
Journal of Statistical Physics (2019) 177:528–567
https://doi.org/10.1007/s10955-019-02378-1

Loop-ErasedWalks and RandomMatrices

Jonas Arista1 · Neil O’Connell1

Received: 30 January 2019 / Accepted: 27 August 2019 / Published online: 6 September 2019
© The Author(s) 2019

Abstract
It is well known that there are close connections between non-intersecting processes in one
dimension and random matrices, based on the reflection principle. There is a generalisation
of the reflection principle for more general (e.g. planar) processes, due to Fomin, in which
the non-intersection condition is replaced by a condition involving loop-erased paths. In the
context of independent Brownian motions in suitable planar domains, this also has close
connections to random matrices. An example of this was first observed by Sato and Katori
(Phys Rev E 83:041127, 2011). We present further examples which give rise to various
Cauchy-type ensembles. We also extend Fomin’s identity to the affine setting and show that
in this case, by considering independent Brownianmotions in an annulus, one obtains a novel
interpretation of the circular orthogonal ensemble.

Keywords Non-intersecting Brownian motions · Random matrix theory · Loop-erased
walks · SLE
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1 Introduction

It is well known that there are close connections between non-intersecting processes in one
dimension and random matrices, based on the reflection principle. There is a generalisa-
tion of the reflection principle for more general processes, due to Fomin [8], in which the
non-intersection condition is replaced by one involving loop-erased paths. In the context of
independent Brownian motions in suitable planar domains, this also has close connections to
randommatrices, specifically Cauchy-type ensembles. An example of this was first observed
by Sato and Katori [34]. We will present further examples, in particular, based on some
domains which were discussed in Fomin’s original paper. We will also consider the circular
setting, with periodic boundary conditions, for this we extend Fomin’s identity to the affine
setting; we show that in this case, by considering independent Brownian motions in an annu-
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lus, we obtain a novel interpretation of the Circular Orthogonal Ensemble of random matrix
theory.

1.1 Determinant Formulas for Loop-ErasedWalks and Affine Generalisations

Determinant formulas for the total weight of one-dimensional non-intersecting processes
have many variations, both in continuous and discrete settings. They are also known as the
Karlin–McGregor formula for Markov processes [14,16,17,19], or the Lindström–Gessel–
Viennot lemma in enumerative combinatorics [11,13,31,36]. Roughly speaking, the argument
behind all these determinant formulas is the classical reflection principle, which allows the
construction of a particular one-to-one ‘path-switching’ map from a set of intersecting paths
onto itself, such that the map is its own inverse (see Sect. 2.1).

For two-dimensional state space processes, it is not clear how to perform the classical
reflection principle, since the paths under consideration are allowed to have self-intersections
(or loops). However, there is a generalisation of the reflection principle for more general
(e.g. planar) paths, due to Fomin [8], in which the non-intersecting condition is replaced
by one involving loop-erased paths. Then it is possible to obtain a determinant formula
(Theorem 2.2) for the total weight of discrete planar processes which satisfy Fomin’s non-
intersection condition, here stated in the context of Markov chains:

Fomin’s identity. Consider a time-homogeneous Markov chain whose state space is a
discrete subset V of a simply connected domain �. Assume that the transitions of the chain
are determined by a (weighted) planar directed graph (with vertex set V ). Multiple loops are
allowed. Distinguish a subset ∂� ⊂ V of boundary vertices and assume they all lie on the
topological boundary ∂�. Assume that vertices an, . . . , a1 ⊂ V and b1, . . . , bn ⊂ ∂� lie on
the boundary ∂� and are ordered counterclockwise (along ∂�), as in Fig. 4. Therefore, if

h(ai , b j ) 1 ≤ i, j ≤ n,

denotes the probability (or hitting probability) that the Markov chain, starting at ai , will first
hit the boundary ∂� at vertex b j (if ai ∈ ∂�, the chain is supposed to walk into V \∂� before
reaching b j ), then the n × n determinant

det(h(ai , b j ))
n
i, j=1, (1.1)

is equal to the probability that n independent trajectories of the Markov chain X1, . . . , Xn ,
starting at a1, . . . , an , respectively, will first hit the boundary ∂� at locations b1, . . . , bn ,
respectively, and furthermore the trajectory X j will never intersect the loop-erasure LE(Xi )

of Xi , for all i < j , that is,

X j ∩ LE(Xi ) = ∅, for all 1 ≤ i < j ≤ n. (1.2)

The above identity is the non-acyclic analogue of the determinant formula for non-
intersecting one-dimensional processes ofKarlin–McGregor/Gessel–Viennot. In this respect,
the following details are worth to remark: because of the nature of the underlying graph, tra-
jectories of the Markov chain are allowed to have loops and therefore, for a given trajectory,
we can properly define its loop-erasure as the self-avoiding path resulting from erasing its
loops chronologically.Moreover, the determinant (1.1) gives the locations of the hitting points
b1, . . . , bn along the boundary ∂�, and the condition on the trajectories is given by (1.2),
which forces the loop-erased paths to repel each other (see Sect. 2.2). The counterclockwise
arrangement of paths is just a particular case in the more general combinatorial identity given
by Fomin [8], which can be applied to a wide range of configurations of n distinct paths,
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depending on the location of the initial and final vertices and the topology of the planar
domain �.

Section 3 is a first step towards the extension of the previous framework to non-simply
connected domains of the complex plane. There, we state and prove an affine (circular)
version of Fomin’s identity (Proposition 3.3), which can be seen as an extension of Fomin’s
identity to the setting of the affine symmetric group Ãn . In Sect. 5 we relate this affine version
with the Circular Orthogonal Ensemble (COE) of random matrix theory. In the context of
Markov chains, our affine version of Fomin’s identity can be stated as follows:

An affine version of Fomin’s identity. Consider a time-homogeneous Markov
chain whose transitions are determined by the (directed) lattice strip G = Z×{0, 1, . . . , N }.
Assume that the transition probabilities are space-invariant with respect to a fixed horizontal
translation S : G → G. If vertices an, . . . , a1, b1, . . . , bn are ordered counterclockwise
along the boundary (as in Fig. 5), then the n × n determinant

det

(∑
k∈Z

ζ kh(ai ,Skb j )

)n

i, j=1

, (1.3)

of hitting probabilities h(ai ,Skb j ), where Sk = S ◦ Sk−1, k ∈ Z, and

ζ =
{
1 if n is odd
−1 if n is even,

is equal to the probability that n independent trajectories of the Markov chain X1, . . . , Xn ,
starting at a1, . . . , an , respectively, will first hit the upper boundary ∂� = Z × {N } at any
of the n cyclic permutations of the vertices b1, . . . , bn , shifted also by all possible horizontal
translations by Sk , k ∈ Z, and furthermore the trajectories are constrained to satisfy

Pj ∩ LE(Pj−1) = ∅, 1 < j ≤ n, and P1 ∩ LE(SPn) = ∅.

It is important to note that the non-intersection condition above is related to the one
between trajectories in a cylindrical lattice (or annulus on the complex plane), see Fig. 1
and the introduction of Sect. 3. In an acyclic graph, the above affine case agrees with the
Gessel–Zeilberger formula for counting paths in alcoves [12] (see Sect. 3.4).

1.2 Scaling Limits

Our interest in the above determinant formulas relies upon their applicability in the context
of suitable scaling limits of Fomin’s identity and its affine version. It is well known that
the two-dimensional Brownian motion B is the scaling limit of simple random walks on
different planar graphs [6]. Moreover, the loop-erasure of those random walks converges
(in a certain sense) to a random self-avoiding continuous path in the complex plane called
SLE(2), which belongs to the family of Schramm-Loewner evolutions, or SLE(k), k ≥ 0, for
short [26,35,39]). As we might expect from our intuition, the latter SLE(2) path is, in fact, a
loop-erasure LE(B)of theBrownianmotion B in a sensewhich can bemade precise [40]. The
previous considerations offer the possibility of interpreting, at least informally, the scaling
limit of Fomin’s identity and its affine version in terms of two-dimensionalBrownianmotions,
in suitable complex domains. For example, since the determinants (1.1) and (1.3) involve
hitting probabilities for a singleMarkov chain, it continues to make sense when h(a, b) is the
Poisson kernel (or hitting density) of two-dimensional Brownian motion in suitable simply
connected domains�with smooth boundaries. One might expect that determinants of hitting
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Fig. 1 Affine setting

densities are the scaling limits of the corresponding determinants of hitting probabilities for
simple random walks, in square grid approximations of � and, moreover, that the former
determinants express non-crossing probabilities between Brownian paths and SLE(2) paths.
This scaling limit has been rigorously achieved in the case of n = 2 paths [23–25], while
ongoing works related to the general case n > 2 are linked to the theory of (local and global)
multiple SLE [4,20,21,24,25].

Our contribution in the previous context is the connection with random matrix theory that
emerges from the following setting: assume that� is a suitable complex (connected) domain
with smooth boundary and h(z0, y) is the (hitting) density of the harmonic measure

μz0,�(A) = P
z0(BT ∈ A), A ⊂ ∂�,

with respect to one-dimensional Lebesgue measure (lenght), where B under P
z0 denotes

a two-dimensional Brownian motion starting at z0 ∈ �, and T = inf{t > 0 : Bt /∈
�} is the first exit time of � (see Sect. 4.1). More generally, h(z0, y) can be the hitting
density of a diffusion in a suitable complex domain, with absorbing and normal reflecting
boundary conditions (this idea is originally discussed in [8]). Therefore, for m ∈ R and
appropriately chosen (parametrized) positions x1, . . . , xn and y1, . . . , yn along the boundary
∂�, the determinants of hitting densities

H(x, y) = det
(
h(xi , y j )

)n
i, j=1 dy1 · · · dyn, (1.4)

and

H(x, y) = det

(∑
k∈Z

ζ kh(xi , y j + mk)

)n

i, j=1

dy1 · · · dyn, (1.5)

where

ζ =
{
1 if n is odd
−1 if n is even,

can be interpreted, informally, as the probability that n independent ‘Brownian motions’ Bi ,
i = 1, . . . , n, starting at positions x1, x2, . . . , xn , respectively, will first hit an absorbing
boundary ∂� ⊂ ∂� at (parametrized) positions in the intervals (yi + dyi ), i = 1, . . . , n, and
whose trajectories are constrained to satisfy the condition

Bj ∩ LE(Bi ) = ∅, for all 1 ≤ i < j ≤ n,
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in (1.4), or

Bj ∩ LE(Bj−1) = ∅, 1 < j ≤ n, and B1 ∩ LE(m + Bn) = ∅,

in the affine case (1.5). We remark that in the affine case, we assume � to be invariant under
a fixed (horizontal) translation by m ∈ R, and therefore m + Bn is the horizontal translation
by m of the Brownian path Bn , see Fig. 1. We remark that some hitting densities h(x, y) can
be calculated explicitly for a number of important domains, like disks and half-planes, and
many others can be deduced from these by reflection and conformal invariance of the two-
dimensional Brownian motion. We consider examples of determinants of hitting densities in
Sects. 4 and 5 .

Finally, if ∂� = ∂� and then the whole boundary ∂� is absorbing, we require a
different notion of hitting density h(x, y) (since the paths need to ‘walk’ into the inte-
rior �◦ = � \ ∂� before reaching their destination). Therefore, in order to study
determinants of the form (1.4) and (1.5), we consider the so-called excursion Pois-
son kernel. In this context, an example of a similar interpretation of determinants of
hitting densities of the form (1.4) was first observed by Sato and Katori [34] (see
Sect. 4.6).

1.3 Connections to RandomMatrix Theory

Non-intersecting processes in one dimension have long been an integral part of ran-
dom matrix theory, at least since the pioneering work of Dyson [7] in the 1960s.
For example, it is well known that, if one considers n independent one-dimensional
Brownian particles, started at the origin and conditioned not to intersect up to a fixed
time T (see Sect. 4.2 for details), then the locations of the particles at time T have
the same distribution as the eigenvalues of a random real symmetric n × n matrix
with independent centered Gaussian entries, with variance T on the diagonal and T /2
above the diagonal (this is known as the Gaussian Orthogonal Ensemble (GOE)). Sim-
ilar statements hold for the circular ensembles, see for example [16] or Proposition 5.4
below.

In two dimensions, we can consider appropriate limits of the form

lim
(x1,..., xn)∈C
xi→x∈∂�

H̃(x, y), (y1, . . . , yn) ∈ C, (1.6)

where H̃(x, y) is an appropriate normalisation of the determinants H(x, y) in (1.4) and
(1.5), and the positions x1, . . . , xn , y1, . . . , yn are determined by chambers (alcoves) C of
R
n . These limits give the locations of the n hitting points y1, . . . , yn along the absorb-

ing boundary ∂�, when the processes start at a single common point x ∈ ∂�. In a way,
this is the two-dimensional analogue of the model described in the preceding paragraph.
In Sect. 4 we show that the limits (1.6) agree with eigenvalue densities of Cauchy type
random matrix ensembles, for determinants of the form (1.4) (see [34] and Sect. 4.6 for
similar asymptotic considerations regarding excursion Poisson kernels). For determinants
of the form (1.5), in Sect. 5 we show that, by considering the hitting density of the two-
dimensional Brownian motion in an annulus on the complex plane, certain limit of the
form 1.6 agrees with the Circular Orthogonal Ensemble (COE) of random matrix theory
(Proposition 5.5).
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1.4 Organisation of the Paper

The paper is structured into two parts that can be read (essentially) independently. The first
part (Sects. 2 and 3 ) is mainly concerned to the combinatorial results of Sect. 1.1. In Sect. 2
we give some background on the reflection principle and Fomin’s generalisation for loop-
erased walks in discrete lattice models. In Sect. 3, we present the affine version of Fomin’s
identity. The second part (Sects. 4 and 5 ) shows calculations and limits for determinants
of hitting densities of the form (1.4) and (1.5). In Sect. 4, we show that for suitable simply
connected domains, the determinants associated with Fomin’s identity converge, in a certain
sense, to some known ensembles of random matrix theory. In Sect. 5 we consider the affine
setting and, after revisiting the model of non-intersecting one-dimensional Brownian motion
on the circle [16], we show that a determinant of the form (1.5), in the context of independent
Brownian motions in an annulus, converges in a suitable limit to the Circular Orthogonal
Ensemble.

2 The Reflection Principle and Fomin’s Generalisation

In this section, we consider the discrete versions of some of the determinant formulas con-
sidered in the Introduction. This combinatorial approach has some advantages and will be
particularly convenient in Sect. 2.2, where some of the main concepts are defined for discrete
paths. Let G = (V , E, ω) be a directed graph with no multiple edges, countable vertex set
V and edge set E ⊂ V ×V . The graph G need not be acyclic, so multiple loops are allowed.
The set ω is a family of pairwise distinct formal indeterminates {ω(e)}e∈E that we will call
the weights of the edges. The imposed restriction on edge multiplicity is not essential, but
most of the applications we have in mind share this condition.

Let us introduce the notation and terminology we will use through all the following

sections. A directed edge e from vertex a ∈ V to vertex b ∈ V , will be denoted as a
e→ b,

and, a path or walk P will mean a finite sequence of (directed) edges and vertices

P : a0 e1→ a1
e2→ a2

e3→ · · · en→ an .

In this case, we say that P is a path from a0 to an of length n. For any pair of vertices a, b ∈ V ,
we denote the set of all paths in G from a to b by H(a, b), and, if a = (a1, . . . , an) and
b = (b1, . . . , bn) are two n-tuples of vertices, thenH(a,b) will denote the set of n-tuples of
paths

H(a,b) = {P = (P1, . . . , Pn) : Pi ∈ H(ai , bi ), for 1 ≤ i ≤ n}.
The weight ω(P) of a path P is defined as the product of its edge weights

ω(P) =
n∏

i=1

ω(ei ),

if P is given as before. Analogously, the weight of an n-tupleP = (P1, . . . , Pn) is the product
of the corresponding path weights ω(P) = ∏n

i=1 ω(Pi ). A quantity of interest will be the
generating function

h(a, b) =
∑

P∈H(a,b)

ω(P), a, b ∈ V ,
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Fig. 2 The association (P1, P2)
ϕ
→ (P̃1, P̃2) is an involution, ϕ2 = id

which encodes all paths P ∈ H(a, b) according to their weight. This expression should be
understood as a formal power series in the independent variables {ω(e)}e∈E .

Finally, two paths P1 and P2 inG intersect if they share at least one vertex (in their vertex-
sequence definitions) and we will write this as P1∩ P2 �= ∅. A family of paths P ∈ H(a,b) is
intersecting if any two of them intersect. We will say that P is self-avoiding or has no loops
if it does not visit the same vertex more than once, that is, if ai �= a j in the vertex sequence
definition of P , for all 0 ≤ i < j ≤ n.

2.1 The Classical Reflection Principle

If the graphG = (V , E, ω) is acyclic (loops are not allowed), the reflection principle relies
upon the following property. Consider two paths P1 and P2 in G, and assume that the two
paths intersect (see Fig. 2). Fix a total order for the set of vertices V and let A = {vα : α ∈ I }
be the set of intersection vertices between P1 and P2, which is finite. Among all intersection
vertices, let vα0 be the minimal with respect to the given order, and split the paths P1 and P2
at the vertex vα0 , into the corresponding subpaths:

P1 : a0
P ′
1−→ vα0

P ′′
1−→ an

P2 : a′
0

P ′
2−→ vα0

P ′′
2−→ a′

m .

Now interchange the parts P ′′
1 and P ′′

2 above. This procedure creates two new paths P̃1 and
P̃2 given by

P̃1 : a0
P ′
1−→ vα0

P ′′
2−→ a′

m

P̃2 : a′
0

P ′
2−→ vα0

P ′′
1−→ an .

The paths P̃1 and P̃2 also intersect (in particular, vα0 is an intersection vertex) and, more
importantly, their set of intersection vertices is also A = {vα : α ∈ I }. This means that the
intersection vertices are invariant under the map (P1, P2) 
→ (P̃1, P̃2) and hence so is the
minimum vertex vα0 . Therefore, if we perform the same procedure to the paths P̃1 and P̃2,
we recover the original paths P1 and P2. In other words, the map (P1, P2) 
→ (P̃1, P̃2) is
an involution. Moreover, the weights are also invariant under this operation: ω(P1)ω(P2) =
ω(P̃1)ω(P̃2).
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A careful application of the above argument leads to the following enumeration formula
for non-intersecting paths by Karlin and McGregor [19] (in the context of Markov chains)
and Lindström [31] (further developed by Gessel–Viennot [13]):

Theorem 2.1 In an acyclic graph, let ∂� ⊂ V be the distinguished set of vertices:

∂� = {a ∈ V : � a
e→ b}.

For arbitrary sets A = {a1, . . . , an} ⊂ V and B = {b1, . . . , bn} ⊂ ∂�, it holds∑
σ∈Sn

sgn(σ )
∑

P∈H(a,bσ )
Pi∩Pj=∅, i �= j

ω(P) = det
(
h(ai , b j )

)n
i, j=1 ,

where bσ = (bσ(1), . . . , bσ(n)).

2.2 Loop-ErasedWalks and Fomin’s Identity

If the graph G = (V , E, ω) is not acyclic, and the paths P1 and P2 intersect, then the invari-
ance of the intersection vertices described in the previous section is no longer guaranteed,
since an intersection vertex can be part of a loop. However, there is a modification of the
reflection principle for general graphs, due to Fomin [8], which we describe below.

We briefly present the key concept of loop-erased walks introduced by Lawler [28].

Definition 1 For each path P in G = (V , E, ω) of the form

a0
e1→ a1

e2→ a2
e3→ · · · en→ an,

the loop-erasure of P , denoted LE(P), is the self-avoiding path obtained by chronological
loop-erasure of P , as follows:

• Let j0 = max{ j : a j = a0},
• recursively, if jk < n, then jk+1 = max{ j : a j = a jk+1},
• if jk = n, then LE(P) is the path

a j0

e j0+1−→ a j1

e j1+1−→ a j2

e j2+1−→ · · · e jk−1+1−→ a jk .

This procedure erases loops in P in the order they appear, and the operation is iterated
until no loop remains. Note in particular that LE(P) is a subpath of the original path P , with
the same starting and end points a0 and an , respectively.

Using the above procedure, Fomin [8] introduced the so-called loop-erased switching for
paths that are allowed to self-intersect. The loop-erased switching is as follows: consider two
paths P1 : a0 = x1 → · · · → an = y2 and P2 : a′

0 = x2 → · · · → a′
m = y1 in the graph

G, starting from different vertices a0 �= a′
0, and assume P2 and LE(P1) intersect at least

at one common vertex, that is, P2 ∩ LE(P1) �= ∅ (see Fig. 3). Among all such intersection
vertices, let v = a ji be the one with minimal index along the vertex sequence of LE(P1),

(see Definition 1), and split the path P1 at the end of the edge a ji−1

e ji−1−→ v into two subpaths:

P1 : a0
P ′
1(v)−→ v

P ′′
1 (v)−→ an .
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Fig. 3 The loop-erased switching. The path P2 intersects the loop-erased part of P1 and v is the ‘first inter-
section’ (left). Interchanging the paths at v, the new paths P̃1 (black) and P̃2 (gray) satisfy the same property,
that is, P̃2 intersects the loop-erased part of P̃1 and v is the ‘first intersection’ (right)

This partition ensures that all possible loops of P1 ‘rooted’ at v are part of P ′′
1 (v), so that

P ′′
1 (v) does not intersect the path LE(P ′

1(v)) at any vertex different from v. Now, if we split
the path P2 at its first visit to v

P2 : a′
0

P ′
2(v)−→ v

P ′′
2 (v)−→ a′

m,

then, by construction of v, P ′′
2 (v) does not visit any other vertex of LE(P ′

1(v)), except for v,
so it shares the same property as P ′′

1 (v). The latter common condition allows us to interchange
the parts P ′′

1 (v) and P ′′
2 (v) at the vertex v, and create new paths

P̃1 : a0
P ′
1(v)−→ v

P ′′
2 (v)−→ a′

m

P̃2 : a′
0

P ′
2(v)−→ v

P ′′
1 (v)−→ an .

Note that the new paths P̃2 and LE(P̃1) also intersect (v is an intersection vertex), and
therefore P̃2 ∩ LE(P̃1) �= ∅. These conditions ensure that the map (P1, P2) 
→ (P̃1, P̃2) is
an involution, and the ‘minimality’ of the intersection vertex v is preserved, exactly as in
Sect. 2.1. We also have ω(P1)ω(P2) = ω(P̃1)ω(P̃2).

The following theorem (Theorem 7.1 in [8]) is an application of the above loop-erased
switching procedure. Fix a distinguished subset of vertices ∂� ⊂ V and call it the absorbing
boundary. For a ∈ V and b ∈ ∂�, denote by H+(a, b) ⊂ H(a, b) the set of all paths of
positive length

a
e1→ a1

e2→ a2
e3→ · · · en→ b,

such that all the internal vertices a1, . . . , an−1 lie in V \ ∂�. If a ∈ ∂�, we assume n ≥ 2, so
that the path walks into V \ ∂� before reaching the vertex b. Analogously, define H+(a,b)

for n-tuples of paths P = (P1, . . . , Pn) as at the beginning of Sect. 2, that is

H+(a,b) = {P = (P1, . . . , Pn) : Pi ∈ H+(ai , bi ), for 1 ≤ i ≤ n}.

Theorem 2.2 (Fomin’s identity) Let G = (V , E, ω) be a graph satisfying the above assump-
tions and ∂� ⊂ V . Let A = {a1, . . . , an} ⊂ V and B = {b1, . . . , bn} ⊂ ∂� be two labelled
sets of different vertices. Therefore
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Fig. 4 The graph G is embedded
into � and the vertices
an , . . . , a1, b1, . . . , bn are
ordered counterclockwise along
∂�

∑
σ∈Sn

sgn(σ )
∑

P∈H+(a,bσ )
Pj∩LE(Pi )=∅, i< j

ω(P) = det(h(ai , b j ))
n
i, j=1, (2.1)

where bσ = (bσ(1), . . . , bσ(n)) and

h(a, b) =
∑

P∈H+(a,b)

ω(P), a ∈ V , b ∈ ∂�.

Remark Note that the above theorem agrees with Theorem 2.1 if the graph under consid-
eration is acyclic. Also, note that Theorem 2.2 does not give the total weight of families of
non-intersecting paths in G connecting A and B (in the strict sense of non-intersection), but
the paths are constrained to satisfy

Pj ∩ LE(Pi ) = ∅, for all i < j,

which forces the corresponding loop-erased parts to repeal each other.

Corollary 2.3 Assume that G is planar and it is also embedded into a connected planar
domain � in such a way the vertices in the absorbing boundary ∂� lie on the topological
boundary ∂�. Let A ⊂ V and B ⊂ ∂� be as in Theorem 2.2, and, whenever i > i ′ and
j < j ′, assume that every path P ∈ H+(ai , b j ) intersects every path P ′ ∈ H+(ai ′ , b j ′) at
a vertex in V \ ∂� (see Fig. 4). In this case, the only allowable permutation in (2.1) is the
identity permutation, and therefore∑

P∈H+(a,b)
Pj∩LE(Pj−1)=∅, 1< j≤n

ω(P) = det(h(ai , b j ))
n
i, j=1. (2.2)

In particular, if the weight function ω is non-negative, then the right hand side of (2.2) is
non-negative.

Remark Assume that the vertex set V is the state space of a time-homogeneous Markov
chain X and the possible transitions between states are determined by the planar graph
G. That is, the transition probabilities p(a, b) are positive if and only if there is an edge

a
e→ b, in which case ω(e) = p(a, b). Then the assertion of Corollary 2.3 has the following

probabilistic interpretation: the generating function

h(a, b) =
∑

P∈H+(a,b)

ω(P), a ∈ V , b ∈ ∂�,
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Fig. 5 The lattice strip G with vertex set V = Z × {0, 1, . . . , N }

is the hitting probability Pa(XT = b, T < ∞), where T is the first time the chain X hits the
boundary ∂V (if a ∈ ∂�, the Markov chain is supposed to walk into V \ ∂� before reaching
∂�). Then the left hand side of (2.2) is equal to the probability that n independent trajectories
X1, . . . , Xn of the Markov process X , starting at locations a1, a2, . . . , an , respectively, will
hit the boundary ∂� for thefirst time at the pointsb1, b2, . . . , bn , respectively, and furthermore
the trajectory X j will not intersect the loop-erased path LE(Xi ) at any vertex in V \ ∂�, for
all i < j , that is,

X j ∩ LE(Xi ) = ∅, for all 1 ≤ i < j ≤ n.

3 Affine Version of Fomin’s Identity

In this section, we extend Fomin’s identity to the setting of the affine symmetric group
(Theorem3.1) and consider its natural projection onto the cylindrical lattice (Proposition 3.3).
Our main motivation is to present a preliminary extension of the framework considered in
Sect. 4 to non-simply connected domains, and show, in Sect. 5, an interesting connection
with circular ensembles of random matrix theory.

As we discussed in Sect. 2.2, the interaction between n paths P1, P2, . . . , Pn imposed in
Fomin’s identity (Theorem 2.2) is given by the condition

Pj ∩ LE(Pi ) = ∅, for all i < j . (3.1)

In particular, restricted to the lattice strip G of Fig. 5, the above condition ensures a type
of ‘repulsion’ between consecutive paths from left to right, that is, every path Pj will not
intersect the loop-erased part LE(Pj−1) of the path to its right. Theorem 3.1 below is an
extension of Fomin’s identity in the sense that we consider families of paths P1, P2, . . . , Pn
subject to (3.1) and also subject to an extra non-intersection condition between the path P1
and the translation to the right of Pn , given by a fixed translation S of the graphG (see Fig. 6),
that is

P1 ∩ LE(SPn) = ∅. (3.2)

This type of interaction is helpful when the lattice strip G is projected onto the cylindrical
lattice G̃, modulo the translation S (or affine setting, see Fig. 7). In this case, the conditions
(3.1) and (3.2) will jointly ensure that the projected paths P̃1, P̃2, . . . , P̃n , in G̃, also satisfy
the analogous ‘left to right’ non-intersection condition

P̃j ∩ LE(P̃j−1) = ∅, 1 < j ≤ n, and P̃1 ∩ LE(P̃n) = ∅,

(see Sects. 3.2 and 3.3 ).
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Fig. 6 Loop-erased switching over the paths P1 and SPn

Fig. 7 A path in the cylindrical
lattice G̃ with winding number
k = 1

3.1 Affine Version of Fomin’s Identity

Consider the lattice strip G = (V , E, ω), given by the vertex set V = Z×{0, 1, . . . , N } and
connected by directed horizontal and vertical edges, in both positive and negative directions.
We also assume that the weights {ω(e)}e∈E are invariant under horizontal translations by
v = (M, 0), for some positive M ∈ Z. Let ∂� = {(i, N ) : i ∈ Z} denote the upper boundary
of the lattice strip and consider the set H+(a,b) for a = (a1, . . . , an), b = (b1, . . . , bn)
vectors of vertices, as defined in Sect. 2.2. We have the following.
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Theorem 3.1 Consider integers in < in−1 < · · · < i1 < in + M and jn < jn−1 < · · · <

j1 < jn + M. Define the following two n-tuples of vertices in G

ak := (ik, 0), bk := ( jk, N ), 1 ≤ k ≤ n.

If S : G → G is the horizontal translation by (M, 0), the 2(n + 1) vertices an, . . . , a1,San,
Sbn, b1, . . . , bn are ordered counterclockwise along the topological boundary of the lattice
strip G (see Fig. 5). Therefore∑

P∈H+(a,b)
Pj∩LE(Pj−1)=∅, 1< j≤n

P1∩LE(SPn)=∅

ω(P) =
∑
σ∈Sn

∑
ki∈Z

k1+k2+···+kn=0

sgn(σ )
∑

P∈H+(a,Skbσ )

ω(P), (3.3)

whereSkbσ = (Sk1bσ(1), . . . ,Skn bσ(n)) andSki = S◦Ski−1, ki ≥ 2. If, as before, h(a, b) =∑
P∈H+(a,b) ω(P), then the right hand side of (3.3) takes the form

∑
σ∈Sn

∑
ki∈Z

k1+k2+···+kn=0

sgn(σ )

n∏
i=1

h(ai ,Ski bσ(i)).

Remark Unlike Fomin’s identity, the extra condition P1∩ LE(SPn) = ∅ in (3.3) forces us to
consider families of paths where the n end vertices are permutations and translations of the
originals (b1, . . . , bn), see the proof below. In particular, the end vertices should vary among
n-tuples Skbσ = (Sk1bσ(1), . . . ,Skn bσ(n)), with σ ∈ Sn and k1 +· · ·+ kn = 0, ki ∈ Z. This
can be thought of as the action of the (infinite) affine symmetric group Ãn on the vertices
(b1, . . . , bn).

Remark In the acyclic case, the above theorem agrees with the Gessel–Zeilberger formula
for counting paths in alcoves [12].

Proof of Theorem 3.1 We will follow the strategy of proof of Fomin’s identity (Theorem 6.1
in [8]), that is, we will give a sign-reversing involution on the set of summands on the right
hand side of (3.3) which violate the condition

Pj∩LE(Pi ) = ∅, for all 1 ≤ i < j ≤ n, and (3.4)

Pj∩LE(SPn) = ∅, for all 1 ≤ j ≤ n.

As a consequence, the sum of all of the latter terms will vanish and, the sum of the remaining
terms, the oneswhich satisfy (3.4), will be simplified to the desired expression in the left-hand
side of (3.3).

The sign-reversing involution is as follows. For n ≥ 2, let σ ∈ Sn and ki , 1 ≤ i ≤ n,
integers such that k1 + k2 + · · · + kn = 0. Consider a family of paths P ∈ H(a,Skbσ )

which violates the condition (3.4). We will construct a new family of paths P̃ ∈ H(a,S k̃bσ̃ ),
with σ̃ ∈ Sn and k̃1 + k̃2 + · · · + k̃n = 0, that also violates the condition (3.4), and satisfes
ω(P̃) = ω(P) and sgn(σ̃ ) = −sgn(σ ). The construction of the new family P̃ is essentially
an application of the Fomin’s loop-erased switching (Sect. 2.2) over the paths

Pn, Pn−1, . . . , P1,SPn .

This construction will also ensure that the correspondence P 
→ P̃ is one-to-one, as desired.
To make the notation simpler, let us denote a0 := San and the corresponding path starting

at San by P0 := SPn . Choose indexes i ′ and j ′ as follows. Since the family P ∈ H(a,Skbσ )

123



Loop-Erased Walks and RandomMatrices 541

violates (3.4), the set of indexes 0 ≤ i < j ≤ n such that Pj ∩ LE(Pi ) �= ∅ is not empty,
therefore we can choose 0 ≤ i

′
< n the minimum among those indexes and consider the

path LE(Pi ′). Along the latter path, choose a vertex v′ and index j ′ in the following order:

– Along the vertex sequence of the path LE(Pi ′), choose v′ as the ‘closest’ (that is, with
minimal index) intersection vertex to the starting vertex ai ′ .

– Now consider the set of indexes { j : 1 ≤ i ′ < j ≤ n} such that Pj intersects LE(Pi ′) at
v′ (in other words, v′ ∈ Pj ∩ LE(Pi ′)), and let j ′ the minimum of this set.

We have two different scenarios, depending onweather Pi ′ is the path SPn or not. If i ′ �= 0
(and Pi ′ is not the path SPn) we perform the usual loop-erased switching (Sect. 2.2) over the
paths Pi ′ and Pj ′ at the vertex v′, that is, we define new paths

P̃i ′ : ai ′
P ′
i ′−→ v′ P ′′

j ′−−→ Sk j ′ bσ( j ′)

P̃j ′ : a j ′
P ′
j ′−−→ v′ P ′′

i ′−→ Ski ′ bσ(i ′).

For the remaining paths, i /∈ {i ′, j ′}, define P̃i := Pi . The original family P ∈
H(a,Skbσ ) is then mapped to a new family of paths P̃ ∈ H(a,S k̃bσ̃ ), where k̃ =
(k1, . . . , k j ′ , . . . , ki ′ , . . . , kn) and σ̃ = σ ◦ (i ′, j ′) ∈ Sn are the vector k and permuta-
tion σ , with the entries i ′ and j ′ interchanged, respectively. Note that the sum of the entries
of k̃ is zero, as desired, and sgn(σ̃ ) = −sgn(σ ). Moreover, the family P̃ also violates the
condition (3.4) since the paths P̃i ′ and P̃j ′ share the vertex v′. Note that the weights are also
preserved: ω(P̃) = ω(P).

In the second case, when i ′ = 0, a more careful selection of paths is needed: we perform
the loop-erased switching over the paths SPn and Pj ′ :

SPn : San (SPn)′−−−−→ v′ (SPn)′′−−−−→ SSkn bσ(n)

Pj ′ : a j ′
P ′
j ′−−→ v′ P ′′

j ′−−→ Sk j ′ bσ( j ′),

and create the two new paths

P̃n : an P ′
n−→ S−1v′ S−1P ′′

j ′−−−−→ S−1Sk j ′ bσ( j ′)

P̃j ′ : a j ′
P ′
j ′−−→ v′ (SPn)′′−−−−→ SSkn bσ(n),

(see Fig. 6). The rest of the paths remain invariant, P̃i := Pi for i /∈ {n, j ′}. Thus, the new fam-

ily P̃ = (P̃1, . . . , P̃n) satisfies P̃ ∈ H(a,S k̃bσ̃ ), with k̃ = (k1, . . . , kn+1, . . . , kn−1, k j ′ −1)
and σ̃ = σ ◦ ( j ′, n) ∈ Sn . Note again that the sum of the entries of k̃ is zero and
sgn(σ̃ ) = −sgn(σ ). Moreover, since the weight ω is invariant under horizontal transla-
tions, we have ω(P̃) = ω(P). We only need to show that the family P̃ violates the condition
(3.4) as well, but this is clearly the case since the paths P̃j ′ and LE(S P̃n) intersect at the
vertex v′, that is

P̃j ′ ∩ LE(S P̃n) �= ∅.

Therefore, in both cases, applying the loop-erased switching to the family P̃, we recover
the original family P, so the corresponding map from P to P̃ is an involution on the set of
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paths that violate (3.4). Moreover, since sgn(σ )ω(P̃) = −sgn(σ̃ )ω(P̃), the sum of all these
terms vanishes on the right hand side of (3.3), and therefore the total sum is∑

σ∈Sn

∑
ki∈Z

k1+k2+···+kn=0

sgn(σ )
∑

P∈H+(a,Skbσ )

P satisfies (3.4)

ω(P). (3.5)

Finally, in the expression above, if a family P ∈ H+(a,Skbσ ) satisfies (3.4), the loop-erased
parts LE(Pj ), 1 ≤ j ≤ n, are pairwise disjoint and then σ must be the identity permutation
and k1 = k2 = · · · = kn = 0, as required. In this case, the condition (3.4) on paths can be
simplified to the one in the left hand side of (3.3). ��

3.2 Projections onto the Cylinder

As described in the introduction of Sect. 3, a useful application of Theorem 3.1 is when we
consider the projection of the lattice strip G onto the cylindrical lattice, modulo a translation
S (see Fig. 7). Intuitively, a family of n (loop-erased) paths can wind around the cylinder
several times (equivalently, translations of the end vertex by Sm = S ◦ Sm−1, m ∈ Z, in
the strip) before reaching its destination. Moreover, there are exactly n different ways in
which the n paths can reach their destination without intersecting, given by the n ‘cyclic
permutations’ of the end vertices.

Corollary 3.2 and Proposition 3.3 make the above considerations precise. These consid-
erations give a more tractable form of Theorem 3.1, first as a sum of n determinants in
Corollary 3.2 and then as a single determinant in Proposition 3.3.

Corollary 3.2 In the context of Theorem 3.1, by summing up in (3.3) over all the weights of all
families of paths P = (P1, . . . , Pn) starting at a = (a1, . . . , an), and ending at all possible
translations of b = (b1, . . . , bn) by Sm, m ∈ Z, we obtain∑

P∈⋃m∈Z H+(a,Smb)

Pj∩LE(Pj−1)=∅, 1< j≤n
P1∩LE(SPn)=∅

ω(P) =
∑
σ∈Sn

∑
k1+k2+···+kn=0

mod n

sgn(σ )
∑

P∈H+(a,Skbσ )

ω(P), (3.6)

where Smb = (Smb1, . . . ,Smbn). Moreover, if η = ei
2π
n is a complex root of unity, then the

right hand side above can be expressed as the sum of n determinants:

1

n

n−1∑
u=0

det

(∑
k∈Z

ηukh
(
ai ,Skb j

))n

i, j=1

, (3.7)

where h(a, b) =∑P∈H+(a,b) ω(P), a ∈ V , b ∈ ∂�.

Proof Using the identity (3.3) and summing up over all the weights as indicated in the
statement of the corollary, the left hand side of (3.6) takes the form∑

m∈Z

∑
σ∈Sn

∑
ki∈Z

k1+k2+···+kn=0

sgn(σ )
∑

P∈H+(a,Sm+kbσ )

ω(P),

which, in turn, can be easily simplified to the desired expression on the right-hand side. For

the second part, note that, if η = ei
2π
n is a complex root of unity, then we can eliminate the

condition
∑n

i=1 ki = 0 mod n by using the identity
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1

n

n−1∑
u=0

ηu
∑n

i=1 ki =
{
1 if

∑n
i=1 ki = 0, mod n

0 otherwise.

Then, the right-hand side of (3.6) can be written as

1

n

n−1∑
u=0

∑
σ∈Sn

sgn(σ )
∑

k1,...,kn∈Z
ηu
∑n

i=1 ki
∑

P∈H+(a,Skbσ )

ω(P),

and the latter as

1

n

n−1∑
u=0

∑
σ∈Sn

sgn(σ )

n∏
i=1

∑
k∈Z

ηuk
∑

P∈H+(ai ,Skbσ(i))

ω(P).

The above expression is (3.7). ��
Proposition 3.3 Denote by [�] ∈ Sn the cyclic permutation shifted by � = 0, 1, . . . , n − 1 :

[�](k) = k − �, mod n, in {1, . . . , n}.
Let a = (a1, . . . , an) and b = (b1, b2, . . . , bn) be the vectors of vertices of Theorem 3.1. For
each [�] ∈ Sn, � = 0, . . . , n − 1, define the n-tuple:

k� =
⎛
⎝1, . . . , 1,︸ ︷︷ ︸

� times

0, . . . , 0︸ ︷︷ ︸
n−� times

⎞
⎠ . (3.8)

We have the following

∑
[�]∈Sn

�=0,...,n−1

∑
P∈⋃m∈Z H+(a,Sm+k�b[�])
Pj∩LE(Pj−1)=∅, 1< j≤n

P1∩LE(SPn)=∅

ω(P) = det

(∑
k∈Z

ζ kh(ai ,Skb j )

)n

i, j=1

, (3.9)

where

ζ =
{
1 if n is odd
−1 if n is even,

and h(a, b) = ∑
P∈H+(a,b) ω(P). In particular, if the weight function ω is non-negative,

then the above determinant is non-negative.

Proof Let G(a,b) denote the left-hand side of (3.6). Using Corollary 3.2, a simple calculation
shows that for each � = 0, . . . , n − 1:

G(a,Sk�b[�]) = 1

n

n−1∑
u=0

η−�usgn([�]) det
(∑
k∈Z

ηukh(ai ,Skb j )

)
.

Therefore, the left hand side of (3.9) can be expressed as

n−1∑
�=0

G(a,Sk�b[�]) =
n−1∑
u=0

(
1

n

n−1∑
�=0

η−�usgn([�])
)
det

(∑
k∈Z

ηukh(ai ,Skb j )

)
,

which is a sum of n determinants.
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Case 1. If n is odd, sgn([�]) = 1 for all � = 0, . . . , n − 1 and then

1

n

n−1∑
�=0

η−�u =
{
1 if − u = 0, mod n
0 otherwise,

therefore, the only remaining determinant is the one corresponding to u = 0, and so ζ =
ηu = 1.

Case 2. If n is even, sgn([�]) = (−1)� for all � = 0, . . . , n − 1 and

1

n

n−1∑
�=0

(−1)�η−�u = 1

n

n−1∑
�=0

η�( n2 −u).

The above sum is 1 if and only if n
2 − u = 0 mod n, and zero otherwise. The only remaining

determinant is then u = n
2 , and therefore ζ = ηu = −1, which concludes the proof. ��

Remark Assume that the vertex set V = Z × {0, 1, . . . , N } is the state space of a time-
homogeneous Markov chain X and the possible transitions between states are determined by
the lattice strip G introduced at the beginning of the section. In other words, the transition

probabilities p(u, v) are positive if and only if there is an edge u
e→ v, in which case ω(e) =

p(u, v). Assume that the transition probabilities are space-invariant with respect to a fixed
horizontal translation S : G → G. Then, the assertion of Proposition 3.3 has the following
probabilistic interpretation: if vertices an, . . . , a1, b1, . . . , bn are ordered counterclockwise
along the boundary (as in Fig. 6), then the n × n determinant

det

(∑
k∈Z

ζ kh(ai ,Skb j )

)n

i, j=1

,

of hitting probabilities h(ai ,Skb j ), where Sk = S ◦ Sk−1, k ∈ Z, and

ζ =
{
1 if n is odd
−1 if n is even,

is equal to the probability that n independent trajectories of the Markov chain X1, . . . , Xn ,
starting at a1, . . . , an , respectively, will first hit the upper boundary ∂� = Z × {N } at any
of the n cyclic permutations of the vertices b1, . . . , bn , shifted also by all possible horizontal
translations by Sk , k ∈ Z, and furthermore the trajectories are constrain to satisfy

X j ∩ LE(X j−1) = ∅, 1 < j ≤ n, and X1 ∩ LE(SXn) = ∅.

3.3 A Remark on Loop-Erased Paths in a Cylinder

In this section, we consider families of paths defined in the directed cylindrical lattice G̃
of Fig. 7 and review some properties regarding their loop-erasures. As in the previous sec-
tions, the cylindrical lattice need not be acyclic (loops are allowed) and, if the number
of paths is odd, we can obtain a variant of Proposition 3.3 by applying Fomin’s identity
directly (see Proposition 3.4 below). However, there is a slight difference between these
two approaches, since the loop-erasure of a path in G̃ may differ from the projection of
the loop-erasure of the corresponding path in the lattice strip G (see the remark just after
Proposition 3.4).
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Define the (directed) cylindrical lattice (or, just cylinder) G̃ = (Ṽ , Ẽ) as the directed
graph with vertex set Ṽ = ZM × {0, 1, . . . , N } and connected by edges in both positive
and negative directions. Here, we consider the canonical representation of ZM as Z/MZ =
{[0], . . . , [M − 1]}. Let’s distinguish the set of (boundary) vertices ∂G̃ = ZM × {N }. If
we consider the lattice strip G = (V , E, ω) of Theorem 3.1 and the notation thereof, there
is a natural correspondence between paths in the cylinder G̃ and paths in the strip G. In
particular, every path P̃ in G̃ starting at ã = ([i], 0) and ending at b̃ = ([ j], N ), for
i, j ∈ {0, . . . , M − 1}, and with all internal vertices lying in G̃ \ ∂G̃, can be seen as the
image of any path P� ∈ G of the form

P� ∈ H+(S�a,S�+kb), � ∈ Z,

with a = (i, 0) ∈ V , b = ( j, N ) ∈ V , and a unique k ∈ Z. The integer k is usually
called the winding number of the path P̃ (see Fig. 7). Since the weight function ω defined on
the strip G is invariant under the translation S by (M, 0), the graph G̃ inherits canonically
a weight function ω̃ on Ẽ and the path P̃ inherits the weight ω̃(P̃) := ω(P), whenever
P ∈ H+(a,Skb) is the projection of P̃ .

Let C+(ã, b̃) be the set of all paths in the cylinder G̃ of positive length, starting at ã ∈ G̃
and ending at b̃ ∈ ∂G̃, with all internal vertices in G̃ \ ∂G̃. Similarly, define C+(ã, b̃) for
families of paths P̃1, . . . , P̃n , starting at ã = (ã1, . . . , ãn) and ending at b̃ = (b̃1, . . . , b̃n).
We have the following:

Proposition 3.4 Consider integers 0 ≤ in < in−1 < · · · < i1 < M and 0 ≤ jn < jn−1 <

· · · < j1 < M. Define two n-tuples of vertices in the cylinder G̃ as

ãk := ([ik], 0), b̃k := ([ jk], N ), 1 ≤ k ≤ n.

If n is odd and we consider the n cyclic permutations defined in Proposition 3.3, we obtain

∑
σ cyclic

∑
P̃∈C+(ã,b̃σ )

P̃j∩LE(P̃i )=∅, i< j

ω̃(P̃) = det

(∑
k∈Z

h(ai ,Skb j )

)n

i, j=1

, (3.10)

where h(a, b) =∑P∈H+(a,b) ω(P) and b̃σ = (b̃σ(1), . . . , b̃σ(n)).

Proof Note that the right hand side of (3.10) can be written as the determinant

det

⎛
⎜⎝ ∑

P̃∈C+(ãi ,b̃ j )

ω̃(P̃)

⎞
⎟⎠

n

i, j=1

,

and, since sgn(σ )=1 for all σ cyclic if n is odd, the equality (3.10) is a direct application of
Fomin’s identity (Theorem 2.2), according to the weight function ω̃ on G̃. ��
Remark The right hand side of (3.10) agrees with the right hand side of identity (3.9), for n
odd. This implies that the left hand sides of (3.10) and (3.9) are equal, which is not imme-
diately obvious from the definitions. For example, we can consider the paths P1, P2 and
P3 in the lattice strip of Fig. 8. There, we have that the corresponding projections onto
the cylinder satisfy P̃j ∩ LE(P̃i ) = ∅, for i < j , and, in particular P̃3 ∩ LE(P̃1) = ∅.
However, P1 ∩ LE(SP3) �= ∅, and then (P1, P2, P3) is not considered in the left hand
side of (3.9). It would be interesting to have a direct combinatorial proof of this iden-
tity.
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Fig. 8 Three paths, and their projections onto the cylinder

Fig. 9 Hexagonal lattice

Remark In the acyclic case, one can obtain determinant formulas for an even number
of non-intersecting walks on a cylindrical lattice by introducing modified weights which
keep track of windings [10,30]. However, in the general case, we do not see how to
adopt this approach and the only way we know how to study the case of an even
number of particles is via the affine version of Fomin’s identity introduced in Theo-
rem 3.1.

3.4 More General Lattices, Gessel–Zeilberger Formula

The results of this section were formulated for the square lattice but are equally valid
for more general periodic planar graphs, for example, the hexagonal lattice shown in
Fig. 9.

In the acyclic case, Theorem 3.1 agrees with the Gessel–Zeilberger formula [12] (see
also [11]). We note that in this context, the identity (3.9) gives a direct connection between
the Gessel–Zeilberger formula, for counting paths in alcoves, and the Karlin–McGregor
formula [19] (Lindström–Gessel–Viennot lemma [13]) for counting non-intersecting paths
on a cylinder; this answers positively a question of Fulmek [10], where the problem of finding
such a direct connection was posed as an open question. Moreover, in the continuous case, it
also shows that theKarlin–McGregor (forn odd) andLiechty–Wang (forn even) formulas [19,
30] for the transition probability density of n (indistinguishable) non-intersecting Brownian
motions on the circle can be obtained directly from the (labelled) model of Hobson–Werner
[16], which is a continuous version of the Gessel–Zeilberger formula in the case of the affine
symmetric group Ãn (we review this in Sect. 5.1 below).
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4 Connections to RandomMatrix Theory

As explained in Sect. 1.2 of the introduction, there is a natural way to consider diffusion
scaling limits of both Fomin’s identity (Corollary 2.3) and its affine version (Proposition 3.3).
Regarding Fomin’s identity, this idea is originally discussed in [8], where some examples for
two-dimensional Brownian motion are described in detail. For our purposes, the connection
with random matrix theory emerges from the following considerations: assume that � is
a suitable complex (connected) domain with smooth boundary and h(z0, y) is the (hitting)
density of the harmonic measure

μz0,�(A) = P
z0(BT ∈ A), A ⊂ ∂�,

with respect to one-dimensional Lebesgue measure (lenght), where B under P
z0 denotes

a two-dimensional Brownian motion starting at z0 ∈ �, and T = inf{t > 0 : Bt /∈ �}
is the first exit time of � (see Sect. 4.1). Therefore, for m ∈ R and appropriately chosen
(parametrized) positions x1, . . . , xn and y1, . . . , yn along the boundary ∂�, the determinants
of hitting densities

H(x, y) = det
(
h(xi , y j )

)n
i, j=1 dy1 · · · dyn, (4.1)

and

H(x, y) = det

(∑
k∈Z

ζ kh(xi , y j + mk)

)n

i, j=1

dy1 · · · dyn, (4.2)

where

ζ =
{
1 if n is odd
−1 if n is even,

can be interpreted, informally, as the probability that n independent ‘Brownian motions’ Bi ,
i = 1, . . . , n, starting at positions x1, x2, . . . , xn , respectively, will first hit an absorbing
boundary ∂� ⊂ ∂� at (parametrized) positions in the intervals (yi + dyi ), i = 1, . . . , n, and
whose trajectories are constrained to satisfy the condition

Bj ∩ LE(Bi ) = ∅, for all 1 ≤ i < j ≤ n,

in (4.1), or

Bj ∩ LE(Bj−1) = ∅, 1 < j ≤ n, and B1 ∩ LE(m + Bn) = ∅,

in the affine case (4.2). We remark again that, in the affine case, we assume � to be invariant
under a fixed (horizontal) translation by m ∈ R, and therefore m + Bn is the horizontal
translation by m of the Brownian path Bn .

Our main interest is the determination of the behaviour of the n hitting points y1, . . . , yn
along the boundary, when the starting points x1, . . . , xn merge into a single common point in
∂�. In other words, for determinants of the form (4.1), this section considers certain limits

lim
(x1,..., xn)∈C
xi→x∈∂�

H̃(x, y), (y1, . . . , yn) ∈ C,

where H̃(x, y) is an appropriate normalisation of H(x, y) and the positions x1, . . . , xn ,
y1, . . . , yn are determined by chambers C of R

n . Determinants of the affine form (4.2) are
considered in Sect. 5.
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(a) (b) (c)

Fig. 10 Simply connected domains in the complex plane C

In Sects. 4.3, 4.4 and 4.5 , we revisit the examples considered in [8] (see Fig. 10). We will
see that the consideration of the above limits reveals some natural connections to random
matrices, particularly Cauchy type ensembles [38]. An example of this connection was first
observed by Sato and Katori [34], in the context of excursion Poisson kernel determinants,
and we discuss this in Sect. 4.6. Section 5 considers the affine (circular) case and shows that
it is also related in a natural way to circular ensembles of random matrix theory.

As a warm-up, in Sect. 4.2 we recall a well-known connection between non-intersecting
one-dimensional Brownian motions and the Gaussian Orthogonal Ensemble (GOE) of ran-
dom matrix theory.

4.1 A Brief Review on Conformal Invariance of BrownianMotion

The Riemann mapping theorem asserts that any two proper simply connected domains of
C can be conformally mapped into each other. More precisely, if � ⊂ C and �′ ⊂ C are
two proper simply connected domains with z0 ∈ � and z′0 ∈ �′, then there exists a unique
conformal (analytic with non-vanishing derivative) map f : � → �′ such that f (z0) = z′0
and f ′(z0) > 0. In addition, it is well known that the two-dimensional Brownian motion is
invariant under conformal transformations [5]:

Proposition 4.1 If B is a two-dimensional Brownian motion starting at z0 ∈ � and T =
inf{t > 0 : Bt /∈ �} is the exit time of the domain �, then there exists a (random) time
change σ : [0, T ′] → [0, T ] such that the process

( f (Bσ(t)), 0 ≤ t < T ′)

is again a two-dimensional Brownian motion, starting at f (z0) ∈ �′ and stopped at its first
exist T ′ of �′.

These properties ensure that, under mild conditions on ∂� (for example, if ∂� is deter-
mined by a Jordan curve; see also Sect. 2.3 of [26] for more general conditions), we have
that for all A ⊂ ∂�

P
z0(BT ∈ A) = P

f (z0)( f (BT ) ∈ f (A)) = P
z′0(B ′

T ′ ∈ f (A)), (4.3)

where B ′ is another two-dimensional Brownian motion. If we set μz0,�(A) = P
z0(BT ∈ A),

A ⊂ ∂�, then μz0,� defines a measure on ∂�, which is called the harmonic measure or
hitting measure on ∂�. Therefore, identity (4.3) becomes

μz0,�(A) = μz′0,�′( f (A)), for all A ⊂ ∂�. (4.4)

123



Loop-Erased Walks and RandomMatrices 549

If both measures are absolutely continuous with respect to one-dimensional Lebesgue mea-
sure, or lenght (which is the case in all the examples considered in this paper), then, from
(4.4) we obtain (see also [25,26]):

Proposition 4.2 Let�and�′ be two simply connected domainswith z0 ∈ �. Let f : � → �′
be a conformal map and set z′0 = f (z0). Assume that we can define harmonic measuresμz0,�

and μz′0,�′ and both are absolutely continuous with respect to one-dimensional Lebesgue
measure (lenght), therefore

h�(z0, y) = | f ′(y)|h�′( f (z0), f (y)), (4.5)

where h�(z0, ·) and h�′(z′0, ·) are the corresponding densities of μz0,� and μz′0,�′ , respec-
tively.

Definition 2 When the harmonic measure μz0,� has a density h�(z0, y) with respect to one-
dimensional Lebesgue measure (lenght), we call this density the hitting density or Poisson
kernel of �.

We often drop the suffix � in the definition above and simply write h = h�. In practice,
the explicit computation of the harmonic measure (or its density) for an arbitrary simply
connected domain� is not an easy task, but there are some examples where this computation
can be easily performed. In Sects. 4.3, 4.4 and 4.5 we consider the positive quadrant �1, the
infinite strip �2 and the upper half-circle �3, respectively (see Fig. 10):

�1 = {z ∈ C : Re(z) > 0, Im(z) > 0},
�2 = {z ∈ C : 0 < Im(z) < t}, t > 0,

�3 = {z ∈ C : |z| < 1, Im(z) > 0}.

4.2 Non-intersecting BrownianMotions and the GOE

Consider a system of n independent one-dimensional Brownian motions conditioned not to
intersect up to a fixed time t > 0, starting at positions xn < xn−1 < · · · < x1, respectively.
This is the n-dimensional Brownian motion starting at x = (x1, . . . , xn) ∈ R

n and condi-
tioned to stay in the chamber C = {y ∈ R

n : yn < yn−1 < · · · < y1} up to time t > 0.
Since the n-dimensional Brownian motion is a strongMarkov process with continuous paths,
the Karlin-McGregor formula [19] gives the (unnormalised) density of the positions of the
process at time t :

p̂t (x, y) = det
[
pt (xi , y j )

]n
i, j=1 , x, y ∈ C, (4.6)

where

pt (x, y) = 1√
2π t

e− (x−y)2

2t .

Let Mt,x be the normalisation constant for (4.6), that is,

Mt,x =
∫
C
p̂t (x, y)dy.

We have the following:
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Proposition 4.3 The positions at time t > 0 of n independent one-dimensional Brownian
motions, started at the origin, and conditioned not to intersect up to time t > 0, are given by

lim
x∈C
x→0

1

Mt,x
p̂t (x, y) = 1

M ′
t
e− 1

2t

∑n
i=1 y

2
i

∏
1≤i< j≤n

(y j − yi ),

where M ′
t is the corresponding normalisation constant.

Remark The above expression agrees with the joint density of the eigenvalues of an n × n
GOE random matrix with variance parameter t [9,32].

Proof A simple calculation shows that

1

Mt,x
p̂t (x, y) = 1

Mt,x

1

(2π t)n/2 e
− 1

2t

∑n
i=1(x

2
i +y2i ) det

(
e
1
t xi y j

)n
i, j=1

,

and, dividing both numerator and denominator by the Vandermonde determinant

(x) =
∏

1≤i< j≤n

(x j − xi ),

we can use Lemma A.1 to compute the limit in the proposition as follows:

lim
x∈C
x→0

1

Mt,x
p̂t (x, y) = 1

M ′
t
t

(n−1)n
2 e− 1

2t

∑n
i=1 y

2
i det

(( y j
t

)i−1
)n

i, j=1

= 1

M ′
t
e− 1

2t

∑n
i=1 y

2
i det

(
yi−1
j

)n
i, j=1

= 1

M ′
t
e− 1

2t

∑n
i=1 y

2
i

∏
1≤i< j≤n

(y j − yi ),

where

M ′
t =

∫
C
e− 1

2t

∑n
i=1 y

2
i

∏
1≤i< j≤n

(y j − yi )dy. ��

4.3 BrownianMotion in the Positive Quadrant

Let’s identify the two-dimensionalEuclidean spaceR
2 with the complexplaneC. The positive

quadrant is the simply connected domain given by

�1 = {z ∈ C : Re(z) > 0, Im(z) > 0}.
For the two dimensional Brownian motion B, starting at a point x in the positive x-axis, the
density of the first hitting point y = iy, y ∈ R in the y-axis, is given by the Cauchy density
(see [5], Sect. 1.9):

h′(x, y) = 1

π

x

x2 + y2
, y ∈ R.

Therefore, we can consider the two-dimensional ‘Brownian motion’ B ′ in the positive quad-
rant �1 starting at the point x , with normal reflection on the positive x-axis, and the positive
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y-axis acting as absorbing boundary. The process B ′ first hits the positive y-axis at a point
y = iy, y > 0, with density

h(x, y) = h′(x, y) + h′(x,−y) = 2

π

x

x2 + y2
, y > 0. (4.7)

Consider the determinant of hitting densities

H(x, y) = det
(
h(xi , y j )

)n
i, j=1 , x, y ∈ D,

where

D = {x ∈ R
n : 0 < xn < xn−1 < · · · < x1}.

Proposition 4.4 For any y ∈ D, and t > 0,

lim
x∈D
x→t

H̃(x, y) = 1

Mt

∏
1≤ j≤n

(t2 + y2j )
−n

∏
1≤i< j≤n

(y2i − y2j ),

where

H̃(x, y) =
(∫

D
H(x, y)dy

)−1

H(x, y),

and Mt is the corresponding normalisation constant.

Remark In particular, when t = 1, the above density takes the form

1

M1

∏
1≤ j≤n

(1 + y2j )
−n

∏
1≤i< j≤n

(y2j − y2i ),

which is a Cauchy-type ensemble on the positive half-line [9,38].

Proof For all x, y ∈ D, the function H(x, y) is positive (see [18]) and a Cauchy determinant.
Therefore

H(x, y) =
(
2

π

)n n∏
i=1

xi
∏

1≤i, j≤n

(x2i + y2j )
−1

∏
1≤i< j≤n

(x2i − x2j )(y
2
i − y2j ).

Regarded as a probability density on D, we can consider the normalised density

H̃(x, y) =
(∫

D
Fx (y)dy

)−1

Fx (y), (4.8)

where

Fx (y) =
∏

1≤i, j≤n

(x2i + y2j )
−1

∏
1≤i< j≤n

(y2i − y2j ).

Fix a real number t > 0 and consider 0 < ε < t , we have that for all x ∈ D such that
|xi − t | < ε, 1 ≤ i ≤ n, and for all y ∈ D

|Fx (y)| ≤
∏

1≤ j≤n

(T 2 + y2j )
−n

∏
1≤i< j≤n

(y2i − y2j ), T = t − ε > 0.
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The function on the right hand side is integrable over D, which can be verified by using the
relation

eiθ = iy − √
T

iy + √
T

, 0 < θ < π, (4.9)

so that∏
1≤ j≤n

(T 2 + y2j )
−n

∏
1≤i< j≤n

(y2i − y2j )dy ∝
∏

1≤i< j≤n

|eiθi − eiθ j ||eiθi − e−iθ j |dθ,

and the latter function is integrable over the bounded domain (see Sect. 4.5):

{θ ∈ R
n : 0 < θ1 < θ2 < · · · < θn < π}.

Therefore, by the dominated convergence theorem, when the n starting points x1, x2, . . . , xn
approach to the commonpoint t > 0, along the x-half positive axis, the limit in the proposition
can be easily computed from the expression (4.8), as

lim
x∈D
x→t

H̃(x, y) = 1

Mt

∏
1≤ j≤n

(t2 + y2j )
−n

∏
1≤i< j≤n

(y2i − y2j ),

where Mt is the corresponding normalisation constant. ��

4.4 BrownianMotion in a Strip

Consider the infinite strip given by

�2 = {z ∈ C : 0 < Im(z) < t}.
By conformal invariance of the two-dimensional Brownian motion (the function f (z) =
eπ z/2t maps �2 onto the positive quadrant �1), we can also consider a ‘Brownian motion’
constrained to live in the strip �2, starting at a point x ∈ R on the x-axis (which is normal
reflecting) and stopped once it hits the (absorbing) boundary line Im(z) = t . If the process
starts at a point x ∈ R, and it first hits the absorbing boundary at y := y + i t , y ∈ R, then
by conformal invariance (that is, using Proposition 4.2 and formula (4.7) above) we obtain a
formula for the hitting density ht (x, y) of �2:

ht (x, y) = π

2t
|ieπ y/2t |h (eπx/2t , eπ y/2t) = 1

t

1

eπ(y−x)/2t + e−π(y−x)/2t
.

In terms of hyperbolic functions, the above expression can be written as

ht (x, y) = 1

2t
sech

( π

2t
(y − x)

)
, y ∈ R. (4.10)

Define the determinant of hitting densities

Ht (x, y) = det
(
ht (xi , y j )

)n
i, j=1 , x, y ∈ C, (4.11)

where

C = {x ∈ R
n : xn < xn−1 < · · · < x1}.
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Proposition 4.5 For any y ∈ C, and t > 0,

lim
x∈C
x→0

H̃t (x, y) = 1

Mt

n∏
j=1

sech
( π

2t
y j
) ∏
1≤i< j≤n

(
tanh

( π

2t
yi
)

− tanh
( π

2t
y j
))

,

where

H̃t (x, y) =
(∫

C
Ht (x, y)dy

)−1

Ht (x, y),

Mt is the corresponding normalisation constant.

Proof For all x, y ∈ C , the function Ht (x, y) is positive (see [18]), and the following explicit
expression for Ht (x, y) can be obtained

Ht (x, y)= 1

(2t)n
∏

1≤i, j≤n

sech
( π

2t
(y j−xi )

) ∏
1≤i< j≤n

sinh
( π

2t
(xi−x j )

)
sinh

( π

2t
(yi − y j )

)
.

Consider the normalised density

H̃t (x, y) =
(∫

C
Fx (t, y)dy

)−1

Fx (t, y),

where

Fx (t, y) =
∏

1≤i, j≤n

sech
( π

2t
(y j − xi )

) ∏
1≤i< j≤n

sinh
( π

2t
(yi − y j )

)
.

Let ε > 0, we have that for all x ∈ C such that |xi | < ε, 1 ≤ i ≤ n, and for all y ∈ C

|Fx (t, y)| ≤
n∏
j=1

(
2c

e
π
2t y j + c−2e− π

2t y j

)n ∏
1≤i< j≤n

sinh
( π

2t
(yi − y j )

)
,

where c = eπε/2t . It can be verified that the function on the right hand side above is integrable
over C . Therefore, by the dominated convergence theorem, for any t > 0 and y ∈ C , it holds

lim
x∈C
x→0

H̃t (x, y) = 1

Mt

∏
1≤i, j≤n

sech
( π

2t
y j
) ∏
1≤i< j≤n

sinh
( π

2t
(yi − y j )

)

= 1

Mt

n∏
j=1

sech
( π

2t
y j
) ∏
1≤i< j≤n

(
tanh

( π

2t
yi
)

− tanh
( π

2t
y j
))

,

where Mt is the corresponding normalisation constant. ��

4.5 BrownianMotion in the Half Unit Disk

The image of the positive quadrant �1 through the conformal map f (z) = z−1
z+1 gives the

upper half unit disk

�3 = {z ∈ C : |z| < 1, Im(z) > 0}.
The ‘Brownian motion’ B in �3 reflects in the x-axis and stops once it reaches the boundary
|z| = 1. The hitting density for this process, starting at a point x ∈ R, |x | < 1, and stopped
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until it hits the point z = eiθ , 0 < θ < π , is given by the well-known formula (see [5], Sect.
1.10):

h(x, θ) = 1

π

1 − x2

1 − 2x cos θ + x2
, 0 < θ < π.

As before, consider the determinant of hitting densities

H(x, θ) = det(h(xi , y j ))
n
i, j=1, x ∈ N , θ ∈ �,

where

N ={x ∈ R
n : −1 < xn < xn−1 < · · · < x1 < 1} and

� ={θ ∈ R
n : 0 < θ1 < θ2 < · · · < θn < π}.

Proposition 4.6 For any θ ∈ �

lim
x∈N
x→0

H̃(x, θ) = 1

M

∏
1≤i< j≤n

|eiθi − eiθ j ||eiθi − e−iθ j |,

where

H̃(x, θ) =
(∫

�

H(x, θ)dθ

)−1

H(x, θ),

M is the corresponding normalisation constant.

Remark The above density can be thought of as theβ = 1 version of the eigenvalue density of
a random matrix in SO(2n), which is the subgroup of unitary matrices consisting of 2n×2n
orthogonal matrices with determinant one (see [3]).

Proof The function H(x, θ) can be expressed explicitly as

H(x, θ) = H ′(x)
∏

1≤i, j≤n

(1 − 2xi cos θ j + x2i )
−1

∏
1≤i< j≤n

2(cos θi − cos θ j ),

where

H ′(x) = 1

πn

n∏
i=1

(
1 − x2i

) ∏
1≤i< j≤n

(
xi − x j

) (
1 − xi x j

)
.

For all x ∈ N , θ ∈ �, the function Ht (x, y) is then positive. Consider the normalised density

H̃(x, θ) =
(∫

�

Fx (θ)dθ

)−1

Fx (θ),

where

Fx (θ) = H(x, θ)

H ′(x)
=

∏
1≤i, j≤n

(1 − 2xi cos θ j + x2i )
−1

∏
1≤i< j≤n

2(cos θi − cos θ j ).

Let 0 < ε < 1, and assume that |xi | < ε, for all 1 ≤ i ≤ n.Wehave that |1−2xi cos θ j+x2i | >

(1 − ε)2 and therefore

|Fx (θ)| ≤ 2n(n−1)(1 − ε)−2n2 , for all θ ∈ �.
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Since � is a bounded set, by the bounded convergence theorem it follows that for any θ ∈ �

lim
x∈N
x→0

H̃(x, θ) = 1

M

∏
1≤i< j≤n

2(cos θi − cos θ j ) (4.12)

= 1

M

∏
1≤i< j≤n

|eiθi − eiθ j ||eiθi − e−iθ j |,

where

M =
∫

�

∏
1≤i< j≤n

2(cos θi − cos θ j )dθ

is the normalisation constant. ��

4.6 A Note on Excursion Poisson Kernel Determinants

In all the examples of Sects. 4.3, 4.4 and 4.5 , we have imposed both absorbing and normal
reflecting boundary conditions on the domains under consideration. If, on the other hand,
the whole boundary ∂� is absorbing, then we require a different notion of hitting density
h(x, y) (since the paths need to ‘walk’ into the interior �◦ = � \ ∂� before reaching their
destination). Therefore, in order to study determinants of the form (4.1) and (4.2), we consider
the so-called excursion Poisson kernel h∂�(x, y), which can be defined as the limit

h∂�(x, y) = lim
ε→0

1

ε
h(x + εnx , y), x, y ∈ ∂�,

where h(z, y), z ∈ �, is the usual hitting density (Definition 2), and nx is the unit normal at
x pointing into � (see [26] for details). As we said before, intuitively, the excursion Poisson
kernel requires the path to ‘walk’ into � before reaching ∂�, and it is the scaling limit of
simple random walk excursion probabilities [25,26].

It can be shown that, similarly to Proposition 4.2, the excursion Poisson kernel satisfies a
conformal covariance property:

h∂�(x, y) = | f ′(x)|| f ′(y)|h∂�′( f (x), f (y)),

where f : � → �′ is any conformal transformation. This implies that the determinant of
excursion Poisson kernels:

det(h∂�(xi , y j ))ni, j=1∏n
i=1 h∂�(xi , yi )

, (4.13)

is a conformal invariant (see [25]). In particular, if � is the half unit circle of Sect. 4.5,
standard calculations show that the excursion Poisson kernel is given by

h∂�(x, θ) = 2

π

(1 − x2) sin θ

(1 − 2x cos θ + x2)2
, 0 < θ < π,

for x ∈ R, |x | < 1. The next proposition is the excursion Poisson kernel analogue of
Proposition 4.6.

Proposition 4.7 As in Proposition 4.6, let � be the set

� = {θ ∈ R
n : 0 < θ1 < θ2 < · · · < θn < π}.
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Then

lim
x1,...,xn→0

det(h∂�(xi , θ j ))
n
i, j=1∫

�
det(h∂�(xi , θ j ))

n
i, j=1dθ

= 1

M

n∏
j=1

sin θ j

∏
1≤i< j≤n

(cos θi − cos θ j ),

where the limit is taken over points −1 < xn < xn−1 < · · · < x1 < 1 and M is the
corresponding normalisation constant.

Proof Note that

det(h∂�(xi , θ j ))
n
i, j=1 =

(
2

π

)n n∏
i=1

(1 − x2i )
n∏
j=1

sin θ j det (B) ,

where B = (bi, j ) is the n × n matrix with positive entries

bi, j = 1

(1 − 2xi cos θ j + x2i )
2
.

The determinant det(B) can be expressed as the product (see [2]):

det(B) = det

(
1

1 − 2xi cos θ j + x2i

)n

i, j=1

per

(
1

1 − 2xi cos θ j + x2i

)n

i, j

, (4.14)

where the permanent of a square matrix is defined as

per(ai, j )
n
i, j=1 =

∑
σ∈Sn

n∏
i=1

ai,σ (i).

The determinant in the right hand side of (4.14) was considered in Sect. 4.5 and therefore we
can conclude that

det(h∂�(xi , θ j ))
n
i, j=1 = G(x)P(x, θ)

n∏
j=1

sin θ j

∏
1≤i< j≤n

2(cos θi − cos θ j ), (4.15)

where G(x) and P(x, θ) are given by

G(x) =
(
2

π

)n n∏
i=1

(1 − x2i )
∏

1≤i< j≤n

(xi − x j )(1 − xi x j ),

P(x, θ) =
∏

1≤i, j≤n

(1 − 2xi cos θ j + x2i )
−1per

(
1

1 − 2xi cos θ j + x2i

)n

i, j

.

For all −1 < xn < xn−1 < · · · < x1 < 1 and θ ∈ �, the determinant (4.15) is then positive
and, since the term G(x) depends only on the variables x1, . . . , xn , it holds that

det(h∂�(xi , θ j ))
n
i, j=1∫

�
det(h∂�(xi , θ j ))

n
i, j=1dθ

=
(∫

�

Qx (θ)dθ

)−1

Qx (θ),

where

Qx (θ) = P(x, θ)

n∏
j=1

sin θ j

∏
1≤i< j≤n

2(cos θi − cos θ j ).
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Finally, note that for each θ ∈ �, lim P(x, θ) = n! when xi → 0, 1 ≤ i ≤ n, and

|Qx (θ)| ≤ n! 2n(n−1)(1 − ε)−2(n2+n), for all θ ∈ �,

whenever |xi | < ε, 0 < ε < 1, for all 1 ≤ i ≤ n. Since � is bounded, the desired result
follows from the bounded convergence theorem. ��

Proposition 4.7 agreeswith certain asymptotics of an excursionPoisson kernel determinant
in [34], in the context of rectangular domains of the complex plane.

5 Circular Ensembles

In this section we consider limits of determinants of hitting densities of the (affine) form (4.2)

H(x, y) = det

(∑
k∈Z

ζ kh(xi , y j + mk)

)n

i, j=1

dy1 · · · dyn, (5.1)

where

ζ =
{
1 if n is odd
−1 if n is even,

and reveal some natural connectionswith circular ensembles of randommatrix theory, similar
to the connections we described in Sect. 4 with Cauchy type ensembles. In particular, by
considering the hitting density of the two-dimensional Brownian motion in an annulus on
the complex plane, we obtain a novel interpretation of the Circular Orthogonal Ensemble
(COE) (see Sect. 5.2). Another example is given in Sect. 5.1, where we review the well-
known model of n non-intersecting (one-dimensional) Brownian motions on the circle [16]
and detail its connection with the Circular Orthogonal Ensemble. An interesting consequence
is Proposition 5.3, which recovers the Karlin–McGregor (for n odd) and Liechty–Wang (for
n even) determinant formulas [19,30], for the transition density of n indistinguishable non-
intersecting Brownian motions on the circle, from the one in [16].

5.1 BrownianMotion on the Unit Circle

As awarmup before Sect. 5.2, we describe themodel of n non-intersectingBrownianmotions
on the unit circle, originally studied by Hobson andWerner [16]. Here, the Brownianmotions
on T = {eiθ : −π ≤ θ < π} are given by

βk := ei Bk , 1 ≤ k ≤ n,

where B1, B2, . . . , Bn are n independent one-dimensional Brownian motions and we assume
n ≥ 2. The following proposition shows that the above model can be studied by considering
the exit time of the n-dimensional Brownian motion B = (B1, B2, . . . , Bn) of the domain

Ãn := {ν ∈ R
n : νn < νn−1 < · · · < ν2 < ν1 < νn + 2π}.

Proposition 5.1 (Hobson and Werner [16]) Let B and Ãn as above. The transition density of
the Brownian motion B killed at its first exit from Ãn is given by

qt (θ, ν) =
∑
σ∈Sn

∑
k1+k2+···+kn=0

sgn(σ )

n∏
i=1

pt (θi , νσ(i) + 2πki ), t > 0, (5.2)
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where θ = (θ1, . . . , θn) ∈ Ãn, ν = (ν1, . . . , νn) ∈ Ãn, and

pt (x, y) = 1√
2π t

e− (x−y)2

2t

is the normal density with mean x and variance t.

The method of proof of the last proposition is by a path-switching argument, similar to the
one of Theorem 3.1. The following corollary is a restatement of part (i) of the main theorem
in [16] and describes the transition density for n labelled particles in Brownian motion on
the circle, constrained not to intersect until a fixed positive time.

Corollary 5.2 The (unnormalised) transition density of n non-intersecting Brownian motions
(β1, . . . , βn) on the circle is

q∗
t (eiθ , eiν) =

∑
σ∈Sn

∑
k1+k2+···+kn=0

mod n

sgn(σ )

n∏
i=1

pt (θi , νσ(i) + 2πki ), t > 0

where eiθ = (eiθ1 , . . . , eiθn ) ∈ T
n, eiν = (eiν1 , . . . , eiνn ) ∈ T

n, and

θ, ν ∈ C = Ãn ∩ {ν ∈ R
n : −π ≤ νn < π}.

Moreover, q∗
t (eiθ , eiν) can be expressed as the sum of n determinants:

q∗
t

(
eiθ , eiν

)
= 1

n

n−1∑
u=0

det

(∑
k∈Z

ηuk pt (θi , ν j + 2πk)

)n

i, j=1

. (5.3)

Proof Since any point in the circle is the projection of an infinite set of points in the real line
modulo 2π , the first part follows immediately by summing up in (5.2) over all the images of
ν = (ν1, . . . , νn) ∈ Ãn under translations of 2π , that is

q∗
t (eiθ , eiν) =

∑
�∈Z

qt (θ, ν + 2π�(1, . . . , 1)).

For the second part, if η = ei
2π
n is a complex root of unity, we can eliminate the condition

k1 + k2 + · · · + kn = 0, mod n, by using the identity

1

n

n−1∑
u=0

ηu
∑n

i=1 ki =
{
1 if

∑n
i=1 ki = 0, mod n

0 otherwise,

and (5.3) follows. ��
Interestingly, if we do not label the n Brownian particles in Corollary 5.2 (and therefore

the locations at time t > 0 are given by any of the n cyclic permutations of the vector
(eiν1 , . . . , eiνn ) along the circle), then the corresponding transition density becomes a single
determinant:

Proposition 5.3 The (unnormalised) transition density of n ‘indistinguishable’ non-
intersecting Brownian motions on the circle is given by

Ht

(
eiθ , eiν

)
= det

(∑
k∈Z

ei2πxk pt (θi , ν j + 2πk)

)n

i, j=1

, θ, ν ∈ C, (5.4)
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where

x =
{
0 if n is odd,
1
2 if n is even.

Remark In particular, Proposition 5.3 recovers the Karlin-McGregor (for n odd) and
Liechty-Wang (for n even) determinant formulas [19,30], for the transition density of n
indistinguishable non-intersecting Brownian motions on the circle.

Remark Using modular transformations for Jacobi theta functions, the entries of the matrix
in (5.4) can be written in terms of theta functions as follows:⎧⎨

⎩
1
2π θ3

(
− (ν j−θi )

2 , e−t/2
)

if n is odd,

1
2π θ4

(
− (ν j−θi )

2 , e−t/2
)

if n is even,

where θk(z, q) is the k-Jacobi theta function, z ∈ C, |q| < 1 (see [33]).

Proof of Proposition 5.3 The method of proof is by summing-up, in (5.3), the n different
destinations of the labelled process of Corollary 5.2. Fix θ ∈ C and ν ∈ C . If [�] ∈ Sn is
the shift by � = 0, 1, . . . , n − 1, let ν[�] be the unique representative of (ν[�](1), . . . , ν[�](n))

in C . Then, the n different ‘cyclic permutations’ of the vector eiν = (eiν1 , . . . , eiνn ) ∈ T
n

along the unit circle are given by

eiν[�] , � = 0, 1, . . . , n − 1.

With the notation of Corollary 5.2, it holds that

q∗
t

(
eiθ , eiν[�]

)
= 1

n

n−1∑
u=0

η−�usgn(σ ) det

(∑
k∈Z

ηuk pt (θi , ν j + 2πk)

)n

i, j=1

.

Finally, following the same argument as in the proof of Proposition 3.3, we obtain

n−1∑
�=0

q∗
t (eiθ , eiν[�]) = det

(∑
k∈Z

ei2πxk pt
(
θi , ν j + 2πk

))n

i, j=1

,

where

x =
{
0 if n is odd,
1
2 if n is even. ��

Following the notation of Proposition 5.3, consider now the normalised density

H̃t (e
iθ , eiν) = 1

Mt,θ
Ht (e

iθ , eiν), θ, ν ∈ C,

where

Mt,θ =
∫
C
Ht (e

iθ , eiν)dν.

The following proposition is essentially a reformulation of (ii) and (iii) of the main theorem
in [16], here stated in the case of n indistinguishable non-intersecting Brownian motions on
the circle. We also take into consideration the corresponding normalisation constants.
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Proposition 5.4 For any θ, ν ∈ C,

lim
t→∞ H̃t (e

iθ , eiν) = 1

M

∏
1≤i< j≤n

|eiν j − eiνi |, (5.5)

where

lim
t→∞ Mt,θ = M,

and M is the corresponding normalisation constant in the right hand side of (5.5).

Remark The above limit agrees with the eigenvalue density of the Circular Orthogonal
Ensemble (COE), defined on C = Ãn ∩ {ν ∈ R

n : −π ≤ νn < π}.

Proof of Proposition 5.4 Using the Poisson summation formula for each entry of the matrix
array in (5.4), we have

∑
k∈Z

ei2πxk pt (θi , ν j + 2πk) = 1

2π

∑
k∈Z

e−i(ν j−θi )(x+k)e− t
2 (x+k)2 .

Alternatively, the above can be seen as a direct consequence of the definitions by infinite
series of the Jacobi’s theta functions θ3 and θ4 (see second remark after Proposition 5.3).
Now, by standard properties of determinants we obtain

Ht (e
iθ , eiν) = 1

(2π)n

∑
k1<k2<···<kn

ki∈Z

det
(
e−iν j (x+ki )

)
det
(
eiθ j (x+ki )

)
gt (k),

where k = (k1, . . . , kn) and

gt (k) = exp

(
− t

2

n∑
i=1

(x + ki )
2

)
.

Remember from (5.4) that x = 0 if n is odd and x = 1/2 if n is even. Regarding the term
gt (k), note that over all sequences of integers k1 < k2 < · · · < kn , we have

min
ki∈Z

k1<···<kn

1

2

n∑
i=1

(x + ki )
2 = n(n − 1)(n + 1)

24
,

and the minimum is attained uniquely at ki = k′
i , 1 ≤ i ≤ n, where

x + k′
i = i − n + 1

2
, i = 1, 2, . . . , n.

Therefore

Ht (e
iθ , eiν) = gt (k′)

(2π)n

(
det(eiθ j (x+k′

i ))ni, j=1 det(e
−iν j (x+k′

i ))ni, j=1 + Qt (θ, ν)
)

,

where Qt (θ, ν) satisfies
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|Qt (θ, ν)| ≤ (n!)2
∑

k1<k2<···<kn
k �=k′

gt (k)

gt (k′)

= (n!)2
∑

k1<k2<···<kn
k �=k′

e
−t
(
1
2

∑n
i=1(x+ki )2− n(n−1)(n+1)

24

)
.

It is not difficult to check that Qt = o(1) uniformly in θ and ν, as t → ∞. Furthermore, the
normalised density H̃t (eiθ , eiν) can be written as

H̃t (e
iθ , eiν) =

(∫
C
Fθ
t (ν)dν

)−1

Fθ
t (ν),

where

Fθ
t (ν) = det(eiθ j (x+k′

i ))ni, j=1 det(e
−iν j (x+k′

i ))ni, j=1 + Qt (θ, ν).

For each fixed θ ∈ C ,

lim
t→∞ Fθ

t (ν) = det(eiθ j (x+k′
i ))ni, j=1 det(e

−iν j (x+k′
i ))ni, j=1, ∀ ν ∈ C,

and, moreover, for all t > T , T > 0 sufficiently large, we have

|Fθ
t (ν)| ≤ (n!)2(1 + K ), ∀ ν ∈ C,

where K is a positive constant. Therefore, by the bounded convergence theorem, for any
θ, ν ∈ C , it holds that

lim
t→∞ H̃t (e

iθ , eiν) = 1∫
C det(e−iν j (x+k′

i ))dν
det(e−iν j (x+k′

i ))ni, j=1

= 1

M

∏
1≤i< j≤n

|eiν j − eiνi |,

where M is the corresponding normalisation. For the last equality, see [32, p. 208]. ��

5.2 BrownianMotion in an Annulus

Let 0 < r < 1 and � be the annulus centered at the origin defined by

� = {z ∈ C : r < |z| < 1}.
Consider the ‘Brownian motion’ B in �, with normal reflection on the inner circle (of
radius r ), and stopped once it first hits the unit circle. The conformal invariance of the two-
dimensional Brownian motion allows us to see the trajectories of B as the conformal image
of a ‘Brownian motion’ β in the horizontal strip

�′ = {z ∈ C : 0 < Im(z) < | log r |},
with normal reflection on the real axis and absorbing boundary Im(z) = | log r |, see Fig. 11.
From Sect. 4.4, we know that if the process β starts at a point θ ∈ R, then the distribution of
its first hitting point at Im(z) = | log r | has the density

h(θ, ν) = 1

2| log r | sech
(

π

2| log r | (ν − θ)

)
, ν ∈ R.
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Fig. 11 Mapping the strip onto the annulus

Consider the bounded set

C = Ãn ∩ {ν ∈ R
n : −π ≤ νn < π},

where

Ãn := {ν ∈ R
n : νn < νn−1 < · · · < ν2 < ν1 < νn + 2π}.

Definition 3 Let η = ei
2π
n be the n-th root of unity. Define, for θ, ν ∈ C ,

Ha
r (eiθ , eiν) = det

(∑
k∈Z

ei2πxkh(θi , ν j + 2πk)

)n

i, j=1

, (5.6)

where

x =
{
0 if n is odd,
1
2 if n is even.

Remark The strip �′ ⊂ C is clearly invariant under horizontal translations by 2πk, k ∈ Z,
and therefore the determinant (5.6) is a determinant of hitting densities of the affine form
(4.2), described at the beginning of Sect. 4. Since (5.6) is defined as a natural continuous
analogue of the determinant in Proposition 3.3, we expect the determinant Ha

r (eiθ , eiν) to
be positive and be interpreted (informally) as the probability that n independent trajectories
B1, . . . , Bn of the process B in the annulus �, starting at positions

reiθ j , j = 1, . . . , n,

will hit the unit circle by first time at points

eiν j , j = 1, . . . , n,

with an angle in each of the intervals (ν j , ν j + dν j ), j = 1, . . . , n, and whose trajectories
are constrained to satisfy

Bj ∩ LE(Bj−1) = ∅, 1 < j ≤ n, and B1 ∩ LE(Bn) = ∅.

Note that we do not require that the trajectory which started at point reiθ j hits the unit circle
at the corresponding point eiν j .
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Remark If n is odd, the entries of the matrix in (5.6) can be written as

1

2π
θ3(0, r)θ2(0, r)

θ3

(
iπ

2| log r | (ν j − θi ), r
)

θ2

(
iπ

2| log r | (ν j − θi ), r
) ,

where θk(z, q) is the k-Jacobi theta function, z ∈ C, |q| < 1 (see [33]).

Consider the normalised density

H̃a
r (eiθ , eiν) = 1

Mr ,θ
Ha
r (eiθ , eiν),

where

Mr ,θ =
∫
C
Ha
r (eiθ , eiν)dν.

The following proposition gives the limit of H̃a
r (eiθ , eiν) as the inner radius r goes to zero.

This models the situation where the n Brownian motions start at the origin of the complex
plane.

Proposition 5.5 For any θ, ν ∈ C,

lim
r→0

H̃a
r (eiθ , eiν) = 1

M

∏
1≤i< j≤n

|eiνi − eiν j |, (5.7)

where

lim
r→0

Mr ,θ = M,

and M is the corresponding normalisation constant in the right hand side of (5.7).

Remark The above limit agrees with the eigenvalue density of a random matrix belonging
to the Circular Orthogonal Ensemble (COE), defined on C [9,32].

Proof of Proposition 5.5 By Lemma A.2 and standard properties of determinants, we can
express (5.6) as the sum

Ha
r (eiθ , eiν) = 1

(2π)n

∑
k1<k2<···<kn

ki∈Z

det(e−iν j (x+ki )) det(eiθ j (x+ki ))gr (k),

where k = (k1, . . . , kn) and

gr (k) =
n∏

i=1

sech(| log r |(x + ki )).

Here x = 0 if n is odd and x = 1/2 if n is even. The terms gr (k) are always positive and

gr (k) ≤ 2nr
∑n

i=1 |x+ki |.

If we minimise
∑n

i=1 |x + ki | over all sequences of integers k1 < k2 < · · · < kn , we obtain

min
ki∈Z

k1<···<kn

n∑
i=1

|x + ki | = n2 − [n]
4

, n ≡ [n] ∈ {0, 1} mod 2,
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and the minimum is attained uniquely at k′
i = ki , 1 ≤ i ≤ n, where

x + k′
i = i − n + 1

2
, i = 1, 2, . . . , n.

Hence, the function Ha
r (eiθ , eiν) can be expressed as

Ha
t (eiθ , eiν) = gr (k′)

(2π)n

(
det(eiθ j (x+k′

i ))ni, j=1 det(e
−iν j (x+k′

i ))ni, j=1 + Q′
t (θ, ν)

)
,

where Q′
t (θ, ν) satisfies

|Q′
t (θ, ν)| ≤ (n!)2

∑
k1<k2<···<kn

k �=k′

gr (k)

gr (k′)

≤ (n!)2 2n
∑

k1<k2<···<kn
k �=k′

r

(∑n
i=1 |x+ki |− n2−[n]

4

)
.

One can check that Q′
t = o(1) uniformly in θ and ν, as r → 0. Then, similar to the proof of

Proposition 5.4, the bounded convergence theorem implies that, for each θ, ν ∈ C

lim
r→0

H̃a
r (eiθ , eiν) = 1∫

C det(e−iν j (x+k′
i ))dν

det(e−iν j (x+k′
i ))ni, j=1

= 1

M

∏
1≤i< j≤n

|eiν j − eiνi |,

which concludes the proof. For the last identity, see [32, p. 208]). ��

6 Conclusions

We have developed connections between loop-erased walks in two dimensions and random
matrices, based on an identity of Fomin [8]. This complements earlier work of Sato and
Katori [34], where an example of this type of connection was exhibited in a slightly different
context, as explained in Sects. 1.3 and 4.6 . These connections resemble the well-known
relations between non-intersecting processes in one dimension and random matrices. For
two-dimensional Brownian motions in suitable simply connected domains, conditioned (in
an appropriate sense) to satisfy a certain non-intersection condition, we obtain, in particular
scaling limits, eigenvalue densities of Cauchy type.

As a first step towards the consideration of non-simply connected domains, we have
formulated and proved an affine (circular) version of Fomin’s identity. Applying this in the
context of independent Brownian motions in an annulus, conditioned to satisfy a circular
version of Fomin’s non-intersection condition, we obtain, in a particular scaling limit, the
circular orthogonal ensemble of random matrix theory.

Exploring relations between random matrices, SLE and related combinatorial models,
seems to be an interesting direction for future research.We hope that our preliminary findings
will motivate further developments in this direction.
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Appendix A

For any n-tuple of complex numbers x = (x1, . . . , xn) let

(x) = det(xi−1
j )ni, j=1 =

∏
1≤i< j≤n

(x j − xi ).

Lemma A.1 Let hi , 1 ≤ i ≤ n, be functions which are (complex) analytic at x. Let x =
(x, . . . , x) and y = (y1, . . . , yn). Then

lim
y→x

1

(y − x)
det(h j (yi ))

n
i, j=1 = C · det

(
∂ i−1
x h j (x)

)n
i, j=1

,

where C =∏n−1
j=1

1
j ! .

Proof By the Weierstrass preparation theorem, it suffices to prove the statement for y = xε

with ε → 0, where

xε = x + εδ, ε > 0, δ = (n − 1, n − 2, . . . , 0).

The statement now follows from arguments presented, for example, in [37]. This is given as
follows. Define the difference operator D with increment ε by

D0h(x) = h(x), Dh(x) = h(x + ε) − h(x)

Di+1h(x) = D(Dih(x)), n ≥ 1.

Then

Dih(x) =
i∑

k=0

(−1)i+k
(
i

k

)
h(x + kε), i ≥ 0, (A.1)

and the operators ∂x and D are related through the identity

lim
ε→0

Dih(x)

εi
= ∂ ix h(x).

Using the relation (A.1), we have the matrix decomposition:

[
Di−1h j (x)

]n
i, j=1

=
[
i−1∑
k=0

(−1)i−1+k
(
i − 1

k

)
h j (x + kε)

]n
i, j=1

=
[
(−1)i−1+k−1

(
i − 1

k − 1

)]n
i,k=1

[
h j (x + (k − 1)ε)

]n
k, j=1 .
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Note that the matrix in the middle is lower triangular, so its determinant is the product of its
diagonal entries and therefore

det
(
Di−1h j (x)

)n
i, j=1

= det
(
h j (x + (k − 1)ε)

)n
k, j=1 .

As a consequence, we obtain the following identity:

det(∂ i−1
x h j (x))

n
i, j=1 = lim

ε→0
ε−(n2) det

(
h j (x + (i − 1)ε)

)n
i, j=1 .

Finally, note that

(xε − x) = (εδ) = ε(
n
2)(δ) = (−ε)(

n
2)

n−1∏
j=1

j !,

and therefore

det(∂ i−1
x h j (x))

n
i, j=1 =

⎛
⎝n−1∏

j=1

j !
⎞
⎠ lim

ε→0

1

(xε − x)
det
(
h j (x + (ni)ε)

)n
i, j=1 ,

as required. ��
Lemma A.2 Let η = ei

2π
n be the n-th root of unity. Therefore∑

k∈Z
ei2πxkh(θ, ν + 2πk) = 1

2π

∑
k∈Z

sech (| log r |(x + k)) e−i(ν−θ)(x+k).

Proof If η = ei
2π
n is the n-th root of unity, note that the left-hand side above can be expressed

as ∑
k∈Z

ei2πxkh(θ, ν + 2πk) = 1

2| log r |
∑
k∈Z

ei2πxk f̂ (k), (A.2)

where f̂ (k) is the Fourier transform of the function

f (ξ) = | log r |
π

sech(| log r |ξ)e−i(ν−θ)ξ .

Therefore, applying the Poisson summation formula to the right hand side of (A.2), we obtain

1

2| log r |
∑
k∈Z

ei2πxk f̂ (k) = 1

2| log r |
∑
k∈Z

f (x + k)

= 1

2π

∑
k∈Z

sech(| log r | (x + k))e−i(ν−θ)(x+k).

��
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