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Abstract
We consider random walks on the infinite cluster of a conditional bond percolation model on
the infinite ladder graph. In a companion paper, we have shown that if the random walk is
pulled to the right by a positive bias λ > 0, then its asymptotic linear speed v is continuous
in the variable λ > 0 and differentiable for all sufficiently small λ > 0. In the paper at hand,
we complement this result by proving that v is differentiable at λ = 0. Further, we show
the Einstein relation for the model, i.e., that the derivative of the speed at λ = 0 equals the
diffusivity of the unbiased walk.

Keywords Einstein relation · Invariance principle · Ladder graph · Percolation ·
Random walk

Mathematics Subject Classification 82B43 · 60K37

1 Introduction

We continue our study of regularity properties in [14] of a biased random walk on an infinite
one-dimensional percolation cluster introduced by Axelson-Fisk and Häggström [3]. The
model was introduced as a tractable model that exhibits similar phenomena as biased random
walk on the supercritical percolation model in Z

d . The bias, whose strength is given by some
parameter λ > 0, favors the walk to move in a pre-specified direction.

There exists a critical bias λc ∈ (0,∞) such that for λ ∈ (0,λc) the walk has positive
speed while for λ ≥ λc the speed is zero, see Axelson-Fisk and Häggström [2]. The reason
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for the existence of these two different regimes is that the percolation cluster contains traps
(or dead ends) and the walk faces two competing effects. When the bias becomes larger
the time spent in such traps (peninsulas stretching out in the direction of the bias) increases
while the time spent on the backbone (consisting of infinite paths in the direction of the bias)
decreases. Once the bias is sufficiently large the expected time the walk stays in a typical
trap is infinite and the speed of the walk becomes zero.

Even though the model may be considered as one of the easiest non-trivial models for a
randomwalk on a percolation cluster, explicit calculation for the speed v = v(λ) could not be
carried out. The main result of our previous work [14] is that the speed (for fixed percolation
parameter p) is continuous in λ on (0,∞). The continuity of the speed may seem obvious,
but to our best knowledge, it has not been proved for a biased random walk on a percolation
cluster, and not even for biased random walk on Galton-Watson trees. Moreover, we proved
in [14] that the speed is differentiable in λ on (0,λc /2) and we characterized the derivative
as the covariance of a suitable two-dimensional Brownian motion.

This paper studies the regularity of the speed in λ = 0. In particular, we establish the
Einstein relation for the model: we prove that v is differentiable at λ = 0 and that the
derivative at λ = 0 equals the variance of the scaling limit of the unbiased walk.

The Einstein relation is conjectured to be true in general for reversible motions which
behave diffusively. We refer to Einstein [9] for a historical reference and to Spohn [29] for
further explanations. A weaker form of the Einstein relation holds indeed true under such
general assumptions and goes back to Lebowitz and Rost [22]. However, the Einstein relation
in the stronger form as described above was only established (or disproved) in examples. For
instance, Loulakis [24,25] considers a tagged particle in an exclusion process, Komorowski
and Olla [21] and Avena, dos Santos and Völlering [1] investigate other examples of space-
time environments.

Komorowski and Olla [20] treat a first example of random walks with random conduc-
tances on Z

d , d ≥ 3, and Gantert, Guo and Nagel [12] establish the Einstein relation for
random walks among i.i.d. uniformly elliptic random conductances on Z

d , d ≥ 1. In dimen-
sion one the Einstein relation can be proved via explicit calculations, see Ferrari et al. [11].
There are only few results for non-reversible situations, see Guo [16] and Komorowski and
Olla [21]. We want to stress that while the differentiability of the speed might appear as
natural or obvious, there are examples where the speed is not differentiable, see Faggionato
and Salvi [10].

Despite this recent progress not much is known in models with hard traps, e.g. random
conductances without uniform ellipticity condition or percolation clusters. The first result
in this direction is Ben Arous et al. [4] that proves the Einstein relation for certain biased
random walks on Galton-Watson trees. An additional difficulty in our model is that the traps
are not only hard but do also have an influence on the structure of the backbone. Our paper
is the first, to our knowledge, to prove the Einstein relation for a model with hard traps and
dependence of traps and backbone. Although the structure of the traps is elementary the
decoupling of traps and backbone is one of the major difficulties we encountered.

We prove a quenched (joint) functional limit theorem via the corrector method, see Sect. 7,
with additional moment bounds for the distance of the walk from the origin. The law of the
unbiased walk is compared with the law of the biased one using a Girsanov transform. The
difference between these measures is quantified using the above joint limit theorem. Finally,
we use regeneration times that depend on the bias and appropriate double limits to conclude
that the derivative of the speed equals a covariance, see Sect. 8. It remains then to identify
the covariance as the variance of the unbiased walk, see Eq. (2.6).
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Einstein Relation for RandomWalk 739

Fig. 1 A piece of the cluster sampled according to P∗
p

2 Preliminaries andMain Results

In this section we introduce the percolation model. The reader is referred to Fig. 1 for an
illustration.

Percolation on the ladder graph Let L = (V , E) be the infinite ladder graph with vertex
set V = Z × {0, 1} and edge set E = {〈v,w〉 : v,w ∈ V , |v − w| = 1} where 〈v,w〉 is
an unordered pair and | · | the standard Euclidean norm in R

2. We also write v ∼ w for
〈v,w〉 ∈ E , and say that v and w are neighbors.

Axelson-Fisk and Häggström [3] introduced a percolation model on L that may be called
‘i. i. d. bond percolation on the ladder graph conditioned on the existence of a bi-infinite path’.
We give a short review of this model.

Let Ω := {0, 1}E . We call Ω the configuration space, its elements ω ∈ Ω are called
configurations. A path inL is a finite or infinite sequence of distinct edges connecting a finite
or infinite sequence of neighboring vertices. For a given ω ∈ Ω , we call a path π in L open
if ω(e) = 1 for each edge e from π . If ω ∈ Ω and v ∈ V , we denote by Cω(v) the connected
component in ω that contains v, i. e.,

Cω(v) = {w ∈ V : there is an open path in ω connecting v and w}.
We write x : V → Z and y : V → {0, 1} for the projections from V to Z and {0, 1},
respectively. Then v = (x(v), y(v)) for every v ∈ V . We call x(v) and y(v) the x- and
y-coordinate of v, respectively. For N1, N2 ∈ N, let ΩN1,N2 be the set of configurations in
which there exists an open path from some v1 ∈ V with x(v1) = −N1 to some v2 ∈ V with
x(v2) = N2. Further, let Ω∗ := ⋂

N1,N2≥0 ΩN1,N2 be the set of configurations which have
an infinite path connecting −∞ and +∞.

Denote by F the σ -field on Ω generated by the projections pe : Ω → {0, 1}, ω 
→ ω(e),
e ∈ E . For p ∈ (0, 1), let μp be the probability distribution on (Ω,F) which makes
(ω(e))e∈E an independent family of Bernoulli variables with μp(ω(e) = 1) = p for all
e ∈ E . Then μp(Ω

∗) = 0 by the Borel-Cantelli lemma. Write Pp,N1,N2(·) := μp(· ∩
ΩN1,N2)/μp(ΩN1,N2) for the probability distribution on Ω that arises from conditioning on
the existence of an open path from x-coordinate −N1 to x-coordinate N2. The measures
Pp,N1,N2(·) converge weakly as N1, N2 → ∞ as was shown in [3, Theorem 2.1]:

Theorem 2.1 The distributions Pp,N1,N2 converge weakly as N1, N2 → ∞ to a probability
measure P∗

p on (Ω,F) with P∗
p (Ω

∗) = 1.

For any ω ∈ Ω∗, we write C = Cω for the P∗
p -a. s. unique infinite open cluster. We write

0 := (0, 0) und define Ω0 := {ω ∈ Ω∗ : 0 ∈ C} and
Pp(·) := P∗

p (·|Ω0).

Random walk on the infinite percolation cluster Throughout the paper, we keep p ∈ (0, 1)
fixed and consider random walks in a percolation environment sampled according to Pp .
The model to be introduced next goes back to Axelson-Fisk and Häggström [2], who used a
different parametrization.

We work on the space VN0 equipped with the σ -algebra G = σ(Yn : n ∈ N0) where
Yn : VN0 → V denotes the projection from VN0 onto the nth coordinate. Let Pω,λ be the
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740 N. Gantert et al.

distribution on VN0 that makes Y := (Yn)n∈N0 a Markov chain on V with initial position 0
and transition probabilities pω,λ(v,w) = Pω,λ(Yn+1 = w | Yn = v) defined via

pω,λ(v,w) =

⎧
⎪⎨

⎪⎩

eλ(x(w)−x(v))

eλ+1+e−λ 1{ω(〈v,w〉)=1} if v ∼ w,
∑

u∼v
eλ(x(u)−x(v))

eλ+1+e− λ 1{ω(〈u,v〉)=0} if v = w,

0 otherwise.

(2.1)

The random walk (Yn)n∈N0 is the weighted random walk on the ladder graph L with
edge conductances cω,λ(v,w) = eλ(x(v)+x(w))1{ω(〈v,w〉)=1} for v ∼ w and cω,λ(v, v) =∑

u∼v e
λ(x(u)+x(v))1{ω(〈u,v〉)=0}, see [23, Sect. 9.1] for some background. We write P0

ω,λ to
emphasize the initial position 0, and Pv

ω,λ for the distribution of the Markov chain with
the same transition probabilities but initial position v ∈ V . The joint distribution of ω and
(Yn)n∈N0 on (Ω×V

N0 ,F⊗G)whenω is drawn at random according to a probabilitymeasure
Q on (Ω,F) is denoted by Q × Pv

ω,λ =: P
v
Q,λ

where v is the initial position of the walk.

(Notice that, in slight abuse of notation, we consider Yn also as a mapping from Ω × VN0

to V .) We refer to [14] for a formal definition. We write P
v
λ for P

v
Pp,λ

, Pλ for P
0
λ and P

∗
λ for

P
0
P∗
p ,λ

. If the walk starts at v = 0, we sometimes omit the superscript 0. Further, if λ = 0, we

sometimes omit λ as a subscript, and write pω for pω,0, and P for P0.

The speed of the random walkAxelson-Fisk and Häggström [2, Proposition 3.1] showed that
(Yn)n∈N0 is recurrent under P0 and transient under Pλ for λ = 0. Moreover, there is a critical
bias λc ∈ (0,∞) separating the ballistic from the sub-ballistic regime. More precisely, if
one denotes by Xn := x(Yn) the projection of Yn on the x-coordinate, the following result
holds.

Proposition 2.2 For any λ ≥ 0, there exists a deterministic constant v(λ) = v(p,λ) ∈ [0, 1]
such that

Xn
n → v(λ) Pλ-a. s. as n → ∞.

Further, there is a critical biasλc = λc(p) > 0 (for which an explicit expression is available)
such that

v(λ) > 0 for 0 < λ < λ
c

and v(λ) = 0 for λ = 0 and λ ≥ λ
c
.

Proof For λ > 0 this is Theorem 3.2 in [2]. For λ = 0, the sequence of increments (Xn −
Xn−1)n∈N is ergodic under P by Lemma 4.4 below. Birkhoff’s ergodic theorem implies
v(0) = limn→∞ Xn

n = E[X1] = 0P-a. s. ��

Functional central limit theorem for the unbiased walk In a preceding paper [14], we have
shown that v is differentiable as a function of λ on the interval (0,λc /2), and continuous on
(0,∞). In this paper, we show that v is also differentiable at 0 with v′(0) = σ 2 where σ 2

is the limiting variance of n−1/2Xn under the distribution P0. This is the Einstein relation
for the model. Clearly, a necessary prerequisite for the Einstein relation is the central limit
theorem for the unbiased walk.

Before we provide the central limit theorem for the unbiased walk, we introduce some
notation. As usual, for t ≥ 0, we write �t� for the largest integer ≤ t . Then, we define

Bn := ( X�nt�√
n

)
0≤t≤1
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Einstein Relation for RandomWalk 741

for each n ∈ N. The random function Bn takes values in the Skorokhod space D([0, 1]) of
right-continuous real-valued functions with existing left limits. We denote by “⇒” conver-
gence in distribution of random variables in the Skorokhod space D[0, 1], see [6, Chapter 3]
for details.

Theorem 2.3 There exists a constant σ = σ(p) ∈ (0,∞) such that

Bn ⇒ σ B under Pω (2.2)

for Pp-almost all ω ∈ Ω where B is a standard Brownian motion.

It is worth mentioning that an annealed invariance principle for (Bn)n∈N follows without
much effort from [7]. In principle, we do not require a quenched central limit theorem for the
proof of the Einstein relation. However, we do require a joint central limit theorem for Bn

together with a certain martingale Mn , see Theorem 2.5 below. Therefore, we cannot directly
apply the results from [7]. On the other hand, in the proof of the Einstein relation we use
precise bounds on the corrector. Using similar arguments as Berger and Biskup [5], these
bounds almost immediately give the quenched invariance principle.

Einstein relation We are now ready to formulate the Einstein relation:

Theorem 2.4 The speed v is differentiable at λ = 0 with derivative

v′(0) = limλ↓0 v(λ)

λ
= σ 2 (2.3)

where σ 2 is given by Theorem 2.3.

The joint functional central limit theorem As in [14], the proof of the differentiability of the
speed is based on a joint central limit theorem for Xn and the leading term of a suitable
density.

To make this precise, we first introduce some notation. For v ∈ V , let Nω(v) := {w ∈ V :
pω,0(v,w) > 0}. Thus, Nω(v) = ∅, even for isolated vertices. For w ∈ Nω(v), the function
log pω,λ(v,w) is differentiable at λ = 0. As log pω,λ(v,w) is differentiable at λ = 0, we
have

log pω,λ(v,w) = log pω(v,w) + λ νω(v,w) + λ o(1) (2.4)

where νω(v,w) is the derivative of log pω,λ(v,w) at 0 and o(1) converges to 0 as λ → 0.
The one-step transition probability pω,λ(v,w) depends other than on λ only on the local
configuration around v in ω and the position ofw relative to v. Because of the discrete nature
of the model, there are only finitely many such local configurations. Consequently, the error
term o(1) → 0 as λ → 0 uniformly (in v, w and ω).

For all v and all ω, pω,λ(v, ·) is a probability measure on Nω(v) and hence
∑

w∈Nω(v) νω(v,w)pω(v,w) = 0.

Therefore, for fixed ω, the sequence (Mn)n∈N0 where M0 = 0 and, for n ∈ N,

Mn = ∑n
k=1 νω(Yk−1, Yk)

is a Pω-martingale with respect to the canonical filtration of the walk (Yk)k∈N0 . Clearly, Mn

is a (measurable) function of ω and (Yk)k∈N0 and thus a random variable on Ω × VN0 . The
sequence (Mn)n∈N0 is also a martingale under the annealed measure P.
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742 N. Gantert et al.

Theorem 2.5 Let p ∈ (0, 1). Then, for Pp-almost all ω ∈ Ω ,

(Bn(t), n
−1/2M�nt�) ⇒ (B, M) under Pω (2.5)

where (B, M) is a two-dimensional centered Brownian motion with deterministic covariance
matrix Σ = (σi j )i, j=1,2. Further, it holds that

σ12 = σ21 = E[B(1)M(1)] = E[B(1)2] = σ 2. (2.6)

As the martingale Mn has bounded increments, the Azuma-Hoeffding inequality [30,
E14.2] applies and gives the following exponential integrability result, see the proof of
Proposition 2.7 in [14] for details.

Proposition 2.6 For every t > 0,

supn≥1 Eλ[etn−1/2Mn ] < ∞. (2.7)

We finish this section with an overview of the steps that lead to the proof of Theorem 2.4.

1. In Sect. 7, we prove the joint central limit theorem, Theorem 2.5. The proof is based
on the corrector method, which is a decomposition technique in which Yn is written as
a martingale plus a corrector of smaller order. The martingale is constructed in Sect. 6.
Many arguments are based on the method of the environment seen from the point of view
of the walker.

2. In Lemma 8.1, we prove that

sup
n∈N

1

n
E

[
max

k=1,...,n
X2
k

]
< ∞. (2.8)

The proof is based on estimates for the almost sure fluctuations of the corrector derived
in Sect. 7.

3. Using the joint central limit theorem and (2.8), we show in Proposition 8.3 that, for any
α > 0,

lim
λ→0,

λ2 n→α

Eλ[Xn]
λ n

= E[B(1)M(1)]. (2.9)

Equation (2.9) is a weak form of the Einstein relation going back to Lebowitz and Rost
[22].

4. Finally, we show in Sect. 8.4 that, for any α > 0,

lim
λ→0,

λ2 n→α

[
v(λ)

λ
− Eλ[Xn]

λ n

]

= 0. (2.10)

Notice that by (2.9) the limit in (2.10) does not depend on α > 0. Hence, (2.10) together
with v(0) = 0 implies

v′(0) = lim
λ→0,

λ2 n→α

Eλ[Xn]
λ n

= E[B(1)M(1)]. (2.11)
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3 Background on the PercolationModel

In this section we provide some basic results on the percolation model.

Ergodicity of the percolation distribution To ease notation, we identify V with the additive
group Z × Z2. For instance, we write (k, 1) + (n, 1) = (k + n, 0) for k, n ∈ Z. With this
notation, for v ∈ V , we define the shift θv : V → V , w 
→ w − v. The shift θv canonically
extends to a mapping on the edges and hence to a mapping on the configurations ω ∈ Ω .
In slight abuse of notation, we denote all these mappings by θv . The mappings θv form a
commutative group since θvθw = θv+w .

The next result is contained in the proof of Lemma 5.5 in [2].

Lemma 3.1 The probability measure P∗
p is ergodic w. r. t. the family of shifts θv , v ∈ V ,

that is, it is invariant under all shifts θv and for all shift-invariant sets A ∈ F , we have
P∗
p (A) ∈ {0, 1}.

Cyclic decomposition We introduce a decomposition of the percolation cluster into inde-
pendent cycles. A similar decomposition for the given model was first introduced in [2]. If
(i, 1) is isolated in ω, we call (i, 0) a pre-regeneration point. Cycles begin and end at pre-
regeneration points. These are bottlenecks in the graph which the walk has to visit in order to
get past. Let . . . , Rpre

−2, R
pre
−1 , R

pre
0 , Rpre

1 , Rpre
2 , . . . be an enumeration of the pre-regeneration

points such that . . . < x(Rpre
−1) < 0 ≤ x(Rpre

0 ) < x(Rpre
1 ) < . . . .

0 Rpre
0 Rpre

1Rpre
−1

LetRpre be the set of all pre-regenerationpoints. Let Ei,≤, Ei,≥ ⊆ E consist of those edges
with both endpoints having x-coordinate≤ i or≥ i , respectively. Further, let Ei,< := E\Ei,≥
and Ei,> := E \ Ei,≤. We denote the subgraph of ω with vertex set {v ∈ V : a ≤ x(v) ≤ b}
and edge set {e ∈ Ea,≥ ∩ Eb,< : ω(e) = 1} by [a, b) and call [a, b) a block (of ω). The
pre-regeneration points split the percolation cluster into blocks

ωn := [x(Rpre
n−1), x(R

pre
n )), n ∈ Z.

There are infinitely many pre-regeneration points on both sides of the origin Pp-a. s. The
randomwalk (Yn)n≥0 under P can be viewed as a randomwalk among random conductances
(ω(e))e∈E (with additional self-loops). For n ∈ Z, we define Cn to be the effective con-
ductance between Rpre

n−1 and Rpre
n . To be more precise, consider the nth cycle ωn as a finite

network. Then the effective resistance between Rpre
n−1 and Rpre

n is well-defined, see [23, Sect.
9.4]. We denote this effective resistance by 1/Cn and the effective conductance by Cn . We
further define Ln := L(ωn) to be the length of the nth cycle, i. e., Ln = x(Rpre

n ) − x(Rpre
n−1).

We summarize the two definitions:

Cn := Ceff(Rpre
n−1 ↔ Rpre

n ) and Ln = x(Rpre
n ) − x(Rpre

n−1). (3.1)

For later use, we note the following lemma.
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Rpre
−1 0 Rpre

0

Rpre
−1 0 Rpre

0

Fig. 2 The original percolation configuration and the backbone

Lemma 3.2 Under Pp, the family {(Cn, Ln) : n ∈ Z} is independent and the (Cn, Ln),
n ∈ Z \ {0}, are identically distributed. Further, there is some ϑ > 0 such that

Ep[exp(ϑ/Cn)] + Ep[exp(ϑLn)] < ∞ (3.2)

for all n ∈ Z.

Proof ByLemma 3.3 in [14], under Pp , the family (θ Rpre
n−1ωn)n∈Z is independent and all cycles

except cycle 0 have the same distribution. Hence the family ((Cn, Ln))n∈Z is independent
and the (Cn, Ln), n ∈ Z, n = 0 are identically distributed. Lemma 3.3(b) in [14] gives
that L1 = x(Rpre

1 ) − x(Rpre
0 ) has a finite exponential moment of some order ϑ ′ > 0. By

Raleigh’s monotonicity law [23, Theorem 9.12], C−1
1 , the effective resistance between Rpre

1
and Rpre

0 , increases if open edges between these two points are closed. So, the effective
resistance between Rpre

1 and Rpre
0 is bounded above by the effective resistance of the longest

self-avoiding open path connecting these two points. This path has length at most 2L1 and
thus, by the series law, resistance of at most 2L1. Therefore, C

−1
1 has a finite exponential

moment of order ϑ ′/2.
The proof of the statements concerning the cycle θ Rpre

−1ω0 can be accomplished analo-
gously, but requires revisiting the proof of Lemma 3.3 in [14]. We omit further details. ��

We close this section with the definition of the backbone. We call a vertex v forwards-
communicating (in ω) if it is connected to +∞ via an infinite open path that does not
visit any vertex u with x(u) < x(v). Finally, we define B := B(ω) := {v ∈ V :
v is forwards-communicating (in ω)}.

4 The Environment Seen from theWalker and Input from Ergodic
Theory

Wedefine the process of the environment seen from the particle (ω(n))n∈N0 byω(n) := θYnω,
n ∈ N0. It can be understood as a process under Pω as well as under P0. For later use, we
shall show that (ω(n))n≥0 is a reversible, ergodic Markov chain under P0.

Lemma 4.1 The sequence (ω(n))n∈N0 is a Markov process with state space Ω under Pω,
P

∗
0 and P0, with initial distributions δω, P∗

p and Pp, respectively. In each of these cases, the
transition kernel M(ω, dω′) is given by

M(ω, f ) = Eω[ f (θY1ω)] = 1

3

∑

v∼0

(
1{ω(0,v)=1} f (θvω) + 1{ω(0,v)=0} f (ω)

)
, (4.1)

ω ∈ Ω , f nonnegative and F-measurable. Moreover, (ω(n))n∈N0 is reversible and ergodic
under P0.
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Einstein Relation for RandomWalk 745

Proof The proof of (4.1) is a standard calculation and can be done along the lines of the
corresponding one for random walk in random environment, see e. g. [31, Lemma 2.1.18].
To prove reversibility of (ω(n))n∈N0 under P0, notice that, for every bounded and measurable
f : Ω → R and all v ∈ V with v ∼ 0,

Ep[ f (θvω)1{ω(0,v)=1}] = Ep[ f (ω)1{ω(0,−v)=1}]. (4.2)

This can be verified along the lines of the proof of (2.2) in [5]. Arguing as in the proof of
Lemma 2.1 in [5], (4.2) implies that

Ep[ f (ω)Mg(ω)] = Ep[g(ω)Mf (ω)] (4.3)

for all measurable and bounded f , g : Ω → R, which is the reversibility of (ω(n))n∈N0

under P0. To prove ergodicity, we argue as in the proof of Lemma 4.3 in [7]. Fix an invariant
set A′ ⊆ Ω , i. e.,

M(ω, A′) = 1 for Pp-almost all ω ∈ A′.

By Corollary 5 on p. 97 in [28], it is enough to show that Pp(A′) ∈ {0, 1}. If Pp(A′) = 0,
there is nothing to show. Thus assume that Pp(A′) > 0. Since Pp is concentrated on Ω0, we
can ignore the part of A′ that is outside Ω0 and can thus assume A′ ⊆ Ω0. From the form of
M , we deduce that

for Pp-almost all ω ∈ A′ we have that θvω ∈ A′ for all v ∈ Cω(0).

To avoid trouble with exceptional sets of Pp-probability 0, we define A := {ω ∈ A′ :
θvω ∈ A′ for all v ∈ Cω(0)}. Since A ⊆ A′, it suffices to show Pp(A) = 1. First notice that
Pp(A) = Pp(A′) > 0 and that

ω ∈ A and v ∈ Cω(0) imply θvω ∈ A. (4.4)

Plainly,

A ⊆ B := {ω ∈ Ω : θvω ∈ A for some v ∈ V }.
By definition, B is invariant under shifts θv , v ∈ V . Since P∗

p (B) ≥ P∗
p (A) > 0, the ergodicity

of P∗
p (see Lemma 3.1) implies P∗

p (B) = 1. We shall now show that B ∩ Ω0 ⊆ A up to a set
of P∗

p measure zero. Once this is shown, we can conclude that P∗
p (A) = P∗

p (Ω0), in particular,
Pp(A) = 1. In order to show B ∩ Ω0 ⊆ A P∗

p -a. s., pick an arbitrary ω ∈ B ∩ Ω0 such that ω
has only one infinite connected component Cω. (The set ofω with this property has measure 1
under P∗

p .) By definition of the set B, there exists a v ∈ V such that θvω ∈ A. Since A ⊆ Ω0,
the origin 0 must be in the infinite connected component of θvω or, equivalently, v is in the
infinite connected component ofω. From the uniqueness of the infinite connected component
together with ω ∈ Ω0, we thus infer v ∈ Cω(0). This is equivalent to−v ∈ Cθvω(0). Together
with θvω ∈ A this implies ω = θ−vθvω ∈ A by means of (4.4). The proof is complete. ��

The lemma has the following useful corollary.

Lemma 4.2 Let f : Ω → R be integrable with respect to Pp. Then, for Pp-almost all ω ∈ Ω ,
we have

lim
n→∞

1

n

n−1∑

k=0

f (ω(k)) = Ep[ f ] Pω-a. s. (4.5)
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746 N. Gantert et al.

Proof As (ω(n))n∈N0 is reversible and ergodic with respect to P0, we infer

lim
n→∞

1

n

n−1∑

k=0

f (ω(k)) = E0[ f (ω(0))] P0-a. s. (4.6)

from Birkhoff’s ergodic theorem. As the law of ω(0) under P0 is Pp , we haveE0[ f (ω(0))] =
Ep[ f ]. Hence (4.5) follows from (4.6) and the definition of P0. ��

Next we see that if the walker sees the same environment at two different epochs, then,
with probability 1, the position of the walker at those two epochs is actually the same. This
allows to reconstruct the random walk from the environment seen from the walker.

Lemma 4.3 We have P∗
p (θ

vω = θwω) = 0 for all v,w ∈ V , v = w. The same statement
holds with P∗

p replaced by Pp.

Proof By shift invariance, wemay assumew = 0 and v = 0. Call a vertex u ∈ V backwards-
communicating (in ω) if there exists an infinite open path in ω which contains u but no vertex
with strictly larger x-coordinate. Define T = (Ti )i∈Z by letting

Ti :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

00 if neither (i, 0) nor (i, 1) are backwards-communicating;

01 if (i, 0) is not backwards-communicating but (i, 1) is;

10 if (i, 0) is backwards-communicating but (i, 1) is not;

11 if (i, 0) and (i, 1) are backwards-communicating.

Notice that θvω = ω implies θvT = T where θvTi records whether the vertices (i, 0) and
(i, 1) are backwards-communicating in θvω. Under P∗

p , T is a time-homogeneous, stationary,
irreducible and aperiodicMarkov chainwith state space {01,10,11} by [3, Theorem 3.1 and
the form of the transitionmatrix on p. 1111]. From this one can deduce P∗

p (θ
vT = T) = 0 and,

in particular, P∗
p (θ

vω = ω) = 0. Finally, notice that, for every event A ∈ F , P∗
p (A) = Pp(A)

whenever P∗
p (A) ∈ {0, 1}. ��

Lemma 4.4 The increment sequences (Xn − Xn−1)n∈N and (Yn − Yn−1)n∈N are ergodic
under P.

Proof Define a mapping ϕ : Ω × Ω → V via

ϕ(ω, ω′) =
{

v if ω′ = θvω for a unique v ∈ V ;
0 otherwise.

It can be checked thatϕ is product-measurable. Further,P-a. s.,Yn−Yn−1 = ϕ(ω(n−1), ω(n))

for all n ∈ N. Combining the ergodicity of (ω(n))n∈N0 underP0 (seeLemma4.1)withLemma
5.6(c) in [3], we infer that (Yn −Yn−1)n∈N = (ϕ(ω(n−1), ω(n)))n∈N is ergodic. (To formally
apply the lemma, one may extend (ω(n))n∈N0 to a stationary ergodic sequence (ω(n))n∈Z
using reversibility.) Then also (Xn − Xn−1)n∈N = (x(Yn − Yn−1))n∈N is ergodic under P

again by Lemma 5.6(c) in [3]. ��

5 Preliminary Results

Hitting probabilities The next lemma provides bounds on hitting probabilities for biased
random walk that we use later on.
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Fig. 3 Construction of the graph
G

u v w

[u,w)

u v w

G

Lemma 5.1 Let L, R ∈ N and u, v, w ∈ Rpre be such that x(v) − x(u) = L� 1
λ
� and

x(w) − x(v) = R� 1
λ
�. Then, with Tu and Tw denoting the first hitting times of (Yn)n∈N0 at u

and w, respectively, we have

1 − e−R

1 − e−R + 6(e2L − 1)
≤ Pv

ω,λ(Tu < Tw) ≤ 1 − e−2R

1 − e−2R + 1
5 (e

L − 1)
(5.1)

for all sufficiently small λ ∈ (0,λ0] for some λ0 > 0 not depending on L, R. In particular,
for these λ,

1

6e2L − 5
≤ Pv

ω,λ(Tu < ∞) ≤ 5

4 + eL
. (5.2)

Moreover, for L = 1 and R = ∞, for all sufficiently small λ > 0, we have

Pv
ω,λ(Tu < ∞) ≤ 4

10
. (5.3)

Proof Since u, w are pre-regeneration points, it suffices to consider the finite subgraph [u, w).
As v is also a pre-regeneration point, the walk cannot visit both u andw during one excursion
from v to v. Standard electrical network theory thus gives

Pv
ω,λ(Tu < Tw) = Reff (v ↔ w)

Reff (u ↔ v) + Reff (v ↔ w)

where Reff (u ↔ v) = Reff,λ(u ↔ v) denotes the effective resistance between u and v in
[u, w), see [23, Proposition 9.5]. Let us first prove the upper bound by applying Raleigh’s
monotonicity law [23, Theorem 9.12]. We add all edges left of v that were not present in the
cluster ω. This decreases the effective resistanceReff (u ↔ v) between u and v. On the right
of v we delete all edges but a simple path from v to w. This increases the effective resistance
Reff (v ↔ w).

The graph obtained is denoted by G, see Fig. 3 for an example. We conclude

Pv
ω,λ(Tu < Tw) ≤ Reff,G(v ↔ w)

Reff,G(u ↔ v) + Reff,G(v ↔ w)

where Reff,G denotes the corresponding effective resistance in G. We may assume without
loss of generality that v = 0. Recall that the conductance of an open edge is eλ k where k is
the sum of the x-coordinates of the two end points of the edge. Then, by the series law, we
can bound Reff,G(v ↔ w) from above by

Reff,G(v ↔ w) ≤ ∑2R� 1
λ
�

k=1 e− λ k = e− λ

1 − e− λ
(1 − e−λ 2R� 1

λ
�) ≤ 1 − e−2R

1 − e− λ
.

From the Nash-Williams inequality [23, Proposition 9.15], we infer

Reff,G(u ↔ v) ≥ ∑L� 1
λ
�

k=1

(
2e− λ(2k−1))−1 = eλ

2

e2λ L� 1
λ
� − 1

e2λ − 1
≥ 1

2

e2(1−λ)L − 1

e2λ − 1
.
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Consequently,

Pv
ω,λ(Tu < Tw) ≤ 1 − e−2R

1 − e−2R + 1
2 (e

2(1−λ)L − 1) 1−e−λ

e2λ−1

≤ 1 − e−2R

1 − e−2R + 1
5 (e

L − 1)
(5.4)

for all sufficiently small λ > 0 independent of L, R. The proof of the lower bound is similar.
We add all edges right of v and keep only one simple path left of v. For this new graph
G̃ we bound the effective resistances as follows. From the Nash-Williams inequality [23,
Proposition 9.15], we infer

Reff,G̃(v ↔ w) ≥ ∑R� 1
λ
�

k=1

(
2eλ(2k−1))−1 = e−λ

2

1 − e−λ 2R� 1
λ
�

1 − e−2λ
≥ 1

5

1 − e−R

1 − e−λ

for all sufficiently small λ > 0. Moreover,

Reff,G̃(u ↔ v) ≤ ∑2L� 1
λ
�

k=1 eλ k = eλ

eλ − 1
(eλ 2L� 1

λ
� − 1) ≤ eλ

eλ − 1
(e2L − 1).

The lower bound in (5.1) now follows. Equation (5.2) follows from (5.1) by letting R → ∞.
Equation (5.3) follows from (5.4) and the observation that the term on the right-hand side of
(5.4) with R = ∞ and L = 1 tends to 4

3+e2
= 0.3850 . . . for λ → 0. ��

6 Harmonic Functions and the Corrector

Throughout this section, we consider the unbiased walk, i.e., we assume λ = 0. We use
harmonic functions to construct a martingale approximation for Xn . As a result, Xn can be
written as a martingale plus a corrector.

The corrector method The corrector method has been used in various setups, see e.g. [5] and
[26]. In the present setup, the method works as follows.
We seek a function ψ : Ω × V → R such that, for each fixed ω, ψ(ω, ·) is harmonic in the
second argument with respect to the transition kernel of Pω, that is, Ev

ω[ψ(ω, Y1)] = ψ(ω, v)

for all v ∈ Cω. In what follows, we shall sometimes suppress the dependence of ψ on ω in
the notation so that the above condition becomes

Ev
ω[ψ(Y1)] = ψ(v), v ∈ Cω. (6.1)

If we find such a function, then (ψ(ω, Yn))n∈N0 is a martingale under Pω. We can then define
χ(ω, v) := x(v) − ψ(ω, v) and get that Xn = ψ(Yn) + χ(Yn). In other words, Xn can be
written as the nth term in a martingale, ψ(Yn), plus a corrector, χ(Yn). In order to derive a
central limit theorem for Xn , it then suffices to apply the martingale central limit theorem to
ψ(Yn) and to show that the contribution of χ(Yn) is asymptotically negligible.

Construction of a harmonic function Let ω ∈ Ω0 be such that there are infinitely many pre-
regeneration points to the left and to the right of the origin (the set of theseω has Pp-probability
1). Then, under Pω, the walk (Yn)n≥0 is the simple randomwalk on the unique infinite cluster
Cω. It can also be considered as a randomwalk among random conductances where each edge
e ∈ E has conductance ω(e). Recall that Cn = Cn(ω) denotes the effective conductance
between Rpre

n−1 and Rpre
n , see (3.1). We couple our model with the random conductance model
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Einstein Relation for RandomWalk 749

on Z with conductance Cn between n−1 and n. For the latter model, the harmonic functions
are known. In fact,

Ψ (n) :=

⎧
⎪⎨

⎪⎩

−∑0
k=n+1

1
Ck

for n < 0,

0 for n = 0,
∑n

k=1
1
Ck

for n > 0,

(6.2)

is harmonic for the random conductancemodel onZ. Notice thatΨ is a function ofω and n as
the conductancesCk(ω) depend onω.We defineφ(ω, Rpre

n ) := Ψ (ω, n). Nowfix an arbitrary
n ∈ Z. For any vertex v ∈ ωn , we then set φ(ω, v) := φ(ω, Rpre

n−1) + Reff (R
pre
n−1 ↔ v),

where the latter expression denotes the effective resistance between Rpre
n−1 and v in the finite

network ωn . This definition is consistent with the cases v = Rpre
n−1, R

pre
n , and, by [23, Eq.

(9.12)], makes φ(ω, ·) harmonic onωn under Pω. As n ∈ Zwas arbitrary, φ(ω, ·) is harmonic
on Cω under Pω. We now define

ψ(ω, v) := Ep[L1]
Ep[C−1

1 ] (φ(ω, v) − φ(ω, 0)), v ∈ Cω,

where we remind the reader that the Ln , n ∈ Z were defined in (3.1). Notice that the
expectations Ep[L1] and Ep[C−1

1 ] are finite by Lemma 3.2. Since φ(ω, ·) is harmonic under
Pω, so is ψ(ω, ·) as an affine transformation of φ(ω, ·). It turns out that ψ is more suitable
for our purposes as ψ is additive in a certain sense. Next, we collect some facts about ψ .

Proposition 6.1 Consider the function ψ : Ω × V → R constructed above. The following
assertions hold:

(a) For Pp-almost all ω ∈ Ω0, the function v 
→ ψ(ω, v) is harmonic with respect to (the
transition probabilities of) Pω.

(b) For Pp-almost all ω ∈ Ω0 and all u, v ∈ Cω, it holds that

ψ(ω, u + v) = ψ(ω, u) + ψ(θuω, v). (6.3)

(c) For Pp-almost all ω ∈ Ω0

sup
v∼w

|ψ(ω, v) − ψ(ω,w)|1{v∈Cω}1{ω(〈v,w〉)=1} ≤ Ep[L1]
Ep[C−1

1 ] . (6.4)

Proof Assertion (a) is clear from the construction of ψ . For the proof of (b), in order to ease
notation, we drop the factor Ep[L1]/Ep[C−1

1 ] in the definition of ψ . This is no problem as
(6.3) remains true after multiplication by a constant. Now fix ω ∈ Ω0 such that there are
infinitely many pre-regeneration points to the left and to the right of 0. The set of these ω

has Pp-probability 1. Let u, v ∈ Cω. We suppose that there are n,m ∈ N0 such that u ∈ ωn

and v ∈ ωn+m . The other cases can be treated similarly. We further assume that y(u) = 0.
Define T := inf{n ∈ N0 : Yn ∈ Rpre} to be the first hitting time of the set of pre-regeneration
points. From Proposition 9.1 in [23], we infer

ψ(ω, u) =
∑n−1

k=1
1

Ck (ω)
+ Pu

ω(YT = Rpre
n ) 1

Cn(ω)
− φ(ω, 0) (6.5)

and ψ(θuω, v) =
∑n+m−1

k=n+1
1

Ck (ω)
+ Pv

θuω(YT = Rpre
m ) 1

Cn+m (ω)
− φ(θuω, 0) (6.6)

where we have used that y(u) = 0 which implies that the pre-regeneration points in θuω are
the pre-regeneration points in ω but shifted by index n as u ∈ ωn . Here,
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Pv
θuω(YT = Rpre

m ) = Pu+v
ω (YT = Rpre

n+m)

and − φ(θuω, 0) = P0
θuω(YT = Rpre

−1)
1
Cn

= Pu
ω(YT = Rpre

n−1)
1
Cn

.

Using the last two equations in (6.6) and summing over (6.5) and (6.6) gives:

ψ(ω, u) + ψ(θuω, v) = ∑n+m−1
k=1

1
Ck (ω)

+ Pu+v
ω (YT = Rpre

n+m) 1
Cn+m (ω)

− φ(ω, 0)

= ψ(ω, u + v).

The proof in the case y(u) = 1 is similar but requires more cumbersome calculations as the
pre-regenerations change when considering θuω instead of ω due to the flip of the cluster.
However, the pre-regeneration points in ω remain pivotal edges in θuω and by the series law
the corresponding resistances add. We refrain from providing further details.
We now turn to the proof of assertion (c). According to the definition of ψ , the statement is
equivalent to

sup
v∼w

|φ(ω, v) − φ(ω,w)|1{v∈Cω}1{ω(〈v,w〉)=1} ≤ 1 for Pp-almost allω. (6.7)

For the proof of (6.7), pickω ∈ Ω0 such that there are infinitely many pre-regeneration points
to the left and to the right of the origin. Now pick v,w ∈ Cω with ω(〈v,w〉) = 1. Then there
is an n ∈ Z such that v,w are vertices of ωn and 〈v,w〉 is an edge of ωn . In this case, by the
definition of φ, φ(ω, v) := φ(ω, a)+Reff (a ↔ v) and φ(ω,w) := φ(ω, a)+Reff (a ↔ w)

for a = Rpre
n−1 where Reff (u ↔ u′) denotes the effective resistance between u and u′ in

the finite network ωn . To unburden notation, we assume without loss of generality that
φ(ω, a) = 0. Then Reff (· ↔ ·) is a metric on the vertex set of ωn , see [23, Exercise 9.8]. In
particular, Reff (· ↔ ·) satisfies the triangle inequality. This gives

φ(ω,w) = Reff (a↔w) ≤ Reff (a↔v) + Reff (v↔w)

≤ Reff (a↔v) + 1 = φ(ω, v) + 1,

where we have used that Reff (v ↔ w) ≤ 1. This inequality follows from Raleigh’s
monotonicity principle [23, Theorem 9.12] when closing all edges in ωn except 〈v,w〉.
By symmetry, we also get φ(ω, v) ≤ φ(ω,w) + 1 and, hence, |φ(ω, v) − φ(ω,w)| ≤ 1. ��

For v ∈ V (and fixed ω), we define χ(ω, v) := x(v) − ψ(ω, v). Then (suppressing ω in
the notation) Xn = χ(Yn) + ψ(Yn). For the proof of the Einstein relation, we require strong
bounds on the corrector χ . These bounds are established in the following lemma.

Lemma 6.2 For any ε ∈ (0, 1
2 ) and every sufficiently small δ > 0 there is a random variable

K on Ω with Ep[K 2] < ∞ such that

|χ(ω, v)| ≤ K (ω) + ε|x(v)| 12+δ for all v ∈ Cω Pp-almost surely. (6.8)

Further, there is a random variable D ∈ L2(P) such that

|χ(Yk)| ≤ D + k
1
4+δ

P-almost surely for all k ∈ N. (6.9)

Proof For k ∈ Z, set ηk(ω) := Lk(ω) − Ep[L1]
Ep[C−1

1 ]
1

Ck (ω)
. Then, for n ∈ N,

χ(ω, Rpre
n ) = x(Rpre

n ) − ψ(ω, Rpre
n )

= ∑n
k=1

(
Lk(ω) − Ep[L1]

Ep[C−1
1 ]

1
Ck

) + Ep[L1]
Ep[C−1

1 ]φ(ω, 0)
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=: ∑n
k=1 ηk(ω) + Ep[L1]

Ep[C−1
1 ]φ(ω, 0)

whereη1, . . . , ηn are i.i.d. centered randomvariables on (Ω,F,Pp). It holds that Ep[eϑ |η1|] <

∞ for some ϑ > 0 by Lemma 3.2. From (A.2), the fact that |φ(ω, 0)| ≤ 1/C0 and again
Lemma 3.2, which guarantees that Ep[1/C2

0 ] < ∞, we thus infer, for arbitrary given ε ∈
(0, 1

4 ) and δ ∈ (0, 1
2 ),

|χ(ω, Rpre
n )| ≤ |η1(ω) + . . . + ηn(ω)| + Ep[L1]

Ep[C−1
1 ]

1
C0(ω)

≤ K2(ω) + εn
1
2+δ (6.10)

for all n ∈ N and a random variable K2 on (Ω,F) satisfying Ep[K 2
2 ] < ∞. If v ∈ ωn for

some n > 0, then

|χ(ω, Rpre
n ) − χ(ω, v)| ≤ Ln(ω) + Ep[L1]

Ep[C−1
1 ]

1
Cn(ω)

=: ξn(ω).

The ξn , n ∈ N are nonnegative and i.i.d. under Pp . Hence, (A.1) gives

ξn ≤ K1 + εn
1
2+δ (6.11)

for all n ∈ N, where K1 is a nonnegative random variable on (Ω,F) with E[K 2
1 ] < ∞.

Analogous arguments apply when v ∈ ωn with n ≤ 0. Combining (6.10) and (6.11), we
infer that for sufficiently small δ > 0 there is a random variable K ≥ 1 on (Ω,F) with
Ep[K 2] < ∞ such that

|χ(ω, v)| ≤ K (ω) + 2ε|x(v)| 12+δ

for all v ∈ Cω, i.e., (6.8) holds.
Finally, we turn to the proof of (6.9). We use (6.8) with ε = 1

2 twice and |x(Yk)| ≤ k to
infer for some sufficiently small δ ∈ (0, 1

2 ),

|χ(ω, Yk)| ≤ K (ω) + 1
2 |Xk | 12+δ = K (ω) + 1

2 |ψ(ω, Yk) + χ(ω, Yk)| 12+δ

≤ K (ω) + 1
2 |ψ(ω, Yk)| 12+δ + 1

2 |χ(ω, Yk)| 12+δ

≤ K (ω) + 1
2 |ψ(ω, Yk)| 12+δ + 1

2K (ω)
1
2+δ + 1

2k
( 12+δ)2 (6.12)

Pω-a. s. for all k ∈ N0. Now (ψ(ω, Yk))k∈N0 is a martingale with respect to Pω and also a P-
martingalewith respect to its canonical filtration.As it has bounded increments, wemay apply

LemmaA.1(d) to infer the existence of a variable K2 ∈ L2(P) such that |ψ(Yk)| ≤ K2+k
1
2+δ

for all k ∈ N0 P-a. s. Using this in (6.12), we conclude

|χ(ω, Yk)| ≤ K (ω) + 1
2K2(ω, (v j ) j∈N0)

1
2+δ+ 1

2k
( 12+δ)2 + 1

2K (ω)
1
2+δ+ 1

2k
( 12+δ)2

≤ K (ω) + 1
2K (ω)

1
2+δ + K2(ω, (v j ) j∈N0)

1
2+δ + k( 12+δ)2

for P-almost all (ω, (v j ) j∈N0) ∈ Ω × VN0 and all k ∈ N0. The assertion now follows with

D(ω, (vk)k∈N0) := K (ω)+ 1
2K (ω)

1
2+δ +K2(ω, (vk)k∈N0)

1
2+δ and with the observation that

( 12 + δ)2 → 1
4 as δ ↓ 0. ��

7 Quenched Joint Functional Limit Theorem Via the Corrector Method

From Proposition 6.1 and the martingale central limit theorem, we infer the following result.
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Proposition 7.1 For Pp-almost all ω ∈ Ω ,

1√
n
(ψ(Y�nt�), M�nt�) ⇒ (B, M) under Pω (7.1)

where (B, M) is a two-dimensional centered Brownian motion with covariance matrix Σ =
(σi j )i, j=1,2 of the form

(
σ11 σ12
σ21 σ22

)

=
(

E[ψ(Y1)2] E[ψ(Y1)νω(0, Y1)]
E[ψ(Y1)νω(0, Y1)] E[νω(0, Y1)2]

)

.

Proof Let ω ∈ Ω0 such that there are infinitely many pre-regeneration points to the left
and right of the origin in ω, and α, β ∈ R. We prove the convergence in distribution of

n− 1
2 (αψ(Y�nt�)+βM�nt�) to a centered Brownian motion in the Skorokhod space D([0, 1])

under Pω. To this end,we invoke themartingale functional central limit theorem [17, Theorem
3.2]. Let

ξn,k(α, β) := α√
n
(ψ(ω, Yk) − ψ(ω, Yk−1)) + β√

n
νω(Yk−1, Yk),

for n ∈ N and k = 1, . . . , n. In order to apply the result, it suffices to check the following
two conditions:

�nt�∑

k=1

Eω

[
ξn,k(α, β)2 | Gk−1

] → c(α, β)t in Pω-probability (7.2)

�nt�∑

k=1

Eω

[
ξn,k(α, β)21{|ξn,k (α,β)|>ε} | Gk−1

] → 0 in Pω-probability (7.3)

for every ε > 0 where c(α, β) is a suitable constant depending on α, β. Here, Gk :=
σ(Y0, . . . , Yk) ⊂ G where Y0, Y1, . . . are considered as functions VN0 → V . To check
(7.2), we first define the functions f , g, h : Ω → R,

f (ω) := Eω[ψ(ω, Y1)
2],

g(ω) := Eω[ψ(ω, Y1)νω(0, Y1)],
h(ω) := Eω[νω(0, Y1)2].

These three functions are finite and integrable with respect to Pp . This follows from Propo-
sition 6.1(c) for ψ and from the boundedness of νω(v,w) as a function of ω, v,w. From
Proposition 6.1(b) (with u = Yk−1 and v = Yk − Yk−1), we infer for every k ∈ N:

f (ω(k − 1)) = Eω

[
(ψ(ω, Yk) − ψ(ω, Yk−1))

2 | Gk−1
]
,

g(ω(k − 1)) = Eω

[
(ψ(ω, Yk) − ψ(ω, Yk−1))νω(Yk−1, Yk) | Gk−1

]
,

h(ω(k − 1)) = Eω

[
νω(Yk−1, Yk)

2 | Gk−1
]
.

Lemma 4.2 thus gives

∑�nt�
k=1 Eω

[
ξn,k(α, β)2 | Gk−1

]

= 1
n

∑�nt�
k=1

(
α2 f (ω(k − 1)) + 2αβg(ω(k − 1)) + β2h(ω(k − 1))

)

→ (
α2Ep[ f ] + 2αβEp[g] + β2Ep[h])t for Pp-almost all ω ∈ Ω. (7.4)

123



Einstein Relation for RandomWalk 753

This gives (7.2) with Pω-almost sure convergence instead of the weaker convergence in Pω-
probability. Equation (7.3) follows by an argument in the same spirit. We therefore conclude
that, for Pp-almost all ω ∈ Ω ,

α√
n
ψ(ω, Y�nt�) + β√

n
M�nt� ⇒ αB(t) + βM(t) under Pω

in the Skorokhod space D[0, 1] as n → ∞. Now fix an ω ∈ Ω0 for which this convergence
holds. For the rest of the proof, we work under Pω. The above convergence in D[0, 1] implies
convergence of the finite-dimensional distributions. By theCramér-Wold device,we conclude
that the finite-dimensional distributions of n−1/2(ψ(ω, Y�nt�), M�nt�) converge to the finite-
dimensional distributions of (B, M). As the sequences n−1/2ψ(ω, Y�nt�) and n−1/2M�nt� are
tight in the Skorokhod space D[0, 1], so is n−1/2(ψ(Y�nt�), M�nt�), cf. [6, Section 15]. This
implies (7.1). The formula for the covariances follows from (7.4). ��

We now give the proof of Theorem 2.5.

Proof of Theorem 2.5 In view of (7.1) and Theorem 4.1 in [6], it suffices to check that, for
Pp-almost all ω,

max
k=0,...,n

|χ(ω, Yk)|√
n

→ 0 in Pω-probability. (7.5)

For a sufficiently small δ ∈ (0, 1
4 ), we conclude from (6.9) that

|χ(ω, Yk)| ≤ D + k
1
4+δ

P-a. s.

for all k ∈ N0 and a random variable D ∈ L2(P). Hence

1√
n

max
k=0,...,n

|χ(ω, Yk)| → 0 P-a. s. (7.6)

Almost sure convergencewith respect toP is equivalent to Pω-a. s. convergence for Pp-almost
all ω, hence (7.5) holds.

It remains to prove (2.6), that is, E[B(1)M(1)] = E[B(1)2] = σ 2. Uniform integrability,
see (2.7) and (8.1) below, implies

E[B(1)M(1)] = lim
n→∞

1

n
E[XnMn] and E[B(1)2] = lim

n→∞
1

n
E[X2

n]. (7.7)

To conclude that the two limits in (7.7) coincide, it suffices to show that

lim
n→∞

1

n
E[Xn(Mn − Xn)] = 0. (7.8)

To see that this is true, recall from the proof of Lemma 4.4 that Yk −Yk−1 = ϕ(ω(k−1), ω(k))
P-a. s. for all k ∈ N0 for some product-measurable function ϕ : Ω2 → V . Therefore, for
k ∈ N, the increments Xk−Xk−1 and νω(Yk−1, Yk)−(Xk−Xk−1) of the processes (Xn)n∈N0

and (Mn − Xn)n∈N0 are functions of the pair (ω(k−1), ω(k)). Hence, Xn and Mn can be
written in the form Xn = ϕn(ω(0), . . . , ω(n)) and Mn − Xn = ψn(ω(0), . . . , ω(n)) for
measurable functions ϕn and ψn . We claim that ϕn is antisymmetric and ψn is symmetric in
the sense that with P-probability one, we have

ϕn(ω(n), . . . , ω(0)) = −ϕn(ω(0), . . . , ω(n)),

ψn(ω(n), . . . , ω(0)) = ψn(ω(0), . . . , ω(n)). (7.9)
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Notice that (7.9) together with the reversibility of (ω(n))n∈N0 (see Lemma 4.1) implies

E[Xn(Mn − Xn)] = E[ϕn(ω(0), . . . , ω(n))ψn(ω(0), . . . , ω(n))]
= E[ϕn(ω(n), . . . , ω(0))ψn(ω(n), . . . , ω(0))]
= E[−ϕn(ω(0), . . . , ω(n))ψn(ω(0), . . . , ω(n))]
= −E[Xn(Mn − Xn)],

i.e., E[Xn(Mn − Xn)] = 0. It thus remains to prove (7.9). While the first line of (7.9)
corresponding to Xn clearly holds, we require some work to show the second. For ω ∈ Ω

and w ∈ Nω(v) = {w ∈ V : pω,0(v,w) > 0}, an elementary calculation yields

νω(v,w) =
{
x(w) − x(v) if w = v,
∑

u∼v:ω(〈u,v〉)=0(x(u) − x(v)) if w = v.
(7.10)

In particular, νω (Yk−1, Yk) = Xk − Xk−1 if Yk = Yk−1. Therefore, Mk − Mk−1 − (Xk −
Xk−1) = 0 iff Yk = Yk−1. If Yk = Yk−1, then Mk − Mk−1 − (Xk − Xk−1) = νω (Yk−1, Yk).
Together with (7.10) and the fact that, withP-probability one, Yk−1 = Yk holds iff ω(k−1) =
ω(k), this implies

ψn(ω(0), . . . , ω(n)) = Mn − Xn =
∑

k=1,...,n,
ω(k−1)=ω(k)

νω(Yk−1, Yk)

=
∑

k=1,...,n,
ω(n−k+1)=ω(n−k)

νω(Yn−k+1, Yn−k) = ψn(ω(n), . . . , ω(0)),

i.e., (7.9) holds. ��

8 The Proof of the Einstein Relation

8.1 Proof of Equation (2.8)

For the proof of theEinstein relation,we use a combination of the approaches from [13,16,22].

Lemma 8.1 It holds that

lim sup
n→∞

1

n
E

[
max

k=1,...,n
X2
k

]
< ∞. (8.1)

Proof ByLemma 4.1, (ω(n))n≥0 is a stationary and ergodic sequence underP. This sequence
can be extended canonically to a two-sided stationary and ergodic sequence (ω(n))n∈Z on
the underlying space ΩZ

0 . The increment sequences (Xn − Xn−1) and (Yn − Yn−1)n∈Z also
form stationary and ergodic sequences by Lemma 4.4. Therefore, we can invoke Theorem 1
in [27] and conclude that

E

[
max

k=1,...,n
X2
k

]
≤ 4n(1 + 80δn,2)

2 (8.2)

where δn,2 = ∑n
j=1 j− 3

2
(
Ep[Eω[X j ]2]

) 1
2 . Here, we have

Eω[X j ]2 = Eω[ψ(Y j ) + χ(Y j )]2 = Eω[χ(Y j )]2 ≤ Eω[|χ(Y j )|2].
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There exists a random variable D ∈ L2(P) such that (6.9) holds for some δ > 0 sufficiently

small, i.e., |χ(Y j )| ≤ D + j
1
4+ δ

2 for all j ∈ N0 P-a. s. Hence,

Eω[|χ(Y j )|2] ≤ Eω[|D + j
1
4+ δ

2 |2] ≤ Eω[2D2] + 2 j
1
2+δ.

Consequently,

sup
n≥1

δn,2 ≤
∑

j≥1

j−
3
2
(
2E[D2] + 2 j

1
2+δ]) 1

2 < ∞

if we pick δ > 0 sufficiently small. Consequently, (8.1) follows from (8.2). ��

8.2 Proof of Equation (2.9)

The first two steps of the proof of Theorem 2.4 are completed. We continue with Step 3, i.e.,
the proof of (2.9). It is based on a second order Taylor expansion for

∑n
j=1 log pω,λ(Y j−1, Y j )

at λ = 0:
n∑

j=1

log pω,λ(Y j−1, Y j ) −
n∑

j=1

log pω(Y j−1, Y j )

= λ Mn + λ2

2

n∑

j=1

( p′′
ω,0(Y j−1, Y j )

pω,0(Y j−1, Y j )
− νω(Y j−1, Y j )

2
)

+ 2
λ

n∑

j=1

oω,λ(Y j−1, Y j ) (8.3)

where it should be recalled from the paragraph following (2.4) that oω,λ(v,w) tends to 0
uniformly in ω ∈ Ω and v,w ∈ V as λ → 0. Set

An := 1

2

n∑

j=1

(

νω(Y j−1, Y j )
2 − p′′

ω(Y j−1, Y j )

pω(Y j−1, Y j )

)

where we write pω for pω,0, and

Rλ,n := 2
λ

n∑

j=1

oω,λ(Y j−1, Y j ).

Both, An and Rλ,n are random variables on (Ω × VN0 ,F ⊗ G).

Lemma 8.2 Let λ → 0 and n → ∞ such that limn→∞ λ2 n = α ≥ 0. Then

2
λ An → α

2
E[M(1)2] P-a. s. and in L1 (8.4)

and Rλ,n → 0 P-a. s.

Proof The convergence Rλ,n → 0 follows from the fact that oω,λ(v,w) tends to 0 uniformly
in ω ∈ Ω and v,w ∈ V as λ → 0.

For the proof of (8.4), notice that An − An−1 is a function of (ω(n − 1), ω(n)). To make
this more transparent, we write

An − An−1 = 1

2

(

νω(Yn−1, Yn)
2 − p′′

ω(Yn−1, Yn)

pω(Yn−1, Yn)

)

= 1

2

(

νω(n−1)(0, ϕ(ω(n − 1), ω(n)))2 − p′′
ω(n−1)(0, ϕ(ω(n − 1), ω(n)))

pω(n−1)(0, ϕ(ω(n − 1), ω(n)))

)
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with the function ϕ from the proof of Lemma 4.4. Since (ω(n))n∈N0 is ergodic under P, so
is (An − An−1)n≥1, see e.g. Lemma 5.6(c) in [2]. Birkhoff’s ergodic theorem gives

lim
n→∞

1

n
An = 1

2
E

[ ∑

w∈Nω(0)

(

νω(0, w)2 − p′′
ω(0, w)

pω(0, w)

)

pω(0, w)

]

P-a. s.

Further, for all v and all ω, pω(v, ·) is a probability measure on Nω(v), hence
∑

w∈Nω(v) p
′′
ω

(v,w) = 0. Consequently,

lim
n→∞

1

n
An = 1

2
E

[ ∑

w∈Nω(0)

νω(0, w)2 pω(0, w)

]

P-a. s.

On the other hand, by Theorem 2.5, we have

E[M(1)2] = lim
n→∞

1

n
E[M2

n ] = lim
n→∞

1

n

n∑

k=1

E[νω(Yk−1, Yk)
2]

= E[νω(Y0, Y1)
2] = E

[ ∑

w∈Nω(0)

νω(0, w)2 pω,0(0, w)

]

,

where the second equality follows from the fact that the increments of square-integrable mar-
tingales are uncorrelated and the third equality follows from the fact that (νω(Yk−1, Yk))k∈N
is an ergodic sequence under P. ��
Proposition 8.3 For any α > 0, it holds that

lim
λ→0,

λ2 n→α

Eλ[Xn]
λ n

= E[B(1)M(1)]. (2.9)

Proof WefollowLebowitz andRost [22] anduse the (discrete)Girsanov transform introduced
in Section 2. Indeed, using (8.3), we get

Eλ[Xn] = E

[

Xn exp

( n∑

j=1

log
pω,λ(Y j−1, Y j )

pω(Y j−1, Y j )

)]

= E
[
Xn exp

(
λ Mn − 2

λ An + Rλ,n
)]

.

Now divide by λ n ∼ √
αn and use Theorem 2.5, Lemma 8.2, Slutsky’s theorem and the

continuous mapping theorem to conclude that

Xn

λ n
eλ Mn−λ2 An+Rλ,n d→ 1√

α
B(1)e

√
αM(1)− α

2 E[M(1)2]. (8.5)

Suppose that along with convergence in distribution, convergence of the first moment holds.
Then we infer

lim
n→∞

Eλ[Xn]
λ n

= 1√
α

E

[
B(1) exp

(√
αM(1) − α

2
E[M(1)2]

)]
= E[B(1)M(1)]

where the last step follows from the integration by parts formula for two-dimensional Gaus-
sian vectors. It remains to show that the family on the left-hand side of (8.5) is uniformly
integrable. To this end, use Hölder’s inequality to obtain
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sup
λ,n

E

[∣
∣
∣
∣
Xn

λ n
eλ Mn−λ2 An+Rλ,n

∣
∣
∣
∣

6
5
]

≤ sup
λ,n

E

[∣
∣
∣
∣
Xn

λ n

∣
∣
∣
∣

2] 3
5

sup
λ,n

E

[
e3λ Mn−3λ2 An+3Rλ,n

] 2
5
.

By Lemma 8.1, the first supremum in the last line is finite. Concerning the finiteness of the
second, notice that λ2 An and Rλ,n are bounded when λ2 n stays bounded (see the proof of
Lemma 8.2 for details), whereas (2.7) gives supλ,n E[e3λ Mn ] < ∞. ��

8.3 Regeneration Points and Times

Given λ ∈ (0, 1], define λ-dependent pre-regeneration points by:

Rpre,λ
n = Rpre

n�1/λ�, n ∈ Z.

The set of λ-pre-regeneration points is denoted by Rpre,λ. The cluster is decomposed into
independent pieces ωλ

n := [Rpre,λ
n−1 , Rpre,λ

n ), n ∈ Z. The λ-regeneration times are defined as
τλ
0 := ρλ

0 := 0 and, inductively,

τλ
n := inf{k > τλ

n−1 : Yk ∈ Rpre,λ, Y j = Yk for all j < k and

Y j /∈ Rpre,λ for all j ≥ k with X j < Xk},
Rλ
n := Yτλ

n

for n ∈ N. We further set ρλ
n := Xτλ

n
= x(Rλ

n ). In words, a λ-regeneration point is a λ-

pre-regeneration point Rpre,λ
n such that the walk after the first visit to Rpre,λ

n never returns
to Rpre,λ

n−1 , the λ-pre-regeneration point to the left. For n ∈ N, we write Rλ,−
n for the λ-pre-

regeneration point with the largest x-coordinate which is strictly to the left of Rλ
n . With this

definition, the walk (Yk)k∈N0 will eventually hit the nth regeneration point Rλ
n . Afterwards,

there may be excursions from Rλ
n to the left, but none of those will reach Rλ,−

n . In the context
of regeneration-time arguments it will be useful at some points to work with a different
percolation law than Pp or P∗

p , namely, the cycle-stationary percolation law P◦
p , which is

defined below.

Definition 8.4 The cycle-stationary percolation law P◦
p is defined to be the unique probability

measure on (Ω,F) with the following properties:

(i) with P◦
p -probability one, there are infinitely many pre-regeneration points to the left and

to the right of the origin including one pre-regeneration point at the origin;
(ii) the cycles ωn , n ∈ Z are i.i.d. under P◦

p ;
(iii) each cycle ωn has the same law under P◦

p as ω1 under P∗
p .

We write P
◦
λ for P

0
P◦
p ,λ

.

We define

Hλ
n := σ(τλ

1 , . . . , τλ
n , Y0, Y1, . . . , Yτλ

n
, ωλ

k : x(Rpre,λ
k ) ≤ ρλ

n ),

the σ -algebra of the walk up to time τλ
n and of the environment up to ρλ

n . The distances
between λ-regeneration times are not i.i.d., but 1-dependent.
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Lemma 8.5 For any n ∈ N and all measurable sets F ∈ F≥ = σ(p〈v,w〉 : x(v) ∧ x(w) ≥ 0)
and G ∈ G,

Pλ((θ Rλ
n Yτλ

n +k)k∈N0 ∈ G, θ Rλ,−
n ω ∈ F | Hλ

n−1)

= P
◦
λ((Yk)k∈N0 ∈ G, θ Rpre,λ

−1 ω ∈ F | Xk > x(Rpre,λ
−1 ) for all k ∈ N). (8.6)

In particular, ((τλ
n+1 − τλ

n , ρλ
n+1 − ρλ

n ))n∈N is a 1-dependent sequence of random variables
under Pλ.

Since Lemma 8.5 is a natural observation and its proof is a rather straightforward but
tedious adaption of the proof of Lemma 4.1 in [14], we omit the details of the proof.

The subsequent lemma provides the key estimate for the distances betweenλ-regeneration
points.

Lemma 8.6 There exist finite constants C, ε > 0 depending only on p such that, for every
sufficiently small λ > 0,

Pλ(ρλ
1 ≥ n) ≤ Ce−λ εn and Pλ(ρλ

2 − ρλ
1 ≥ n) ≤ Ce−λ εn for all n ∈ N0. (8.7)

In particular,

lim sup
λ→0

λ
2
Eλ[(ρλ

1 )2] < ∞, lim sup
λ→0

2
λ Eλ[(ρλ

2 − ρλ
1 )2] < ∞, (8.8)

and

lim sup
λ→0

2
λ

∑

n≥1

nPλ(ρλ
2 − ρλ

1 ≥ n)
1
2 < ∞. (8.9)

For the proof, we require the following lemma.

Lemma 8.7 There exist finite constants ε = ε(p) > 0, c∗ = c∗(p) > 0 such that, for all
x ≥ 0,

P◦
p(x(R

pre
�εx�) > x) ≤ e−c∗x and Pp(x(R

pre
�εx�) > x) ≤ 2e−c∗x .

Proof It follows fromLemma 3.3(b) of [14] that there exists a constant c(p) ∈ (0, 1) depend-
ing only on p such that

P◦
p(x(R

pre
1 ) > m) ≤ c(p)m

for all m ∈ N0. Hence, the moment generating function ϑ 
→ E◦
p[eϑx(Rpre

1 )] is finite in

some open interval containing the origin, in particular, x(Rpre
1 ) has positive finite mean μ(p)

(depending only on p). Let ε ∈ (0, μ(p)−1). Then, for some sufficiently small u > 0,

1 > E◦
p[eux(R

pre
1 )]e−uε−1 =: e−c∗ε−1

.

Fix x ≥ 0. Since the ωn , n ∈ N are i.i.d. under P◦
p , x(R

pre
�εx�) is the sum of �εx� i.i.d. random

variables each having the same law as x(Rpre
1 ) under P◦

p . Consequently, Markov’s inequality
gives

P◦
p(x(R

pre
�εx�) > x) ≤ E◦

p[eux(R
pre
1 )]�εx�e−ux ≤ E◦

p[eux(R
pre
1 )]εx e−ux ≤ e−c∗x .
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Further,

Pp(x(R
pre
�εx�) > x) ≤ Pp(x(R

pre
0 ) > x/2) + Pp(x(R

pre
�εx�) − x(Rpre

0 ) > x/2)

= Pp(x(R
pre
0 ) > x/2) + P◦

p(x(R
pre
�εx�) > x/2).

The first probability decays exponentially fast as x → ∞ by the Markovian structure of the
percolation cluster under Pp , see Section 3 in [14]. The second probability is bounded above
by e−c∗x/2 by what has already been shown. Replacing c∗ by a smaller positive real, the
second inequality of the lemma follows. ��
Proof of Lemma 8.6 We first derive (8.8) and (8.9) from (8.7). We only prove the second
relation of (8.8). For λ > 0, summation by parts and (8.7) give

2
λ Eλ[(ρλ

2 − ρλ
1 )2] = 2

λ
∑

n≥0

(2n + 1)Pλ(ρλ
2 − ρλ

1 > n) ≤ C
2
λ

∑

n≥0

(2n + 1)e−λ εn,

which remains bounded as λ ↓ 0. Analogously,

2
λ

∑

n≥1

nPλ(ρλ
2 − ρλ

1 ≥ n)
1
2 ≤ C

1
2
2
λ

∑

n≥0

ne− λ εn/2,

which again remains bounded as λ → 0 and thus gives (8.9).
We now turn to the proof of (8.7). By Lemma 8.5 the law of ρλ

2 −ρλ
1 under Pλ is the same

as the law of ρλ
1 under P

◦
λ given that (Yn)n≥0 never visits R

pre,λ
−1 :

Pλ(ρλ
2 − ρλ

1 ∈ ·) = P
◦
λ(ρλ

1 ∈ · | Xk > Rpre,λ
−1 for all k ∈ N). (8.10)

Let C := {Xk > x(Rpre,λ
−1 ) for all k ∈ N}. In order for Cc to occur, the walk (Yn)n∈N0 must

travel at least 1/λ steps to the left on the backbone as the distance of 0 = Rpre,λ
0 and Rpre,λ

−1
is at least 1/λ. From Lemma 5.1, Eq. (5.3), we thus conclude that

P
◦
λ(Cc) ≤ 4

10
(8.11)

for all sufficiently smallλ > 0.Hence, for all sufficiently smallλ > 0,we haveP
◦
λ(C) ≥ 1/2.

Fix such a λ. Then

P
◦
λ(ρλ

1 ∈ ·|C) = P
◦
λ(C)−1

P
◦
λ(ρλ

1 ∈ ·,C) ≤ 2P
◦
λ(ρλ

1 ∈ ·,C) ≤ 2P
◦
λ(ρλ

1 ∈ ·) (8.12)

and it thus remains to bound the probability of {ρλ
1 ≥ n} for n ∈ N0 under both P

◦
λ and Pλ.

From here on, we work under P
◦
λ; the corresponding proof with Pλ is analogous.

The basic idea is that ρλ
1 ≥ n if either there are unusually few λ-pre-regeneration points

in [0, n] or the walk (Yk)k∈N0 has to make too many excursions of length at least � 1
λ
� to the

left. To turn this idea into a rigorous proof, we first observe that for ε = ε(p) > 0 from
Lemma 8.7, we have

P
◦
λ(ρλ

1 ≥ n) ≤ P
◦
λ(x(Rpre,λ

�ε λ n�) > n) + P
◦
λ(ρλ

1 ≥ x(Rpre,λ
�ε λ n�)). (8.13)

The first probability on the right-hand side of (8.13) is bounded by

P
◦
λ(x(Rpre,λ

�ε λ n�) > n) = P◦
p(x(R

pre,λ
�ε λ n�) > n) = P◦

p(x(R
pre
�ε λ n�·� 1

λ
�) > n)

≤ P◦
p(x(R

pre
�εn�) > n) ≤ e−c∗n
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where we have used the elementary inequality �a� · �b� ≤ �ab� for all a, b > 0 and then
Lemma 8.7.

We now turn to the second probability on the right-hand side of (8.13). Observe that a λ-
pre-regeneration point Rpre,λ

i is a λ-regeneration point iff after the first visit to it, the random

walk (Yk)k≥0 never returns to Rpre,λ
i−1 . We define Z ′

0, Z
′
1, Z

′
2, . . . to be the sequence of indices

of the λ-pre-regeneration points visited by (Yk)k≥0 in chronological order, i.e., Z ′
j = i if the

j th visit of (Yk)k≥0 to Rpre,λ is at the point Rpre,λ
i . We then define Z0, Z1, Z2, . . . to be the

corresponding agile sequence, that is, each multiple consecutive occurrence of a number in
the string is reduced to a single occurrence. For instance, if

(Z ′
0, Z

′
1, Z

′
2, Z

′
3, Z

′
4, Z

′
5, Z

′
6, . . .) = (0,−1, 0, 0, 0, 1, 2, . . .),

then

(Z0, Z1, Z2, Z3, Z4, . . .) = (0,−1, 0, 1, 2, . . .).

Then Rpre,λ
i is a λ-regeneration point if for the first j ∈ N with Z j = i , we have Zk ≥ i for

all k ≥ j . Let

�∗ := inf{Zk : k ∈ N with Z j < Zk ≤ Zl for all 0 ≤ j < k ≤ l}.
Then

P
◦
λ(ρλ

1 ≥ x(Rpre,λ
�ε λ n�)) = P

◦
λ(�∗ ≥ �ε λ n�).

We compare the latter probability with the corresponding probability for a biased nearest-
neighbor random walk on Z which at any vertex is more likely to move left than the walk
(Zk)k∈N0 . More precisely, we may assume without loss of generality that on the underlying
probability space there exists a biased nearest-neighbor random walk on Z which we denote
by (Sk)k∈N0 such that P

◦
λ(S0 = 0) = 1 and

6
10 := P

◦
λ(Sk+1 = j + 1 | Sk = j) = 1 − P

◦
λ(Sk+1 = j − 1 | Sk = j).

According to (5.3), we have

P
◦
λ(Zk+1 = j − 1 | Zk = j) ≤ 4

10

forλ > 0 sufficiently small. Thismeans that wemay couple the walks (Sk)k∈N0 and (Zk)k∈N0

such that {Zk − Zk−1 = −1} ⊆ {Sk − Sk−1 = −1} for all k ∈ N. Define

� := inf{Sk : k ∈ N with Si < Sk ≤ S j for all 0 ≤ i < k ≤ j}.
A moment’s thought reveals that � ≥ �∗ and hence, for every n ∈ N0, by Lemma A.2,

P
◦
λ(�∗ ≥ �ε λ n�) ≤ P

◦
λ(� ≥ �ε λ n�) ≤ C∗e−c∗�ε λ n� ≤ C∗ec∗

e−c∗ε λ n .

This completes the proof of (8.7). ��
Lemma 8.8 We have

lim sup
λ→0

4
λEλ[(τλ

1 )2] < ∞ and lim sup
λ→0

4
λEλ[(τλ

2 − τλ
1 )2] < ∞, (8.14)

and

lim inf
λ→0

2
λ Eλ[τλ

1 ] > 0 and lim inf
λ→0

2
λ Eλ[τλ

2 − τλ
1 ] > 0. (8.15)
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As a consequence,

lim sup
λ→0

2
λ Eλ[τλ

1 ] < ∞ and lim sup
λ→0

2
λ Eλ[τλ

2 − τλ
1 ] < ∞, (8.16)

and

lim sup
λ→0

Eλ[(τλ
1 )2]

Eλ[τλ
1 ]2 < ∞ and lim sup

λ→0

Eλ[(τλ
2 − τλ

1 )2]
Eλ[τλ

2 − τλ
1 ]2 < ∞. (8.17)

Proof The uniform bounds in (8.16) follow from (8.14) and Jensen’s inequality. The bounds
(8.17) follow from (8.14) and (8.15). Let us first prove (8.15). The time spent until the
first λ-regeneration is bounded below by the number of visits to the pre-regeneration points
Rpre
k with 0 ≤ k < �1/λ�−1, the pre-regeneration points between 0 and Rpre,λ

1 . Fix such
k ∈ {0, . . . , �1/λ�−1 − 1} and write Nk for the number of returns of (Yn)n≥0 to Rpre

k .
We shall give a lower bound for Eω,λ[Nk]. We may assume without loss of generality that
Rpre
k = 0. Under Pω,λ, the number of returns of the walk (Yn)n≥0 to 0 is geometric with

success probability being the escape probability

Pω,λ(Yn = 0 for all n ≥ 1) = Ceff (0,∞)

eλ + 1 + e− λ
,

where the identity is standard in electrical network theory, see for instance [2, Formula (13)].
Consequently,

Eω,λ[Nk] =
(
1 − Ceff (0,∞)

eλ + 1 + e−λ

)
/
( Ceff (0,∞)

eλ + 1 + e− λ

)
≥ Reff (0,∞)

for all sufficiently small λ > 0. From the Nash-Williams inequality [23, Proposition 9.15],
we infer

Reff (0,∞) ≥
∞∑

k=1

(
2eλ(2k−1))−1 = e−λ

2
· 1

1 − e−2λ
,

a bound which is independent of ω. Since there are �1/ λ� such pre-regeneration points to
the left of Rpre,λ

1 , we conclude that

lim inf
λ→0

2
λ Eλ[τλ

1 ] ≥ lim inf
λ→0

2
λ� 1

λ
�e

−λ

2
· 1

1 − e−2λ
> 0.

This proves the first part in (8.15). The second part is analogous or follows using Lemma 8.5.
Let us turn to (8.14). We shall prove the unconditioned case for τλ

1 ; the conditioned case
involving τλ

2 − τλ
1 follows similarly. We decompose the time τλ

1 until hitting the first λ-

regeneration point Rλ
1 into the time τλ,B

1 spent on the backbone B before hitting Rλ
1 , see

Fig. 2 and the paragraph preceding it, and the time τ
λ,traps
1 spent outside the backbone (i.e.

inside traps) before first hitting Rλ
1 . This gives

τ 21 = (τλ,B
1 + τ

λ,traps
1 )2. (8.18)

First we treat Eλ[(τ traps1 )2].
In order to control the time spent in traps we first bound the time spent in a fixed trap

of finite length. Unfortunately the upper bound given in Lemma 6.1(b) in [14] is too rough.
However, we follow the arguments there but only consider κ = 4. Let us consider a discrete
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line segment {0, . . . ,m},m ≥ 2, and a nearest-neighbor random walk (Sn)n≥0 on this set
starting at i ∈ {0, . . . ,m} with transition probabilities

Pi (Sk+1 = j + 1 | Sk = j) = 1 − Pi (Sk+1 = j − 1 | Sk = j) = eλ

e− λ + eλ

for j = 1, . . . ,m − 1 and

Pi (Sk+1 = 1 | Sk = 0) = Pi (Sk+1 = m − 1 | Sk = m) = 1.

For i = 0, we are interested in τm := inf{k ∈ N : Sk = 0}, the time until the first return of the
walk to the origin. Let (Zn)n≥0 be the agile version of (Yn)n≥0, i.e., the walk one infers after
deleting all entries Yn for which Yn = Yn−1 from the sequence (Y0, Y1, . . .). The stopping
times τm will be used to estimate the time the agile walk (Zn)n≥0 spends in a trap of length
m given that it steps into it.

Let Vi := ∑τm−1
k=1 1{Sk=i} be the number of visits to the point i before the random walk

returns to 0, i = 1, . . . ,m. Then τm = 1 + ∑m
i=1 Vi and, by Jensen’s inequality,

E0[τ 4m] = E0

[(

1 +
m∑

i=1

Vi

)4]

≤ (m + 1)3
(

1 + E0

[ m∑

i=1

V 4
i

])

. (8.19)

For i = 0, . . . ,m, let

σi := inf{k ∈ N : Sk = i} and ri := Pi (σi < σ0).

Given S0 = i , when S1 = i + 1, then σi < σ0. When the walk moves to i − 1 in its first
step, it starts afresh there and hits i before 0 with probability Pi−1(σi < σ0). Determining
Pi−1(σi < σ0) is the classical ruin problem, hence

ri =
{

eλ

e− λ+eλ + e−λ

e−λ+eλ

(
1 − e2λ−1

1−e−2λ i e
−2λ i

)
for i = 1, . . . ,m − 1;

1 − e2λ−1
1−e−2λm e

−2λm for i = m.
(8.20)

In particular, for i = 1, . . . ,m − 1, ri does not depend on m. Moreover, we have r1 ≤
r2 ≤ . . . ≤ rm−1 and r1 ≤ rm ≤ rm−1. By the strong Markov property, for k ∈ N,
P0(Vi = k) = P0(σi < σ0) r

k−1
i (1 − ri ) and hence

E0[V 4
i ] =

∑

k≥1

k4P0(Vi = k) ≤ (1−rm−1)
∑

k≥1

k4rk−1
m−1 ≤ p3(rm−1)

( 1

1−rm−1

)4
,

for some polynomial p3(x) of degree 3 in x independent of λ. Letting λ → 0, we find

lim
λ→0

rm−1 = 2m − 3

2m − 2

and hence

lim sup
λ→0

E0[V 4
i ] ≤ p3

(2m − 3

2m − 2

)
(2m − 2)4.

Hence, using Eq. (8.19),

lim sup
λ→0

E0[τ 4m] ≤ lim
λ→0

(

(m + 1)3
(

1 + E0

[ m∑

i=1

V 4
i

]))

≤ p̃(m), (8.21)

for some polynomial p̃. Let �1 denote the length of the trap with the trap entrance having the
smallest nonnegative x-coordinate. Let �0 and �2 be the lengths of the next trap to the left and
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right, respectively, etc. The law of �0 differs from the law of the other �n but this difference
is not significant for our estimates, see Lemma 5.1 in [14]. We proceed as in the proof of
Lemma 6.2 in [14]. For any ω ∈ Ω∗ and any v on the backbone, by the same argument that
leads to (24) in [2],

Pv
ω,λ(Yn = v for all n ∈ N) ≥ (

∑∞
k=0 e

−λ k )−1

eλ+1+e− λ = 1−e−λ

eλ+1+e−λ =: pesc. (8.22)

This bound is uniform in the environment ω ∈ Ω∗ but depends on λ. Denote by vi the
entrance of the i th trap. By the strong Markov property, Ti , the time spent in the i th trap,
can be decomposed into M i.i.d. excursions into the trap: Ti = Ti,1 + . . . + Ti,M . Since
vi is forwards-communicating, (8.22) implies that Pω,λ(M ≥ n) ≤ (1 − pesc)n , n ∈ N.
In particular, M is stochastically bounded by a geometric random variable M̃ with success
parameter pesc. Moreover, Ti,1, . . . , Ti, j are i.i.d. conditional on {M ≥ j}. We now derive
an upper bound for Eω,λ[T 4

i, j |M ≥ j]. To this end, we have to take into account the times
the walk stays put. Each time, the agile walk (Zn)n≥0 makes a step in the trap, this step is
preceded by an independent geometric number of times the lazy walk stays put. The success
parameter of this geometric randomvariable depends on the position inside the trap.However,
it is stochastically dominated by a geometric random variable G with P0(G ≥ k) = γ k

λ for
γλ = (1 + eλ)/(eλ + 1 + e−λ). Plainly, γλ → 2

3 as λ → 0. Consequently, estimate (8.21)
and Jensen’s inequality give

lim sup
λ→0

Eω,λ[T 4
i, j |M ≥ j] ≤ lim sup

λ→0
E0[τ 4�i ]E0[G4] ≤ p̂(�i ),

where �i is the length of the i th trap (which is treated as a constant under the expectation E0)
and p̂ = E0[G] · p̃ is again a polynomial. Moreover, by Jensen’s inequality and the strong
Markov property,

Eω,λ[T 4
i ] =

∞∑

m=1

Eω,λ

[( m∑

j=1

Ti, j

)4∣∣
∣
∣M = m

]

Pω,λ(M = m)

≤
∞∑

m=1

m4Eω,λ[T 4
i,1|M ≥ 1]Pω,λ(M = m)

≤ E[M̃4]Eω,λ[T 4
i,1|M ≥ 1]

≤ c̃
( 1

pesc

)4
Eω,λ[T 4

i,1|M ≥ 1],

for some constant c̃ independent of ω and λ. We have

lim sup
λ→0

λ

pesc
< ∞. (8.23)

Hence

lim sup
λ→0

4
λEλ[T 4

i |�i = m] ≤ p∗(m), (8.24)

where p∗ is a polynomial with coefficients independent of λ. Using Lemma 3.5 in [14], we
find
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Eλ[T 4
i ] =

∑

m≥1

Pλ(�i = m)Eλ[T 4
i |�i = m]

≤ c(p)
∑

m≥1

me−2λc mEλ[T 4
i |�i = m],

where λc is defined in Proposition 2.2 and c(p) is a constant only depending on p. Due to
(8.24), the dominated convergence theorem applies and gives the following bound:

lim sup
λ→0

4
λEλ[T 4

i ] < ∞. (8.25)

Now let L := −min{Xk, k ∈ N} be the absolute value of the leftmost visited x-coordinate
of the walk. Since

Eλ

[
(τ

λ,traps
1 )2

] ≤ Eλ

[( −1∑

i=−L

Ti + T0 +
ρλ
1∑

i=1

Ti

)2]

(8.26)

we first consider

Eλ

[( ρλ
1∑

i=1

Ti

)2]

= Eλ

[ ∞∑

i, j=1

Ti Tj1{ρλ
1 ≥i∨ j}

]

≤
∞∑

j=1

Eλ

[
T 2
j 1{ρλ

1 ≥ j}
] + 2

∞∑

j=1

j−1∑

i=1

Eλ

[
Ti Tj1{ρλ

1 ≥ j}
]
. (8.27)

One application of the Cauchy-Schwarz inequality for the first sum and two applications for
the second give

Eλ

[( ρλ
1∑

i=1

Ti

)2]

≤
∞∑

j=1

(Eλ[T 4
j ])1/2Pλ(ρλ

1 ≥ j)1/2

+ 2
∞∑

j=1

j−1∑

i=1

(Eλ[T 4
i ]Eλ[T 4

j ])1/4Pλ(ρλ
1 ≥ j)1/2

≤ (Eλ[T 4
1 ])1/2

( ∞∑

j=1

C1/2e− λ ε j/2 + 2
∞∑

j=1

jPλ(ρλ
1 ≥ j)1/2

)

.

With the estimates (8.25) and (8.9) we obtain

lim sup
λ→0

4
λEλ

[( ρλ
1∑

i=1

Ti

)2]

< ∞.

The first term in the upper bound in (8.26) is treated in the same way. Next, we show that
Pλ(L ≥ m) decays exponentially fast inm. Indeed, L ≥ 2m implies that there is an excursion
on the backbone to the left of length at least m or the origin is in a trap that covers the piece
[−m, 0) and thus has length at least m. The probability that there is an excursion on the
backbone of length at least m is bounded by a constant (independent of λ) times e−2λm by
Lemma 6.3 in [14]. The probability that a trap that covers the piece [−m, 0) is bounded by a
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constant (again independent of λ) times e−2λc m by [3, pp. 3403–3404] or [14, Lemma 3.2].
We may thus argue as above to conclude that

lim sup
λ→0

4
λEλ

[( −1∑

i=−L

Ti

)2]

< ∞.

Regarding the termEλ[T 2
0 ], we can apply (8.25). Controlling the mixed terms in (8.26) using

the Cauchy-Schwarz inequality we obtain

lim sup
λ→0

4
λEλ

[
(τ

λ,traps
1 )2

]
< ∞. (8.28)

Next we treat the time on the backbone. Since the strategy of proof is the same as for the
traps we try to be as brief as possible. Write N (v) := ∑

n≥0 1{Yn=v} for the number of visits
of the walk (Yn)n≥0 to v ∈ V . We have

Eλ

[(
τλ,B
1

)2] ≤ Eλ

[( ∑

−L≤x(v)≤ρλ
1

N (v)1{v∈B}
)2]

= Eλ

[( ∑

−L≤x(v)<0

N (v)1{v∈B} +
∑

0≤x(v)≤ρλ
1

N (v)1{v∈B}
)2]

. (8.29)

We treat the second moment of the second sum first. Using the Cauchy-Schwarz inequality
twice, we infer

Eλ

[( ∑

0≤x(v)≤ρλ
1

N (v)1{v∈B}
)2]

= Eλ

[ ∑

x(v),x(w)≥0

N (v)N (w)1{v,w∈B}1{ρλ
1 ≥x(v)∨x(w)}

]

≤ 2Eλ

[ ∞∑

j=0

j∑

i=0

∑

x(v)=i,
x(w)= j

N (v)N (w)1{v,w∈B}1{ρλ
1 ≥ j}

]

≤ 2
∞∑

j=0

j∑

i=0

∑

x(v)=i,
x(w)= j

(
Eλ[N (v)41{v∈B}]

)1/4(
Eλ[N (w)41{w∈B}]

)1/4
Pλ(ρλ

1 ≥ j)1/2.

The number of visits to v ∈ B is stochastically dominated by a geometric random variable
with success probability pesc, see (8.22). Hence

E[N (v)41{v∈B}] ≤ c̃
( 1

pesc

)4
.

Using (8.9) and (8.23), we infer

lim sup
λ→0

4
λ Eλ

[( ∑

0≤x(v)≤ρλ
1

N (v)1{v∈B}
)2]

≤ 8c̃1/2 lim sup
λ→0

4
λ

( 1

pesc

)2 ∞∑

j=0

( j + 1)Pλ(ρλ
1 ≥ j)1/2 < ∞.
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We may argue similarly to infer the analogous statement for the first sum in (8.29). Hence,
using again the Cauchy-Schwarz inequality for the mixed terms in (8.29), we conclude that

lim sup
λ→0

4
λEλ

[
(τλ,B

1 )2
]

< ∞. (8.30)

Using the Cauchy-Schwarz inequality for the mixed terms in decomposition (8.18) together
with (8.28) and (8.30), we finally obtain the first statement in (8.14). The second statement
in (8.14) then follows from Lemma 8.5. More precisely, τλ

2 − τλ
1 is a measurable function of

the random walk path (Yτλ
1 +k)k∈N0 and the cluster to the right of the origin in θ Rλ,−

1 ω. Here,

recall that Rλ,−
1 denotes the right-most λ-pre-regeneration point strictly to the left of Rλ

1 .
Lemma 8.5 thus yields

Eλ[(τλ
2 − τλ

1 )2] = E
◦
λ[(τλ

1 )2 | Xk > x(Rpre,λ
−1 ) for all k ∈ N].

Here, P
◦
λ(Xk > x(Rpre,λ

−1 ) for all k ∈ N) ≥ 1
2 by (5.3) for all sufficiently small λ > 0.

Consequently,

Eλ[(τλ
2 − τλ

1 )2] ≤ 2E
◦
λ[(τλ

1 )21{Xk>x(Rpre,λ
−1 ) for all k∈N}].

To show that the second relation in (8.14) holds, we may now argue as for the first. The
arguments carry over without substantial changes. The bounds required on P

◦
λ(ρλ

1 ≥ j) are
contained in the proof of Lemma 8.6. We omit further details. ��

The existence of a regeneration structure allows to express the linear speed in terms of
regeneration points and times.

Lemma 8.9 Let λ > 0. Then

v(λ) = Eλ[ρλ
2 − ρλ

1 ]
Eλ[τλ

2 − τλ
1 ] .

We omit the proof as it is standard and can be derived as [14, Proposition 4.3], with references
to classical renewal theory replaced by references to renewal theory for 1-dependent variables
as presented in [18]. As a consequence of Lemmas 8.6, 8.8 and 8.9, we obtain

lim sup
λ→0

v(λ)

λ
< ∞. (8.31)

8.4 Proof of Equation (2.10)

It remains to prove (2.10), i.e.,

lim
λ→0,

λ2 n→α

[
v(λ)

λ
− Eλ[Xn]

λ n

]

= 0. (2.10)

for α > 0. The proof follows along the lines of Section 5.3 in [13]. In order to keep this paper
self-contained, we repeat the corresponding arguments from [13] in the present context.

For λ > 0, we set

k(n) :=
⌊

n

Eλ[τλ
2 − τλ

1 ]

⌋

, n ∈ N.
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Notice that k(n) is deterministic but depends onλ even though this dependence does not figure
in the notation. Analogously, we shall sometimes write τn for τλ

n and, thereby, suppress the
dependence on λ. In view of (2.9), the limit in (2.10) (if it exists) does not depend on α,
hence it is sufficient to show that

lim
α→∞ lim sup

λ→0,
λ2 n→α

[
v(λ)

λ
− Eλ[Xn]

λ n

]

= 0.

To show this it is, in turn, sufficient to show

lim
α→∞ lim sup

λ→0,
λ2 n→α

∣
∣
∣
∣
Eλ[Xτk(n)

]
λ n

− v(λ)

λ

∣
∣
∣
∣ = 0 (8.32)

and lim
α→∞ lim sup

λ→0,
λ2 n→α

∣
∣
∣
∣
1

λ n
Eλ[Xn − Xτk(n)

]
∣
∣
∣
∣ = 0. (8.33)

For the proof of (8.32), notice that

∣
∣
∣
∣
Eλ[Xτk(n)

]
λ n

− v(λ)

λ

∣
∣
∣
∣ =

∣
∣
∣
∣
1

λ n
Eλ

[ k(n)∑

j=1

(Xτ j − Xτ j−1)

]

− v(λ)

λ

∣
∣
∣
∣

≤ 1

λ n
Eλ[Xτ1 ] +

∣
∣
∣
∣
1

λ n
(k(n) − 1)Eλ[Xτ2 − Xτ1 ] − v(λ)

λ

∣
∣
∣
∣. (8.34)

Here, using that λ2 n → α, we have that 1
λ nEλ[Xτ1 ] ∼ α−1 λ Eλ[Xτ1 ]. Thus, the first

term in (8.34) vanishes as first λ → 0 and n → ∞ simultaneously and then α → ∞ by
(8.8). Turning to the second summand in (8.34), we first notice that by Lemma 8.9, we have
v(λ) = Eλ[Xτ2 − Xτ1 ]/Eλ[τ2 − τ1] and hence

∣
∣
∣
∣
1

λ n
(k(n) − 1)Eλ[Xτ2 − Xτ1 ] − v(λ)

λ

∣
∣
∣
∣

= v(λ)

λ

∣
∣
∣
∣
Eλ[τ2 − τ1]

n

(⌊
n

Eλ[τ2 − τ1]
⌋

− 1
)

− 1

∣
∣
∣
∣.

We now infer (8.32) by first letting λ → 0 such that λ2 n → α (and using (8.15) and (8.31))
and then letting α → ∞.

It finally remains to prove (8.33). We begin by proving the analogue of Lemma 5.13 in
[13]. While the proof is essentially the same, we have to replace the independence property
of the times between two regenerations by the 1-dependence property.

Lemma 8.10 For all ε > 0,

Pλ

(|τk−kEλ[τ2−τ1]| ≥ εkEλ[τ2−τ1]
) → 0 for k → ∞

uniformly in λ ∈ (0,λ∗] for some sufficiently small λ∗ > 0.

Proof An application of Markov’s inequality yields

Pλ

(|τk−kEλ[τ2−τ1]|≥εkEλ[τ2−τ1]
)≤ 1

ε2k2(Eλ[τ2−τ1])2 Eλ

[∣
∣τk−kEλ[τ2−τ1]

∣
∣2

]

= 1

ε2k2Eλ[τ2−τ1]2 Eλ

[(

τ1−Eλ[τ2−τ1] +
k∑

j=2

(τ j −τ j−1−Eλ[τ2−τ1])
)2]

.
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Denote the summands under the square by A1, . . . , Ak . Expanding the square and using the
1-dependence of the A j and the fact that all A j but A1 are centered, we infer

Pλ

(|τk−kEλ[τ2−τ1]| ≥ εkEλ[τ2−τ1]
)

≤ 1

ε2k2Eλ[τ2−τ1]2
( k∑

j=1

Eλ[A2
j ] +

∑

|i− j |=1

Eλ[Ai A j ]
)

≤ 1

ε2k2Eλ[τ2−τ1]2
( k∑

j=1

Eλ[A2
j ] + 2

(
Eλ[A2

1]Eλ[A2
2]

)1/2

+ 2(k − 1)
(
Eλ[A2

2]Eλ[A2
3]

)1/2
)

.

The assertion now follows from Lemma 8.8. ��
Now fix ε > 0 and write

1

λ n

∣
∣Eλ[Xn − Xτk(n)

]∣∣ ≤ 1

λ n

∣
∣Eλ[(Xn − Xτk(n)

)1{|τk(n)−n|<εn}]
∣
∣

+ 1

λ n

∣
∣Eλ[(Xn − Xτk(n)

)1{|τk(n)−n|≥εn}]
∣
∣. (8.35)

Using the Cauchy-Schwarz inequality, the first term on the right-hand side of (8.35) can be
bounded as follows.

1

λ n

∣
∣Eλ[(Xn−Xτk(n)

)1{|τk(n)−n|<εn}]
∣
∣ ≤ 2

λ n
Eλ

[
max| j−n|<εn

|X j −X�(1−ε)n�|
]

= 2

λ n
E0

[
max| j−n|<εn

|X j −X�(1−ε)n�|eλ Mn−λ2 An+Rλ,n
]

≤ 2

λ n
E0

[
max| j−n|<εn

|X j −X�(1−ε)n�|2
]1/2

E0
[
e2λ Mn−2λ2 An+2Rλ,n

]1/2
.

We infer lim supλ2 n→α E0[e2λ Mn−2λ2 An+2Rλ,n ] < ∞ as in the proof of Proposition 8.3.
Regarding the first factor, we find

1

λ2 n2
E0

[
max| j−n|<εn

|X j −X�(1−ε)n�|2
]

= 1

λ2 n

1

n
Ep

[
Eω(�(1−ε)n�),0

[
max

0≤ j≤2εn
X2

j

]]

= 2ε

λ2 n

1

2εn
E0

[
max

0≤ j≤2εn
X2

j

]
.

This term vanishes as first λ2 n → α (by Lemma 8.1) and then α → ∞. The second term on
the right-hand side of (8.35) can be bounded using the Cauchy-Schwarz inequality, namely,

1

λ n

∣
∣Eλ[(Xn − Xτk(n)

)1{|τk(n)−n|≥εn}]
∣
∣

≤ 1

λ n
Eλ[(Xn − Xτk(n)

)2]1/2 · Pλ(|τk(n) − n| ≥ εn)1/2

≤
√
2

λ2 n

( 2
λ Eλ[X2

n] + 2
λ Eλ[X2

τk(n)
])1/2 · Pλ(|τk(n) − n| ≥ εn)1/2.

The first factor stays bounded as λ2 n → α whereas the second factor tends to 0 as n → ∞
and λ2 n → α by Lemma 8.10. Altogether, this finishes the proof of (8.33).

123



Einstein Relation for RandomWalk 769

Acknowledgements Open access funding provided by University of Innsbruck and Medical University of
Innsbruck. The authors thank an anonymous referee for numerous constructive comments that led to various
corrections and simplifications. The research of M. Meiners was supported by DFG SFB 878 “Geometry,
Groups and Actions” and by short visit Grant 5329 from the European Science Foundation (ESF) for the
activity entitled ‘Random Geometry of Large Interacting Systems and Statistical Physics’. The research was
partly carried out during mutual visits of the authors at Aix-Marseille Université, Technische Universität
Graz, TechnischeUniversitätDarmstadt,Universität Innsbruck, andTechnischeUniversitätMünchen.Grateful
acknowledgement is made for hospitality from all five universities.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.

A: Auxiliary Results from RandomWalk Theory

We use the following result, which may be of interest in its own right.

Lemma A.1 Let ξ1, ξ2, . . . be random variables on some probability space with underlying
probability measure P (and expectation E), and let Sn := ξ1 + · · · + ξn, n ∈ N0.

(a) Let α > 0. If K is an N0-valued random variable with E[K α] < ∞ and if ξ1, ξ2, . . .

are i.i.d. with E[|ξ1|α+1] < ∞, then E[Sα
K ] < ∞.

(b) Assume that ξ1, ξ2, . . . are nonnegative and i.i.d. under P with E[eϑξ1 ] < ∞ for some
ϑ > 0. Then, for every ε > 0 and δ ∈ (0, 1

2 ) there is a random variable K1 with
E[K 2

1 ] < ∞ such that, for all n ∈ N,

ξn ≤ K1 + εn
1
2+δ a. s. (A.1)

(c) Assume that ξ1, ξ2, . . . are i.i.d., centered random variables underPwithE[eϑ |ξ1|] < ∞
for some ϑ > 0. Then, for every ε > 0 and δ ∈ (0, 1

2 ) there exists a random variable
K2 with E[K 2

2 ] < ∞ such that, for all n ∈ N,

|Sn | ≤ K2 + εn
1
2+δ a. s. (A.2)

(d) Assume that (Sn)n∈N0 is a martingale and that there is a constant C > 0 with P(|ξn | ≤
C) = 1 for all n ∈ N. Then, for every ε > 0 and δ ∈ (0, 1

4 ) there exists a random
variable K2 with E[K 2

2 ] < ∞ such that (A.2) holds.

Proof Assertion (a) follows from [15, Corollary 1].
For the proof of (b), fix ε > 0 and δ ∈ (0, 1

2 ). Then define

L := max{n ∈ N0 : n = 0 or n ≥ 1 and ξn > εn
1
2+δ}.

For n ≥ 1, the union bound and Markov’s inequality give

P(L ≥ n) = P(ξk > εk
1
2+δ for some k ≥ n)

≤ ∑
k≥n P(ξk ≥ εk

1
2+δ) ≤ E[eϑξ1 ]∑k≥n e

−ϑεk
1
2 +δ

. (A.3)

Hence, P(L ≥ n) decays faster than any negative power of n as n → ∞. With K1 := SL ,
we have E[K 2

1 ] < ∞ from (a) and, for all n ∈ N,

ξn ≤ K1 + εn
1
2+δ.
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For the proof of assertion (c), we use moderate deviation estimates (see e.g. [8, Theorem
3.7.1]). The cited theorem gives

lim
n→∞ n−2δ log P(|Sn | ≥ εn

1
2+δ) = − ε2

2Var[ξ1] .

Hence, for any c ∈ (0, ε2

2Var[ξ1] ), we have

P(|Sn | ≥ εn
1
2+δ) ≤ e−cn2δ

for all sufficiently large n. With L := max{n ∈ N0 : |Sn | ≥ εn
1
2+δ}, we infer for sufficiently

large n

P(L ≥ n) = P(|Sk | ≥ εk
1
2+δ for some k ≥ n)

≤ ∑
k≥n P(|Sk | ≥ εk

1
2+δ) ≤ ∑

k≥n e
−ck2δ . (A.4)

In particular, L has finite power moments of all orders. Now define K2 := L ∨ (
∑L

j=1 |ξ j |).
Then E[K 2

2 ] < ∞ by assertion (a) and, for all n ∈ N,

|Sn | ≤ K2 + εn
1
2+δ. (A.5)

Assertion (d) follows from an application of the Azuma-Hoeffding inequality [30, E14.2].

The cited inequality gives for L± := max{n ∈ N0 : ±Sn ≥ εn
1
2+δ}

P(L± ≥ n) ≤
∑

k≥n

P(±Sk ≥ εk
1
2+δ) ≤

∑

k≥n

e−ε2k2δ/2C2
.

As above, we conclude that L := L+ ∨ L− has finite power moments of all orders and, for
all n ∈ N, (A.5) holds with K2 := CL . ��

Finally, we use the following lemma for biased nearest-neighbor random walk on Z. It is
possible that the result is available in the literature. However, we have not been able to locate
it.

Lemma A.2 Let (Sn)n∈N0 be a biased nearest-neighbor random walk on Z with respect to
some probability measure P, i.e., P(S0 = 0) = 1 and

1
2 < r := P(Sn+1 = k + 1 | Sn = k) = 1 − P(Sn+1 = k − 1 | Sn = k)

for all k ∈ Z and n ∈ N0. Further, let

� := inf{ j ∈ N : Si < S j ≤ Sk for all 0 ≤ i < j ≤ k}
be the first positive point the walk visits from which it never steps to the left. Then there exist
finite constants C∗, c∗ = c∗(r) > 0 such that P(τ ≥ k) ≤ C∗e−c∗k for all k ∈ N0.

Proof The proof is standard and relies on the usual recursive construction of regeneration
times, see e.g. [19], and the Gambler’s ruin formula. We omit the details. ��
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