Definition 7.5 A pair (x∗, u∗) ∈ Ω∫ is called a classical optimal solution to the prob-
lem given by (P) and (J∫) if J∫(x∗, u∗) ∈ R and

J∫
(
x∗, u∗) ≤ J∫(x,u)

for each pair (x,u) ∈ Ω∫.

Assume that:

(I∫6) there exists a constant α ∈ R such that

Ωα∫ := {
(x,u) ∈ Ω∫ : J∫(x,u) ≤ α

} �= ∅,

(I∫7) there exists a summable function λ : [0,∞[ → R such that for each pair
(x,u) ∈ Ωα∫

F
(
t, x(t), u(t)

) ≥ λ(t) for a.e. t ∈ [0,∞[.

Theorem 7.6 If assumptions (I1)–(I5), (I∫6), and (I∫7) are satisfied, then the prob-
lem given by (P) and (J∫) has a classical optimal solution.

Proof Assumption (I∫6) implies that

l := inf
(x,u)∈Ω∫

J∫(x,u) = inf
(x,u)∈Ωα∫

J∫(x,u) ≤ α. (11)

Consequently, by (I∫7)

R 
∫ ∞

0
λ(s) ds ≤ l ≤ α. (12)

Let {(xk, uk)}k∈N ⊂ Ωα∫ be such a sequence that

lim
k→∞J∫(xk, uk) = l. (13)
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By Theorem 7.3, one can choose a subsequence of the sequence {xk}k∈N, that con-
verges weakly in ACloc([0,∞[,R

n) to some x∗ ∈ ACloc([0,∞[,R
n). Without loss

of generality, this subsequence shall be denoted by {xk}k∈N. Define

ηk(t) = F
(
t, xk(t), uk(t)

)
for a.e. t ∈ [0,∞[, k ∈ N,

x0(t) = x∗(t) for t ∈ [0,∞[,
ξk(t) = ẋk(t) for a.e. t ∈ [0,∞[, k ∈ N ∪ {0},
λk(t) = λ(t) for a.e. t ∈ [0,∞[, k ∈ N ∪ {0}.

Since {(xk, uk)}k∈N ⊂ Ωα∫ , the functions ηk are summable on [0,∞[ for k ∈ N and

lim infk→∞
∫ ∞

0 ηk(t) dt ∈ R. By Theorem 3.3(i), the sequence {xk(t)}k∈N converges
to x∗(t) for any t ∈ [0,∞[. Using the closedness of the graph GrA and the fact that
xk(t) ∈ A(t) for t ∈ [0,∞[, k ∈ N, it can be deduced that

x∗(t) ∈ A(t) for t ∈ [0,∞[.

In view of Theorem 3.2(i), the sequence {ẋk|DT
}k∈N converges weakly to ẋ|DT

in
L1([0, T ],R

n) for any T > 0. The multifunction Q satisfies the assumptions of The-
orem 6.1 that concern R (this follows from Theorem 7.2 and assumption (I5)) and
the sequence {(ηk, ξk)}k∈N satisfies condition (ii) of Theorem 6.1. The constant se-
quence {λk}k∈N converges weakly to λ0 = λ in L1

loc([0,∞[,R) in an obvious way
and

lim inf
k→∞

∫ ∞

0
λk(t) dt ≥

∫ ∞

0
λ0(t) dt.

By (I∫7), ηk(t) ≥ λk(t) for a.e. t ∈ [0,∞[ and k ∈ N. Applying Theorem 3.3(ii) leads
to the conclusion that the sequence {xk}k∈N converges to x0 in L1

loc([0,∞[,R). Thus,
the assumptions of Theorem 6.1 are satisfied. Consequently, there exists a summable
function η0 : [0,∞[ → R such that

lim inf
k→∞

∫ ∞

0
ηk(t) dt ≥

∫ ∞

0
η0(t) dt,

η0(t) ≥ λ(t) and
(
η0(t), ξ0(t)

) ∈ Q
(
t, x∗(t)

)
for a.e. t ∈ [0,∞[. (14)

Now consider the multifunction Γ : [0,∞[ ⇒ R
m given by

Γ (t) = {
u : u ∈ U

(
t, x∗(t)

)
, η0(t) ≥ F

(
t, x∗(t), u

)
, ẋ(t) = f

(
t, x∗(t), u

)}
.

Note that the closed-valued multifunction [0,∞[ t ⇒ U(t, x∗(t)) ∈ R
m is measur-

able; the closedness of the values follows from the closedness of the graph GrU .
Indeed, consider the closed-valued multifunction Γ : [0,∞[ ⇒ R

1+n given by

Γ (t) = {(
t, x∗(t)

)}
, t ∈ [0,∞[.
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The measurability of this multifunction follows from the continuity of the function
[0,∞[ t → (t, x∗(t)) ∈ R × R

n. Next, for any fixed t ∈ [0,∞[, consider the multi-
function At : R × R

n ⇒ R
m given by

At(s, x) =
{

U(s, x), (s, x) ∈ GrA,

∅, (s, x) /∈ GrA.

It is easy to see that

GrAt = GrU.

Hence, GrAt is closed. Moreover, the multifunction

[0,∞[ t ⇒ GrAt ∈ R × R
n × R

m

is measurable as a constant closed-valued map; see [13, Proposition 1A]. By [13,
Theorem 1N], the multifunction

[0,∞[ t ⇒ clAt

(
Γ (t)

) = U
(
t, x∗(t)

) ∈ 2R
m

is measurable. In view of [13, Theorem 2N and Proposition 2C], the map G :
[0,∞[×R

m → R given by

G(t,u) = F
(
t, x∗(t), u

)

is a normal integrand and the map H : [0,∞[×R
m → R

n given by

H : (t, u) → f
(
t, x∗(t), u

)

is a Carathéodory function. Since (η0(t), ξ0(t)) ∈ Q(t, x∗(t)) for a.e. t ∈ [0,∞[,
therefore, the map Γ has nonempty values a.e. on [0,∞[. Using the implicit function
theorem for multifunctions ([13, Theorem 2J]), notice that the map Γ is measurable,
closed-valued, and there exists a measurable function u∗ : [0,∞[ → R

m such that
u∗(t) ∈ Γ (t) for a.e. t ∈ [0,∞[. It follows from the description of Γ that

(
ẋ∗)(t) = f

(
t, x∗(t), u∗(t)

)
, u∗(t) ∈ U

(
t, x∗(t)

)
for a.e. t ∈ [0,∞[.

The pointwise convergence of admissible trajectories xk(t) to x∗(t) on [0,∞[ and
the initial conditions xk(0) = 0 for k ∈ N imply that x∗(0) = 0. As a result, the pair
(x∗, u∗) satisfies (P). Moreover, it follows from the definition of Γ that

η0(t) ≥ F
(
t, x∗(t), u∗(t)

)
for a.e. t ∈ [0,∞[. (15)

Thus, the summability of the function η0 implies the integrability of the function

[0,∞[ t → F
(
t, x∗(t), u∗(t)

) ∈ R.
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Finally, (x∗, u∗) ∈ Ω∫. Apply this fact and (11), (13), (14), and (15) to obtain

l = lim
k→∞

∫ ∞

0
F

(
t, xk(t), uk(t)

)
dt = lim inf

k→∞

∫ ∞

0
F

(
t, xk(t), uk(t)

)
dt

≥
∫ ∞

0
η0(t) dt ≥

∫ ∞

0
F

(
t, x∗(t), u∗(t)

)
dt ≥ l.

Hence, by (12),

R  l =
∫ ∞

0
F

(
t, x∗(t), u∗(t)

)
dt,

and the proof is completed. �

Example 7.1 Consider the control system given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ(t) = ax(t) + bu(t) for a.e. t ∈ [0,∞[,
x(0) = 0,

x(t) ∈ A(t) for t ∈ [0,∞[,
u(t) ∈ U(t, x(t)) for a.e. t ∈ [0,∞[,

(P1)

where a ∈ R \ {0}, b ∈ R \ {0}, x ∈ R, u ∈ R, A(t) = R, U(t, x) = [− 1
t2+1

, 1
t2+1

] for
t ∈ [0,∞[, x ∈ R. This is a special case of system (P).

It is easy to see that there exists a unique solution x ∈ ACloc([0,∞[,R) of sys-
tem (P1), that corresponds to any fixed measurable control u : [0,∞[ → R such that
u(t) ∈ [− 1

t2+1
, 1

t2+1
] for a.e. t ∈ [0,∞[.

Assume that the cost functional is given by

J∫(x,u) =
∫ ∞

0

(
sin2(x(t))u2(t)

1 + t2
+ u(t)

)

dt. (J 1∫ )

It is easy to see that the integral
∫ ∞

0 (
sin2(x(t))u2(t)

1+t2 + u(t)) dt exists and is finite for an
arbitrary pair (x,u) such that x ∈ ACloc([0,∞[,R) and u : [0,∞[ → R is a measur-
able function that satisfies system (P1). Hence, Ω∫ �= ∅.

Moreover, the optimal control problem given by (P1) and (J 1∫ ) satisfies the as-

sumptions of Theorem 7.6 with F(t, x,u) = sin2(x)u2

1+t2 + u. Indeed, assumptions
(I1)–(I4) are fulfilled in an obvious way. From the convexity of the set U(t, x) and
from the convexity of the function,

U(t, x)  u → sin2(x)u2

1 + t2
+ u ∈ R,

it follows that the set Q(t, x) is convex, i.e., assumption (I5) is satisfied.
Moreover, for ũ(t) = 0

J (̃x, ũ) = J (0,0) = 0;
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x̃ = 0 is the unique solution of system (P1), corresponding to ũ = 0. Hence, Ω0∫ �= ∅,
i.e. assumption (I∫6) is satisfied with α = 0. Finally,

sin2(x(t))u2(t)

1 + t2
+ u(t) ≥ u(t) ≥ − 1

1 + t2
for a.e. t ∈ [0,∞[

for any (x,u) ∈ Ω0∫ . Thus, assumption (I∫7) is satisfied with λ(t) = − 1
1+t2 . The

function [0,∞[  t → − 1
1+t2 ∈ R is obviously summable. Consequently, the control

system given by (P1) and (J 1∫ ) has a classical optimal solution (x∗, u∗).

7.2 Existence of an Almost Strongly Optimal Solution

First, we define an admissible pair and an almost strongly optimal pair for the prob-
lem (P), with the functional given by (Jlim).

Definition 7.7 A pair of functions (x,u) : [0,∞[ → R
n×R

m is called admissible for
the optimal control system (P) with the functional Jlim iff x ∈ ACloc([0,∞[,R

n), u

is measurable function, the pair (x,u) satisfies system (P), a function F(t, x(t), u(t))

is locally integrable on [0,∞[, and there exists a limit

lim
T →∞

∫ T

0
F

(
t, x(t), u(t)

)
dt

(not necessarily finite).

The set of all admissible pairs (x,u), in the sense of Definition 7.7, will be denoted
by Ωlim. A function x ∈ ACloc([0,∞[,R

n) is called an admissible trajectory iff there
exists a measurable function u such that (x,u) ∈ Ωlim.

Definition 7.8 A pair (x∗, u∗) ∈ Ωlim is called almost strongly optimal iff
Jlim(x∗, u∗) ∈ R and

Jlim
(
x∗, u∗) ≤ Jlim(x,u)

for any pair (x,u) ∈ Ωlim.

We require that the following conditions hold true:

(Ilim6) there exists a constant α ∈ R such that

Ωα
lim := {

(x,u) ∈ Ωlim : Jlim(x,u) ≤ α
} �= ∅,

(Ilim7) there exists a locally summable function λ : [0,∞[ → R such that
limT →∞

∫ T

0 λ(t) dt > −∞ and, for any pair (x,u) ∈ Ωα
lim,

F
(
t, x(t), u(t)

) ≥ λ(t) for a.e. t ∈ [0,∞[.
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We have the following theorem on the existence of an almost strongly optimal
solution.

Theorem 7.9 If assumptions (I1)–(I5), (Ilim6), and (Ilim7) are satisfied, then the
problem given by (P) and (Jlim) has an almost strongly optimal solution.

Proof The fact that Ωα
lim �= ∅ for some α ∈ R (see Ilim6) implies that

l := inf
(x,u)∈Ωlim

Jlim(x,u) = inf
(x,u)∈Ωα

lim

Jlim(x,u) ≤ α. (16)

By assumption (Ilim7),

−∞ < lim
T →∞

∫ T

0
λ(t) dt ≤ l ≤ α. (17)

Let {(xk, uk)}k∈N ⊂ Ωα
lim be a sequence such that

lim
k→∞Jlim(xk, uk) = l. (18)

By Theorem 7.3, one can choose a subsequence of the sequence {xk}k∈N, weakly
convergent in ACloc([0,∞[,R

n) to some x∗ ∈ ACloc([0,∞[,R
n). Without loss of

generality, we shall denote this subsequence by {xk}k∈N. Define the functions ηk , x0,
ζk , and λk as in the proof of Theorem 7.6. Since {(xk, uk)}k∈N ⊂ Ωα

lim, therefore the
functions ηk are locally summable on [0,∞[ for k ∈ N. It can be checked in the same
way as in the proof of Theorem 7.6 that the sequence {xk(t)}k∈N converges to x∗(t)
for any t ∈ [0,∞[,

x∗(t) ∈ A(t) for t ∈ [0,∞[ (19)

and the assumptions of Theorem 6.2 are satisfied with R = Q (see (I5)); the fact that

γ := lim inf
k→∞ lim

T →∞

∫ T

0
ηk(t) dt ∈ R

follows from (17) and (18). As a result, there exists a locally summable function
η0 : [0,∞[ → R such that

lim inf
k→∞ lim

T →∞

∫ T

0
ηk(t) dt ≥ lim

T →∞

∫ T

0
η0(t) dt ∈ R,

η0(t) ≥ λ(t) and
(
η0(t), ξ0(t)

) ∈ Q
(
t, x∗(t)

)
for a.e. t ∈ [0,∞[. (20)

Consider now the multifunction Γ : [0,∞[ ⇒ R
m given by

Γ (t) = {
u : u ∈ U

(
t, x∗(t)

)
, η0(t) ≥ F

(
t, x∗(t), u

)
, ẋ(t) = f

(
t, x∗(t), u

)}
.

It follows from the implicit function theorem for multifunctions [13, Theorem 2J],
that there exists a measurable function u∗ : [0,∞[ → R

m such that u∗(t) ∈ Γ (t) for
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a.e. t ∈ [0,∞[; see the proof of Theorem 7.6 for details. By the description of Γ ,

(
ẋ∗)(t) = f

(
t, x∗(t), u∗(t)

)
for a.e. t ∈ [0,∞[,

u∗ ∈ U
(
t, x∗(t)

)
for a.e. t ∈ [0,∞[,

η0(t) ≥ F
(
t, x∗(t), u∗(t)

)
for a.e. t ∈ [0,∞[.

(21)

The pointwise convergence of the trajectories xk(t) to x∗(t) on [0,∞[ and the condi-
tions xk(0) = 0, k ∈ N, lead to the conclusion that x∗(0) = 0. Thus, the pair (x∗, u∗)
satisfies system (P); see (19). Since η0 is locally summable on [0,∞[, (21) implies
that the function F(t, x∗(t), u∗(t)) is locally integrable on [0,∞[. Using the fact that
limT →∞

∫ T

0 η0(t) dt ∈ R and that there exists a limit

lim
T →∞

∫ T

0

(
F

(
t, x∗(t), u∗(t)

) − η0(t)
)
dt

as a limit of a nonincreasing function (see (21)), we can claim that there exists a limit

lim
T →∞

∫ T

0
F

(
t, x∗(t), u∗(t)

)
dt,

finite or equal to −∞. Thus, (x∗, u∗) ∈ Ωlim. From (16), (18), (20), and (21)

l = lim
k→∞ lim

T →∞

∫ T

0
F

(
t, xk(t), uk(t)

)
dt ≥ lim

T →∞

∫ T

0
η0(t) dt

≥ lim
T →∞

∫ T

0
F

(
t, x∗(t), u∗(t)

)
dt ≥ l.

This means that the pair (x∗, u∗) is almost strongly optimal, since by (17)

R  l = lim
T →∞

∫ T

0
F

(
t, x∗(t), u∗(t)

)
dt.

The proof is completed. �

Example 7.2 Consider a problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′(t) = ax(t) + bu(t) for a.e. t ∈ [0,∞[,
x(0) = 0,

x(t) ∈ A(t) for t ∈ [0,∞[,
u(t) ∈ U(t, x(t)) for a.e. t ∈ [0,∞[, x ∈ R,

(P2)
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where a ∈ R \ {0}, b ∈ R \ {0}, x ∈ R, u ∈ R, A(t) = R, and

U(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[ 1
k+1 , 2

k+1 ] for t ∈ ]2k,2k + 1[, k ∈ N ∪ {0},
[− 1

k+1 ,0] for t ∈ ]2k + 1,2k + 2[, k ∈ N ∪ {0},
[1,2] for t = 0,

[− 1
k+1 , 2

k+1 ] for t = 2k + 1, k ∈ N ∪ {0},
[− 1

k
, 2

k+1 ] for t = 2k, k ∈ N

for t ∈ [0,∞[ and x ∈ R. System (P2) is a special case of system (P).
Consider the cost functional given by

Jlim(x,u) = lim
T →∞

∫ T

0

(
sin2(x(t))u2(t)

1 + t2
+ u(t)

)

dt. (J 2
lim)

System (P2), with the functional (J 2
lim), satisfies assumptions (I1)–(I5). Consider the

control ũ : [0,∞[ → R given by

ũ(t) =
{

1
k+1 for t ∈ ]2k,2k + 1[, k ∈ N ∪ {0},
− 1

k+1 for t ∈ ]2k + 1,2k + 2[, k ∈ N ∪ {0}.

The control ũ and the corresponding trajectory x̃ ∈ ACloc([0,∞[,R) satisfy sys-
tem (P2), the function F(t, x̃(t), ũ(t)) is locally summable on [0,∞[, and there exists

lim
T →∞

∫ T

0
F

(
t, x̃(t), ũ(t)

)
dt.

This means that (̃x, ũ) ∈ Ωlim.
Moreover,

Jlim(̃x, ũ) = lim
T →∞

∫ T

0

(
sin2(̃x(t))̃u2(t)

1 + t2
+ ũ(t)

)

dt

≤
∫ ∞

0

1

1 + t2
dt + lim

T →∞

∫ T

0
ũ(t) dt = π

2
.

Therefore, Ω
π
2

lim �= ∅ and assumption (Ilim6) is satisfied. Finally, observe that

sin2(x(t))u2(t)

1 + t2
+ u(t) ≥ u(t) ≥ ũ(t) for a.e. t ∈ [0,∞[

for any pair (x,u) ∈ Ωlim ⊃ Ω
π
2

lim. This means that assumption (Ilim7) is satisfied
for λ(t) = ũ(t) (the function ũ is locally summable on [0,∞[ and
limT →∞

∫ T

0 ũ(t) dt = 0). Theorem 7.9 implies that the control system (P2) with the
cost functional (J 2

lim) has an almost strongly optimal solution (x∗, u∗).
Observe that the pair (̃x, ũ) is not admissible for the control problem (P1) with the

cost functional (J 1∫ ).
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8 Optimality Principles

Let us introduce the following definition; see [3].

Definition 8.1 A pair (x∗, u∗) where x∗ ∈ ACloc([0,∞[,R
n) and u∗ : [0,∞[ → R

m

is a measurable function is called finitely optimal iff it satisfies system (P) on [0, T ];
the integral

∫ T

0 F(t, x∗(t), u∗(t)) dt is finite; and the inequality
∫ T

0
F

(
t, x∗(t), u∗(t)

)
dt ≤

∫ T

0
F

(
t, x(t), u(t)

)
dt

holds true for each pair (x,u) : [0, T ] → R
n × R

m where x is an absolutely continu-
ous function on [0, T ] and u is a measurable function on [0, T ], such that they satisfy
system (P) on [0, T ] and the condition

x(T ) = x∗(T ), (22)

and such that the function F(·, x(·), u(·)) is integrable on [0, T ].

8.1 Case of a (Proper) Lebesgue Integral

The method of proving the next theorem is similar to that presented in [3, Theo-
rem 2.2]. We give this proof here to complete the task.

Theorem 8.2 If a pair (x∗, u∗) ∈ Ω∫ is a classical optimal pair then it is finitely
optimal.

Proof Assume, for contradiction, that a classical optimal pair (x∗, u∗) ∈ Ω∫ is not
finitely optimal. Then there exist some T > 0 and a pair of functions (x+, u+) :
[0, T ] → R

n × R
m where x+ is absolutely continuous on [0, T ] and u+ is mea-

surable on [0, T ] such that they satisfy system (P) on [0, T ], condition (22), and the
inequality

∫ T

0
F

(
t, x+(t), u+(t)

)
dt <

∫ T

0
F

(
t, x∗(t), u∗(t)

)
dt.

In this case, there exists an ε > 0 such that

∫ T

0
F

(
t, x+(t), u+(t)

)
dt <

∫ T

0
F

(
t, x∗(t), u∗(t)

)
dt − ε. (23)

Let (x̃, ũ) : [0,∞[ → R
n × R

m be defined by

(
x̃(t), ũ(t)

) =
{

(x+(t), u+(t)), t ∈ [0, T ],
(x∗(t), u∗(t)), t ∈ ]T ,∞[. (24)

First, we shall prove that (x̃, ũ) ∈ Ω∫; see Definition 7.4. Obviously, x̃ ∈
ACloc([0,∞[,R

n), the function ũ is measurable, and the pair (x̃, ũ) satisfies sys-
tem (P) on [0,∞[. Moreover, the function F(·, x̃(·), ũ(·)) is integrable on [0,∞[.
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Indeed, since the integral
∫ T

0 F(t, x+(t), u+(t)) dt exists, therefore,

∫ T

0
F

(
t, x+(t), u+(t)

)
dt =

∫ T

0

[
F

(
t, x+(t), u+(t)

)]

+ dt

−
∫ T

0

[
F

(
t, x+(t), u+(t)

)]

− dt,

where [F(·, x+(·), u+(·))]+ and [F(·, x+(·), u+(·))]− are the positive and negative
parts of the function F(·, x+(·), u+(·)), and at least one of the integrals on the right-
hand side is finite; see the definition of integrability in Sect. 2. Assume that the inte-
gral

∫ T

0

[
F

(
t, x+(t), u+(t)

)]

+ dt

is finite. The pair (x∗, u∗) is a classical optimal pair, hence

∫ ∞

0
F

(
t, x∗(t), u∗(t)

)
dt =

∫ ∞

0

[
F

(
t, x∗(t), u∗(t)

)]

+ dt

−
∫ ∞

0

[
F

(
t, x∗(t), u∗(t)

)]

− dt,

and both integrals on the right-hand side are finite, because J∫(z∗, u∗) ∈ R. Since

[
F

(
t, x̃(t), ũ(t)

)]

+ =
{

[F(t, x+(t), u+(t))]+, t ∈ [0, T ],
[F(t, x∗(t), u∗(t))]+, t ∈ ]T ,∞[,

therefore,

∫ ∞

0

[
F

(
t, x̃(t), ũ(t)

)]

+ dt =
∫ T

0

[
F

(
t, x+(t), u+(t)

)]

+ dt

+
∫ ∞

T

[
F

(
t, x∗(t), u∗(t)

)]

+ dt ∈ R;

the second integral on the right-hand side is finite because the integral∫ ∞
0 [F(t, x∗(t), u∗(t))]+ dt is finite. As a result, the integral

∫ ∞
0 F(t, x̃(t),

ũ(t)) dt exists. In a similar way, one can consider the case where the integral
∫ T

0 [F(t, x+(t), u+(t))]− dt is finite. Hence, (̃x, ũ) ∈ Ω∫. Since the pair (x∗, u∗) is a
classical optimal pair and (23) holds true, therefore,

∫ ∞

0
F

(
t, x∗(t), u∗(t)

)
dt

<

∫ ∞

0
F

(
t, x̃(t), ũ(t)

)
dt + ε

2
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=
∫ T

0
F

(
t, x+(t), u+(t)

)
dt +

∫ ∞

T

F
(
t, x∗(t), u∗(t)

)
dt + ε

2

<

∫ ∞

0
F

(
t, x∗(t), u∗(t)

)
dt − ε

2
.

The contradiction completes the proof. �

8.2 Case of an Improper Lebesgue Integral

Theorem 8.3 If a pair (z∗, u∗) ∈ Ωlim is almost strongly optimal, then it is finitely
optimal.

Proof (7) Assume that the statement does not hold. Then there exists some T > 0
and some pair of functions (x+, u+) : [0, T ] → R

n × R
m where x+ is absolutely

continuous on [0, T ] and u+ is measurable on [0, T ], such that they satisfy system
(P) on [0, T ], the condition x(T ) = x+(T ), and the inequality

∫ T

0
F

(
t, x+(t), u+(t)

)
dt <

∫ T

0
F

(
t, z∗(t), u∗(t)

)
dt.

Let ε > 0 be such that
∫ T

0
F

(
t, x+(t), u+(t)

)
dt <

∫ T

0
F

(
t, x∗(t), u∗(t)

)
dt − ε. (25)

Consider the pair (x̃, ũ) : [0,∞[ → R
n × R

m given by (24). First, we shall prove
that (x̃, ũ) ∈ Ωlim. Obviously, x̃ ∈ ACloc([0,∞[,R

n), ũ is a measurable func-
tion on [0,∞[, and (̃x, ũ) satisfies system (P) on [0,∞[. Moreover, the function
F(·, x̃(·), ũ(·)) is locally integrable on [0,∞[ and there exists a limit

lim
T →∞

∫ T

0
F

(
t, x̃(t), ũ(t)

)
dt,

not necessarily finite. Indeed, since the integral
∫ T

0 F(t, x+(t), u+(t)) dt exists, the
following equality holds true:

∫ T

0
F

(
t, x+(t), u+(t)

)
dt

=
∫ T

0

[
F

(
t, x+(t), u+(t)

)]

+ dt −
∫ T

0

[
F

(
t, x+(t), u+(t)

)]

− dt,

where [F(·, x+(·), u+(·))]+ and [F(·, x+(·), u+(·))]− are the positive and negative
parts of the function F(·, x+(·), u+(·)) and at least one of the integrals on the right-
hand side is finite. Assume that the integral

∫ T

0 [F(t, x+(t), u+(t))]+ dt is finite.

7The proof of Theorem 8.3 is much the same as the proof of Theorem 8.2.
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Since the pair (x∗, u∗) is almost strongly optimal, therefore,

∫ T1

0
F

(
t, x∗(t), u∗(t)

)
dt

=
∫ T1

0

[
F

(
t, x+ ∗ (t), u∗(t)

)]

+ dt −
∫ T1

0

[
F

(
t, x∗(t), u∗(t)

)]

− dt

for any T1 > 0, and in this case the integrals on the right-hand side are finite. Conse-
quently, for any T1 > T

∫ T1

0

[
F

(
t, x̃(t), ũ(t)

)]

+ dt

=
∫ T

0

[
F

(
t, x+(t), u+(t)

)]

+ dt +
∫ T1

T

[
F

(
t, x∗(t), u∗(t)

)]

+ dt ∈ R.

This means that the integral
∫ T1

0 [F(t, x̃(t), ũ(t))]+ dt is finite and, as a result, the

integral
∫ T1

0 F(t, x̃(t), ũ(t)) dt exists for any T1 > 0; the existence of such an integral
for T1 ≤ T follows from the fact that (x̃, ũ)|[0,T ] = (x+, u+). We shall prove that the
limit

lim
T →∞

∫ T

0
F

(
t, x̃(t), ũ(t)

)
dt

exists, not necessarily finite. Indeed, for T1 > T

∫ T1

0
F

(
t, x̃(t), ũ(t)

)
dt

=
∫ T

0
F

(
t, x+(t), u+(t)

)
dt +

∫ T1

T

F
(
t, x∗(t), u∗(t)

)
dt

=
∫ T

0
F

(
t, x+(t), u+(t)

)
dt +

∫ T1

0
F

(
t, x∗(t), u∗(t)

)
dt

−
∫ T

0
F

(
t, x∗(t), u∗(t)

)
dt. (26)

Since the pair (x∗, u∗) is almost strongly optimal, there exists a finite limit

lim
T1→∞, T1>T

∫ T1

0
F

(
t, x∗(t), u∗(t)

)
dt

(the integral
∫ T

0 F(t, x∗(t), u∗(t)) dt is finite, too) and, further, there exists a limit

lim
T1→∞

∫ T1

0
F

(
t, x̃(t), ũ(t)

)
dt.
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Hence, (x̃, ũ) ∈ Ωlim. By the fact that the pair (x∗, u∗) is almost strongly optimal,
by (25), and (26),

lim
T1→∞

∫ T1

0
F

(
t, x∗(t), u∗(t)

)
dt

< lim
T1→∞

∫ T1

0
F

(
t, x̃(t), ũ(t)

)
dy + ε

2

=
∫ T

0
F

(
t, x+(t), u+(t)

)
dt + lim

T1→∞

∫ T1

0
F

(
t, x∗(t), u∗(t)

)
dt

−
∫ T

0
F

(
t, x∗(t), u∗(t)

)
dt + ε

2

< lim
T1→∞

∫ T1

0
F

(
t, x∗(t), u∗(t)

)
dt − ε

2
.

The contradiction completes the proof. �

9 Concluding Remarks

We have considered an infinite-horizon optimal control problem with a cost func-
tional given either by an integral over an unbounded interval (a Lebesgue integral)
or by a limit of integrals (an improper Lebesgue integral). We have proposed natural
definitions of optimality for these two models and stated some sufficient conditions
for the existence of optimal solutions. The existence theorems are proven using the
modified Lagrangian and some extensions of the lower closure theorem. The new def-
initions are compatible with the definitions for finite-horizon models (Theorem 8.2
and Theorem 8.3).

It seems reasonable to assume that similar tools can be used to determine sufficient
conditions for the existence of optimal pairs for some models with cost functionals
described by the lower and upper limits of Lebesgue integrals.
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pointing out the discussion of the improper Lebesgue integral in the literature.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Sethi, S.P., Thompson, G.L.: Optimal Control Theory. Applications to Management Science and Eco-
nomics. Springer, New York (2005)



682 J Optim Theory Appl (2013) 156:650–682

2. Carlson, D.: Some concepts of optimality for infinite horizon optimal control and their interrelation-
ships. In: Modern Optimal Control. A Conference in Honor of Solomon Lefschetz and Joseph P.
LaSalle, pp. 13–22. Dekker, New York (1989)

3. Carlson, D.A., Haurie, A.: Infinite Horizon Optimal Control. Theory and Applications. Springer,
Berlin (1987)

4. Cesari, L.: Optimization—Theory and Applications. Problems with Ordinary Differential Equations.
Springer, New York (1983)

5. Balder, E.J.: Lower closure problems with weak convergence conditions in a new perspective. SIAM
J. Control Optim. 20(2), 198–210 (1982)

6. Carlson, D.A.: The controllability of infinite horizon optimal control problems. Nonlinear Anal. 11(4),
437–453 (1987)

7. Olech, C.: A characterization of L1-weak lower semicontinuity of integral functionals. Bull. Acad.
Pol. Sci., Sér. Sci. Math. Astron. Phys. 25(2), 135–142 (1977)

8. Łojasiewicz, S.: An Introduction to the Theory of Real Functions. Wiley, Chichester (1988)
9. Sikorski, R.: Funkcje Rzeczywiste. (Polish) [Real Functions], vol. I. Państwowe Wydawnictwo
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