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Abstract
The subcarrier domain of multicarrier continuous-variable quantum key distribution
(CVQKD) is defined. In a multicarrier CVQKD scheme, the information is granulated
into Gaussian subcarrier CVs and the physical Gaussian link is divided into Gaussian sub-
channels. The subcarrier domain injects physical attributes to the description of the subcarrier
transmission.Weprove that the subcarrier domain is a natural representation of the subcarrier-
level transmission in a multicarrier CVQKD scheme. We also extend the subcarrier domain
to a multiple-access multicarrier CVQKD setting. We demonstrate the results through the
adaptive multicarrier quadrature-division (AMQD) CVQKD scheme and the AMQD-MQA
(multiuser quadrature allocation)multiple-accessmulticarrier scheme.The subcarrier domain
representation provides a general apparatus that can be utilized for an arbitrary multicarrier
CVQKD scenario.

Keywords Quantum key distribution · Quantum cryptography · Quantum continuous
variables · CVQKD

1 Introduction

The continuous-variable quantum key distribution protocols allow for the parties to establish
an unconditionally secure communication over the traditional telecommunication networks
[1–20]. In comparison to discrete-variable (DV) QKD, the CVQKD schemes do not require
single-photon devices, a fact that allows us to implement in practice by standard devices [21–
31]. Despite the several attractive benefits of CVQKD [1–3,9–14], these protocols still require
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significant performance improvements to be comparable with that of the traditional telecom-
munications [32–49]. For this purpose, themulticarrier CVQKDhas been defined through the
adaptivemulticarrier quadrature division (AMQD)modulation [5]. In amulticarrier CVQKD
system, the Gaussian input CVs are granulated into subcarrier Gaussian CVs via the inverse
Fourier transform, which are decoded by the receiver by the unitary CVQFT (continuous-
variable quantum Fourier transform) operation [5]. Precisely, the multicarrier transmission
divides the physical Gaussian link into several Gaussian sub-channels, where each sub-
channel is dedicated for the conveying of aGaussian subcarrier CV. In particular, themulticar-
rier transmission injects several benefits toCVQKD, such as improved secret key rates, higher
tolerable excess noise, and enhanced transmission distances [5,6,8,9,29–31,50–57]. Specif-
ically, the benefits of the multicarrier CVQKD modulation has been extended to a multiple-
access CVQKD through the AMQD-MQA (multiuser quadrature allocation) scheme [8],
in which the simultaneous reliable transmission of the legal users is handled through the
sophisticated allocation mechanism of the Gaussian subcarriers. The SVD-assisted (singular
value decomposition) AMQD injects further extra degrees of freedom into the transmission
[29,52], which can also be exploited in a multiple-access multicarrier CVQKD.

The achievable secret key rates in a multicarrier CVQKD setting have been rigorously
derived in [6]. These secret key rates also confirm the multimode bounds determined in [43]
(see the results on fundamental rate-loss scaling in quantum optical communications in [43]).
For further information on the bounds of private quantum communications, we suggest [44].

Here, we provide a natural representation of the subcarrier CV transmission and show
that it also allows us to utilize the physical attributes into the sub-channel modeling. The
angular domain representation is a useful tool in traditional telecommunications to model
the physical signal propagation through a communication channel. The angular domain rep-
resentation is aimed at revealing and verifying the connections of the physical layer and the
mathematical channel model in different scenarios, avoiding the use of an inaccurate channel
representation [58–60]. Here, we show that similar benefits can be brought up to multicarrier
CVQKD.We define the subcarrier domain representation for multicarrier CVQKD. The sub-
carrier domain utilizes the phase-space angles of the Gaussian subcarrier CV to construct the
model of a Gaussian sub-channel and to build an appropriate statistical model of subcarrier
transmission. The subcarrier domain is an adequate application for multicarrier CVQKD
since it is a natural representation of the CVQFT operation. The key behind the subcarrier
domain representation is the Fourier operation, which has a central role in a multicarrier
CVQKD setting since this operation makes possible the construction of Gaussian subcarrier
CVs from the single-carriers and Gaussian sub-channels from the physical Gaussian link.

Particularly, the CVQFT transformation not just opens the door for the characterization of
the subcarrier domain of aGaussian sub-channel but also provides us a framework to study the
effects of psychical layer transmission in an experimental multicarrier CVQKD scenario. The
subcarrier domainutilizes physical attributes such as the phase space angle into the description
of the transmission. Thus, the subcarrier domain representation takes into account not just
the theoretical model but also the physical level of the subcarrier transmission. Since the
subcarrier domain is a natural representation of amulticarrier CVQKD transmission, it allows
us to extend it to a multiple-access multicarrier CVQKD setting. Furthermore, the subcarrier
domain model provides a general framework for any experiential multicarrier CVQKD.

The novel contributions of our manuscript are as follows:

1. We define the subcarrier domain of multicarrier continuous-variable quantum key dis-
tribution.
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2. The subcarrier domain injects physical attributes to the description of the subcarrier
transmission.

3. We prove that the subcarrier domain is a natural representation of the subcarrier-level
transmission in a multicarrier CVQKD scheme.

4. We extend the subcarrier domain to a multiple-access multicarrier CVQKD setting. We
demonstrate the results through the adaptive multicarrier quadrature-division (AMQD)
CVQKD scheme and the AMQD-MQA (multiuser quadrature allocation) multiple-access
multicarrier scheme.

5. The subcarrier domain representation provides a general apparatus that can be utilized
for an arbitrarymulticarrier CVQKD scenario. The framework is particularly convenient
for experimental multicarrier CVQKD scenarios.

This paper is organized as follows. In Sect. 2, some preliminaries are briefly summarized.
Section 3 discusses the subcarrier domain representation for multicarrier CVQKD. Section 4
extends the subcarrier domain for multiple-access multiuser CVQKD. Finally, Sect. 5 con-
cludes the results. Supplemental information is included in the Appendix.

2 Preliminaries

The basic terms and notations of multicarrier CVQKD are summarized in Sect. A.1 of the
Appendix. The detailed description of AMQD and AMQD-MQA can be found in [5] and
[8]. For the secret key rate formulas, see [6].

3 Subcarrier Domain of Multicarrier CVQKD

Proposition 1 (Subcarrier domain representation of multicarrier transmission.) For the i-
th Gaussian sub-channel Ni , the subcarrier domain representation is Rφi (Ti (Ni )) =
UTi (Ni )U, where U is the CVQFT operator.

Proof The proofs throughout assume l Gaussian sub-channels for the multicarrier transmis-
sion. The angles of the |φi 〉 transmitted and the

∣
∣φ′

i

〉

received subcarrier CVs in the phase
space S are denoted by θ∗

i ∈ [0, 2π ], and θi ∈ [0, 2π ], respectively.
Specifically, first, we express F (T (N )) as

F (T (N )) =
∑

l

F (Ti (Ni ))

=
l−1
∑

i=0

l−1
∑

k=0

Tke
−i2π ik

l ,

(1)

from which F (Ti (Ni )) is yielded as

F (Ti (Ni )) =
l−1
∑

k=0

Tke
−i2π ik

l . (2)
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Next, we recall the attributes of a multicarrier CVQKD transmission from [5]. In particular,
assuming l Gaussian sub-channels, the output y is precisely as follows:

y = F (T (N )) F (d) + F (�)

= F (T (N )) F
(

F−1 (z)
) + F (�)

= (F (T (N )) F)d + F (�)

=
∑

l

F (Ti (Ni )) di + F (�i ),

(3)

where

F (d) = F
(

F−1 (z)
) = z. (4)

The l columns of the l × l unitary matrix F formulate basis vectors, which are referred to as
the domain Rφi , from which the subcarrier domain representation Rφi (Ti (Ni )) of Ti (Ni )

is defined as

Rφi (Ti (Ni )) = F (Ti (Ni )) F . (5)

Thus, (3) can be rewritten as

yRφ = Rφ (T (N )) d + F (�)

=
∑

l

Rφi (Ti (Ni )) di + F (�i ),
(6)

where yRφ is referred to as the subcarrier domain representation of y.
Particularly, from (5) follows that Rφi (Ti (Ni )) can be expressed as

Rφi (Ti (Ni )) = UTi (Ni )U , (7)

where U is an l × l unitary matrix as

U = F, (8)

where F refers to the CVQFT operator which for l subcarriers can be expressed by an l × l
matrix, as

U = 1√
l
e

−i2π ik
l , i, k = 0, . . . , l − 1, (9)

thus,

Rφi (T (N )) =
l

∑

i=1

U (Ti (Ni )). (10)

To conclude, the results in (1) and (2) can be rewritten as

U (T (N )) =
l

∑

i=1

U (Ti (Ni )), (11)

thus

F (Ti (Ni )) = U (Ti (Ni )) . (12)
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Specifically, an arbitrary distributedRφ (T (N )) can be approximated via an averaging over
the following statistics:

S (Rφ (T (N ))
) ∈ CN

(

0, σ 2
T(N )

)

, (13)

by theory.
Since the unitaryU operation does not change the distribution of S (T (N )), an arbitrarily

distributed T (N ) can be approximated via an averaging over the statistics of

S (T (N )) ∈ CN
(

0, σ 2
T(N )

)

. (14)

��
Theorem 1 (Subcarrier domain of aGaussian sub-channel). TheRφi subcarrier domain rep-

resentationofNi , i = 0 . . . l−1, isRφi (Ti (Ni )) = ∑

k A (Ni ) b (k/l)† b (cos θi ) b
(

cos θ∗
i

)†

b (i/l), k = 0 . . . l − 1, where b (·) is an orthonormal basis vector of Rφi , θ
∗
i and θi are the

phase-space angles of |φi 〉 and
∣
∣φ′

i

〉

, A (Ni ) = xi , where xi is a real variable, xi ≥ 0.

Proof The b basis vectors ofRφi are evaluated as follows. Let θ
∗
i ∈ [0, 2π] refer to the angle

of the i-th noise-free input Gaussian subcarrier CV |φi 〉 in S. The angle of the i-th noisy
subcarrier CV

∣
∣φ′

i

〉

is referred to as θi ∈ [0, 2π ], θi 
= θ∗
i .

In particular, for the subcarrier domain representation, the scaledCVQFToperationdefines
the b (·) basis at l Gaussian sub-channels as an l × 1 matrix:

b (cos θi ) = 1√
l

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
e−i2π cos θi

e−i2π2 cos θi

...

e−i2π(l−1) cos θi

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (15)

while for the input angle θ∗
i also defines an l × 1 matrix as

b
(

cos θ*i
) = 1√

l

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
e−i2π cos θ∗

i

e−i2π2 cos θ∗
i

...

e−i2π(l−1) cos θ*i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

Precisely, the difference of the cos functions of the i-th θ∗
i transmitted and the θi received

angles is defined as

τi = cos θi − cos θ∗
i . (17)

Let b (cos θi ) and b
(

cos θ∗
i

)

be the basis vectors of cos θi , cos θ∗
i [58–60], then for the �i =

θi − θ∗
i angle

|cos�i | =
∣
∣
∣b

(

cos θ∗
i

)†
b (cos θi )

∣
∣
∣ , (18)

and

|cos�i | = | f (τi )| , (19)
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where [58]

f (τi ) = 1
l e

iπ(l−1)(cos θi−cos θ∗
i ) sin(πl(cos θi−cos θ∗

i ))
sin(π(cos θi−cos θ∗

i ))
. (20)

In particular, using (20), after some calculations, the result in (18) can be rewritten as

|cos�i | =
∣
∣
∣
sin(πl(cos θi−cos θ∗

i ))
l sin(π(cos θi−cos θ∗

i ))

∣
∣
∣ . (21)

Specifically, by expressing (20) via the formula of

sinc (x) = sin (πx) 1
πx , (22)

one can find that for l → ∞, f (τi ) can be rewritten as [58]

lim
l→∞ f (τi ) = eiπlτi sinc (lτi ) . (23)

The function | f (τi )| for different values of τi is depicted in Fig. 1. The function picks up the
| f (τi )| = 1 maximum at τi = 0, with a period r = 1. For l sub-channels, a period yields l
values.

Next, we utilize function f (·) to derive the Rφi subcarrier domain representation of Ni .
Function f (τi ) at a given θi formulates a plot

p : (cos θi , | f (τi )|) , (24)

where from the r = 1 periodicity of f (·) follows that the main loops are obtained at

cos θi = cos θ∗
i . (25)

The plot | f (τi )| as a function of cos θi is depicted in Fig. 2, for θ*i = π/2 , l = 2.
From the bases b (·) of (15) and (16), the Fourier bases b ( k

l

)

and b
( i
l

)

, i, k = 0, . . . , l−1,
is defined as follows.

The set Sb of the Rφ orthonormal basis over the Cl complex space of the Rφ subcarrier
domain representation can be defined as

Sb = {

b (0) , b
( 1
l

)

, . . . , b
( l−1

l

)} ∈ Cl , (26)

Fig. 1 The function | f (τi )| (blue) for different values of τi . The period of the function is r = 1. The sinc
function (green) is approximated with an arbitrary precision in the asymptotic limit of l → ∞
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966 L. Gyongyosi, S. Imre

Fig. 2 The Rφi subcarrier domain representation of Ni , at θ
*
i = π/2 , l = 2. The function | f (τi )| picks up

the maximum at τi = 0

and b
( k
l

)

is an l × 1 matrix as

b (0) = 1√
l

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1
1
...

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (27)

and

b
( k
l

) = 1√
l

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

e
−i2πk

l

e
−i2π2k

l

...

e
−i2π(l−1)k

l

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (28)

while the b
( i
l

)

l × 1 matrix is precisely as

b
( i
l

) = 1√
l

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

e
−i2π i

l

e
−i2π i2

l

...

e
−i2π i(l−1)

l

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (29)

Precisely, using the orthonormal basis of (26), the result in (20) can be rewritten as

f (τi ) = b (0)† b (τi ) . (30)
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Specifically, the expression of (30) allows us to redefine the plot of (24) to express b
( k
l

)

as
follows:

p
b
(
k
l

): (cos θi ,
∣
∣ f

(

cos θi − k
l

)∣
∣
)

, (31)

and thus the maximum values are obtained at

cos θi = k
l . (32)

Particularly, at a given l, evaluating f at k = 1, . . . , l − 1 yields the following values [58]:

f
( k
l

) = 0, (33)

and

f
(−k

l

) = f
( l−k

l

)

. (34)

In particular, the A (Ni ) parameter is called the virtual gain of the Ni sub-channel transmit-
tance coefficient, and without loss of generality, it is defined as

A (Ni ) = xi , (35)

where xi is a real variable, xi ≥ 0.
From (15), (16), and (35), T (N ) can be expressed as

T (N ) =
l−1
∑

i=0

A (Ni ) b (cos θi ) b
(

cos θ∗
i

)†
. (36)

By exploiting the properties of the Fourier transform [58–60], for a given cos θ∗
i and cos θi ,

Rφ (T (N )) can be rewritten as

Rφ (T (N )) =
l−1
∑

i=0

l−1
∑

k=0

b
( k
l

)†
Ti (Ni ) b

( i
l

)

=
l−1
∑

i=0

l−1
∑

k=0

b
( k
l

)†
A (Ni ) b (cos θi ) b

(

cos θ*i
)†
b

( i
l

)

=
l−1
∑

i=0

l−1
∑

k=0

xi b
( k
l

)†
b (cos θi ) b

(

cos θ*i
)†
b

( i
l

)

.

(37)

Specifically, in (37), for the representation of term b
(

cos θ*i

)†
b (i/l ) [58], set SRφi can be

defined for the Rφi domain of Ni as

SRφ : ∣
∣cos θi − ( k

l

)∣
∣ < 1

l . (38)

The set SRφ in the subcarrier domain representation for θ*i = π/2 , l = 2 and k = 0, . . . , l−
1, is illustrated by the dashed area in Fig. 3. The b (0) , b

( 1
l

)

, . . . , b
( l−k

l

)

basis vectors of
Rφ for l = 2 are also depicted, evaluated via (31).
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968 L. Gyongyosi, S. Imre

Fig. 3 The set SRφ (dashed areas) for θ*i = π/2 , l = 2 Gaussian sub-channels and k = 0, . . . l − 1. The

curves (red, green) depict the basis vectors b (0) , b
(
1
l

)

ofRφ

Putting the pieces together, from (37),Rφi (Ti (Ni )) of a given Gaussian sub-channelNi

is yielded as

Rφi (Ti (Ni )) =
l−1
∑

k=0

b
( k
l

)†
Ti (Ni ) b

( i
l

)

=
l−1
∑

k=0

A (Ni ) b
( k
l

)†
b (cos θi ) b

(

cos θ*i
)†
b

( i
l

)

.

(39)

��

3.1 Statistics of Subcarrier Domain Sub-channel Transmission

Theorem 2 (Transmittance of the Gaussian sub-channels). For arbitrary θ∗
i , the magni-

tude
∣
∣Rφi (Ti (Ni ))

∣
∣ of Rφi (Ti (Ni )) of a given Ni is maximized in the asymptotic limit

of cos�i → 1, where �i = θi − θ∗
i . Averaging over the statistics S (Rφ (T (N ))

) ∈
CN

(

0, σ 2
T(N )

)

, rank
(S (Rφ (T (N ))

)) = min (|Si | , |Sk |), where the cardinality of sets

Si , Sk identifies the number of non-zero rows and columns of Rφi (T (N )).

Proof First, we recall Rφi (Ti (Ni )) from (39) and express
∣
∣Rφi (Ti (Ni ))

∣
∣ as

∣
∣Rφi (Ti (Ni ))

∣
∣ =

∣
∣
∣
∣
∣

l−1
∑

k=0

xi b
( k
l

)†
b (cos θi ) b

(

cos θ∗
i

)†
b

( i
l

)

∣
∣
∣
∣
∣
. (40)

For a given θ∗
i , the values of angle θi has the following statistical impacts on (40).

Without loss of generality, let parameters i and k be fixed as

i, k = {C,C} , (41)

where C > 0 is a real variable.
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Particularly, for the Ni sub-channels, the
∣
∣Rφi (Ti (Ni ))

∣
∣ magnitudes formulate a set

∂ = {∣
∣Rφi (Ti (Ni ))

∣
∣ , i = 0, . . . , l − 1

}

. (42)

Let

�i = θi − θ∗
i , (43)

and let s be the number of sub-channels for which
∣
∣Rφi (Ti (Ni ))

∣
∣ ≈ 0.

Specifically, for ∂ , let determine �i the value of k as

k =
{

k ∈ [0, 2C] , if |�i | → π

k = i = C, if |�i | = 0

}

. (44)

Let us define a G0 initial subset with |G0| = s0, as

G0 = {∣
∣Rφ j

(

Tj
(N j

))∣
∣ , j = 0, . . . , s0 − 1

} ⊆ ∂, (45)

where
∣
∣Rφ j

(

Tj
(N j

))∣
∣ ≈ 0. (46)

In this setting, as cos�i → 1, the cardinality of G increases,

G : cos�i → 1 : |G| = s > |G0| = s0, (47)

while as cos�i → −1, the cardinality of G decreases, thus

G : cos�i → −1 : |G| = s < |G0| = s0. (48)

In particular, as (48) holds, the range of k expands from C to the full domain of k = [0, 2C],
and

∣
∣Rφi (Ti (Ni ))

∣
∣ decreases, thus

∣
∣Rφi (Ti (Ni ))

∣
∣ ≈ a, (49)

where a is an average which around the
∣
∣Rφi (Ti (Ni ))

∣
∣ coefficients stochastically moves

[58–60].
The impact of cos�i → −1 on

∣
∣Rφi (Ti (Ni ))

∣
∣ is depicted in Fig. 4 for i, k = {C,C},

i = C = 0.5l. The maximum transmittance is normalized to unit for k = 0.5C . Statistically,
the convergence of cos�i → −1 improves the range of k and decreases the sub-channel
transmittance (see (44)).

Particularly, the degrees of freedom in Rφ (T (N )) can be evaluated through the rank of
Rφ (T (N )).

Let us identify the number of non-zero rows and columns of Rφi (T (N )) via |Si | and
|Sk |, of sets Si , Sk , respectively. By averaging [58–60] over the statistics of

S (Rφ (T (N ))
) ∈ CN

(

0, σ 2
T (N )

)

, (50)

thus the rank of S (Rφ (T (N ))
)

without loss of generality is expressed as

rank
(S (Rφ (T (N ))

)) = min (|Si | , |Sk |)
≈ min

(∑

l
cos θi ,

∑

l
cos θ*i

)

,
(51)

for an arbitrary distribution, by theory [58].
The rank in (51) basically changes in function of the number l of Ni Gaussian sub-

channels utilized for the multicarrier transmission since the increasing l results in more
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970 L. Gyongyosi, S. Imre

Fig. 4 The impact of cos�i → −1 on
∣
∣Rφi (Ti (Ni ))

∣
∣ for a fixed i = C = 0.5l on a sub-channel Ni .

The parameter range changes to i, k = {C, [0, 2C]} ,C = 0.5l, from i, k = {C,C}. For cos�i → 1, the
transmittance picks up the maximum at k = C = 0.5l (red) in a narrow range of k ≈ C . Statistically, as
cos�i → −1, the transmittance significantly decreases, moving stochastically around an average a (dashed
grey line) within the full range k = [0, 2C]

non-zero elements in S (Rφ (T (N ))
)

[58–60]. On the other hand, the rank in (51) also
changes in function of θi . Specifically, as cos�i → 1, the matrix S (Rφ (T (N ))

)

will have
significantly decreased number of non-zero entries (see (47)), while for cos�i → −1, the
rank increases because the number of non-zero entries in (51) increases [58] (see (48)).

These statements can be directly extended to the diversity, since the div (·) diversity func-
tion of S (Rφ (T (N ))

)

is evaluated via the number of non-zero entries in S (Rφ (T (N ))
)

,

div
(S (Rφ (T (N ))

)) =
⋃

∀i,k
Ei,k

(S (Rφ (T (N ))
)) 
= 0, (52)

where Ei,k identifies an (i, k) entry of S (Rφ (T (N ))
)

. Precisely, from (52) follows that
div

(S (Rφ (T (N ))
))

increases with the number l of Gaussian sub-channels. ��

4 Subcarrier Domain of Multiuser Multicarrier CVQKD

Lemma 1 (Subcarrier domain of multiple-access multicarrier CVQKD). TheRφ (T (N )) of

T (N ) in a Kin, Kout multiuser setting is RKin ,Kout
φ (T (N )) = UKoutT (N )UKout , where

UKout is a Kout × Kout unitary UKout = 1√
Kout

e
−i2π ik
Kout , i, k = 0, . . . , Kout − 1.

Proof Let Kin, Kout be the number of transmitter and receiver users in a multiple access
multicarrier CVQKD [8], and let Z be the Kin dimensional input of the Kin users. The
Gaussian CV subcarriers formulate the Kin dimensional vector

D = UKinZ, (53)

where UKin stands for the inverse CVQFT unitary operation.
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TheUKin andUKout , Kin × Kin , Kout × Kout unitary matrices at l Gaussian sub-channels
are as

UKin = 1√
Kin

e
i2π ik
Kin , i, k = 0, . . . , Kin − 1, (54)

and

UKout = 1√
Kout

e
−i2π ik
Kout , i, k = 0, . . . , Kout − 1, (55)

which unitary is the CVQFT operation (For further details, see the properties of the multi-
carrier CVQKD modulation [5,6,8,9].).

Specifically, the output Y in a Kin, Kout setting is then yielded as

Y = UKoutT (N )
(

UKoutD
) +UKout �

= (

UKoutT (N )UKout

)

D +UKout �

= RKin ,Kout
φ (T (N ))D +UKout �,

(56)

thus without loss of generality

RKin ,Kout
φ (T (N )) = UKoutT (N )UKout . (57)

Particularly, by rewriting (37), RKin ,Kout
φ (T (N )) can be expressed as

RKin ,Kout
φ (T (N ))

=
Kin−1
∑

i=0

Kout−1
∑

k=0

bKout

( k
l

)†
Ti (Ni ) bKin

( i
l

)

=
Kin−1
∑

i=0

Kout−1
∑

k=0

bKout

( k
l

)†
A (Ni ) bKout (cos θi ) bKin

(

cos θ*i
)†
bKin

( i
l

)

=
Kin−1
∑

i=0

Kout−1
∑

k=0

xi bKout

( k
l

)†
bKout (cos θi ) bKin

(

cos θ*i
)†
bKin

( i
l

)

,

(58)

where the basis vectors are precisely as

bKout (cos θi ) = 1√
Kout

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

e
−i2πl cos θi

Kout

e
−i2π2l cos θi

Kout

...

e
−i2π(Kout−1)l cos θi

Kout

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(59)
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and

bKin

(

cos θ*i
) = 1√

Kin

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

e
−i2πl cos θ*i

Kin

e
−i2π2l cos θ*i

Kin

...

e
−i2π(Kin−1)l cos θ*i

Kin

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (60)

thus

bKout

( k
l

) = 1√
Kout

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

e
−i2πk
Kout

e
−i2π2k
Kout

...

e
−i2π(Kout−1)k

Kout

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (61)

and

bKin

( i
l

) = 1√
Kin

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

e
−i2π i
Kin

e
−i2π i2
Kin

...

e
−i2π i(Kin−1)

Kin

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (62)

Without loss of generality, the function f from (20) can be rewritten as

f Kout (τi ) = 1
Kout

e
iπl(Kout−1)τi

Kout
sin(πlτi )

sin
(

π
l

Kout
τi

) , (63)

with

|cos�i | =
∣
∣
∣
∣
∣

sin(πl(cos θi−cos θ∗
i ))

Kout sin
(

π
l

Kout
(cos θi−cos θ∗

i )
)

∣
∣
∣
∣
∣
, (64)

such that

f Kout
( k
l

) = 0, (65)

and

f Kout
(−k

l

) = f Kout
(
Kout−k

l

)

, k = 1, . . . , Kout − 1. (66)

The maximum values of f Kout
( k
l

)

are obtained at

cos θi = k/l mod Kout/l . (67)

The subcarrier domain representation RKin ,Kout
φ (Ti (Ni )) via

∣
∣ f Kout (τi )

∣
∣ for Kout > l, at

θ*i = π/2 , l = 2 is shown in Fig. 5.
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Fig. 5 The function
∣
∣
∣ f Kout (τi )

∣
∣
∣ ofRKin ,Kout

φ (Ti (Ni )) for Kout > l, at θ*i = π/2 , l = 2

The sets SbKin , SbKout of the bKin , bKout orthonormal bases of a Kin, Kout setting are as

SbKin =
{

bKin (0) , bKin

( 1
l

)

, . . . , bKin

(
Kin−1

l

)}

∈ CKin , (68)

and

SbKout =
{

bKout (0) , bKout

( 1
l

)

, . . . , bKout

(
Kout−1

l

)}

∈ CKout . (69)

��

5 Conclusions

We defined the subcarrier domain for multicarrier CVQKD. In a multicarrier CVQKD pro-
tocol, the characterization of the subcarrier domain of a Gaussian sub-channel is provided
by the unitary CVQFT transformation, which has a central role in multicarrier CVQKD. The
subcarrier domain injects physical attributes to the mathematical model of the Gaussian sub-
channels. It provides a natural representation of multicarrier CVQKD and allows us to extend
it to a multiple-access multicarrier CVQKD setting. The subcarrier domain representation
is a general framework that can be utilized for an arbitrary multicarrier CVQKD scenario.
The subcarrier domain also offers an apparatus to formulate the psychical model of the
sub-channel transmission, which is particularly convenient for an experimental multicarrier
CVQKD scenario.
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Appendix

Multicarrier CVQKD

First we summarize the basic notations of AMQD [5]. The following description assumes a
single user, and the use of n Gaussian sub-channelsNi for the transmission of the subcarriers,
from which only l sub-channels will carry valuable information.

In the single-carrier modulation scheme, the j-th input single-carrier state
∣
∣ϕ j

〉 =
∣
∣x j + ip j

〉

is a Gaussian state in the phase space S, with i.i.d. Gaussian random position
and momentum quadratures x j ∈ N (

0, σ 2
ω0

)

, p j ∈ N (

0, σ 2
ω0

)

, where σ 2
ω0

is the modulation
variance of the quadratures. (For simplicity, σ 2

ω0
is referred to as the single-carrier modula-

tion variance, throughout.) Particularly, this Gaussian single-carrier is transmitted through
a Gaussian quantum channel N . In the multicarrier scenario, the information is carried by
Gaussian subcarrier CVs, |φi 〉 = |xi + ipi 〉, xi ∈ N (

0, σ 2
ω

)

, pi ∈ N (

0, σ 2
ω

)

, where σ 2
ω is

the modulation variance of the subcarrier quadratures, which are transmitted through a noisy
Gaussian sub-channel Ni . Each Ni Gaussian sub-channel is dedicated for the transmission
of one Gaussian subcarrier CV from the n subcarrier CVs. (Note: index i refers to the sub-
carriers, while index j to the single-carriers throughout the manuscript.) The single-carrier
state

∣
∣ϕ j

〉

in the phase space S can be modeled as a zero-mean, circular symmetric complex

Gaussian random variable z j ∈ CN
(

0, σ 2
ωz j

)

, with variance σ 2
ωz j

= E

[∣
∣z j

∣
∣
2
]

, and with

i.i.d. real and imaginary zero-mean Gaussian random components Re
(

z j
) ∈ N (

0, σ 2
ω0

)

,
Im

(

z j
) ∈ N (

0, σ 2
ω0

)

.
In the multicarrier CVQKD scenario, let n be the number of Alice’s input single-carrier

Gaussian states. The n input coherent states are modeled by an n-dimensional, zero-mean,
circular symmetric complex random Gaussian vector

z = x + ip = (z1, . . . , zn)
T ∈ CN (0,Kz) (A.1)

where each z j can bemodeled as a zero-mean, circular symmetric complex Gaussian random
variable

z j ∈ CN
(

0, σ 2
ωz j

)

, z j = x j + ip j . (A.2)

Specifically, the real and imaginary variables (i.e., the position and momentum quadra-
tures) formulate n-dimensional real Gaussian random vectors, x = (x1, . . . , xn)T and
p = (p1, . . . , pn)T , with zero-mean Gaussian random variables with densities f (x j ) and

123

http://creativecommons.org/licenses/by/4.0/


Subcarrier Domain of Multicarrier Continuous-Variable... 975

f (p j ) as

f
(

x j
) = 1

σω0

√
2π

e

−x2j
2σ 2

ω0 , f
(

p j
) = 1

σω0

√
2π

e

−p2j
2σ 2

ω0 , (A.3)

where Kz is the n × n Hermitian covariance matrix of z:

Kz = E
[

zz†
]

, (A.4)

while z† is the adjoint of z.
For vector z,

E [z] = E

[

eiγ z
]

= Eeiγ [z] (A.5)

holds, and

E

[

zzT
]

= E

[

eiγ z
(

eiγ z
)T

]

= Eei2γ
[

zzT
]

, (A.6)

for any γ ∈ [0, 2π]. The density of z is as follows (if Kz is invertible):

f (z) = 1
πn detKz

e−z†Kz
−1z. (A.7)

A n-dimensional Gaussian random vector is expressed as x = As, where A is an (invertible)
linear transform from R

n to Rn , and s is an n-dimensional standard Gaussian random vector
N (0, 1)n . This vector is characterized by its covariance matrix Kx = E

[

xxT
] = AAT , and

has density

f (x) = 1
(√

2π
)n√

det(AAT )
e
− xT x
2(AAT ) . (A.8)

The Fourier transformation F (·) of the n-dimensional Gaussian random vector v =
(v1, . . . , vn)

T results in the n-dimensional Gaussian random vector m = (m1, . . . ,mn)
T ,

as:

m = F (v) = e
−mTAATm

2 = e
−σ 2

ω0

(

m2
1+...+m2

n
)

2 . (A.9)

In the first step of AMQD, Alice applies the inverse FFT (fast Fourier transform) operation
to vector z (see (A.1)), which results in an n-dimensional zero-mean, circular symmetric
complex Gaussian random vector d, d ∈ CN (0,Kd), d = (d1, . . . , dn)T , as

d = F−1 (z) = e
dTAAT d

2 = e
σ 2

ω0

(

d21+...+d2n
)

2 , (A.10)

where

di = xdi + ipdi , di ∈ CN (

0, σ 2
di

)

, (A.11)

where σ 2
ωdi

= E
[|di |2

]

and the position andmomentumquadratures of |φi 〉 are i.i.d. Gaussian
random variables

Re (di ) = xdi ∈ N (

0, σ 2
ωi

)

, Im (di ) = pdi ∈ N (

0, σ 2
ωi

)

, (A.12)

where Kd = E
[

dd†
]

, E [d] = E
[

eiγ d
] = Eeiγ [d], and E

[

ddT
] = E

[

eiγ d
(

eiγ d
)T

]

=
Eei2γ

[

ddT
]

, for any γ ∈ [0, 2π ].
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The T (N ) transmittance vector of N in the multicarrier transmission is

T (N ) = [T1 (N1) , . . . , Tn (Nn)]
T ∈ Cn, (A.13)

where

Ti (Ni ) = Re (Ti (Ni )) + iIm (Ti (Ni )) ∈ C, (A.14)

is a complex variable, which quantifies the position and momentum quadrature transmission
(i.e., gain) of the i-th Gaussian sub-channelNi , in the phase space S, with real and imaginary
parts

0 ≤ ReTi (Ni ) ≤ 1/
√
2, (A.15)

and

0 ≤ ImTi (Ni ) ≤ 1/
√
2. (A.16)

Particularly, the Ti (Ni ) variable has the squared magnitude of

|Ti (Ni )|2 = ReTi (Ni )
2 + ImTi (Ni )

2 ∈ R, (A.17)

where

ReTi (Ni ) = ImTi (Ni ) . (A.18)

The Fourier-transformed transmittance of the i-th sub-channel Ni (resulted from CVQFT
operation at Bob) is denoted by

|F (Ti (Ni ))|2 . (A.19)

The n-dimensional zero-mean, circular symmetric complex Gaussian noise vector � ∈
CN (

0, σ 2
�

)

n of the quantum channel N , is evaluated as

� = (�1, . . . , �n)
T ∈ CN (0,K�) , (A.20)

where

K� = E
[

��†] . (A.21)

with independent, zero-mean Gaussian random components

�xi ∈ N (

0, σ 2
Ni

)

, (A.22)

and

�pi ∈ N (

0, σ 2
Ni

)

, (A.23)

with variance σ 2
Ni

, for each �i of a Gaussian sub-channelNi , which identifies the Gaussian
noise of the i-th sub-channel Ni on the quadrature components in the phase space S.

The CVQFT-transformed noise vector can be rewritten as

F (�) = (F (�1) , . . . , F (�n))
T , (A.24)

with independent components F
(

�xi

) ∈ N
(

0, σ 2
F(Ni )

)

and F
(

�pi

) ∈ N
(

0, σ 2
F(Ni )

)

on the quadratures, for each F (�i ). It also defines an n-dimensional zero-mean, circular
symmetric complex Gaussian random vector F (�) ∈ CN (

0,KF(�)

)

with a covariance
matrix

KF(�) = E
[

F (�) F (�)†
]

, (A.25)
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where KF(�) = K�, by theory. At a constant subcarrier modulation variance σ 2
ωi

for the n
Gaussian subcarrier CVs, the corresponding relation is

1
n

n
∑

i=1

σ 2
ωi

= σ 2
ω, (A.26)

where σ 2
ωi

is the modulation variance of the quadratures of the subcarrier |φi 〉 transmitted by
sub-channelNi . Assuming l goodGaussian sub-channels from the nwith constant quadrature
modulation variance σ 2

ωi
, where σ 2

ωi
= 0 for the i-th unused sub-channel,

l
∑

i=1

σ 2
ωi

= lσ 2
ω < nσ 2

ω0
. (A.27)

In particular, from the relation of (A.27), for the transmittance parameters the following
relation follows at a given modulation variance σ 2

ω0
, precisely,

∣
∣TAMQD (Ni )

∣
∣
2
σ 2

ω0
> |T (N )|2 σ 2

ω0
, (A.28)

where |T (N )|2 is the transmittance of N in a single-carrier scenario, and

∣
∣TAMQD (Ni )

∣
∣
2 = 1

l

l
∑

i=1

|F (Ti (Ni ))|2 . (A.29)

For the method of the determination of these l Gaussian sub-channels, see [5]. Alice’s i-th
Gaussian subcarrier is expressed as

|φi 〉 = |di 〉 = ∣
∣F−1 (z)

〉

. (A.30)

A.2 Abbreviations

AMQD Adaptive Multicarrier Quadrature Division
AWGN Additive White Gaussian Noise

CV Continuous-Variable
CVQFT Continuous-Variable Quantum Fourier Transform

DV Discrete-Variable
FFT Fast Fourier Transform
IFFT Inverse Fast Fourier Transform
MQA Multiuser Quadrature Allocation
QKD Quantum Key Distribution
SNR Signal-to-Noise Ratio
SVD Singular Value Decomposition

A.3 Notations

The notations of the manuscript are summarized in Table 1.
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Table 1 Summary of notations

Notation Description

rank (·) Rank function

div (·) Diversity function

i Index for the i-th subcarrier Gaussian CV, |φi 〉 = xi + ipi
j Index for the j-th Gaussian single-carrier CV,

∣
∣ϕ j

〉 = x j + ip j
l Number of Gaussian sub-channelsNi for the transmission of the

Gaussian subcarriers. The overall number of the sub-channels is
n. The remaining n − l sub-channels do not transmit valuable
information.

xi , pi Position and momentum quadratures of the i-th Gaussian subcarrier,
|φi 〉 = xi + ipi

x ′
i , p

′
i Noisy position and momentum quadratures of Bob’s i-th noisy subcarrier

Gaussian CV,
∣
∣φ′

i

〉 = x ′
i + ip′

i

x j , p j Position and momentum quadratures of the j-th Gaussian single-carrier∣
∣ϕ j

〉 = x j + ip j
x ′
j , p

′
j Noisy position and momentum quadratures of Bob’s j-th recovered single-carrier

Gaussian CV
∣
∣
∣ϕ′

j

〉

= x ′
j + ip′

j

xA,i ,pA,i Alice’s quadratures in the transmission of the i-th subcarrier

Rφi (Ti (Ni )) The subcarrier domain representation of sub-channel Ni ,
Rφi (Ti (Ni )) = UTi (Ni )U , where U is the CVQFT unitary operation

|φi 〉,
∣
∣φ′

i

〉

Transmitted and received Gaussian subcarriers. The subcarriers have angles
θ∗
i ∈ [0, 2π ], θi ∈ [0, 2π ] CVs in the phase space S

yRφ The subcarrier domain representation of output y, expressed as
yRφ = ∑

l Rφi (Ti (Ni )) di + F (�i )

A The virtual gain of sub-channelNi , A (Ni ) = xi , where xi is a real variable.

b (·) A basis vector ofRφi , evaluated as

Rφi (Ti (Ni )) = ∑

k A (Ni ) b (k/l)† b (cos θi ) b
(

cos θ∗
i

)† b (i/l),k = 0 . . . l−1

τi The difference of the cos of phase space angles of the received and transmitted
subcarriers, τi = cos θi − cos θ∗

i

|cos�i | The cos of �i , where �i = θi − θ∗
i is the angle of the basis vec-

tors b (cos θi ), b
(

cos θ∗
i

)

. Defined as |cos�i | =
∣
∣
∣b

(

cos θ∗
i

)† b (cos θi )
∣
∣
∣ ,

|cos�i | = | f (τi )| , and |cos�i | =
∣
∣
∣
∣
∣

sin
(

πl
(

cos θi−cos θ∗
i

))

l sin
(

π
(

cos θi−cos θ∗
i

))

∣
∣
∣
∣
∣

f (τi ) Defines cos�i , where �i is the angle of the basis vectors b (cos θi ), b
(

cos θ∗
i

)

expressed as f (τi ) = 1
l e

iπ(l−1)
(

cos θi−cos θ∗
i

)

sin
(

πl
(

cos θi−cos θ∗
i

))

sin
(

π
(

cos θi−cos θ∗
i

))

r The period of function | f (τi )|
p The plot of p : (cos θi , | f (τi )|)
Sb The set Sb of theRφ orthonormal basis over the Cl complex space of the Rφ

subcarrier domain representation, Sb =
{

b (0) , b
(
1
l

)

, . . . , b
(
l−1
l

)}

∈ Cl

G0 Set of subcarrier domain representations,

G0 =
{∣
∣
∣Rφ j

(

Tj
(N j

))
∣
∣
∣ , j = 0, . . . , s0 − 1

}

⊆ ∂ , where

∂ = {∣
∣Rφi (Ti (Ni ))

∣
∣ , i = 0, . . . , l − 1

}
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Table 1 continued

Notation Description

Ei,k (M) The (i, k) entry of matrix M

UKout The unitary CVQFT operation, UKout = 1√
Kout

e
−i2π ik
Kout , i, k = 0, . . . , Kout − 1,

Kout × Kout unitary matrix

UKin The unitary inverse CVQFT operation, UKin = 1√
Kin

e
i2π ik
Kin ,

i, k = 0, . . . , Kin − 1, Kin × Kin unitary matrix

RKin ,Kout
φ (T (N )) The subcarrier domain representation of T (N ), expressed as

RKin ,Kout
φ (T (N )) = UKoutT (N )UKout

bKout (·), bKin (·) The basis vectors of the subcarrier domain representation in a Kin , Kout
multiple-access multicarrier CVQKD scenario

f Kout (τi ) Defines cos�i , where �i is the angle of the basis vectors
bKout (cos θi ), bKin

(

cos θ∗
i

)

expressed as the angle f Kout (τi ) =
1

Kout
e
iπl(Kout−1)τi

Kout sin(πlτi )

sin
(

π
l

Kout
τi

)

SbKin
, SbKout The orthonormal bases of a Kin , Kout setting, SbKin

=
{

bKin (0) , bKin

(
1
l

)

, . . . , bKin

(
Kin−1

l

)}

∈ CKin , SbKout =
{

bKout (0) , bKout

(
1
l

)

, . . . , bKout

(
Kout−1

l

)}

∈ CKout

z ∈ CN
(

0, σ 2
z

)

The variable of a single-carrier Gaussian CV state, |ϕi 〉 ∈ S. Zero-
mean, circular symmetric complex Gaussian random variable, σ 2

z =
E

[

|z|2
]

= 2σ 2
ω0

, with i.i.d. zero mean, Gaussian random quadrature

components x, p ∈ N
(

0, σ 2
ω0

)

, where σ 2
ω0

is the variance

� ∈ CN
(

0, σ 2
�

)

The noise variable of the Gaussian channelN , with i.i.d. zero-mean,
Gaussian random noise components on the position and momentum

quadratures �x , �p ∈ N
(

0, σ 2
N

)

, σ 2
� = E

[

|�|2
]

= 2σ 2
N

d ∈ CN
(

0, σ 2
d

)

The variable of aGaussian subcarrier CV state, |φi 〉 ∈ S. Zero-mean,

circular symmetric Gaussian random variable, σ 2
d = E

[

|d|2
]

=
2σ 2

ω , with i.i.d. zero mean, Gaussian random quadrature components

xd , pd ∈ N
(

0, σ 2
ω

)

, where σ 2
ω is the modulation variance of the

Gaussian subcarrier CV state

F−1 (·) = CVQFT† (·) The inverse CVQFT transformation, applied by the encoder, continuous-variable
unitary operation

F (·) = CVQFT (·) The CVQFT transformation, applied by the decoder, continuous-variable unitary
operation

F−1 (·) = IFFT (·) Inverse FFT transform, applied by the encoder

σ 2
ω0

Single-carrier modulation variance
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Table 1 continued

Notation Description

σ 2
ω = 1

l
∑

l σ 2
ωi

Multicarrier modulation variance. Average modulation variance of the l Gaussian
sub-channels Ni

|φi 〉 The i-th Gaussian subcarrier CV of userUk , |φi 〉 = ∣
∣IFFT

(

zk,i
)〉 =

∣
∣
∣F−1 (

zk,i
)〉 = |di 〉, where IFFT stands for the Inverse Fast Fourier

Transform, |φi 〉 ∈ S, di ∈ CN
(

0, σ 2
di

)

, σ 2
di

= E

[

|di |2
]

, di =
xdi + ipdi , xdi ∈ N

(

0, σ 2
ωF

)

, pdi ∈ N
(

0, σ 2
ωF

)

are i.i.d. zero-

mean Gaussian random quadrature components, and σ 2
ωF

is the
variance of the Fourier transformed Gaussian state

∣
∣ϕk,i

〉

The decoded single-carrier CV of user Uk from the subcar-
rier CV,

∣
∣ϕk,i

〉 = CVQFT (|φi 〉), also expressed as F (|di 〉) =
∣
∣
∣F

(

F−1 (

zk,i
))〉

= ∣
∣zk,i

〉

N Gaussian quantum channel

Ni , i = 1, . . . , n Gaussian sub-channels

T (N ) Channel transmittance, normalized complex random variable,
T (N ) = ReT (N ) + iImT (N ) ∈ C. The real part identifies the
position quadrature transmission, the imaginary part identifies the
transmittance of the position quadrature

Ti (Ni ) Transmittance coefficient of Gaussian sub-channel Ni , Ti (Ni ) =
Re (Ti (Ni )) + iIm (Ti (Ni )) ∈ C, quantifies the position and
momentum quadrature transmission, with (normalized) real and
imaginary parts 0 ≤ ReTi (Ni ) ≤ 1/

√
2, 0 ≤ ImTi (Ni ) ≤ 1/

√
2,

where ReTi (Ni ) = ImTi (Ni ).

TEve Eve’s transmittance, TEve = 1 − T (N )

TEve,i Eve’s transmittance for the i-th subcarrier CV

z A d-dimensional, zero-mean, circular symmetric complex random
Gaussian vector thatmodelsd GaussianCV input states, z = x+ip =
(z1, . . . , zd )T , CN (0,Kz), Kz = E

[

zz†
]

, where zi = xi + ipi ,

x = (x1, . . . , xd )T , p = (p1, . . . , pd )T , with xi ∈ N
(

0, σ 2
ω0

)

,

pi ∈ N
(

0, σ 2
ω0

)

i.i.d. zero-mean Gaussian random variables

d = F−1 (z) An l-dimensional, zero-mean, circular symmetric complex random
Gaussian vector of the lGaussian subcarrierCVs,CN (0,Kd),Kd =
E

[

dd†
]

, d = (d1, . . . , dl )
T ,di = xi + ipi , xi , pi ∈ N

(

0, σ 2
ωF

)

are i.i.d. zero-mean Gaussian random variables, σ 2
ωF

= 1/σ 2
ω0

. The

i-th component is di ∈ CN
(

0, σ 2
di

)

, σ 2
di

= E

[

|di |2
]

yk ∈ CN
(

0,E
[

yky
†
k

])

A d-dimensional zero-mean, circular symmetric complex Gaussian random vector

yk,m The m-th element of the k-th user’s vector yk , expressed as
yk,m = ∑

l F (Ti (Ni )) F (di ) + F (�i )

F (T (N )) Fourier transform of T (N ) = [

T1 (N1) . . . , Tl (Nl )
]T ∈ Cl , the complex

transmittance vector

F (�) Complex vector, expressed as F (�) = e
−F(�)T KF(�)F(�)

2 , with covariance

matrix KF(�) = E

[

F (�) F (�)†
]
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Table 1 continued

Notation Description

y [ j] AMQD block, y [ j] = F (T (N )) F (d) [ j] + F (�) [ j]

τ = ‖F (d) [ j]‖2 An exponentially distributed variable, with density f (τ ) =
(

1/2σ 2n
ω

)

e−τ/2σ2
ω ,

E [τ ] ≤ n2σ 2
ω

TEve,i Eve’s transmittance on the Gaussian sub-channel Ni , TEve,i =
ReTEve,i + iImTEve,i ∈ C, 0 ≤ ReTEve,i ≤ 1/

√
2, 0 ≤

ImTEve,i ≤ 1/
√
2, 0 ≤ ∣

∣TEve,i
∣
∣2 < 1

di A di subcarrier in an AMQD block.

νmin The min {ν1, . . . , νl } minimum of the νi sub-channel coefficients, where
νi = σ 2

N / |F (Ti (Ni ))|2 and νi < νEve

σ 2
ω Modulation variance, σ 2

ω = νEve − νminG (δ)p(x), where νEve =
1
λ , λ = ∣

∣F
(

T ∗
N

)∣
∣2 = 1

n
∑n−1

i=0

∣
∣
∣
∣

∑n−1
k=0 T

∗
k e

−i2π ik
n

∣
∣
∣
∣

2
and T ∗

N is

the expected transmittance of the Gaussian sub-channels under an
optimal Gaussian collective attack

νκ Additional sub-channel coefficient for the correction of modulation
imperfections. For an ideal Gaussian modulation, νκ = 0, while
for an arbitrary p (x) distribution νκ = νmin

(

1 − G (δ)p(x)
)

, where

κ = 1
νEve−νmin

(G(δ)p(x)−1
)

σ 2
ω′
i

The constantmodulation variance σ 2
ω′
i
for eigenchannelλi , evaluated

as σ 2
ω′
i

= μ −
(

σN 2/max
nmin

λ2i

)

= 1
nmin

σ 2
ω′ , with a total constraint

σ 2
ω′ = ∑

nmin
σ 2
ω′
i

= 1
l

∑

l σ 2
ωi

= σ 2
ω

σ 2
ω′′ The modulation variance of the AMQD multicarrier transmission in

the SVD environment. Expressed as σ 2
ω′′ = νEve−

(

σ 2
N /max

nmin
λ2i

)

,

where λi is the i-th eigenchannel of F (T), max
nmin

λ2i is the largest

eigenvalue of F (T) F (T)†, with a total constraint 1
l

∑

l σ 2
ω′′
i

=
σ 2
ω′′ > σ 2

ω

S (F (T)) A statistical model of F (T)

S (Rφi (Ti (Ni ))
)

A statistical model of Rφi (Ti (Ni ))
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