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Abstract
We introduce two discretemodels of a collection of colliding particles with storedmomentum
and study the asymptotic growth of the mean-square displacement of an active particle. We
prove that the models are superdiffusive in one dimension (with power law correction) and
diffusive in three and higher dimensions. In two dimensions we demonstrate superdiffusivity
(with logarithmic correction) for certain anisotropic initial conditions.
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1 Introduction

We study the asymptotics of the mean-square displacement of two continuous-time random
walk models onZ

d . In both models, each vertex ofZ
d is assigned a sleeping particle carrying

a momentum vector equal to one of the 2d canonical unit vectors. An active particle is
placed at the origin and is also assigned a momentum vector. In both models jumps occur in
continuous time at rate one and at jump times the active particle first moves in the direction of
its momentum vector. In the first model (M1), upon reaching the neighbouring site the active
particle falls asleep and wakes up the sleeping particle at that site, and the motion is then
repeated for the new active particle (see Fig. 1). In the second model (M2), upon reaching the
neighbouring site the active particle remains awake with probability 1

2 , or else it falls asleep
and the particle at the site awakens. Alternatively one can consider the process as a random
walker carrying an arrow. At jump times the walker moves according to the direction of the
arrow in its hand and after taking a step the walker either swaps the hand and site arrows
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Fig. 1 Example of an initialisation (left) and states after one (middle) and two (right) jump times in the M1
model. The active particle is in red (Color figure online)

with probability 1 (M1 model) or probability 1
2 (M2 model). The mean-square displacement

of the active particle will be denoted

E(t) := E[|Xt |2],
where Xt is the position of the walker at time t . This expectation is taken over the random
i.i.d. initial configuration of the momentum vectors.

For d = 1, both models are easy to understand. In the M1 model the position of the active
particle is ballistic regardless of the initial condition (Theorem 1.6) and this can be proved
through a simple case-by-case analysis. For i.i.d. initial momentum configurations, the M2
model is equivalent to the true self-avoiding walk (TSAW) with strict bond repulsion [14,16]
for which exact t4/3-scaling for the mean-square displacement is known (Theorem1.6). A
motivation for the modelsM1 andM2 is that they can be seen as natural generalisations of the
one-dimensionalTSAWtohigher dimensions. TheTSAWwith bond repulsion (BTSAW)was
introduced by the third author in [14], modifying an earlier TSAWmodel with site repulsion
due to Amit et al. [3]. The BTSAW is a discrete time random walk Xt with memory whose
jump probabilities are determined by the local times on the edges incident to the walker’s
position. In a particular instance of the model, the probability of jumping from vertex x to a
neighboring vertex y is proportional to exp(−g ·�t (x, y)),where g is a parameter and �t (x, y)
is the number of jumps along the edge (x, y) (in either direction) that have occurred before
time t . Tóth proved a limit theorem of Ray-Knight type for Xt and a limit law for A−2/3Xt

observed at a geometric random time t with mean A, showing that the walk is superdiffusive
with Xt scaling like t2/3. In the limiting case of strict repulsion (g = ∞) there is a stationary
state of the local time profile as viewed from the position of the walker, in which the motion
was described in [16] as an exploration of the interface between dual systems of coalescing
simple random walks (SRWs).

Beyond one dimension, however, we are unable to analyse theM1 andM2models exactly,
and so we introduce an elliptic term into the model generators (Definition 1.1) to make them
tractable. In the resulting versions of themodels, whichwe nameM1ε andM2ε, at a small rate
the walker will choose to ignore the arrow configuration and take a step uniformly at random.
For d ≥ 3 we are able to show that both new models have mean-square displacements that
scale linearly with time (Theorem 1.10). The case d = 2 is more challenging: we are able to
prove upper bounds on the diffusivity of order t log t for all i.i.d. drift-free initial conditions
and a superdiffusive lower bound of order t

√
log t for certain anisotropic initial momentum

configurations (Theorem1.11).
The mechanism driving the superdiffusion in the models is the persistence of correlations

in the configuration of the arrows.Upon returning to a region thewalker has visited previously,
the collection of site arrows will be positively correlated with their state on the previous visit.

123



1242 E. Crane et al.

Therefore when the walker returns to a region, it tends to see a similar bias in the local
configuration of arrows, and therefore receives a similar drift, when compared to the last
visit. This effect is sufficient to cause superdiffusion in one and two dimensions. In three and
higher dimensions the underlying dynamics of the walk are transient and so the correlations
in the environment of arrows do not influence the asymptotic growth of the mean-squared
displacement.

This mechanism is also present in the continuous Brownian polymer [6,13,15], which is a
continuummodel that shows the same superdiffusive behaviour for d = 1 and 2 and diffusive
behaviour for d ≥ 3. The self-repellent Brownian polymer (SRBP) is a diffusion with
memory, in which the drift term is the negative gradient of a mollification of the occupation
measure of the process (for example by convolution with a Gaussian). Thus it is a continuum
analog of the TSAW. Indeed in [6] the SRBP and TSAW in dimension d ≥ 3 are shown to
have diffusive scaling limits using exactly parallel methods.

Apart from the direct connection between our model M2 and the one-dimensional TSAW,
and the matching dependence of the bounds and conjectures for the long-time asymptotic
behaviour on the dimension between our models and the TSAW and SRBP, we mention the
TSAW and SRBP because they were studied in [6,13,15] using the resolvent method that
was originally developed in [8,9]. We also use the resolvent method as the main technical
tool in this paper, converted appropriately to our lattice-based models. The method gives us
bounds on the Laplace transform of E and proceeds as follows. First the growth of E(t)
is connected to the growth of the compensator of the random walk via a property called
Yaglom reversibility (Lemma 3.1). This means that the walk is unchanged in law when both
space and time are reversed. Next the Laplace transform of the compensator is connected
to the symmetric and anti-symmetric parts of the generators of the model dynamics via a
variational formula (Eq.3.1). The key is that under the symmetrised dynamics, the active
particle takes random walk steps independently of the environment of arrows, and hence can
be analysed exactly. An upper bound on the Laplace transform of E is obtained by discarding
the contributions from the anti-symmetric part in the variational formula (Sect. 4). Obtaining
a lower bound is more challenging and the strategy is to restrict the variational formula to a
subspace of linear functionals over which exact computations can be carried out (Sect. 5).

1.1 Notation

Before stating our main results, we need some notation. For d ≥ 1, define Z
d
� = Z

d ∪ {�},
where � is an abstract symbol acting as a placeholder for the active particle (the hand). Let
E = {±e1, . . . ,±ed} be the canonical unit vectors in R

d and Ω = E Z
d
� . The elements of

Ω represent the environment of site arrows as seen from the position of the walker, together
with the information about the arrow in the walker’s hand. The evolution of the environment
as seen by the walker is described by a continuous time jump process, (ηt )t∈R , taking values
in Ω.

For ω ∈ Ω, let ω(x)i denote the i th component of ω(x) ∈ R
d . Define the shift maps on

Ω by

τeω(x) =
{

ω(x + e), if x �= �

ω(�), if x = �
and τ�ω(x) =

{
ω(x + ω(�)), if x �= �

ω(�), if x = �

for e ∈ E , and the swap map

123



Diffusion and Superdiffusion in Lattice Models… 1243

σω(x) =

⎧⎪⎨
⎪⎩

ω(x), if x �= 0, �

ω(�), if x = 0

ω(0), if x = �.

The environments seen by the walker after a step in direction e ∈ E and a step in the direction
of the hand arrow are given by τeω and τ�ω, respectively. The state σω gives the environment
after the hand and site arrows are exchanged.

We now write down generators acting on suitable spaces of functions on Ω. (In fact we
will consider the domain L2(Ω, πp) for any of the product measures πp to be defined below.)
The generator for the motion step-then-swap at rate 1 is given by

T [τ ] f (ω) := f (στω) − f (ω),

where τ is any one of the step maps above. Likewise the generator for the motion where
swaps occur before and after a step with probability 1

2 is

T̃ [τ ] f (ω) := 1
4 f (τω) + 1

4 f (στω) + 1
4 f (τσω) + 1

4 f (στσω) − f (ω).

Definition 1.1 (Generators) For d ≥ 1 the generators for the process η in the M1 and M2
models respectively are defined to be

M1 : G := T [τ�] and M2 : G̃ := T̃ [τ�].
Let U be the generator

U := 1

2d

∑
e∈E

T̃ [τe],

then, for fixed ε > 0, the generators for M1ε and M2ε models are

M1ε : Gε := G + εU and M2ε : G̃ε := G̃ + εU .

Remark 1.2 Technically it is redundant to swap the hand and site arrows before and after a
step in the M2 model, since the composition of two random swaps is equal in law to one
random swap. The rule is presented in this way to simplify the form of T̃ when we take its
adjoint.

To complete the model description we must specify the law of the random initial arrow
configuration. We will consider product measures of the form

π(dω) = μ(dω(�)) ⊗
⊗
x∈Zd

μ(dω(x)), (1.1)

with μ a probability distribution on E . Our interest is in environments that are drift-free, and
to this end we will define, μp, to be the distribution given by

μp(+ei ) = 1
2 pi = μp(−ei ), for i = 1, 2, . . . , d,

where

p ∈ P :=
{
p ∈ [0, 1]d :

d∑
i=1

pi = 1
}
.

We will write πp for the product measure that has μ = μp (see Fig. 2). Notice that in one
dimension there is only p = 1. When p has all its components equal to d−1 we will call πp
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Fig. 2 A typical initialisation from the isotropic measure π(1/2,1/2) (left) and the totally anisotropic measure
π(1,0) (right)

isotropic and otherwise we will call πp anisotropic. If p equals one of the canonical unit vec-
tors, then we will call πp totally anisotropic. Observe that, since ε > 0, the dynamics under
Gε and G̃ε are not constrained to a one-dimensional subspace under the totally anisotropic
initial conditions.

It is essential for our methods that π is stationary for the generators in Definition 1.1.

Proposition 1.3 (Stationarity) For every p ∈ P, the product measure πp is stationary for
all of the generators in Definition1.1.

Proof Immediate from the fact τ�, τe and σ are bijections on Ω and preserve product mea-
sures. 	


Remark 1.4 (Conservation of momentum) The local sum of the arrows is conserved by the
dynamics in both models. This is analogous to the transport and exchange of momentum in
a system of colliding particles such as a hard-sphere gas.

Remark 1.5 (Entropy production) In model M1 the embedded jump chain is completely
determined by the initial environment, so the sequence of environments as seen by the walker
can be thought of as a dynamical system equipped with an invariant measure. Whether the
entropy of this system is zero or non-zero depends on whether the range of the walk grows
sublinearly or linearly. In model M2 there is extra randomness at every jump for which
ω(0) �= ω(�), so we would expect model M2, considered as an invariant measure on the
shift space ΩN, to have positive entropy.

Our first result characterises the behaviour of E in the simplest case when d = 1.

Theorem 1.6 (d = 1, M1 and M2)

(i) For any deterministic initial configuration of arrows, the dynamics of the M1 model are
ballistic. In particular

lim inf
t→∞

|Xt |
t

≥ 1

3
, with probability 1.

(ii) With π = π1, theM2model is the TSAW [14]. In particular we have constants C, D > 0
such that

Ct4/3 ≤ E(t) ≤ Dt4/3.
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The first part follows by an easy case-by-case analysis. The second follows from noticing
that the one-dimensional environment of arrows can be viewed as the gradient of a local time
profile. The proofs are presented in Sect. 2.

From now on we do not analyse E directly, but prove results for the asymptotic singularity
of the Laplace transform

Ê(λ) =
∫ ∞

0
E(t)e−λt dt,

as λ ↘ 0. A consequence of using the resolvent method is that we must settle for proving
bounds on the growth rate of Ê(λ), rather than sharp asymptotics. In one dimension our
method only recovers the following bounds.

Theorem 1.7 (d = 1, M1ε and M2ε) Let π = π1. For both the M1ε and M2ε models we
have constants C, D > 0 (depending on ε) such that for all λ > 0 sufficiently small,

Cλ−9/4 ≤ Ê(λ) ≤ Dλ−5/2.

Remark 1.8 (Discrete time) It is a standard calculation to show the asymptotic behaviour of
Ê(λ), and hence the statement of the main results, is exactly the same for the discrete-time
version of the models.

Remark 1.9 (Constants) The constants in the theorems are not sharp.

In Theorem 1.7, the bounds would correspond to

Ct5/4 ≤ E(t) ≤ Dt3/2

in the time domain if a Tauberian inversion were possible. This is not the case for the lower
bound without further regularity assumptions on E, however the upper bound is valid and
comes from the relationship

E(t) ≤ t−1D′ Ê(t−1), for every t > 0,

where D′ > 0 is a constant. A proof for this follows along the lines of [10]. These bounds
strictly contain the t4/3 growth of E(t) for the one-dimensional TSAW, so neither bound
is sharp. Notice that adding the randomising effect εU to the generator of G completely
destroys the ballistic growth seen in the one-dimensional M1 model.

In three and more dimensions, transience of SRW is enough to prove that the walker
does not behave superdiffusively. The proof of this, as well as the upper bounds for d = 1
and 2, follows by comparing the system to random walk in random scenery. On the other
hand, subdiffusivity is excluded by the property of Yaglom reversibility of the generators
(see Lemma3.1 and [4,13,17]). We therefore conclude diffusive scaling (E(t) � t) when
d ≥ 3:

Theorem 1.10 (d ≥ 3) Let π = πp, for any p ∈ P. Then for both the M1ε and M2ε models
we have constants C, D > 0 such that

Cλ−2 ≤ Ê(λ) ≤ Dλ−2.

Furthermore, in this case we can conclude that there exists constants C ′, D′ > 0 such that

C ′t ≤ E(t) ≤ D′t, for all t ≥ 0 sufficiently large.
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1246 E. Crane et al.

The two-dimensional case is the hardest to analyse. We are able to prove upper bounds of
the order of t log t for both theM1ε andM2ε models started from any initial product measure
πp. In the totally anisotropic case where πp has p = (1, 0) or (0, 1)—recall Fig. 2—a lower
bound can be proved of order t

√
log t .

Theorem 1.11 (d = 2)

(i) Let π = πp, for any p ∈ P. Then for both the M1ε and M2ε models we have a constant
D > 0 such that

Ê(λ) ≤ Dλ−2 log(λ−1).

(ii) (Totally anisotropic) If p = (1, 0) or (0, 1) then there exists a constant C > 0 such that
for both the M1ε and M2ε models

Cλ−2
√
log(λ−1) ≤ Ê(λ).

We are unable to obtain a superdiffusive lower bound in the non-totally anisotropic case—
that is, p �= (1, 0) or (0, 1)—however it should be possible to derive a bound of t log log t if
the computations in [15] could be replicated. The obstruction to this is that we are unable to
analyse a transition kernel of SRW on a specific graph in sufficient detail (see the final part
of Sect. 6). At present all we can say is that E(t) scales at least linearly, by Lemma 3.1.

In line with [15] we make the following predictions about the true asymptotic growth of
the mean-squared displacement in two dimensions:

Conjecture 1.12 (d = 2) For both theM1ε andM2ε models, as t → ∞
p = (1, 0) or (0, 1) : E(t) � t(log t)2/3

p �= (1, 0) or (0, 1) : E(t) � t(log t)1/2.

Although, based on Theorem 1.6, we might expect the M1ε model to be more superdiffusive
than the M2ε model, the fact that the asymptotic bounds in Theorems 1.7, 1.10 and 1.11
and their subsequent proofs are insensitive to the choice of models suggests that the true
asymptotic rates ought to agree. The exponents in this conjecture are derived in [15] using
the non-rigorous Alder–Wainwright scaling argument [1,2,5]. Notice that we expect the
logarithmic exponent to differ from the isotropic case only in the completely anisotropic
case.

Scaling exponents the same as those known or conjectured for TSAW, SRBP and the mod-
els in this paper also appear in studies of interacting particle systems in the KPZ universality
class. Indeed, the resolvent method has been used by a number of authors to prove such
results. See for example [11], which deals with diffusivity of a large class of lattice particle
systems having invariant product measures. Although similar techniques are applicable and
the results are similar in form, we do not know of any direct connection between the models
studied in this paper and any interacting particle system in the KPZ class. Our models are
random walks in a dynamical random environment that is static away from the vicinity of the
walker. This is a different situation than, say, the motion of the second-class particle in ASEP,
which is a random walk in an environment that is dynamic everywhere but is not affected by
the walker.

Ideally we would also like to prove bounds for the original version of the models where
ε = 0. The obstruction there is the lack of ellipticity that allows us to study the process under
the much simpler dynamics of U in Lemmas 4.1 and 5.5.
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1.1.1 Paper Overview

In Sect. 2 we use simple stand-alone arguments to prove Theorem 1.6. In Sect. 3 we introduce
the resolventmethod, whichwe use in Sect. 4 to produce the upper lower bounds on themean-
square displacement. In Sect. 5 we use the resolvent method to produce lower bounds that
are valid for d = 1 and the totally anisotropic case in d = 2. Finally, in Sect. 6 we gather all
these results together to present proofs of Theorems 1.7, 1.10 and 1.11 .

2 One-Dimension; Proof of Theorem 1.6

In this section we prove Theorem 1.6, first by showing the M1 model is ballistic through a
simple case-by-case argument and second by showing that the M2 model is equivalent to the
TSAW [14].

Proof for theM1model Let Yn denote the position of the (discrete-time) walk after n steps
(i.e. Yn = XTn , where Tn is the nth jump time). The key is to notice that if ever the hand and
current site arrows point in the same direction, then this situation is restored after at most
three steps, during which time the walker moves one unit in that original direction. To see
this, there are two cases to consider. First, if the arrow at the next site also agrees with the
hand and site arrow then we have the sequence

→ → → →
→ →

which takes one step. Likewise if the next site arrow disagrees with the hand and site arrow
then we have the sequence

→ ← → → ← → ← →
→ ← → →

which takes three steps. In both cases we have gone from state ⇒ to itself in at most three
steps.

It remains to notice that we must eventually reach the state where both hand and site
arrows agree. This is clear because, up to symmetry, the only initial states where this could
be avoided are

← →
→ and

← ←
→ .

The first leads immediately to the persistent state and the second does so after two steps:

← ← ← → ← →
→ ← ← .

We can now conclude |Yn | ≥ � 1
3 (n − 2)�. Since Tn/n → 1, we have

lim inf
t→∞

|Xt |
t

= lim inf
n→∞

|Yn |
Tn

= lim inf
n→∞

|Yn |
n

· n

Tn
≥ 1

3
,

with probability one. 	
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Fig. 3 Example of a profile of arrows, γt , at some time t and a local time profile, �t , that satisfy ∇�t = −γt .
The random walker is at the unique site x satisfying γt (x) ∈ {−2, 0, +2}

Proof for theM2model We begin by constructing a function �0 on the edges of the one-
dimensional latticewhose negative gradient is equal to the configuration of the arrows.Wewill
show that this function evolves in the sameway as the local timeprofile of the one-dimensional
TSAWwith nearest-neighbour interaction. To do so, let γt denote the environment of arrows
with respect to a fixed origin (i.e. not with respect to the position of the walker). Also define
γt (Xt ),where Xt is the position of the walker, to equal the sum of the hand and site arrows at
that location. Therefore γt (x) ∈ {−1,+1} if x �= Xt and γt (Xt ) ∈ {−2, 0,+2} (see Fig. 3).

For edges (x, x + 1) with x ∈ Z, recursively define �0 such that

∇�0(x) := �0(x, x + 1) − �0(x − 1, x) = −γ0(x),

with the arbitrary choice �0(0,+1) = 0 (see Fig. 3). For t ≥ 1, define

�t (x, x + 1) =
{

�t−1(x, x + 1) + 1, if (Xt−1, Xt ) = (x, x + 1) or (x + 1, x)

�t−1(x, x + 1), otherwise.

Therefore �t (x, x + 1) counts the number of (unsigned) crossings of the edge (x, x + 1).
With this rule it is straightforward to see that the relationship ∇�t = −γt is preserved,
because, for example, if ∇�t−1 = −γt−1, Xt−1 = x and Xt+1 = x + 1, then we must have
γt (x) = γt−1(x) − 1 and γt (x + 1) = γt−1(x + 1) + 1 whilst

∇�t (x) = ∇�t−1(x) + 1 = −γt−1(x) + 1,

∇�t (x + 1) = ∇�t−1(x + 1) − 1 = −γt−1(x + 1) − 1.

Since Xt is forced to move right if ∇�t (Xt ) = −2 (i.e. γt (Xt ) = +2, so the hand and site
arrows both point right) and takes a uniform random step if ∇�t (Xt ) = 0 [i.e. γt (Xt ) = 0,
so the hand and site arrows point in opposite directions], we see that X evolves according to
the rule

P(Xt+1 = x ± 1|Xt = x) =

⎧⎪⎨
⎪⎩
1/2, if ∇�t (x) = 0

1, if ∇�t (x) = ∓2

0, if ∇�t (x) = ±2
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which is precisely the law of the TSAW in one dimension. It now follows from [14] that
E(t) = Θ(t4/3) as t → ∞. 	


3 The Resolvent Method

The key to the proof of Theorems 1.7, 1.10 and 1.11 is to express Ê(λ) in terms of a
variational formula for the resolvent of Gε and G̃ε. Throughout, we will be working on the
space L2(Ω, π), for which we will denote the inner product by (·, ·)π , with π any of the
product measures from (1.1).

As we are about to introduce several extra operators, it will be helpful to use indices to
denote which operators are under consideration. Therefore we will write the mean-square
displacement as

EGε (t) := EGε

[|Xt |2
]

and EG̃ε
(t) := EG̃ε

[|Xt |2
]
,

where PV denotes that the relevant random process has the dynamics given by generator V .

The invariance of π under τ�, τe and σ immediately gives that we have the following
adjoints with respect to L2(Ω, π) and its inner product 〈·, ·〉π :

G† f (ω) = f (τ−1
� σω) − f (ω) and G̃† = T̃ [τ−1

� ],
where we note that

τ−1
� ω(x) =

{
ω(x − ω(�)), if x �= �

ω(�), if x = �.

Also, it is clear that U is self-adjoint, so

G†
ε = G† + εU and G̃†

ε = G̃† + εU .

Our first observation is that, although Gε and G̃ε are not reversible, they are Yaglom
reversible, which allows to study EGε (t) and EG̃ε

(t) through the mean-square displacement
of the compensator of the corresponding random walks.

Lemma 3.1 Let φ, φ̃ : Ω → R
d be the compensators of the random walks generated by Gε

and G̃ε:

M1ε : φ(ω) = ω(�), M2ε : φ̃(ω) = 1
2 (ω(0) + ω(�)).

For a generator V and f : Ω → R, define

ΛV (t; f ) = EV

[( ∫ t

0
f (ηs)ds

)2]
,

where (ηs)s≥0 follows the dynamics of V . Then we have

EGε (t) = t +
d∑

i=1

ΛGε (t;φi ), ÊGε (λ) = λ−2 +
d∑

i=1

Λ̂Gε (λ;φi ),

and likewise for G̃ε and φ̃.

123
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Proof We follow the proof in [6, Lemma 3]. Consider the M2ε model first. Decompose the
position of the walker as

Xt − Xs = ΔMs,t +
∫ t

s
φ̃(ηu)du, ΔMs,t := Mt − Ms,

where (Mt )t≥0 is a martingale with respect to the forward filtration {F[0,t] : t ≥ 0}. Here
FA denotes the σ -algebra generated by (ηt )t∈A. The square-expectation is then

E[(Xt − Xs)
2] = t − s + 2 cov

(
ΔMs,t ,

∫ t

s
φ̃(ηu)du

)
+ E

[( ∫ t

s
φ̃(ηu)du

)2]
,

and so we have the result if the covariance term vanishes.
The strategy is to prove that s �→ ΔMs,t is a backward martingale with respect to the

filtration {F[s,+∞)}s≤t , for fixed t . With this in place the covariance becomes

cov
(
ΔMs,t ,

∫ t

s
φ̃(ηu)du

)
=

∫ t

s
E[ΔMs,t φ̃(ηu)]du

=
∫ t

s
E[E[ΔMs,t φ̃(ηu)|F[0,u]]]du

=
∫ t

s
E[ΔMs,u φ̃(ηu)]du

=
∫ t

s
E[E[ΔMs,u φ̃(ηu)|F[u,+∞)]]du

=
∫ t

s
E[ΔMu,u φ̃(ηu)]du

= 0,

where in the second line we have used that t �→ ΔMs,t is a forward martingale, by construc-
tion.

To show we have a backward martingale, define η̄t := −η−t and

J f (ω) := f (−ω).

Observe that G̃†
ε = J G̃ε J , since τ�(−ω) = −τ−1

� ω, and therefore η̄ and η are identical in
law; this property is called Yaglom reversibility. So if we write X̄t := −X−t then

lim
h→0

h−1
E[Xs−h − Xs |F[s,+∞)] = − lim

h→0
h−1

E[X̄−s+h − X̄−s |F[s,+∞)]
= −φ̃(η̄−s) = φ(ηs),

as required.
There is a slight complication for the M1ε model. Here, define the operator

P f (ω) := f (σω),

then we see that G†
ε = P JGε J P. Therefore if η has the dynamics of Gε, then t �→ ηt and

t �→ γt := −ση−t have the same law. This does not alter the argument above, however,
since the random walk corresponding to γ still has compensator −φ(η−t ), so we conclude
the result. 	


An immediate corollary of Lemma 3.1 is that in all dimensions E(t) ≥ t . In particular,
this proves the lower bound in Theorem 1.10.
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Tostate ourmain tool for the proofs,wemust introduce the symmetric part of thegenerators

Sε := 1
2 (Gε + G†

ε), Sε f (ω) = 1
2 f (στ�ω) + 1

2 f (τ−1
� σω) − f (ω) + εU f (ω),

and the anti-symmetric part

A := 1
2 (Gε − G†

ε), A f (ω) = 1
2 f (στ�ω) − 1

2 f (τ−1
� σω).

For generator Gε we have the variational formula

Λ̂Gε (λ;φi ) = 2λ−2 〈
φi , (λ − Gε)

−1φi
〉
π

= 2λ−2 sup
ψ∈L2(Ω,π)

{
2〈φi , ψ〉π − 〈ψ, (λ − Sε)ψ〉π − 〈Aψ, (λ − Sε)

−1Aψ〉π
}
,

(3.1)

for i = 1, 2, . . . , d. For generator G̃ε, we have exactly the same definitions and variational
formula, and we will denote the symmetric and anti-symmetric parts by S̃ε and Ã. See
Sethuraman [12] or the recent textbook of Komorowski et al. [7] for the derivation of this
variational formula.

4 The Upper Bound

In this section we derive upper bounds on Λ̂(λ, φi ) and Λ̂(λ, φ̃i ) that are valid for all d ≥ 1.
Unless stated otherwise, all results in this section apply to both Gε and G̃ε. Since the results
in this section do not depend on the choice of i ∈ {1, 2, . . . , d}, we will drop the index and
write φ(ω) and φ̃(ω) in place of φ(ω)i and φ̃(ω)i .

Begin by noticing that the final term in (3.1)

2λ−2 〈
Aψ, (λ − Sε)

−1Aψ
〉
π

is equal to Λ̂Sε (λ; Aψ) = 2λ−2Φ̂Sε (λ; Aψ), where we denote the autocorrelation by

ΦV (t; f ) := EV [ f (η0) f (ηt )],
so that ΛV (t; f ) = EV

[( ∫ t

0
f (ηs)ds

)2] = 2
∫ t

0
(t − s)ΦV (s; f )ds. (4.1)

Since (λ − Sε) is positive definite, the final term in (3.1) is non-positive, so dropping it gives
the upper bound

Λ̂Gε (λ;φ) ≤ 2λ−2 sup
ψ∈L2(Ω,π)

{
2〈φ,ψ〉π − 〈ψ, (λ − Sε)ψ〉π

}
= 2λ−2〈φ, (λ − Sε)

−1φ〉π .

Notice, however, that Sε ≤ εU , and so

Λ̂Gε (λ;φ) ≤ 2λ−2〈φ, (λ − εU )−1φ〉π = 2ε−1λ−2〈φ, (ε−1λ −U )−1φ〉π
= 2ε−1λ−2Φ̂U (ε−1λ;φ) (4.2)

and likewise

Λ̂G̃ε
(λ; φ̃) ≤ 2ε−1λ−2Φ̂U (ε−1λ; φ̃).

These upper bounds are now a substantial help as we only need to analyse the model
under the dynamics of U , which do not depend on the state of the environment of arrows.

123



1252 E. Crane et al.

Fig. 4 An example of a pair ω+ and ω− from the proof of Lemma 4.1

The following coupling argument allows us to express ΦU (t;φ) as the return probability of
SRW with a sticky origin. This enables an exact calculation of Φ̂U (λ;φ).

Lemma 4.1 (A coupling) Let W be a continuous-time rate 1 SRW on Z
d with a sticky origin.

That is, when W = 0, at the next jump time it remains there with probability 1
2 , otherwise it

takes a SRW step. Then

ΦU (t;φ) = d−1
P(Wt = 0|W0 = 0) = 2ΦU (t; φ̃).

Proof We will only present the proof for φ, since the proof for φ̃ is almost identical.
Begin by conditioning on the initial profile

ΦU (t;φ) =
∫

Ω

ω1(�)ρt (ω)π(dω), where ρt (ω) := EU [ηt (�)1|η0 = ω].

Introduce the notation

ω+(x) =
{
e1 if x = �,

ω(x) if x ∈ Z
d ,

ω−(x) =
{

−e1 if x = �,

ω(x) if x ∈ Z
d ,

then by pairing up ω ∈ Ω that agree everywhere except at x = � we have

ΦU (t;φ) = 1

2d

∫
Ω

(
ρt (ω

+) − ρt (ω
−)

)
π(dω).

Note that only those ω with ω1(�) �= 0 contribute to ΦU (t;φ). (See Fig. 4.)
We are now going to construct a coupling. Define η+ to be a process started at η+

0 = ω+
and evolving according to the dynamics of U . Define η−

0 = ω− and have η− follow exactly
the same sequence of swaps and shifts as η+. Trivially η− also follows the dynamics of U .

Then we can write

ΦU (t;φ) = 1

2d

∫
Ω

EU [φ(η+
t ) − φ(η−

t )|ω]π(dω). (4.3)

Furthermore, since the dynamics of U are not affected by the environment, at all times η+
and η− disagree only at a single site, which we will call the defect. Furthermore η+ and η−
maintain an equal displacement from the defect for all times.

Now let Wt denote the displacement of the walker from the defect at time t . When the
walker is away from defect, Wt evolves as rate 1 SRW. When Wt = 0, however, the walker
has the defect in its hand with probability 1

2 (this probability persists due to the initial swap).
If the defect is either in the walker’s hand or at the site of the walker, then under the dynamics

123



Diffusion and Superdiffusion in Lattice Models… 1253

of U the defect moves with the walker with probability 1
2 . Therefore Wt remains at 0 with

probability 1
2 so is indeed a SRW with sticky origin.

The proof is now complete by (4.3) and noting that φ(η+
t ) − φ(η−

t ) = 2 · 1Wt=0. 	

Calculating Φ̂U (λ, φ) is straightforward, but for this wewill require the Fourier transform,

which we will denote

Fu(p) :=
∑
x∈Zd

u(x)e2π i〈p,x〉, for p ∈ [0, 1]d .

When u is a function of two variables we will write

F1u(p; y) := Fu(·; y)(p), F2u(x; q) := Fu(x; ·)(q),

for p, q ∈ [0, 1]d and x, y ∈ Z
d . The function

ζd(p) := 1 − 1

d

d∑
j=1

cos(2π p j ), for p ∈ [0, 1]d , (4.4)

will also be helpful.

Lemma 4.2 For λ > 0, define

Iλ :=
∫

[0,1]d
dp

λ + ζd(p)
.

Then as λ → 0

Φ̂U (λ;φ) = 2Iλ
d(1 + 2λIλ)

= O
( ∫ 1

0

rd−1

λ + r2
dr

)
,

and likewise

Φ̂U (λ; φ̃) = O
( ∫ 1

0

rd−1

λ + r2
dr

)
.

Hence we have

ÊGε (λ), ÊG̃ε
(λ) =

⎧⎪⎨
⎪⎩
O(λ−5/2), if d = 1

O(λ−2 log λ−1), if d = 2

O(λ−2), if d ≥ 3.

Proof Let k denote the transition kernel of the SRW with sticky origin

kt (x; y) = P(Wt = y|W0 = x),

so ΦU (t, φ) = d−1kt (0; 0). Suppose x �= 0, then by considering the first waiting time ofW

k̂λ(x; 0) = EW0=x

∫ ∞

0
e−λt1Wt=0dt = 1

1 + λ

1

2d

∑
x0∼x

k̂λ(x0; 0).

Taking a Fourier transform in the x-variable gives

(λ + ζd(p))F1k̂λ(p; 0) = k̂λ(0; 0) − 1

2d

∑
x0∼0

k̂λ(x0; 0),
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where we have subtracted off the x = 0 term. By considering the waiting time at the origin
we also have

1

2d

∑
x0∼0

k̂λ(x0; 0) = (1 + 2λ)̂kλ(0; 0) − 2

and setting into the equation above gives

F1k̂λ(p; 0) = 2 − 2λ̂kλ(0; 0)
λ + ζd(p)

. (4.5)

By integrating over p ∈ [0, 1]d and rearranging we obtain

k̂λ(0; 0) = 2Iλ
1 + 2λIλ

,

as required.
The remainder of the result follows by an elementary calculation, Lemma 3.1 and inequal-

ity (4.2). 	


5 Lower Bound for d = 1 and Totally Anisotropic d = 2

The derivation of the lower bound is also based on the variational formula in (3.1), and we
begin simply by choosing any ψ ∈ L2(Ω, π) and dropping the supremum:

Λ̂(λ;φi ) = 2λ−2〈φi , (λ − Gε)
−1φi 〉π

≥ 2λ−2
{
2〈φi , ψ〉π − 〈ψ, (λ − Sε)ψ〉π − 〈Aψ, (λ − Sε)

−1Aψ〉π
}
. (5.1)

Our strategywill be to choose a family ofψ (parametrised byλ) that give sufficient asymptotic
growth of the lower bound.

Since we will eventually be using the work in this section to prove the lower bounds in
Theorems 1.7 and 1.11, it will suffice to take the initial measure, πp, to be such that p1 = 1.
In d = 1 this is the only drift-free measure, and in d = 2 this is no loss of generality in the
totally anisotropic case, by symmetry. Throughout the following we only consider d = 1 or
2.

Remark 5.1 (The d = 2 cases) In two-dimensions, the totally anisotropic case is substantially
easier to analyse than the non-totally anisotropic case, which is the subject of the next section.
This is reflected in the relative strength of the orders of the bounds in Theorem 1.11. The key
observation is that for the totally anisotropic initial condition it suffices to prove weak bounds
on the main correlation function (Definition5.4 and Lemma 5.5) in this section. Indeed the
relevant bound (Lemma5.6) follows from a simple application of Cauchy–Schwarz. This
method fails when we have an initial condition that is not totally anisotropic.

In order to perform exact computations, we will choose test functions ψ of the form

ψ(ω) =
∑
x∈Zd

u(x)ω(x)1 + u(�)ω(�)1,

where u ∈ �2(Zd
� ; R), which guarantees ψ ∈ L2(Ω, π). We will further restrict u so that

u(x) = u(−x) for all x, and u(0) = u(±e1) = u(�). (5.2)
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We insist that u be an even function to make the Fourier transformFu real-valued. Through-
out let ‖ · ‖2 denote the norm on �2(Zd

� ; R) and define the gradients ∇+ and ∇− by

∇±
k u(x) :=

{
u(x ± ek) − u(x) if x �= �,

0 if x = �,

and ∇ku(x) := ∇+
k u(x) − ∇−

k u(x).
Notice that from Lemma 3.1 it suffices to prove lower bounds on just the first component

Λ̂(λ;φ1). Therefore throughout this section we will write φ(ω) and φ̃(ω) to refer to the first
components φ(ω)1 and φ̃(ω)1, which we recall are (in this short-hand)

M1ε : φ(ω) = ω(�)1, and M2ε : φ̃(ω) = 1
2 (ω(0)1 + ω(�)1).

Lemma 5.2 (Some computations)With the notation above, we have:

(i) 〈φ,ψ〉π = u(0) = 〈φ̃, ψ〉π ,

(ii) 〈ψ,ψ〉π = ‖u‖22,
(iii) 〈ψ, Sεψ〉π = − 1+ε

2 ‖∇+
1 u‖22 − ε

2‖∇+
2 u‖22 = 〈ψ, S̃εψ〉π ,

(iv) Aψ(ω) = − 1
4

∑
x∈Zd ∇1u(x){ω(0)1 + ω(�)1}ω(x)1 = Ãψ(ω).

Proof (i), (ii) Trivial given the product form of π, and that u(�) = u(0).
(iii) Notice that ψ(σω) = ψ(ω), for all ω ∈ Ω, and

ψ(τ�ω) = ψ(στ�ω) =
∑
x∈Zd

u(x − ω(�))ω(x)1 + u(0)ω(�)1,

ψ(τ−1
� ω) = ψ(στ−1

� ω) =
∑
x∈Zd

u(x + ω(�))ω(x)1 + u(0)ω(�)1,

ψ(τ�σω) = ψ(στ�σω) =
∑
x �=0

u(x − ω(0))ω(x)1 + u(0)ω(0)1 + u(−ω(0))ω(�)1,

ψ(τ−1
� σω) = ψ(στ−1

� σω) =
∑
x �=0

u(x + ω(0))ω(x)1 + u(0)ω(0)1 + u(ω(0))ω(�)1.

Integrating any of these terms against ψ(ω)π(dω) gives∑
x∈Zd

u(x + e1)u(x) + u(0)2 = ‖u‖22 − 1
2‖∇+

1 u‖22,

and after subtracting (ψ,ψ)π we obtain − 1
2‖∇+

1 u‖22. Repeating the analysis for U gives

〈ψ,Uψ〉π = − 1
2‖∇+

1 u‖22 − 1
2‖∇+

2 u‖22,
so we have the result.

(iv) The result for Ãψ follows from taking appropriate differences of the eight terms above
and using the identity

u(x − z) − u(x + z) = −z1∇1u(x),

for z = ±e1. For Aψ, from the calculations in (iii) we have

Aψ(ω) = 1

2

∑
x∈Zd

{u(x − ω(�)) − u(x + ω(0))}ω(x)1

+1

2
{u(0) − u(ω(0))}ω(�)1 − 1

2
{u(0) − u(ω(0))}ω(0)1.
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The final two terms vanish due to the restrictions in (5.2), then we are done by noting that

u(x − ω(�)) − u(x + ω(0)) = −∇1u(x)
ω(0)1 + ω(�)1

2
.

	

As with the upper bound, we will operate in the Fourier domain. Since u is symmetric

Fu(p) =
∑
x∈Zd

u(x) cos(2π〈x, p〉) ∈ R,

for all p ∈ [0, 1]d . Easy calculations give

F [∇+
1 u](p) = (e−2π i p1 − 1)Fu(p), F [∇1u](p) = −2i sin(2π p1)Fu(p).

With these we can now express the value of symmetric part in (5.1) as follows.

Lemma 5.3 (Symmetric part) Let ζd be as in (4.4). Then we have

2〈φ,ψ〉π − 〈ψ, (λ − Sε)ψ〉π ≥
∫

[0,1]d

(
2Fu(p) − {2λ + (1 + ε)dζd(p)}Fu(p)2

)
dp,

and this lower bound holds for φ̃ and S̃ε also.

Proof Beginning from Lemma 5.2, notice that

u(0) =
∫

[0,1]d
Fu(p)dp and ‖u‖2

�2(Zd
� )

≤ 2‖u‖2
�2(Zd )

= 2‖Fu‖2L2([0,1]×[0,1]),

where we have used u(�) = u(0) in obtaining the upper bound. From (5) we have

‖∇+
j u‖2

�2
= ‖F∇+

j u‖2L2 =
∫

[0,1]d
|e−2π i p j − 1|2|Fu(p)|2dp

= 2
∫

[0,1]d
(1 − cos(2π p j ))Fu(p)2dp,

where we have used thatFu(p) ∈ R. Combining the results with Lemma 5.2 completes the
proof. 	


We now proceed with the more challenging anti-symmetric part in (5.1). We need upper
bounds for the terms 〈Aψ, (λ− Sε)

−1Aψ〉π and 〈 Ãψ, (λ− S̃ε)
−1 Ãψ〉π . These only depend

onψ through Aψ and Ãψ,whichwere shown to be equal inLemma5.2.Begin using Sε ≤ εU
as in the derivation of (4.2) to arrive at the upper bounds

〈Aψ, (λ − Sε)
−1Aψ〉π ≤ ε−1Φ̂U (ε−1λ; Aψ) (5.3)

〈 Ãψ, (λ − S̃ε)
−1 Ãψ〉π = 〈Aψ, (λ − S̃ε)

−1Aψ〉π ≤ ε−1Φ̂U (ε−1λ; Aψ). (5.4)

Using the explicit form in Lemma 5.2 (iv) gives

ΦU (t; Aψ) = EU [Aψ(η0)Aψ(ηt )] = 1

16

∑
x,y∈Zd

∇1u(x)∇1u(y)C(t; x, y), (5.5)

where C is the order-four correlation function

C(t; x, y) = EU [{η0(0)1 + η0(�)1}η0(x){ηt (0)1 + ηt (�)1}ηt (y)]. (5.6)

Again a coupling argument allows us to writeC as the transition kernel of a defect process.
This time, however, the underlying random walk is 2d-dimensional and more complicated.
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Fig. 5 The graph G from
Definition 5.4 in the case d = 1

Definition 5.4 (Defect walk) Define a graph G = (V, E) with vertex set

V := (Z2d
� {(x, x) : x ∈ Z

d}) ∪ {0}
and edge set, E ⊆ {{v,w} : v,w ∈ V}, given by

E := {{(x, y), (x + e, y + e)} : e ∈ E , x, y ∈ Z
d , (x, y) �= (0, 0)}

∪ {{(0, 0), (0, e)} : e ∈ E } ∪ {{(0, 0), (e, 0)} : e ∈ E }
∪ {{(x, 0), (x + e, 0)} : e ∈ E , x ∈ Z

d} ∪ {{(0, y), (0, y + e)} : e ∈ E , y ∈ Z
d},

where we recall that E is the set of canonical unit vectors (see Fig. 5). Define D to be a rate
1 nearest neighbour symmetric random walk on G and denote its transition kernel by

Kt (u; v) := P(Dt = v|D0 = u), for u, v ∈ V.

Lemma 5.5 (Correlation) For all t > 0 and x �= 0 �= y

C(t; x, y) = 1

4

(
Kt (x, 0; y, 0) + Kt (x, 0; 0, y)

)
,

where K is the transition kernel from Definition5.4.

Proof We follow the same proof as in Lemma 4.1, except that we introduce two defects
instead of one. By symmetry of the first swap we have

C(t; x, y) = 1

2

∫
Ω

{ω(0)1 + ω(�)1}ω(x)1ρ(ω)π(dω) =
∫

Ω

ω(0)1ω(x)1ρ(ω)π(dω),

where

ρ(ω) := EU [{ηt (0) + ηt (�)}ηt (y)|η0 = ω].
Introduce the notation

ωs1s2(z) :=

⎧⎪⎨
⎪⎩
s1e j if z = x,

s2ek if z = 0,

ω(z) otherwise,

for s1, s2 ∈ {−,+}.

By conditioning on the values of ω(x) and ω(0) (recall that x �= 0) we have

C(t; x, y) = 1

16

∫
Ω

(
ρ(ω++) + ρ(ω−−) − ρ(ω+−) − ρ(ω−+)

)
π(dω). (5.7)
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We will now construct a coupling. For s1, s2 ∈ {−1,+1}, let η
s1,s2
0 = ωs1,s2 and have

all the ηs1,s2 evolving according to the same sequence of swaps and steps generated by a
realisation of the dynamics under U . Now any pair of these processes have two defects, so
let D1

t denote the displacement of the defect that is initially at x and D2
t the displacement of

the defect initially at 0. Then Dt := (D1
t , D

2
t ) has the dynamics described in Definition5.4.

For short-hand also introduce the notation

α(ω) := ω(y)1,

β(ω) := ω(0)1 + ω(�)1,

Γ (ω) := α(ω)β(ω).

By considering the positions of the defect, D, we have

Γ (η++
t ) =

{
α(η+−

t ) + 2 · 1D2
t =y

} {
β(η+−

t ) + 2 · 1D2
t =0

}
= Γ (η+−

t ) + 2α(η+−
t )1D2

t =0 + 2β(η+−
t )1D2

t =y, (5.8)

where we have used y �= 0, and so by symmetry

Γ (η−+
t ) = Γ (η−−

t ) + 2α(η−−
t )1D2

t =0 + 2β(η−−
t )1D2

t =y . (5.9)

By using the fact

α(η+−
t ) − α(η−−

t ) = 2 · 1D1
t =y, β(η+−

t ) − β(η−−
t ) = 2 · 1D1

t =0,

subtracting (5.9) from (5.8) gives

Γ (η++
t ) + Γ (η−−

t ) − Γ (η−+
t ) − Γ (η+−

t ) = 4 · 1Dt=(y,0) + 4 · 1Dt=(0,y).

Taking a conditional expectation with respect to ω and setting into (5.7) completes the result.
	


Evaluating the Laplace transform of the kernel in Definition5.4 could be tricky. For-
tunately a simple application of Cauchy–Schwarz allows us to obtain a bound on (5.5)
in terms of the transition of a d-dimensional SRW with sticky origin. The key observa-
tion is that if we project the walk D from Definition5.4 down to one of its coordinates,
then the corresponding process is a SRW with sticky origin. This is easiest to see from
Fig. 5.

Lemma 5.6 (Anti-symmetric part)With Iλ as defined in Lemma4.2, we have

|Φ̂U (λ; Aψ)| ≤
∫

[0,1]d
1
4 Iλ sin

2(2π p1)Fu(p)2dp.

Proof Begin by applying Cauchy–Schwarz to (5.5):

|ΦU (t, Aψ)| ≤
∑

x,y∈Zd

∇1u(x)2C(t; x, y) =
∑
x∈Zd

∇1u(x)2
∑
y∈Zd

C(t; x, y), (5.10)

where we have used the symmetry in the x and y variables and the positivity of C from
Lemma 5.5. Writing kt for the transition kernel of a one-dimensional random walk with
sticky origin (as in Lemmas 4.1 and 4.2), by the remark made above we have
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∑
y∈Zd

C(t; x, y) = 1

4

∑
y∈Zd

Kt (x, 0; y, 0) + Kt (x, 0; 0, y)

= 1
4P(D2

t = 0|D0 = (x, 0)) + 1
4P(D1

t = 0|D0 = (x, 0))

= 1
4kt (0; 0) + 1

4kt (x; 0). (5.11)

Returning to (4.5), by multiplying through by e−2π i〈p,x〉 and integrating (i.e. inverting the
Fourier transform) and using the positivity of kt we have

k̂λ(x; 0) = 2(1 − λ̂kλ(0; 0))
∫

[0,1]d
e−2π i〈p,x〉

λ + ζd(p)
dp ≤ 2

∫
[0,1]d

dp

λ + ζd(p)
= 2Iλ.

Therefore setting into (5.10) using (5.11) gives

|Φ̂U (λ, Aψ)| ≤ 1
16 Iλ‖∇1u‖22.

The result follows by Plancherel’s theorem and F [∇1u](p) = −2i sin(2π p1)Fu(p). 	

The final step in this section is to combine Lemmas5.3 and 5.6 and to choose u appropri-

ately to get a non-trivial lower bound. This is done through a simple point-wise optimisation
of a quadratic integrand. Additional work must be done to ensure that the choice of u satisfies
the constraints in (5.2).

Lemma 5.7 (The main lower bound) There exists a constant c0 > 0 such that

ÊGε (λ), ÊG̃ε
(λ) ≥ c0λ

−2
∫

[0,1]d
dp

λ + |p|2 + Iλ p21
,

for all λ > 0 sufficiently small.

Proof Using (5.1), Lemma 5.3, (5.3) and Lemma 5.6 together gives

ÊGε (λ) ≥ 2λ−2
∫

[0,1]d
(2Fu(p) − Hλ(p)Fu(p)2)dp

where

Hλ(p) := 2λ + (1 + ε)dζd(p) + 1
4ε

−1 Iε−1λ sin
2(2π p1).

The integrand is maximised at u = v where v is such that Fv(p) = Hλ(p)−1. Since Hλ is
even and bounded, there is guaranteed to exist such a v that is real-valued and even, whereby
the integrand takes value Hλ(p)−1.

This choice of v, however, does not satisfy (5.2), and so we define

u(x) := v(x) + θδ(x), θ := v(e1) − v(0),

where δ(x) = 1x=0. Then u satisfies (5.2) and Fu(p) = Fv(p) + θ, so setting into the
integral gives

ÊGε (λ) ≥ 2λ−2
∫

[0,1]d
(Hλ(p)

−1 − θ2Hλ(p))dp.
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Notice, however, that Hλ(p) = O(Iλ) and Hλ(p) = Ω(Iλ p21) for all p ∈ [0, 1]d .
Here Ω is the lower bound notation analogous to the O notation for the limit λ →
0. That is, there are positive constants c,C, (which may depending on ε but do not
depend on p), such that cIλ p21 ≤ Hλ(p) ≤ C Iλ for all sufficiently small λ > 0.
Hence

|θ | =
∫

[0,1]d
|1 − cos(2π p1)|

Hλ(p)
dp = O

( ∫
[0,1]d

p21
Iλ p21

dp
)

= O
(
I−1
λ

)
.

With this we conclude that θ2Hλ(p) = O(I−1
λ ) = o(1), by Lemma4.2 for d = 1 and 2,

therefore

ÊGε (λ) ≥ 2λ−2
∫

[0,1]d
dp

Hλ(p)
+ o(λ−2).

We are then done by using ζd(p) = O(|p|2) and | sin(2π p1)| = O(p1). 	


6 Completing the Proof of Theorems 1.7, 1.10 and 1.11

In this section we use the results derived so far to complete the proofs of the main theorems.
We use theΩ notation for asymptotic lower bounds as λ → 0, up to a positive multiplicative
constant which may depend on ε.

6.1 Upper Bounds in all Cases

All upper bounds follow from Lemma4.2. 	


6.2 Lower Bound d ≥ 3

The lower bound in the time domain for Theorem 1.10 follows immediately from Lemma 3.1
and implies the Laplace lower bound. 	


6.3 Lower Bound d = 1

From Lemma 4.2 we know that Iλ = O(λ−1/2) when d = 1. Therefore the integral in
Lemma 5.7 has the following asymptotic lower bound:∫ 1

0

dp

λ + λ−1/2 p2
= Ω(λ−1/4).

Hence Ê(λ) = Ω(λ−9/4) as required. 	


6.4 Lower Bound d = 2, Totally Anisotropic

Writing the integral in Lemma 5.7 in polar coordinates gives
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Ê(λ) = Ω
( ∫ 1

0

∫ 2π

0

r

λ + r2 + Iλr2 cos2 θ
dθdr

)

= Ω
( ∫ 1

0

r√
(λ + r2)(λ + r2 + Iλr2)

dr
)

= Ω
( ∫ 1

0

r√
λ + r2 + Iλr2

dr
)

= Ω(
√
Iλ),

and from Lemma 4.2 we know Iλ � log(λ−1), which completes the proof. 	


6.5 Obstruction for the Two-Dimensional Non-totally Anisotropic Case

We might think that the work in Sect. 5 should immediately imply a similar superdiffusive
lower bound for the case when d = 2 and p �= (1, 0) or (0, 1). If we attempt this, however,
because the environment ω ∈ Ω is not constrained to one-dimensional components, the
integral we reach in Lemma 5.7 is

λ−2
∫

[0,1]2
dp

λ + |p|2 + Iλ|p|2 � λ−2
∫ 1

0

rdr

λ + log(λ−1)r2
� λ−2,

which is not a superdiffusive lower bound.
It seems necessary to follow the computations in [15] and to choose a linear functional ψ

in Sect. 5 that depends on both components {ω(x)1}x∈Zd
�
and {ω(x)2}x∈Zd

�
and to avoid the

crude Cauchy–Schwarz estimates in Lemma 5.6. The difficulty here is that this necessitates
a more detailed analysis of the transition kernel from Definition 5.4, which is currently out
of our reach.
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