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Abstract
We discuss the order of the variance on a lattice analogue of the Hammersley process with
boundaries, for which the environment on each site has independent, Bernoulli distributed
values. The last passage time is themaximumnumber of Bernoulli points that can be collected
on a piecewise linear path, where each segment has strictly positive but finite slope. We show
that along characteristic directions the order of the variance of the last passage time is of
order N 2/3 in the model with boundary. These characteristic directions are restricted in a
cone starting at the origin, and along any direction outside the cone, the order of the variance
changes to O(N ) in the boundary model and to O(1) for the non-boundary model. This
behaviour is the result of the two flat edges of the shape function.
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1 Introduction

1.1 Brief Description of theModel and Framework

This paper studies fluctuations of a corner growth model that can be viewed as a discrete
analogue of the Hammersley process [29] or an independent analogue of the longest common
subsequence (LCS) problem, introduced in [10].

The model under consideration was introduced in [46]. It is a directed corner growth
model on the positive quadrant Z

2+. Each site v of Z
2+ is assigned a random weight ωv. The

collection {ωv}v∈Z2+ is the random environment and it is i.i.d. under the environment measure
P, with Bernoulli marginals

P{ωv = 1} = p, P{ωv = 0} = 1 − p.

Throughout the article we exclude the values p = 0 or p = 1. One way to view the
environment, is to treat site v as present when ωv = 1 and as deleted when ωv = 0. With
this interpretation, the longest strictly increasing Bernoulli path up to (m, n) is a sequence
of present sites

πmax
m,n = {v1 = (i1, j1), v2 = (i2, j2), . . . , vM = (iM , jM )}

so that 0 < i1 < i2 < · · · < iM ≤ m and 0 < j1 < j2 < · · · < jM ≤ n and so that
if {w1,w2, . . . ,wK } is a different strictly increasing sequence of present sites, then it must
be the case that K ≤ M . The cardinality of πmax

m,n is a random variable, denoted by Lm,n . It
denotes the maximum number fo Bernoulli points that one can collect on a strictly increasing
path up to point (m, n).

In this article we cast the random variable Lm,n as a last passage time as in the framework
of [23]. With the previous description, an admissible step of a potential optimal path up to
(m, n) can take one of O(mn) values—any site is accessible as long as it has strictly larger
coordinates from the previous site. However, any integer vector of positive coordinates can
be written as a linear combination of e1, e2 and e1 + e2 steps. Our set of admissible steps is
then restricted to R = {e1, e2, e1 + e2} and an admissible path from (0, 0) to (m, n) is an
ordered sequence of sites

π0,(m,n) = {0 = v0, v1, v2, . . . , vM = (m, n)},
so that vk+1 − vk ∈ R. The collection of all these paths is denoted by �0,(m,n). In order to
obtain the same variable Lm,n over this set of paths as the one from only strictly increasing

steps, we need to specify the measurable potential function V (ω, z) : R
Z
2+ ×R → R defined

V (ω, z) = ωe1+e211{z = e1 + e2}. (1.1)

This way, the path π will collect the Bernoulli weight at site v if and only there exists a k
such that vk+1 = v and vk = v − e1 − e2. No gain can be made through a horizontal or
vertical step. Using this potential function V we define the last passage time as

GV
0,(m,n) = max

π∈�0,(m,n)

{ ∑
vi∈π

V (Tvi ω, vi+1 − vi )
}
. (1.2)

Above we used Tvi as the environment shift by vi in Z
2+. Now one can see that GV

0,(m,n) =
Lm,n .
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The law of large numbers for GV
0,(m,n) was first obtained in [46]. To be precise, what was

shown is the following: There exists an explicit function g(p)
pp (s, t) that only depends on the

environment parameter p so that for any (s, t) ∈ R
2+, the law of large numbers is given by

lim
n→∞

GV
0,(�ns�,�nt�)

n
= g(p)

pp (s, t) =

⎧⎪⎨
⎪⎩
s, t ≥ s

p ,

1
1−p

(
2
√
pst − p(t + s)

)
, ps ≤ t < s

p ,

t, t ≤ ps.

(1.3)

The function g(p)
pp (s, t) is the point-to-point shape function. This is a concave, symmetric,

1-homogeneous differentiable function which is continuous up to the boundaries of R
2+. It

was the first completely explicit shape function for which strict concavity is not valid. In fact,
the formula indicates two flat edges, for t > s/p or t < ps. The result was proven by first
obtaining invariant distributions for an embedded totally asymmetric particle system.

It is precisely this methodology that invites the characterization ‘discrete Hammersley
process’, as the particle system can be viewed as a discretized version of the Aldous-Diaconis
process [1] which find the law of large numbers limit for the number of Poisson(1) points
that can be collected from a strictly increasing path in R

2+.
The original problem is mentioned as Ulam’s problem in the literature and it was about

the limiting law of large numbers for the length of longest increasing subsequence (LIS) of a
random permutation of the first n numbers, denoted by In . Already in [18] it was shown that
In ≥ √

n and an elementary proof via a pigeonhole argument can be found in [29]. This gave
the correct scaling and it was proven in [33,50] that limiting constant of n−1/2 In is 2. Then
the combinatorial arguments of these papers where changed to softer probabilistic arguments
in [1,27,45] where the full law of large numbers was obtained for a sequence of increasing
Poisson points.

The argument used in [46] to obtain the formula in directions of the flat edge can also be
used in an identical way to obtain the law of large numbers in the same direction for the much
more correlated longest common subsequence (LCS) model [10]. Comparisons between the
discrete Hammersley and the LCS are tantilizing. The Bernoulli environment η = {ηi, j } for
the LCS model is uniquely determined by two infinite random strings x = (x1, x2, . . .)
and y = (y1, y2, . . .) where each digit is uniformly chosen from a k-ary alphabet (i.e.
xi , y j ∈ {1, 2, . . . , k}). Then the environment ηi, j = 1{xi = y j } and it takes the value

1 with probability p = 1/k. The random variable L(k)
n,n represents the longest increasing

sequence of Bernoulli points in this environment, which corresponds to the longest common
subsequence between the two words, of size n. The limit ck = limn→∞ n−1L(k)

n,n is called
in the literature as the Chvatal–Sankoff constant, and it was already observed in [46] that
g(1/k)
pp (1, 1) of the discrete Hammersley lies between the known computational upper and

lower bounds for ck .
A formal connection between the discrete Hammersley, LCS and Hammersley models

arises in the small p (large alphabet size k) limit. Sankoff and Mainville conjectured in [44]
that

lim
k→∞

ck√
k

= 2.

For the discrete Hammersley model this is an immediate computation in (1.3) for p = 1/k
when we change ck with g

(1/k)
pp (1, 1). For the LCS, this was proven in [31]. The value 2 is the

limiting law of large numbers value for the longest increasing sequence of Poisson points in
R
2+.
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594 F. Ciech, N. Georgiou

1.2 Solvable Models of Lattice Last Passage Percolation and KPZ Exponents

Identifying the explicit shape function is the first step in computing fluctuations and scaling
limits for last passage time quantities. When precise calculations can be performed and
explicit scaling laws can be computed the model is classified as an explicitly solvable model
of last passage percolation. There are only a handful of these models, and each one requires
an individual treatment.

In [3] it is proven that the fluctuations around the mean of the longest increasing sub-
sequence (LIS) of n numbers are of order n1/6 and the scaling limit is a Tracy–Widom
distribution using a determinantal approach. The fluctuation exponent 1/3 is often used to
associate a model to the Kardar–Parisi–Zhang (KPZ) class (see [11] for a review), and deter-
minental/combinatorial approaches were developed for a variety of solvable growth models
in order to compute among other things explicit weak limits and formulas for Laplace trans-
forms of last passage times and polymer partition functions. Lattice examples include the
corner growth model with i.i.d. geometric weights, (admissible steps e1, e2) [30], the log-
gamma polymer [8,12], introduced in [48], the Brownian polymer [36,49], the strict-weak
lattice polymer [13,37], the random walk in a beta-distributed random potential, where the
zero-temperature limit is the Bernoulli-Exponential first passage percolation [5]. Particularly
for percolation in Bernoulli environment see [26], where Tracy–Widom distributions where
obtained for a class of models that also include the homogeneous model of [47]. The result
of [30] was also used to derive explicit formulas for the discrete Hammersley [39] with no
boundaries via a particle system coupling using a mathematical physics approach.

It is expected that under some minimal moment conditions the order of fluctuations of
1/3 of the last passage time or the polymer partition function is environment-independent.
A general theory that is a step towards universality can be found at the law of large numbers
level [23,41–43] where a series of variational formulas for the limiting free energy density
of polymer models and shape functions for last passage percolation where proven. A vari-
ational formula for the time constant in first passage percolation was proven in [32]. For
two-dimensional last passage models with e1, e2 admissible steps the analysis and results
can be sharpened; early universal results on the shape near the edge were obtained in [7,35].
A general approach and a range of results including solutions to the variational formulas and
existence of directional geodesics using invariant boundary models were developed via the
use of cocycles in [24,25]. Similar techniques are utilized in the present article, since we
prove the existence of an invariant boundary model for the discrete Hammersley.

A more probabilistic approach to estimate the order of the variance (but not the explicit
scaling limit), was developed in [9,28] where by adding Poisson distributed ‘sinks’ and
‘sources’ on the axes, they could create invariant versions of the model. For the discrete
Hammersley, an invariant model with sinks and sources has been described in [6] and it was
used to re-derive the law of large numbers forGV

0,(m,n). In the present article we show another
way to use boundaries on the axes and create invariant boundary models. Our approach is
similar to those in [4,48,49] where a Burke type property is first proven for the model with
boundary and then exploited to obtain the order of fluctuations.

1.3 The Flat Edge in Lattice PercolationModels

The discrete Hammersley is a model for which the shape function g(p)
pp (s, t) exhibits two

flat edges, for any value of p. Flat edge in percolation is not uncommon. A flat edge for the
contact process was observed in [15,16]. A simple explicitly solvable first passage (oriented)
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bond percolationmodel introduced in [47] allows for an exact derivation of the limiting shape
function and it also exhibits a flat edge. In this model the random weight was collected only
via a horizontal step, while vertical steps had a deterministic cost. For the i.i.d. oriented bond
percolation where each lattice edge admits a random Bernoulli weight, a flat edge result for
the shape was proved in [14] when the probability of success p is larger than some critical
value and percolation occurs. This was later extended in [34] where further properties were
derived. In [2] differentiability has been proven for the shape at the onset of the flat edge.

These properties for oriented bond percolation can be transported to oriented site per-
colation and further extended to corner growth models when the environment distribution
has a percolating maximum. For a general treatment to this effect, for non-exactly solvable
models, see Section 3.2 in [25]. For directed percolation in a correlated environment, a shape
result with flat edges can be found in [17].

Local laws of large numbers of the passage time near the flat edge of the discrete Ham-
mersley model can be found in [21]. This work was later extended in [22], where limiting
Tracy–Widom laws were obtained in special cases, using also the edge results of [7]. These
‘edge results’ are for the last passage time in directions that are below the critical line (n, n/p)
and into the concave region of g(p)

pp by a mesoscopic term of na , 0 < a < 1. When a > 1/2
the order of the fluctuations is between O(n1/3) and O(1). In the present article we further
prove that in directions above the critical line (in the flat edge of g(p)

pp ) the variance of the
passage time is bounded above by a constant that tends to 0 (see Sect. 7).

1.4 Structure of the Paper

The paper is organised as follows: In Sect. 2 we state our main results after describing the
boundary model. In Sect. 3 we prove Burke’s property for the invariant boundary model and
compute the solution to the variational formula that gives the law of large numbers for the
shape function of the model without boundaries. The main theorem of this paper is the order
of the variance of the model with boundaries in characteristic directions. The upper bound
for the order can be found in Sect. 4. The lower bound is proven in Sect. 5. For the order of
the variance in off-characteristic directions see Sect. 6 and for the results for the model with
no boundaries, including the order of the variance in directions in the flat edge see Sect. 7.
Finally, in Sect. 8 we prove the path fluctuations in the characteristic direction, again in the
model with boundaries.

1.5 Common Notation

Throughout the paper, N denotes the natural numbers, and Z+ the non-negative integers.
When we write inequality between two vectors v = (k, �) ≤ w = (m, n) we mean k ≤ m
and � ≤ n. Boldface letters e.g. v denote two dimensional vectors, that can substitute indices
e.g. (m, n) when notation becomes heavy.

We reserve the symbolG for last passage times. We omit from the notation the superscript
V that was used to denote the dependence of potential function in (1.2), since for the sequence
we fix V as in (1.1), unless otherwise mentioned. So far we only introduced passages times
from 0 = (0, 0); when the starting point is 0, we simplify the notation slightly by omitting
it from the subscript, and denote G0,(m,n) simply by Gm,n . We will need passage times from
an initial point (k, �) to (m, n), for arbitrary (k, �) ≤ (m, n). In that case passage times are
denoted by G(k,�),(m,n).
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596 F. Ciech, N. Georgiou

Throughout the presentation, we make use of several versions of passage times, which are
all denoted by G. We compiled a table of these symbols in the Appendix, as well as alerting
the reader or defining them in the main text.

The symbol π is reserved for a generic admissible path.
So far, the symbol g(p)

pp was used for the point-to-point shape function, when the envi-
ronment parameter is p. From this point onwards, the superscript (p) will be omitted as the
intended bulk environment parameter is always p.

2 TheModel and Its Invariant Version

2.1 The Invariant Boundary Model

The boundary model has altered distributions of weights on the two axes. The new envi-
ronment there will depend on a parameter u ∈ (0, 1) that will be under our control. Each
u defines different boundary distributions. At the origin we set ω0 = 0. For weights on the
horizontal axis, for any k ∈ N we set ωke1 ∼ Bernoulli(u), with independent marginals

P{ωke1 = 1} = u = 1 − P{ωke1 = 0}. (2.1)

On the vertical axis, for any k ∈ N, we set ωke2 ∼ Bernoulli
(

p(1−u)
u+p(1−u)

)
with independent

marginals

P{ωke2 = 1} = p(1 − u)

u + p(1 − u)
= 1 − P{ωke2 = 0}. (2.2)

The environment in the bulk {ωv}v∈N2 remains unchanged with i.i.d. Ber(p) marginal distri-
butions. Denote this environment by ω(u) to emphasise the different distributions on the axes
that depend on u.

In summary, for any i ≥ 1, j ≥ 1, theω(u) marginals are independent under a background
environment measure P with marginals

ω
(u)
i, j ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ber(p), if (i, j) ∈ N
2,

Ber(u), if i ∈ N, j = 0,

Ber
(

p(1−u)
u+p(1−u)

)
, if i = 0, j ∈ N,

0, if i = 0, j = 0.

(2.3)

In this environment we slightly alter the way a path can collect weight on the boundaries.
Consider any path π from 0. If the path moves horizontally before entering the bulk, then it
collects the Bernoulli(u) weights until it takes the first vertical step, and after that, it collects
weight according to the potential function (1.1). If π moves vertically from 0 then it also
collects the Bernoulli weights on the vertical axis, and after it enters the bulk, it collects
according to (1.1).

Fix a parameter u ∈ (0, 1). Denote the last passage time from 0 to w in environment ω(u)

by G(u)
0,v. The variational equality, using the above description, is
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G(u)
0,v = max

1≤k≤v·e1
max

z∈{e2,e1+e2}

{
k∑

i=1

ω
(u)
ie1

+ V (Tke1ω
(u), z) + Gke1+z,v

}

∨
max

1≤k≤v·e2
max

z∈{e1,e1+e2}

⎧⎨
⎩

k∑
j=1

ω
(u)
je2

+ V (Tke2ω
(u), z) + Gz+ke2,v

⎫⎬
⎭. (2.4)

If the starting point is (0, 0) and no confusion arises, we simply denote G(0,0),(m,n) or

G(u)
(0,0),(m,n) with Gm,n or G(u)

m,n . Our two first statements give the explicit formula for the
shape function.

Theorem 2.1 (Law of large numbers for G(u)
�Ns�,�Nt�) For fixed parameter 0 < u ≤ 1 and

(s, t) ∈ R
2+ we have

lim
N→∞

G(u)
�Ns�,�Nt�

N
= su + t

p(1 − u)

u + p(1 − u)
, P − a.s. (2.5)

The result of the next theorem has been proven in [6,46] using two different techniques. In
[46] the last passage time process is embedded in a totally asymmetric exclusion type process,
for which invariant distributions for the inter-particle distances where inferred. Using those
and a hydrodynamic limit, the Legendre transform of the level curve of the shape function is
explicitly computed and then inverted in order to obtain the shape function. Amore geometric
approach was used in [6], where the limit was obtained by finding the invariant model using
sources and sinks of particles on the boundaries and creating level surfaces for the last
passage time; in fact there is a correspondence between these level surfaces and the positions
of particles in the particle system. In the present proofwe only use algebraic properties arising
from Burke’s property.

Theorem 2.2 Fix p in (0, 1) and (s, t) ∈ R
2+. Then we have the explicit law of large numbers

limit

lim
N→∞

G�Ns�,�Nt�
N

= inf
0<u≤1

{
sE(ω

(u)
1,0) + tE(ω

(u)
0,1)

}

=

⎧⎪⎨
⎪⎩
s, t ≥ s

p ,

1
1−p

(
2
√
pst − p(t + s)

)
, ps ≤ t < s

p ,

t, t ≤ ps.

(2.6)

The main theorems of this article verify with probabilistic techniques the variance of G(u)

along deterministic directions. For a given boundary parameter u, there will exist a unique
direction (mu, nu) along which the last passage time at point N (mu, nu) will have variance
of order O(N 2/3) for large N . That is what we call the characteristic direction. The form of
the characteristic direction will become apparent from the variance formula in Eq. 4.5; it is
precisely the direction for which the higher order variance terms cancel out. As it turns out,
the characteristic direction ends up being

(mu(N ), nu(N )) =
(
N ,

⌊N
p

(
p + (1 − p)u

)2⌋)
. (2.7)

Throughout the paper we will often compare last passage times over two different boundaries
that have different characteristic directions. For this reasonwe explicitly denote the parameter
in the subscript.
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Note that as N → ∞, the scaled direction converges to the macroscopic characteristic
direction

N−1(mu(N ), nu(N )) →
(
1,

(
p + (1 − p)u

)2
p

)
, (2.8)

which gives that for large enough N the endpoint (mu(N ), nu(N )) is always between the
two critical lines y = x

p and y = px that separate the flat edges from the strictly concave
part of gpp .This defines the macroscopic set of characteristic directions

Jp =
{(

1,

(
p + (1 − p)u

)2
p

)
: u ∈ (0, 1)

}
.

Note that any (s, t) ∈ R
2+ for which (1, ts−1) ∈ Jp , the shape function gpp has a strictly

positive curvature at (s, t).

Theorem 2.3 Fix a parameter u ∈ (0, 1) and let (mu(N ), nu(N )) as in (2.7). Then there
exists constants C1 and C2 that depend on p and u so that

C1N
2/3 ≤ Var

(
G(u)

mu(N ),nu(N )

)
≤ C2N

2/3. (2.9)

In the off-characteristic direction, the processG(u)
m(N ),n(N ) satisfies a central limit theorem,

and therefore the variance is of order N . This is due to the boundary effect, as we show that
maximal paths spend a macroscopic amount of steps along a boundary, and enter the bulk at
a point which creates a characteristic rectangle with the projected exit point.

Theorem 2.4 Fix a c ∈ R. Fix a parameter u ∈ (0, 1) and let (mu, nu) the characteristic
direction corresponding to u as in (2.7). Then for α ∈ (2/3, 1],

lim
N→∞

G(u)
mu(N ),nu(N )+�cNα� − E

[
G(u)

mu(N ),nu(N )+�cNα�
]

Nα/2

D−→ Z ∼ √|c|u(1 − u)N
(
0,1{c < 0} + p

(u + p(1 − u))2
1{c > 0}

)
.

Remark 2.5 The set Jp contains only the directions (1, t) for which p < t < 1/p. Any other
directions with t < p or t > p−1 -that also correspond to the flat edge of the non-boundary
model- and for an arbitrary u ∈ (0, 1), are necessarily off-characteristic directions and along
those, the last passage time satisfies a central limit theorem. ��

We also have partial results for the model without boundaries. Recall the definition of the
function gp p(x, y) in (1.3) where we have dropped the superscript. The approach does not
allow access to the variance of the non-boundary model directly, but we have

Theorem 2.6 Fix x, y ∈ (0,∞) so that p < y/x < p−1. Then, there exist finite constants
N0 and C = C(x, y, p), such that, for b ≥ C, N ≥ N0 and any 0 < α < 1,

P
{|G(1,1),(�Nx�,�Ny�) − Ngpp(x, y)| ≥ bN 1/3} ≤ Cb−3α/2. (2.10)

In particular, for N > N0, and 1 ≤ r < 3α/2 we get the moment bound

E

[∣∣∣∣G(1,1),(�Nx�,�Ny�) − Ngpp(x, y)

N 1/3

∣∣∣∣
r]

≤ C(x, y, p, r) < ∞. (2.11)
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The bounds in the previous theoremwork in directions where the shape function is strictly
concave. In directions of flat edge we have

Theorem 2.7 Fix x, y ∈ (0,∞) so that p > y/x or y/x > p−1. Then, there exist finite
constants c = c(x, y, p) and C = C(x, y, p), such that

Var(G(1,1),(�Nx�,�Ny�)) ≤ CN 2e−cN → 0 (N → ∞). (2.12)

For finer asymptotics on the variance and also weak limits, particularly close to the critical
lines y = px and y = p−1x we direct the reader to [21,22].

We have already alluded to the maximal paths. Maximal paths are admissible paths that
attain the last passage time. In the literature they can also be found as random geodesics. For
this particular model, the maximal path is not unique—this is because of the discrete nature
of the environment distribution, so we need to enforce an a priori condition that makes our
choice unique when we refer to it. Unless otherwise specified, the maximal path we select is
the right-most one (it is also the down-most maximal path).

Definition 2.8 An admissible maximal path from 0 to (m, n)

π̂0,(m,n) = {{(0, 0) = π̂0, π̂1, . . . , π̂K = (m, n)}
is the right-most (or down-most) maximal path if and only if it is maximal and if π̂i =
(vi , wi ) ∈ π̂0,(m,n) then the sites (k, �), vi < k < m, 0 ≤ � < wi cannot belong on any
maximal path from 0 to (m, n).

In words, no site underneath the right-most maximal path can belong to a different maximal
path. An algorithm to construct the right-most path iteratively is given in (5.1).

For this right-most path π̂ we define ξ (u) its exit point from the axes in the environment
ω(u). We indicate with ξ

(u)
e1 the exit point from the x-axis and ξ

(u)
e2 the exit point from the

y-axis. If ξ
(u)
e1 > 0 the maximal path π̂ chooses to go through the x-axis and ξ

(u)
e2 = 0 and

vice versa. If ξ
(u)
e1 = ξ

(u)
e2 = 0 it means the maximal path directly enters into the bulk with a

diagonal step. When we do not need to distinguish from which axes we exit, we just denote
the generic exit point by ξ (u).

The exit point ξ
(u)
e1 represents the exit of the maximal path from level 0. To study the

fluctuations of this path around its enforced direction, define

v0( j) = min{i ∈ {0, . . . ,m} : ∃k such that π̂k = (i, j)}, (2.13)

and

v1( j) = max{i ∈ {0, . . . ,m} : ∃k such that π̂k = (i, j)}. (2.14)

These represent, respectively, the entry and exit point from a fixed horizontal level j of a
path π̂ . Since our paths can take diagonal steps, it may be that v0( j) = v1( j) for some j .

Now, we can state the theoremwhich shows that N 2/3 is the correct order of themagnitude
of the path fluctuations. We show that the path stays in an �1 ball of radius CN 2/3 with high
probability, and simultaneously, avoid balls of radius δN 2/3 again with high probability for
δ small enough.

Theorem 2.9 Consider the last passage time in environment ω(u) and let π̂0,(mu(N ),nu(N ))

be the right-most maximal path from the origin up to (mu(N ), nu(N )) as in (2.7). Fix a
0 ≤ τ < 1. Then, there exist constants C1,C2 < ∞ such that for N ≥ 1, b ≥ C1
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P{v0(�τnu(N )�) < τmu(N ) − bN 2/3 or v1(�τnu(N )�) > τmu(N ) + bN 2/3} ≤ C2b
−3.

(2.15)

The same bound holds for vertical displacements.
Moreover, for a fixed τ ∈ (0, 1) and given ε > 0, there exists δ > 0 such that

lim
N→∞ P

{∃k such that |π̂k − (τmu(N ), τnu(N ))| ≤ δN 2/3} ≤ ε. (2.16)

3 Burke’s Property and Law of Large Numbers

In this section we prove the invariance property—traditionally called Burke’s property—that
is satisfied by the environment variables in the model with boundary. We then use it to obtain
the law of large numbers for the boundary model. After that we obtain the law of large
numbers for the model without boundaries.

To simplify the notation in what follows, set w = (i, j) ∈ Z
2+ and define the last passage

time gradients by

I (u)
i+1, j = G(u)

0,(i+1, j) − G(u)
0,(i, j), and J (u)

i, j+1 = G(u)
0,(i, j+1) − G(u)

0,(i, j). (3.1)

When there is no confusion we will drop the superscript (u) from the above. When j = 0 we
have that {I (u)

i,0 }i,∈N is a collection of i.i.d. Bernoulli(u) random variables since I (u)
i,0 = ω(i,0).

Similarly, for i = 0, {J (u)
0, j } j∈N is a collection of i.i.d. Bernoulli

(
p(1−u)

u+p(1−u)

)
random variables.

The gradients and the passage time satisfy recursive equations. This is the content of the
next lemma.

Lemma 3.1 Let u ∈ (0, 1) and (i, j) ∈ N
2. Then the last passage time can be recursively

computed as

G(u)
0,(i, j) = max

{
G(u)

0,(i, j−1), G(u)
0,(i−1, j), G(u)

0,(i−1, j−1) + ωi, j
}

(3.2)

Furthermore, the last passage time gradients satisfy the recursive equations

I (u)
i, j = max

{
ωi, j , J (u)

i−1, j , I (u)
i, j−1

} − J (u)
i−1, j

J (u)
i, j = max

{
ωi, j , J (u)

i−1, j , I (u)
i, j−1

} − I (u)
i, j−1.

(3.3)

Proof Equation (3.2) is immediate from the description of the dynamics in the boundary
model and the fact that (i, j) is in the bulk. We only prove the recursive equation (3.3) for
the J and the other one is done similarly and left to the reader. Compute

J (u)
i, j = G(u)

0,(i, j) − G(u)
0,(i, j−1)

= max
{
G(u)

0,(i, j−1), G(u)
0,(i−1, j), G(u)

0,(i−1, j−1) + ωi, j
} − G(u)

0,(i, j−1) by (3.2),

= max
{
0,G(u)

0,(i−1, j) − G(u)
0,(i, j−1),G

(u)
0,(i−1, j−1) − G(u)

0,(i, j−1) + ωi, j
}

= max
{
0,G(u)

i−1, j − G(u)
i−1, j−1 + G(u)

i−1, j−1 − G(u)
i, j−1,G

(u)
i−1, j−1 − G(u)

i, j−1 + ωi, j
}

= max
{
0, J (u)

i−1, j − I (u)
i, j−1,−I (u)

i, j−1 + ωi, j
}

= max
{
ωi, j , J (u)

i−1, j , I (u)
i, j−1

} − I (u)
i, j−1.

��
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The recursive equations are sufficient to prove a partial independence property.

Lemma 3.2 Assume that (ωi, j , I
(u)
i, j−1, J

(u)
i−1, j ) are mutually independent with marginal dis-

tributions given by

ωi, j ∼ Ber(p), I (u)
i, j−1 ∼ Ber(u), J (u)

i−1, j ∼ Ber
( p(1 − u)

u + p(1 − u)

)
. (3.4)

Then, I (u)
i, j , J

(u)
i, j , computedusing the recursive equations (3.3)are independentwithmarginals

Ber(u) and Ber( p(1−u)
u+p(1−u)

) respectively.

Proof Themarginal distributions are immediate from the definitions. To see the independence
we must show that

E
(
h
(
I (u)
i, j

)
k
(
J (u)
i, j

)) = E
(
h
(
I (u)
i, j−1

)
k
(
J (u)
i−1, j

))
,

for any bounded continuous functions h, k, and use the independence of I (u)
i, j−1 and J (u)

i−1, j
by the assumption. Use Eqs. (3.3) to write

E
(
h
(
I (u)
i, j

)
k
(
J (u)
i, j

))
= E

(
h
(
ωi, j ∨ J (u)

i−1, j ∨ I (u)
i, j−1 − J (u)

i−1, j

)
k
(
ωi, j ∨ J (u)

i−1, j ∨ I (u)
i, j−1 − I (u)

i, j−1

))
.

Then use the fact that ωi, j , J
(u)
i−1, j , I

(u)
i, j−1 are independent with known distributions to com-

pute the expected value and obtain the result. ��
A down-right path ψ on the lattice Z

2+ is an ordered sequence of sites {vi }i∈Z that satisfy

vi − vi−1 ∈ {e1,−e2}. (3.5)

For a given down-right path ψ , define ψi = vi − vi−1 to be the i-th edge of the path and set

Lψi =
{
I (u)
vi , if ψi = e1
J (u)
vi−1 , if ψi = −e2.

(3.6)

The first observation is that the random variables in the collection {Lψi }i∈Z satisfy the fol-
lowing:

Lemma 3.3 Fix a down-right path ψ . Then the random variables {Lψi }i∈Z are mutually
independent, with marginals

Lψi ∼
{
Ber(u), if ψi = e1

Ber
(

p(1−u)
u+p(1−u)

)
, if ψi = −e2.

Proof The proof goes by an inductive “corner - flipping” argument: The base case is the
path that follows the axes, and there the result follows immediately by the definitions of
boundaries. Then we flip the corner at zero, i.e. we consider the down right path

ψ(1) = {. . . , (0, 2), (0, 1), (1, 1), (1, 0), (2, 0), . . .}.
Equivalently, we now consider the collection

{{J (u)
0, j } j≥2, I (u)

1,1 , J (u)
1,1 , {I (u)

i,0 }i≥2
}
. The only

place where the independence or the distributions may have been violated, is for I (u)
1,1 , J

(u)
1,1 .

Lemma 3.2 shows this does not happen. As a consequence, variables on the new path satisfy
the assumption of Lemma 3.2.We can now repetitively use Lemma 3.3 by flipping down-right
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west-south corners into north-east corners. This way, starting from the axes we can obtain
any down-right path, while the distributional properties are maintained. The details are left
to the reader. ��

For any triplet (ωi, j , I
(u)
i, j−1, J

(u)
i−1, j ) with i ≥ 1, j ≥ 1, we define the event

Bi, j = {(
ωi, j , I

(u)
i, j−1, J

(u)
i−1, j

) ∈ (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 0)
}
. (3.7)

Using the gradients (3.3), the environment {ωi, j }(i, j)∈N2 and the events Bi, j we also define
new random variables αi, j on Z

2+

αi−1, j−1 = 11
{
I (u)
i, j−1 = J (u)

i−1, j = 1
} + βi−1, j−111{Bi, j } for (i, j) ∈ N

2. (3.8)

βi−1, j−1 is aBer(p) randomvariable and is independent of everything else.Note thatαi−1, j−1

is automatically 0 when ωi, j = I (u)
i, j−1 = J (u)

i−1, j = 0 and check, with the help of Lemma 3.2,

that αi−1, j−1
D= ωi, j .

Remark 3.4 The following lemma gives the distribution of the triple (I (u)
i, j , J

(u)
i, j , αi−1, j−1)

also known as Burke’s property. The connection between Burke’s Theorem and property
comes from the M/M/1 queues in tandem interpretation of last passage time in exponential
environment. All the details about the connection can be found in [4], (see particularly the
proof of their Lemma 4.2). Since then, lattice exactly solvable models of LPP have proven
to have invariant versions in which the boundaries follow special independent distributions
and satisfy appropriate increment equations. Traditionally, whenever such a property can be
obtained, is called Burke’s property and we do so here as well.

Lemma 3.5 below is a generalization of Lemma 3.2. In order to prove it (following similar
steps as before), we will need to know the joint distribution of (I (u)

i, j , J
(u)
i, j )which is now given

by Lemma 3.2.

Lemma 3.5 (Burke’s property) Let (ωi, j , I
(u)
i, j−1, J

(u)
i−1, j ) be mutually independent Bernoulli

random variables with distributions

ωi, j ∼ Ber(p), I (u)
i, j−1 ∼ Ber(u), J (u)

i−1, j ∼ Ber

(
p(1 − u)

u + p(1 − u)

)
.

Then the random variables (αi−1, j−1, I
(u)
i, j , J

(u)
i, j ) are mutually independent with marginal

distributions

αi−1, j−1 ∼ Ber(p), I (u)
i, j ∼ Ber(u), J (u)

i, j ∼ Ber

(
p(1 − u)

u + p(1 − u)

)
.

Proof Let g, h, k be bounded continuous functions. To simplify the notation slightly, set
� = �(u) = p(1−u)

u+p(1−u)
. In the computation below we use Eqs. (3.3) without special mention.

E

(
g(αi−1, j−1)h

(
I (u)
i, j

)
k
(
J (u)
i, j

))

= g(1)E
(
h
(
I (u)
i, j

)
k
(
J (u)
i, j

)
11
{
I (u)
i, j−1 = J (u)

i−1, j = 1
})

+ g(0)E
(
h
(
I (u)
i, j

)
k
(
J (u)
i, j

)
11
{
ωi, j = I (u)

i, j−1 = J (u)
i−1, j = 0

})

+ E

(
g(βi, j )h

(
I (u)
i, j

)
k
(
J (u)
i, j

)
11{Bi, j }

)
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= g(1)h(0)k(0)u� + g(0)h(0)k(0)(1 − p)(1 − u)(1 − �)

+ E(g(βi, j ))E
(
h
(
I (u)
i, j

)
k
(
J (u)
i, j

)
11{Bi, j }

)

= h(0)k(0)(1 − u)(1 − �)(pg(1) + (1 − p)g(0))

+ E(g(βi, j ))
∑

x∈Bi, j

E

(
h
(
I (u)
i, j

)
k
(
J (u)
i, j

)
11{x ∈ Bi, j }

)

= h(0)k(0)(1 − u)(1 − �)(pg(1) + (1 − p)g(0))

+ E(g(βi, j ))

×
(
h(1)k(1)p(1 − u)(1 − �) + h(0)k(1)[(1 − p)(1 − u)� + p(1 − u)�)]

+ h(1)k(0)[(1 − p)u(1 − �) + pu(1 − �)]
)

= h(0)k(0)(1 − u)(1 − �)(pg(1) + (1 − p)g(0))

+ E(g(βi, j ))
(
h(1)k(1)u� + h(0)k(1)(1 − u)� + h(1)k(0)u(1 − �)

)

= (pg(1) + (1 − p)g(0))E
(
h
(
I (u)
i, j

))
E
(
k
(
J (u)
i, j

))
= E

(
g
(
αi−1, j−1

))
E
(
h
(
I (u)
i, j

))
E
(
k
(
J (u)
i, j

))
.

The equality before last follows from Lemma 3.2. ��
The last necessary preliminary step is a corollary of Lemma 3.5 which generalises

Lemma 3.3 by incorporating the random variables {αi−1, j−1}i, j≥1. To this effect, for any
down-right path ψ satisfying (3.5), define the interior sites Iψ of ψ to be

Iψ = {w ∈ Z
2+ : ∃ vi ∈ ψ s.t. w < vi coordinate-wise}. (3.9)

Then

Corollary 3.6 Fix a down-right path ψ and recall definitions (3.6), (3.9). The random vari-
ables

{{αw}w∈Iψ , {Lψi }i∈Z}
are mutually independent, with marginals

αw ∼ Ber(p), Lψi ∼
{
Ber(u), if ψi = e1

Ber
(

p(1−u)
u+p(1−u)

)
, if ψi = −e2.

The proof is similar to that of Lemma 3.3 and we omit it.

3.1 Law of Large Numbers for the Boundary Model

Proof of Theorem 2.1 From Eqs. (3.1) we can write

G(u)
�Ns�,�Nt� =

�Nt�∑
j=1

J (u)
0, j +

�Ns�∑
i=1

I (u)
i,�Nt�

since the I , J variables are increments of the passage time. By the definition of the boundary
model, the variables are i.i.d. Ber(p(1 − u)/(u + p(1 − u)). Scaled by N , the first sum
converges to tE(J0,1) by the law of large numbers.
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By Corollary 3.6 they are i.i.d. Ber(u), since they belong on the down-right path that
follows the vertical axes from ∞ down to (0, �Nt�) and then moves horizontally. We cannot
immediately appeal to the law of large numbers as the whole sequence changes with N so
we first appeal to the Borel–Cantelli lemma via a large deviation estimate. Fix an ε > 0.

P

⎧⎨
⎩N−1

�Ns�∑
i=1

I (u)
i,�Nt� /∈ (u − ε, u + ε)

⎫⎬
⎭ = P

⎧⎨
⎩N−1

�Ns�∑
i=1

I (u)
i,0 /∈ (su − ε, su + ε)

⎫⎬
⎭

≤ e−c(u,s,ε)N ,

for some appropriate positive constant c(u, s, ε). By the Borel–Cantelli lemma we have that
for each ε > 0 there exists a random Nε so that for all N > Nε

su − ε < N−1
�Ns�∑
i=1

I (u)
i,�Nt� ≤ su + ε.

Then we have

su + t
p(1 − u)

u + p(1 − u)
− ε ≤ lim

N→∞

G(u)
�Ns�,�Nt�

N
≤ lim

N→∞
G(u)

�Ns�,�Nt�
N

≤ su

+ t
p(1 − u)

u + p(1 − u)
+ ε.

Let ε tend to 0 to finish the proof. ��
Remark 3.7 (The cases for u = 0 and u = 1) Consider first the case u = 0. This makes the
horizontal boundary identically 0 and the vertical boundary identically 1. The optimal path
for G�Ns�,Nt would never move on the horizontal axis; it either enters the bulk or moves on
the vertical axis, at which point it may only collect weight bounded above by �Nt�. This is
precisely the weight on the vertical axis, so the maximal path just follows that. In this case
we have deterministic LPP. Similarly, LPP is deterministic when u = 1.

3.2 Law of Large Numbers for the i.i.d. Model

Proof of Theorem 2.2 Let gpp(s, t) = limN→∞ N−1G�Ns�,�Nt� and denote by g(u)
pp (s, t) =

limN→∞ N−1G(u)
�Ns�,�Nt�. Shape function gpp(s, t) canbeproven apriori to be1-homogeneous

and concave. This is a direct consequence of the super-additivity of passage times and the
ergodicity and stationarity of the environment. We omit the details, but the interested reader
can follow the steps of the proof in [35].

The starting point is Eq. (2.4). Scaling that equation by N gives us the macroscopic
variational formulation

g(u)
pp (1, 1)

= sup
0≤z≤1

{
g(u)
pp (z, 0) + gpp(1 − z, 1)

}∨
sup

0≤z≤1

{
g(u)
pp (0, z) + gpp(1, 1 − z)

}

= sup
0≤z≤1

{
zE(I (u)) + gpp(1 − z, 1)

}∨
sup

0≤z≤1

{
zE(J (u)) + gpp(1, 1 − z)

}
. (3.10)
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We postpone the proof of (3.10) until the end. Assume (3.10) holds. Observe that since
gpp(s, t) is symmetric then gpp(1− z, 1) = gpp(1, 1− z)which we abbreviate with gpp(1−
z, 1) = ψ(1 − z). Therefore

g(u)
pp (1, 1) = sup

0≤z≤1
{zE(I (u)) + ψ(1 − z)}

∨
sup

0≤z≤1
{zE(J (u)) + ψ(1 − z)}. (3.11)

Moreover if u ∈ [
√
p

1+√
p , 1] then E(I (u)) ≥ E(J (u)). We restrict the parameter u to the subset

u ∈ [
√
p

1+√
p , 1] of its original range u ∈ (0, 1]. Then we can drop the second expression in

the braces from the right-hand side of (3.11) because at each z-value the first expression in
braces dominates. Then

u + p(1 − u)

u + p(1 − u)
= sup

0≤z≤1
{zu + ψ(1 − z)}. (3.12)

Set x = 1 − z. x still ranges in [0, 1] and after a rearrangement of the terms, we obtain

− p(1 − u)

u + p(1 − u)
= inf

0≤x≤1
{xu − ψ(x)}. (3.13)

The expression on the right-hand side is the Legendre transform of ψ , and we have that its

concave dualψ∗(u) = − p(1−u)
u+p(1−u)

with u ∈ [
√
p

1+√
p , 1]. Sinceψ(x) is concave, the Legendre

transform of ψ∗ will give back ψ , i.e. ψ∗∗ = ψ . Therefore,

gpp(x, 1) = ψ(x) = ψ∗∗(x) = inf√
p

1+√
p ≤u≤1

{xu − ψ∗(u)} = inf√
p

1+√
p ≤u≤1

{
xu + p(1 − u)

u + p(1 − u)

}

= inf√
p

1+√
p ≤u≤1

{
xE(I (u)) + E(J (u))

}
, for all x ∈ [0, 1]. (3.14)

Since gpp(s, t) = tgpp(st−1, 1), the first equality in (2.6) is now verified. For the second
equality, we solve the variational problem (3.14). The derivative of the expression in the

braces has a critical point u∗ ∈ [
√
p

1+√
p , 1] only when p < x < 1. In that case, the infimum

is achieved at

u∗ = 1

1 − p

(√ p

x
− p

)

and gpp(x, 1) = 1/(1 − p)[2√xp − p(x + 1)]. Otherwise, when x ≤ p the first derivative

for u ∈ [
√
p

1+√
p , 1] is always negative and the minimum occurs at u∗ = 1. This gives

gpp(x, 1) = x . Again, extend to all (s, t) via the relation gpp(s, t) = tgpp(st−1, 1). This
concludes the proof for the explicit shape under (3.10) which we now prove.

For a lower bound, fix any z ∈ [0, 1]. Then

G(u)
N ,N ≥

�Nz�∑
i=1

I (u)
i,0 + G(�Nz�,1),(N ,N ).

Divide through by N . The left hand side converges a.s. to g(u)
pp (1, 1). The first term on the right

converges a.s. to zE(I u). The second on the right, converges in probability to the constant
gpp(1−z, 1). In particular, we can find a subsequence Nk such that the convergence is almost
sure for the second term. Taking limits on this subsequence, we conclude

g(u)
pp (1, 1) ≥ zE(I (u)) + gpp(1 − z, 1).
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Since z is arbitrary we can take supremum over z in both sides of the equation above. The
same arguments will work if we move on the vertical axis. Thus, we obtain the lower bound
for (3.10). For the upper bound, fix ε > 0 and let {0 = q0, ε = q1, 2ε = q2, . . . ,

⌊
ε−1

⌋
ε, 1 =

qM } a partition of (0, 1). We partition both axes. The maximal path that optimises G(u)
N ,N has

to exit between �Nkε� and �N (k + 1)ε� for some k. Therefore, we may write

G(u)
N ,N ≤ max

0≤k≤�ε−1�

⎧⎨
⎩

�N (k+1)ε�∑
i=1

I (u)
i,0 + G(�Nkε�,1),(N ,N )

⎫⎬
⎭

∨
max

0≤k≤�ε−1�

⎧⎨
⎩

�N (k+1)ε�∑
j=1

J (u)
0, j + G1,(�Nkε�),(N ,N )

⎫⎬
⎭.

Divide by N . The right-hand side converges in probability to the constant

max
0≤k≤�ε−1�{(k + 1)εu + gpp(1 − εk, 1)}

∨
max

0≤k≤�ε−1�
{
(k + 1)ε

p(1 − u)

u + p(1 − u)
+ gpp(1, 1 − εk)

}

= max
qk

{qku + gpp(1 − qk, 1)} + εu

∨
max
qk

{
qk

p(1 − u)

u + p(1 − u)
+ gpp(1, 1 − qk)

}
+ ε

p(1 − u)

u + p(1 − u)

≤ sup
0≤z≤1

{zu + gpp(1 − z, 1)} + εu

∨
max
0≤z≤1

{
z

p(1 − u)

u + p(1 − u)
+ gpp(1, 1 − z)

}
+ ε

p(1 − u)

u + p(1 − u)
.

The convergence becomes a.s. on a subsequence. The upper bound for (3.10) now follows
by letting ε → 0 in the last inequality. ��

4 Upper Bound for the Variance in Characteristic Directions

In this section we prove the upper bound for the variance, and show that the order is bounded
above by N 2/3. In the process, we derive bounds for the exit points of the maximal paths
from the boundaries; this is crucial, since as it turns out in the characteristic directions the
orders of variance and exit points are comparable.

We follow the approach of [4,48] in order to find the order of the variance. All the dif-
ficulties and technicalities in our case arise from two facts: First that the random variables
are discrete and small perturbations in the distribution do not alter the value of the random
weight. Second, we have three potential steps to contest with rather than then usual two.

4.1 TheVariance Formula

Let (m, n) be a generic lattice site. Eventually we will define howm, n grow to infinity using
the parameter u ∈ (0, 1). The cases u = 0, u = 1 are omitted since by Remark 3.7 lead to a
deterministic LPP.
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Define the passage time increments (labelled by compass directions) by

W = G(u)
0,n − G(u)

0,0, N = G(u)
m,n − G(u)

0,n, E = G(u)
m,n − G(u)

m,0, S = G(u)
m,0 − G(u)

0,0.

From Corollary 3.6 we get that each of W,N , E and S is a sum of i.i.d. random variables
and most importantly, N is independent of E and W is independent of S by the definition
of the boundary random variables. From the definitions it is immediate to show the cocycle
property for the whole rectangle [m] × [n]

W + N = G(u)
m,n = S + E . (4.1)

We can immediately attempt to evaluate the variance of G(u)
m,n using these relations, by

Var(G(u)
m,n) = Var(W + N )

= Var(W) + Var(N ) + 2Cov(S + E − N ,N )

= Var(W) − Var(N ) + 2Cov(S,N ), (4.2)

Equivalently, one may use E and S to obtain

Var(G(u)
m,n) = Var(S) − Var(E) + 2Cov(E,W). (4.3)

In the sequence, when several Bernoulli parameters will need to be considered simultane-
ously, will add a superscript (u) on the quantitiesN , E,W,S to explicitly denote dependance
on parameter u.

The covariance is not an object that can be computed directly, so the biggest proportion
of this subsection is dedicated in finding a different way to compute the covariance that also
allows for estimates and connects fluctuations of the maximal path with fluctuations of the
last passage time.

In the exponential exactly solvable model there is a clear expression for the covariance
term. Unfortunately this does not happen here, so we must estimate the order of magnitude.

We first introduce a bit of notation for convenience, that we will use in the sequence:

AN (u) = Cov(S,N )

u(1 − u)
and AE(u) = −Cov(E,W)

u(1 − u)
. (4.4)

With this notation, we have that Eqs. (4.2), (4.3) can be written as

Var(G(u)
m,n) = n

pu(1 − u)

[u + p(1 − u)]2 − mu(1 − u) + 2u(1 − u)AN (u)

= mu(1 − u) − n
pu(1 − u)

[u + p(1 − u)]2 − 2u(1 − u)AE(u) .

(4.5)

We now introduce the perturbedmodel. Fix any u ∈ (0, 1). Pick an ε > 0 and define a new
parameter uε so that uε = u + ε < 1. For any fixed realization of ω(u) = {ω(u)

i,0 , ω
(u)
0, j , ω

(u)
i, j }

with marginal distributions (2.3) we use the parameter ε to modify the weights on the south
boundary only.

To this effect introduce a sequence of independent Bernoulli random variables H (ε)
i ∼

Ber
(

ε
1−u

)
, 1 ≤ i ≤ m that are independent of the ω(u). Denote their joint distribution by με .

Then construct ωuε in the following way:

ω
uε

i,0 = H
(ε)
i ∨ ω

(u)
i,0 = ω

(u)
i,0 + H

(ε)
i − H

(ε)
i,0 ω

(u)
i,0 . (4.6)
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608 F. Ciech, N. Georgiou

Then {ωuε

i,0}1≤i≤m is a collection of independent Ber(uε) r.v. It also follows that

ω
uε

i,0 − ω
(u)
i,0 ≤ H

(ε)
i . (4.7)

Under this modified environment,

ω
uε

i,0 ∼ Ber(uε), ω
(u)
i, j ∼ Ber(p), ω

(u)
0, j ∼ Ber

( p(1 − u)

u + p(1 − u)

)
, (4.8)

the passage time is denoted by GSuε and when we are referring to quantities in this model we
will distinguish themwith a superscript uε.With these definitionswe haveSuε ∼ Bin(m, uε),
with mass function denoted by fSuε (k) = P{Suε = k}, 0 ≤ k ≤ m.

Remark 4.1 A more intuitive way to define the new Bernoulli weights ωuε is via the condi-
tional distributions

P{ωuε

i,0 = 1|ω(u)
i,0 = 1} = 1,

P{ωuε

i,0 = 1|ω(u)
i,0 = 0} = ε

1 − u
,

P{ωuε

i,0 = 0|ω(u)
i,0 = 0} = 1 − ε

1 − u
, (4.9)

i.e. we go through the values on the south boundary, and conditioning on the environment
returned a 0, we change the value to a 1 with probability ε

1−u . Check that the weights in (4.6)
satisfy (4.9).

Similarly, there will be instances for which we want to perturb only the weights of the
vertical axis, again when the parameter will change from u to u + ε. In that case, we denote
the modified environment on the west boundary by Wuε and it is given by

ω
(u)
i,0 ∼ Ber(u), ω

(u)
i, j ∼ Ber(p), ω

uε

0, j ∼ Ber
( p(1 − u − ε)

u + ε + p(1 − u − ε)

)
, (4.10)

Again, we use auxiliary i.i.d. Bernoulli variables {V (ε)
j }1≤ j≤n with

V
(ε)
j ∼ Ber

(
1 − ε

1 + u(1 − p)

(1 − u)(p + u(1 − p)) + (1 − p)ε

)
,

where we assume that ε is sufficiently small so that the distributions are well defined. Then,
the perturbed weights on the vertical axis are defined by

ω
uε

0, j = ω
(u)
0, j · V (ε)

j . (4.11)

Denote by νε the joint distribution of V (ε)
j . Passage time in this environment is denoted by

G
Wuε
m,n .
It will also be convenient to couple the environments with different parameters. In that

case we use common realizations of i.i.d. Uniform[0, 1] random variables η = {ηi, j }(i, j)∈Z2+ .
The Bernoulli environment in the bulk is then defined as

ωi, j = 1{ηi, j < p}
and similarly defined for the boundary values. The joint distribution for the uniforms we
denote by Pη.
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Proposition 4.2 Fix a parameter u ∈ (0, 1). In environment (4.8), define N uε = GSuε

m,n −
W(u). Then we have the limit

AN (u) = Cov(S(u),N (u))

u(1 − u)
= lim

ε→0

EP⊗με
(N uε − N (u))

ε
, 0 < u < 1. (4.12)

Similarly, in environment (4.10), define Euε = GWuε

m,n − S(u). Then we have the limit

AE(u) = −Cov(W(u), E(u))

u(1 − u)
= lim

ε→0

EP⊗νε
(Euε − E(u))

ε
, 0 < u < 1. (4.13)

Proof of Proposition 4.2 The first equalities in the braces are the definitions of (4.4).We prove
the second equality.

The conditional joint distribution of (ω
uε

i,0)1≤i≤m given the value of their sum Suε is
independent of the parameter ε. This is because the sum of i.i.d. Bernoulli is a sufficient
statistic for the parameter of the distribution. In particular this implies that E[N uε |Suε = k]
= EP⊗με

[N (u)|S(u) = k].
Then we can compute the E(N uε )

EP⊗με
(N uε − N (u)) =

m∑
k=0

E[N uε |Suε = k]P ⊗ με{Suε = k} − EP(N (u))

=
m∑

k=0

E[N (u)|S(u) = k]P ⊗ με{Suε = k} − EP(N (u))

=
m∑

k=0

E[N (u)|S(u) = k](P ⊗ με{Suε = k} − P{S(u) = k}) (4.14)

To show that the limits in the statement are well defined, it suffices to compute

lim
ε→0

P ⊗ με{Suε = k} − P{S(u) = k}
ε

=
(
m

k

)
lim
ε→0

(uε)
k(1 − uε)

m−k − uk(1 − u)m−k

ε

=
(
m

k

)
d

du
uk(1 − u)m−k =

(
m

k

)
k − mu

u(1 − u)
uk(1 − u)m−k .

Combine this with (4.14) to obtain

lim
ε→0

EP⊗με
(N uε − N (u))

ε
= 1

u(1 − u)

m∑
k=0

E[N (u)|S(u) = k]kP{S(u) = k}

− mu

u(1 − u)

m∑
k=0

E[N (u)|S(u) = k]P{S(u) = k}

= 1

u(1 − u)

(
E(N (u)S(u)) − E(N (u))E(S(u))

)

= 1

u(1 − u)
Cov(N (u),S(u)). (4.15)

Identical symmetric arguments, prove the remaining part of the proposition. ��
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610 F. Ciech, N. Georgiou

For the rest of this section, we prove estimates on AN (u) by estimating the covariance in
a different way.

Fix any boundary site w = (w1, w2) ∈ {(i, 0), (0, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The total
weight in environment ω collected on the boundaries by a path that exits from the axes at w
is

Sw =
w1∑
i=1

ωi,0 +
w2∑
j=1

ω0, j , (4.16)

where the empty sum takes the value 0. LetS (u) be the above sum in environment ω(u) and
let S uε denote the same, but in environment (4.8).

Recall that ξe1 is the rightmost exit point of any potential maximal path from the horizontal
boundary, since it is the exit point of the right-most maximal path. Similarly, if ξe2 > 0 then it
is the down-most possible exit point. When the dependence on the parameter u is important,
we put superscripts (u) to denote that.

Lemma 4.3 Let 0 < u1 < u2 < 1 and let ξ (ui ) the corresponding right-most (resp. down-
most) exit points for the maximal paths in environments coupled by common uniforms η.
Then

ξ (u1)
e1 ≤ ξ (u2)

e1 and ξ (u1)
e2 ≥ ξ (u2)

e2 .

Proof Assume that in environment ω(u1) the maximal path exits from the vertical axis. Then,
since u2 > u1 and the weights coupled through common uniforms, realization by realization
ω

(u2)
0, j ≤ ω

(u1)
0, j . Assume by way of contradiction that ξ

(u1)
e2 < ξ

(u2)
e2 . Then for appropriate

z1, z2 ∈ {0, 1} which will correspond to the step that the maximal path uses to enter the bulk,
we have

G
(1,ξ

(u1)
e2 +z1),(m,n)

≥ G
(1,ξ

(u2)
e2 +z2),(m,n)

+ S
(u1)

ξ
(u2)
e2

− S
(u1)

ξ
(u1)
e2

≥ G
(1,ξ

(u2)
e2 +z2),(m,n)

+ S
(u2)

ξ
(u2)
e2

− S
(u2)

ξ
(u1)
e2

,

giving

G
(1,ξ

(u1)
e2 +z1),(m,n)

+ S
(u2)

ξ
(u1)
e2

≥ G
(1,ξ

(u2)
e2 +z2),(m,n)

+ S
(u2)

ξ
(u2)
e2

= G(u2)
m,n ,

which cannot be true because ξ
(u2)
e2 is the down-most exit point in ω(u2). The proof for a

maximal path exiting the horizontal axis is similar. ��
Remark 4.4 The proof of Lemma 4.3 only depends on weight modifications of a single
boundary axis. We did not use the fact that the modification also made the horizontal weights
more favorable, just that it made the vertical ones less so.

Lemma 4.5 Let ξ be the exit point of the maximal path in environment ω(u). LetN uε denote
the last passage increment in environment (4.8) of the north boundary and S

uε

ξe1
the weight

collected on the horizontal axis in the same environment, but only up to the exit point of the
maximal path in environment ω(u). N (u), S (u)

ξe1
are the same quantities in environment ω(u).

Then
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EP⊗με

(
S

uε

ξe1
− S

(u)
ξe1

)
≤ EP⊗με

(N uε − N (u)) ≤ EP⊗με

(
S

uε

ξe1
− S

(u)
ξe1

)

+C(m, u, p)ε4/3. (4.17)

Similarly, in environments (4.10) and ω(u),

EP⊗νε

(
S

uε

ξe2
− S

(u)
ξe2

)
≤ EP⊗νε

(Euε − E(u)) ≤ EP⊗νε

(
S

uε

ξe2
− S

(u)
ξe2

)

+C(n, u, p)ε4/3. (4.18)

Proof We only prove (4.18) as symmetric arguments work for (4.17). Modify the weights
on the vertical axis and create environment Wuε given by (4.10).

On the event {ξuε = ξ} we have for an appropriate step z ∈ R that

Euε − E(u) = GWuε

m,n − G(u)
m,n = S

uε

ξ + G(ξ+z),(m,n) − S
(u)
ξ − G(ξ+z),(m,n)

= S
uε

ξ − S
(u)
ξ = S

uε

ξe2
− S

(u)
ξe2

. (4.19)

The step z can be taken the same for both environments, since the bulk weights remain the
same, and the exit point is the same.

Now consider the event {ξuε �= ξ}. We only modify weights on the vertical axis, therefore
the exit point ξ of the original maximal path will be different from ξuε only if ξ = ξe2 .

One of two things may happen:

(1) ξuε �= ξ and S
uε

ξuε + G(ξuε +z),(m,n) > S
uε

ξe2
+ G(1,ξe2+z),(m,n), or

(2) ξuε �= ξ and S
uε

ξuε + G(ξ
uε
e2 +z),(m,n) = S

uε

ξe2
+ G(1,ξe2+z),(m,n)

We use these cases to define two auxiliary events:

A1 = {
ξuε �= ξ and S

uε

ξuε + G(ξuε +z),(m,n) > S
uε

ξe2
+ G(1,ξe2 ),(m,n)

}
,

A2 = {
ξuε �= ξ and S

uε

ξuε + G(ξuε +z),(m,n) = S
uε

ξe2
+ G(1,ξe2 ),(m,n)

}
and note that {ξuε �= ξ} = A1 ∪ A2. On A2 we can bound

Euε − E(u) = GWuε

m,n − G(u)
m,n = S

uε

ξe2
+ G(1,ξe2+z),(m,n) − S

(u)
ξe2

− G(1,ξe2+z),(m,n)

= S
uε

ξe2
− S

(u)
ξe2

. (4.20)

Then we estimate

Euε − E(u) = (Euε − E(u)) · 1{ξuε = ξ} + (Euε − E(u)) · 1{ξuε �= ξ}
= (

S
uε

ξ − S
(u)
ξ

) · 1{ξuε = ξ} + (Euε − E(u)) · (1A1 + 1A2) (4.21)

= (
S

uε

ξe2
− S

(u)
ξe2

) · (1{ξuε = ξ} + 1A2

) + (Euε − E(u)) · 1A1 (4.22)

The last line follows from (4.19) and (4.20). We bound expression (4.22) above and below.
For a lower bound, add and subtract in (4.22) the term (S

uε

ξe2
− S

(u)
ξe2

) · 1A1 . Then (4.22)
becomes

Euε − E(u) = S
uε

ξe2
− S

(u)
ξe2

+
(
Euε − E(u) −

(
S

uε

ξe2
− S

(u)
ξe2

))
· 1A1

= S
uε

ξe2
− S

(u)
ξe2

+
(
GWuε

m,n − G(u)
m,n −

(
S

uε

ξe2
− S

(u)
ξe2

))
· 1A1
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≥ S
uε

ξe2
− S

(u)
ξe2

+
(
G(1,ξe2+z),(m,n) −

(
G(u)

m,n + S
(u)
ξe2

))
· 1A1

= S
uε

ξe2
− S

(u)
ξe2

. (4.23)

Take expected values in (4.23) to obtain the left inequality of (4.18).
The remaining proof is to establish the second inequality in (4.18). For an upper bound,

starting again from (4.22). First note that

Euε − E(u) = GWuε

m,n − G(u)
m,n ≤ 0. (4.24)

Then (4.22) is bounded by

Euε − E(u) ≤
(
S

uε

ξe2
− S

(u)
ξe2

)
· (1{ξuε = ξ} + 1A2)

=
(
S

uε

ξe2
− S

(u)
ξe2

)
+
(
S

(u)
ξe2

− S
uε

ξe2

)
· 1A1 . (4.25)

To bound the second term above, we use Hölder’s inequality with exponents p = 3, q = 3/2
to obtain

EP⊗νε

((
S

(u)
ξe2

− S
uε

ξe2

)
1A1

)
≤ EP⊗νε

((
S

(u)
ξe2

− S
uε

ξe2

)3)1/3

(P ⊗ νε{A1})2/3. (4.26)

The first expectation on the right is bounded above by C(u, p)n since S(u) ≤ W(u) which
in turn is a sum of i.i.d. Bernoulli random variables that bounds above S(u) − Suε . Now to
bound the probability. Define vector

k =
{

(0, k), 1 ≤ k ≤ n,

(−k, 0), −1 ≥ k ≥ −m.

Consider the equality of events for the appropriate steps z1, z2 that the path uses to enter the
bulk:

A1 =
{
S

uε

k + G(k+z1),(m,n) > S
uε

ξe2
+ G(ξe2+z2),(m,n) for some k �= ξe2

}

=
{
S

uε

k − S
uε

ξe2
> G(ξe2+z2),(m,n) − G(k+z1),(m,n) for some k �= ξe2

}

=
{
S

uε

k −S
uε

ξe2
>G(ξe2+z2),(m,n)−G(k+z1),(m,n) ≥S

(u)
k −S

(u)
ξe2

for some k �= ξe2

}
.

Coupling (4.11) implies that the events above are empty when k > ξe2 . Therefore, consider
the case ξe2 > k or when k = (−k, 0). In that case, since ξe2 is the down-most possible exit
point, the second inequality in the event above can be strict as well. Therefore

A1 ⊆
⋃

0≤i≤n

⋃
k:k<i

{
S

uε

k − S
uε

i > G(ξe2+z2),(m,n) − G(k+z1),(m,n) ≥ S
(u)
k − S

(u)
i

}
.

The strict inequalities in the event and the fact that these random variables are integer, we
see that the difference S uε

k − S
uε

i − S
(u)
k + S

(u)
i ≥ 2. If k > 0,
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2 ≤ S
uε

k − S
uε

i − S
(u)
k + S

(u)
i = −

i∑
j=k+1

ω
uε

0, j +
i∑

j=k+1

ω
(u)
0, j

=
i∑

j=k+1

(
ω

(u)
0, j − ω

uε

0, j

)
by (4.11)

≤
n∑
j=0

(
ω

(u)
0, j − ω

uε

0, j

)
=

n∑
j=0

ω
(u)
0, j

(
1 − V

(ε)
j

) = Wε. (4.27)

Wε is defined by the last equality above. Similarly, if k < 0, S uε

k − S
uε

i − S
(u)
k + S

(u)
i =

−S
uε

i + S
(u)
i and we have

{
S

(u)
i − S

uε

i ≥ 2
} ⊆ {W(u) − Wuε ≥ 2} = {Wε ≥ 2}.

Therefore we just showed A1 ⊆ {Wε ≥ 2}.
The event {Wε ≥ 2} holds if at least 2 indices j satisfy with ω

(u)
0, j

(
1 − V

(ε)
j

) = 1. By
definition (4.27) we have that Wε is binomially distributed with probability of success Cε

under P ⊗ νε and therefore, in order to have at least two successes,

P ⊗ νε{A1} ≤ P ⊗ νε{Wε ≥ 2} ≤ C̃(n, u)ε2. (4.28)

Combine (4.25), (4.26) and (4.28) to conclude

EP⊗νε
(Euε − E(u)) ≤ EP⊗νε

(
S

uε

ξe2
− S

(u)
ξe2

)
+ C(n, u)ε4/3. (4.29)

��
Lemma 4.6 Let 0 < u < 1. Then,

AN (u) ≤ E
(
ξ

(u)
e1

)
1 − u

, and AE(u) ≥ − p(1 + u(1 − p))

(u + p(1 − u))2
E(ξ (u)

e2 ) (4.30)

Proof We bound the first term. Compute

EP⊗με

(
S

uε

ξ
(u)
e1

− S
(u)

ξ
(u)
e1

)
=

m∑
y=1

E

[
S uε

y − S (u)
y

∣∣∣ξ (u)
e1 = y

]
P
{
ξ (u)
e1 = y

}

≤
m∑
y=1

E

[ y∑
i=1

H
(ε)
i

∣∣∣ξ (u)
e1 = y

]
P
{
ξ (u)
e1 = y

}
, from (4.7),

=
m∑
y=1

Eμε

[ y∑
i=1

H
(ε)
i

]
P
{
ξ (u)
e1 = y

}
, since Hi , ω

(u), independent,

= ε
E
(
ξ

(u)
e1

)
1 − u

. (4.31)

Now substitute in the right inequality of (4.17), divide through by ε and take the limit as
ε → 0 to obtain

AN (u)

Prop. 4.2= lim
ε→0

EP⊗με
(N uε − N (u))

ε

Eqs. (4.17),(4.31)≤ E
(
ξ

(u)
e1

)
1 − u

.
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For the second bound, start from the left inequality of (4.18) and write

EP⊗νε
(Euε − E(u)) ≥ EP⊗νε

(
S

uε

ξ
(u)
e2

− S
(u)

ξ
(u)
e2

)

= EP⊗νε

⎛
⎜⎝

ξ
(u)
e2∑
j=1

ω
uε

0, j − ω
(u)
0, j

⎞
⎟⎠ = −EP⊗νε

⎛
⎜⎝

ξ
(u)
e2∑
j=1

ω
(u)
0, j

(
1 − V

(ε)
j

)⎞⎟⎠

= −
n∑

k=1

k∑
j=1

EP⊗νε

(
ω

(u)
0, j

(
1 − V

(ε)
j

)
1
{
ξ (u)
e2 = k

})

= −
n∑

k=1

k∑
j=1

EP

(
ω

(u)
0, j1

{
ξ (u)
e2 = k

})
Eνε

(
1 − V

(ε)
j

)

≥ −
n∑

k=1

k∑
j=1

P
{
ξ (u)
e2 = k

}
Eνε

(
1 − V

(ε)
j

)

= −εEP

(
ξ (u)
e2

) · 1 + u(1 − p)

(1 − u)(u + p(1 − u) + (1 − p)ε)
.

Divide both sides of the inequality by ε and let it tend to 0. ��

4.2 Upper Bound

In this section we prove the upper bound in Theorem 2.3. We begin with two comparison
lemmas. One is for the two functions AN (u) , AE(u) when we vary the parameter u. The other
comparison is between variances in environments with different parameters.

Lemma 4.7 Pick two parameters 0 < u1 < u2 < 1. Then

AN (u1) ≤ AN (u2) + m(u2 − u1). (4.32)

Proof of Lemma 4.7 Fix an ε > 0 small enough so that u1 + ε < u2 and u2 + ε < 1. This
is not a restriction as we will let ε tend to 0 at the end of the proof. We use a common
realization of the Bernoulli variablesH (ε)

i and we couple the weights in the ω(u2) and ω(u1)

environments using common uniforms η = {ηi, j } (with law Pη), independent of the H
(ε)
i .

We then use both bounds from (4.17).

Eμε⊗Pη
(N u2+ε − N (u2)) − Eμε⊗Pη

(N u1+ε − N (u1))

≥ Eμε⊗Pη

(
S u2+ε

ξ
(u2)
e1

− S
(u2)

ξ
(u2)
e1

)
− Eμε⊗Pη

(
S u1+ε

ξ
(u1)
e1

− S
(u1)

ξ
(u1)
e1

)
− o(ε)

= Eμε⊗Pη

⎛
⎜⎝

ξ
(u2)
e1∑
i=1

1
{
H

(ε)
i = 1

}
1{ηi,0 > u2}

⎞
⎟⎠

− Eμε⊗Pη

( ξ
(u1)
e1∑
i=1

1
{
H

(ε)
i = 1

}
1{ηi,0 > u1}

)
− o(ε)
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≥ Eμε⊗Pη

( ξ
(u1)
e1∑
i=1

1
{
H

(ε)
i = 1

}(
1{ηi,0 > u2} − 1{ηi,0 > u1}

))
− o(ε)

≥ −mEμε⊗Pη

(
1
{
H

(ε)
i = 1

}(
1{ηi,0 > u1} − 1{ηi,0 > u2}

))
− o(ε)

= −mε(u2 − u1) − o(ε).

Divide by ε, let ε → 0 and use to get the result. ��

Lemma 4.8 (Variance comparison) Fix δ0 > 0 and parameters u, r so that p < p + δ0 <

u < r < 1. Then, there exists a constant C = C(δ0, p) > 0 so that for all admissible values
of u and r we have

Var
(
G(u)

m,n
)

u(1 − u)
≤ Var

(
G(r)

m,n
)

r(1 − r)
+ C(m + n)(r − u). (4.33)

Proof Begin from Eq. (4.5), and bound

Var
(
G(u)

m,n
)

u(1 − u)
= n

p

[u + p(1 − u)]2 − m + 2AN (u)

= n
p

[r + p(1 − r)]2 − m + 2AN (u) + np

(
1

[u + p(1 − u)]2 − 1

[r + p(1 − r)]2
)

≤ Var
(
G(r)

m,n
)

r(1 − r)
+ np

(
1

[u + p(1 − u)]2 − 1

[r + p(1 − r)]2
)

+ 2m(r − u)

≤ Var
(
G(r)

m,n
)

r(1 − r)
+ 2np(1 − p)

(r − u)

[u + p(1 − u)]3 + 2m(r − u)

≤ Var
(
G(r)

m,n
)

r(1 − r)
+ 2n

p(1 − p)

δ30
(r − u) + 2m(r − u).

In the third line from the top we used Lemma 4.7. Set C = 2 p(1−p)
δ30

∨ 2 to finish the proof. ��

From this point onwards we proceed by a perturbative argument. We introduce the scaling
parameter N that will eventually go to ∞ and the characteristic shape of the rectangle, given
the boundary parameter. We will need to use the previous lemma, so we fix a δ0 > 0, so that
δ0 < λ < 1 and we choose a parameter u = u(N , b, v) < λ so that

λ − u = b
v

N

At this point v is free but b is a constant so that δ0 < λ < u The north-east endpoint
of the rectangle with boundary of parameter λ is defined by (mλ(N ), nλ(N )) which is the
microscopic characteristic direction corresponding to λ defined in (2.7).

The quantities G(1,ξe2 ),(m,n), ξe2 and Gm,n connected to these indices are denoted by
G(1,ξe2 ),(m,n)(N ), ξe2(N ),Gm,n(N ). In the proof we need to consider different boundary
conditions and this will be indicated by a superscript. When the superscript u will be used,
the reader should remember that this signifies changes on the boundary conditions and not
the endpoint (mλ(N ), nλ(N )), which will always be defined by (2.7) for a fixed λ.

Since the weights {ωi, j }i, j≥1 in the interior are not affected by changes in boundary
conditions, the passage time G(z,1),(m,n)(N ) will not either, for any z < mλ(N ).
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Proposition 4.9 Fix λ ∈ (0, 1). Then, there exists a constant K = K (λ, p) > 0 so that for
any b < K, and N sufficiently large

P{ξ (λ)
e2 (N ) > v} ≤ C

N 2

bv3

(
E(ξ

(λ)
e2 )

bv
+ 1

)
, (4.34)

for all v ≥ 1.

Proof We use an auxiliary parameter u < λ so that

u = λ − bvN−1 > 0.

Constant b is under our control. We abbreviate (mλ(N ), nλ(N )) = tN (λ). Whenever we use
auxiliary parameters we explicitly mention it to alert the reader that the environments are
coupled through common realizations of uniform random variables η. The measure that we
are using for all computations is the background measure Pη but to keep the notation simple
we omit the subscript η.

Since G(u)
tN (λ)(N ) is utilised on the maximal path,

S (u)
z + G(1,z),tN (λ)(N ) ≤ G(u)

tN (λ)(N )

for all 1 ≤ z ≤ nλ(N ) and all parameters p + δ0 < u < λ < 1. Consequently, for integers
v ≥ 0,

P
{
ξ (λ)
e2 (N ) > v

} = P

{
∃ z > v : S (λ)

z + G(1,z),tN (λ)(N ) = G(λ)
tN (λ)(N )

}

≤ P

{
∃ z > v : S (λ)

z − S (u)
z + G(u)

tN (λ)(N ) ≥ G(λ)
tN (λ)(N )

}

= P

{
∃ z > v : S (λ)

z − S (u)
z + G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N ) ≥ 0

}

≤ P

{
S (λ)

v − S (u)
v + G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N ) ≥ 0

}
. (4.35)

The last line above follows from the fact that u < λ, which implies that S (λ)
k − S

(u)
k is

non-positive and decreasing in k when the weights are coupled through common uniforms.
The remaining part of the proof goes into bounding the last probability above. For any α ∈ R

we further bound

P{ξ (λ)
e2 (N ) > v} ≤ P{S (λ)

v − S (u)
v ≥ −α} (4.36)

+ P{G(u)
tN (λ)(N ) − G(λ)

tN (λ)(N ) ≥ α}. (4.37)

We treat (4.36) and (4.37) separately for

α = −E[S (λ)
v − S (u)

v ] − C0
v2

N
(4.38)

where C0 > 0. Restrictions on C0 will be enforced in the course of the proof.
Probability (4.36) That is a sum of i.i.d. random variables so we simply bound using
Chebyshev’s inequality. The variance is estimated by

Var(S (λ)
v − S (u)

v ) =
v∑
j=1

Var
(
ω

(λ)
0, j − ω

(u)
0, j

) ≤ Cp,λv(λ − u) = cp,λ
bv2

N
.
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Then by Chebyshev’s inequality we obtain

P

{
S (λ)

v − S (u)
v ≥ E[S (λ)

v − S (u)
v ] + C0

v2

N

}
≤ cp,λ

C2
0

· b N

v2
. (4.39)

Probability (4.37) Substitute in the value of α and subtract from both sides E[G(u)
tN (λ)(N ) −

G(λ)
tN (λ)(N )]. Then

P

{
G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N ) ≥ α

}

= P

{
G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N ) − E

[
G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N )

]

≥ v(λ − u)
p

(p + (1 − p)u)(p + (1 − p)λ)
− C0

v2

N
− E

[
G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N )

]}

≤ P

{
G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N ) − E

[
G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N )

]

≥ v(λ − u)Cλ,p − C0
v2

N
− E

[
G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N )

]}
. (4.40)

where

Cλ,p = p

(p + (1 − p)λ)2
.

We then estimate

E

[
G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N )

]
= mλ(N )(u − λ) + nλ(N )

(
p(1 − u)

u + p(1 − u)
− p(1 − λ)

λ + p(1 − λ)

)

= mλ(N )(u − λ) − nλ(N )
p

(p + (1 − p)u)(p + (1 − p)λ)
(u − λ)

≤ N
1 − p

p + (1 − p)u
(λ − u)2

≤ Du,p

N
b2v2.

The first inequality above comes from removing the integer parts for nλ(N ). The constant
Du,p is defined as

Du,p = 1 − p

p + (1 − p)u
.

It is now straightforward to check that line (4.40) is non-negative when

b <
Cλ,p

4Du,p
and C0 = b

Cλ,p

2
.

With values of b,C0 as are in the the display above, for any c smaller than b Cλ,p/4, we have
that

G(λ)
tN (λ)(N ) − G(u)

tN (λ)(N ) − E
[
G(λ)

tN (λ)(N ) − G(u)
tN (λ)(N )

] ≥ cv2N−1 > 0.
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Using this, we can apply Chebyshev’s inequality one more time. In order, from Chebyshev’s
inequality, Lemma 4.8 and finally equation (4.5).

Probability(4.40) ≤ P

{∣∣∣∣G(u)
tN (λ)(N ) − G(λ)

tN (λ)(N )

− E

[
G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N )

]∣∣∣∣ ≥ cv2N−1
}

≤ N 2

c2v4
Var

(
G(u)

tN (λ)(N ) − G(λ)
tN (λ)(N )

)

≤ N 2

c2v4

(
Var

(
G(u)

tN (λ)(N )
)

+ Var
(
G(λ)

tN (λ)(N )
))

≤ 4
N 2

c2v4

(
Var

(
G(λ)

tN (λ)(N )
)

+ CN (λ − u)

)

≤ 4
N 2

c2v4
|AE(λ) | + Cb

N 2

c2v3
.

This togetherwith the bound inLemma4.6 suffice for the conclusion of this proposition. ��
Proof of Theorem 2.3, upper bound We first bound the expected exit point for boundary with
parameter λ. In what follows, r is a parameter under our control, that will eventually go to
∞.

E(ξ (λ)
e2 (N )) ≤ r N 2/3 +

nλ(N )∑
v=r N2/3

P
{
ξ (λ)
e2 (N ) > v

}

≤ r N 2/3 +
∞∑

v=r N2/3

C
N 2

v3

(
E
(
ξ

(λ)
e2

)
v

+ 1

)
by(4.34)

≤ r N 2/3 + CE
(
ξ

(λ)
e2

)
r3

+ C

r2
N 2/3.

Let r sufficiently large so that C/r3 < 1. Then, after rearranging the terms in the inequality
above, we conclude

E

(
ξ (λ)
e2 (N )

)
≤ CN 2/3.

The variance bound now readily follows. Since (m, n) follow the characteristic direction
(mλ(N ), nλ(N )) defined in (2.7), Eq. (4.5) gives that

Var

(
G(λ)

mλ(N ),nλ(N )

)
= −2λ(1 − λ)AE(λ) + O(1).

Equation (4.24) together with Eq. (4.13) imply AE(λ) ≤ 0 and therefore the right-hand side of
the equation above increases if we reduce AE(λ) further. To this end we use the lower bound
in Lemma 4.6, and obtain for a suitable constant Cp,λ

Var

(
G(λ)

mλ(N ),nλ(N )

)
= Cp,λE

(
ξ (λ)
e2 (N )

) ≤ Cp,λN
2/3.

��
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An immediate corollary of this is the following bound in probability that is obtained
directly from expression (4.34) is

Corollary 4.10 Fix λ ∈ (0, 1). Then, there exists a constant K = K (λ, p) > 0 so that for
any r > 0, and N sufficiently large

P

{
ξ (λ)
e2 (N ) > r N 2/3

}
≤ K

r3
. (4.41)

5 Lower Bound for the Variance in Characteristic Directions

Weshow the lower bound for the variance. Themain idea is to define a ‘reversed’ environment
and passage times, using Burke’s property (this is done in Sect. 5.1.3). In the other LPP
solvable models, the maximal path in the reversed environment was the competition interface
in the forward one. The competition interface has another interpretation that was exploited in
the literature, namely it separated the sites according to the first step of the maximal path that
led into them. Both interpretations are needed for the calculations at the end of the section,
but since the weights are discrete there are several maximal paths to each endpoint and the
two interpretations of the competition interface do not coincide and this is why we define
two competition interfaces below.

5.1 Down-Most Maximal Path and Competition Interface

In this section first we want to construct the down-most maximal path and a possible compe-
tition interface. Then we identify their properties and relations which will be crucial to find
the lower bound for the order of fluctuations of the maximal path.

5.1.1 The Down-Most Maximal Path

Consider the last passage time G in an environment ω and for every (m, n) compute Gm,n .
Define the increments Ii, j , Ji, j using Eq. (3.1). Note that the definitions that follow do not
require an invariant model and theywork irrespective of the environment sowe do not include
the superscript (u) unless we want to emphasize that they come from an invariant model.

From a target point (m, n), we construct using backwards steps a maximal path up to
(m, n). Recall that the maximal path in the interior process collects weights only with a
diagonal step with probability given by ω. We define the down-most maximal path π̂ starting
from the target point (m, n) and going backwards. Given π̂k+1, the previous site π̂k can be
found using (Iπ̂k+1 , Jπ̂k+1 , ωπ̂k+1). To see this, re-write Eq. (5.1) as

π̂k =

⎧⎪⎨
⎪⎩

π̂k+1 − (0, 1) if Jπ̂k+1 = 0,

π̂k+1 − (1, 0) if Iπ̂k+1 = 0, Jπ̂k+1 = 1 and ωπ̂k+1 = 0,

π̂k+1 − (1, 1) if Jπ̂k+1 = 1 and ωπ̂k+1 = 1.

(5.1)

The moment that π̂ hits one of the two axes (or the origin) it remains on the axis, which it
has hit and follows it backwards to the origin. The graphical representation is in Fig. 1.
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(i 1, j i, j 1)

(i, j)(i − 1, j)

π̂

ωi,j = 0, 1

Ji,j = 0

Ii,j = 0, 1

(i 1, j i, j 1)

(i, j)(i − 1, j)

π̂

ωi,j = 1

Ji,j = 1

Ii,j = 0, 1

(i 1, j1) ( 1) ( 1) (i, j− − − − − − − − − 1)

(i, j)(i − 1, j)

π̂
ωi,j = 0

Ji,j = 1

Ii,j = 0

(a) Combination of I, J and
ω for a down (−e2) step.

(b) Combination of I, J and
ω for a diagonal step.

(c) Combination of I, J and
ω for a left (−e1) step.

Fig. 1 One-step backward construction for the down-most maximal path π̂

5.1.2 The Competition Interface

The competition interface is an infinite path ϕ which takes only the same admissible steps
as the paths we optimise over. ϕ = {ϕ0 = (0, 0), ϕ1, . . .} is completely determined by the
values of I , J and ω. In particular, for any k ∈ N,

ϕk+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕk + (0, 1) if
G(ϕk + (0, 1)) < G(ϕk + (1, 0)) or

G(ϕk + (0, 1)) = G(ϕk + (1, 0)) and G(ϕk + (0, 1)) = G(ϕk),

ϕk + (1, 0) if G(ϕk + (1, 0)) < G(ϕk + (0, 1)),

ϕk + (1, 1) if G(ϕk + (0, 1)) = G(ϕk + (1, 0)) and G(ϕk + (0, 1)) > G(ϕk).

(5.2)

In words, the path ϕ always chooses its step according to the smallest of the possible G-
values. If they are equal, the competition interface decides to go up if the last passage time of
the up and right point are equal and they are also equal to the last passage time of the starting
point otherwise it takes a diagonal step.

Remark 5.1 Competition interfaces in last passage percolation,were introduced in [19], build-
ing on the same notion in a first passage percolation problem [38]. The name competition
interface comes from the fact that it represents the boundary between two competing growing
clusters of points. All sites in the quadrant are separated according to the first step of their
maximal path. This interpretation was proven useful in various coupling arguments, e.g. in
[4,20,24,40] but in all these cases the environment had a continuous distribution.

Since our model is discrete, and we have three (rather than two) possible steps and our
maximal path is not unique, our definition of ϕ depends on our choice of maximal path; here
we chose the down-most maximal path to separate the clusters, and then we accordingly
defined the competition interface, so that we exploit certain good duality properties in the
sequence. ��

This being said, the partition of the plane into two competing clusters is useful in some
parts of the proofs that follow, so we would like to develop it in this setting. Define

C↑,↗ = {v = (v1, v2) ∈ Z
2+ : there exists a maximal path from 0 to v

with first step e2 or e1 + e2}.
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(1, 1)(1, 0)

ϕ̃1

ω1,1 = 0, 1

J0,1 = 0

(1, 1)(1, 0)

ϕ̃1

ω1,1 = 1

J0,1 = 0, 1

(1, 1)(1, 0)

ϕ̃1

ω1,1 = 0

(0, 0) (1, 0)I1,0 = 0 (0, 0) (1, 0)I1,0 = 1 (0, 0) (1, 0)I1,0 = 1

J0,1 = 1

(a) Combination of I, J and
ω for a diagonal step.

(b) Combination of I, J and
ω for a diagonal step.

(c) Combination of I, J and
ω for a diagonal step.

(1, 1)(1, 0)

ϕ̃1

ω1,1 = 0

J0,1 = 0

(1, 1)(1, 0)

ϕ̃1

ω1,1 = 0, 1

(0, 0) (1, 0)I1,0 = 1 (0, 0) (1, 0)I1,0 = 0

J0,1 = 1

(d) Combination of I, J and
ω for an upwards step.

(e) Combination of I, J and
ω for a right step.

Fig. 2 Constructive admissible steps for ϕ̃1

The remaining sites of Z
2+ are sites for which all possible maximal paths to them have to

take a horizontal first step. We denote that cluster by C→ = Z
2+ \ C↑,↗.

Some immediate observations follow. First note that the vertical axis {(0, v2)}v2∈N ∈ C↑,↗
while {(v1, 0)}v1∈N ∈ C→. We include (0, 0) ∈ C↑,↗ in a vacuous way.

Then observe that if (v1, v2) ∈ C↑,↗ then it has to be that (v1, y) ∈ C↑,↗ for all y ≥ v2.
This is a consequence of planarity. Assume that for some y > v2 the maximal path π0,(v1,y)
has to take a horizontal first step. Then it will intersect with the maximal path π0,(v1,v2) to
(v1, v2) with a non-horizontal first step. At the point of intersection z, the two passage times
are the same, so in fact there exists a maximal path to (v1, y) with a non-horizontal first step:
it is the concatenation of the π0,(v1,v2) up to site z and from z onwards we follow π0,(v1,y).

Finally, note that if v �= 0 and v ∈ C↑,↗ and v + e1 ∈ C→, it must be the case that

Iv+e1 = G0,v+e1 − G0,v = 1.

Assume the contrary. Then, if the two passage times are the same, a potential maximal path
to v + e1 is the one that goes to v without a horizontal initial step, and after v it takes an e1
step. This would also imply that v + e1 ∈ C↑,↗ which is a contradiction.

These observations allow us to define a boundary between the two clusters as a piecewise
linear curve ϕ̃ = {0 = ϕ̃0, ϕ̃1, . . .} which takes one of the three admissible steps, e1, e2, e1 +
e2. We first describe the first step of this curve when all of the {ω, I , J } are known. (see
Fig. 2).

ϕ̃1 =

⎧⎪⎨
⎪⎩

(1, 0), when (ω1,1, I1,0, J0,1) ∈ {(1, 0, 1), (0, 0, 1)},
(1, 1), when (ω1,1, I1,0, J0,1) ∈ {(1, 0, 0), (0, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, 1)},
(0, 1), when (ω1,1, I1,0, J0,1) ∈ {(0, 1, 0)}.

(5.3)

From this definition we see that ϕ̃1 stays on the x-axis only when I1,0 = 0 and J0,1 = 1. If
that is the case, repeat the steps in (5.3) until ϕ̃ increases its y-coordinate and changes level.
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(m, n)
ϕ̃

ϕ

C→

C↑,

Fig. 3 Graphical representation of ϕ̃ and ϕ. Both curves can be thought as competition interfaces. ϕ̃ separates
competing clusters, depending on the first step of the right-most maximal path, while ϕ follows the smallest
increment of passage times with a rule to break ties. As curves they are geometrically ordered, ϕ̃ ≤ ϕ

Any time ϕ̃ changes level from �−1 to �, it takes horizontal steps (the number of steps could
be 0) until a site (v�, �) where (v�, �) ∈ C↑,↗ but (v� + 1, �) ∈ C→. In that case, Iv�+1,� = 1,
by the second and third observations above, and ϕ̃ will change level, again following the
steps in (5.3).

From the description of the evolution of ϕ̃, starting from (5.3) and evolving as we describe
in the previous paragraph, the definition of the competition interface ϕ in (5.2), implies as
piecewise linear curves,

ϕ ≥ ϕ̃, (5.4)

i.e. if (x, y1) ∈ ϕ and (x, y2) ∈ ϕ̃ then, y1 ≥ y2. Similarly, if (x1, y) ∈ ϕ and (x2, y) ∈ ϕ̃

then, x1 ≤ x2. Moreover, if u ∈ Z
2+ /∈ ϕ̃ then it has to belong to one of the clusters; C→ if u

is below ϕ̃ and C↑,↗ otherwise. (see Fig. 3).

5.1.3 The Reversed Process

Let (m, n) with m, n > 0 be the target point. Define

G∗
i, j = Gm,n − Gm−i,n− j , for 0 ≤ i < m and 0 ≤ j < n. (5.5)

It represents the time to reach point (i, j) starting from (m, n) for the reversed process.
We also define the new edge and the bulk weights by

I ∗
i, j = Im−i+1,n− j , when i ≥ 1, j ≥ 0 (5.6)

J ∗
i, j = Jm−i,n− j+1, when i ≥ 0, j ≥ 1 (5.7)

ω∗
i, j = αm−i,n− j , when i ≥ 1, j ≥ 1. (5.8)

Then we have the reverse identities.
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Lemma 5.2 Let I ∗ and J ∗ be respectively the horizontal and vertical increment for the
reversed process. Then, for 0 ≤ i < m and 0 ≤ j < n, we have

I ∗
i, j = ω∗

i, j ∨ I ∗
i, j−1 ∨ J ∗

i−1, j − J ∗
i−1, j = G∗

i, j − G∗
i−1, j (5.9)

J ∗
i, j = ω∗

i, j ∨ I ∗
i, j−1 ∨ J ∗

i−1, j − I ∗
i, j−1 = G∗

i, j − G∗
i, j−1. (5.10)

Proof First note that

Im−i+1,n− j = Gm−i+1,n− j − Gm−i,n− j

= Gm−i+1,n− j − Gm,n + Gm,n − Gm−i,n− j = G∗
i, j − G∗

i−1, j .

by (5.5). We also prove the other identity only for the I ∗
i, j and leave the proof for the second

set of equations to the reader. A direct substitution to the right-hand side gives

ω∗
i, j ∨ I ∗

i, j−1 ∨ J ∗
i−1, j − J ∗

i−1, j

= αm−i,n− j ∨ Im−i+1,n− j+1 ∨ Jm−i+1,n− j+1 − Jm−i+1,n− j+1

= (αm−i,n− j − Jm−i+1,n− j+1) ∨ (Gm−i+1,n− j − Gm−i,n− j+1) ∨ 0

= (αm−i,n− j − Jm−i+1,n− j+1) ∨ (Gm−i+1,n− j

− Gm−i,n− j + Gm−i,n− j − Gm−i,n− j+1) ∨ 0

= (αm−i,n− j − (ωm−i+1,n− j+1 ∨ Im−i+1,n− j ∨ Jm−i,n− j+1 − Im−i+1,n− j ))

∨ (Im−i+1,n− j − Jm−i,n− j+1) ∨ 0

= Im−i+1,n− j +
(
(αm−i,n− j − ωm−i+1,n− j+1 ∨ Im−i+1,n− j ∨ Jm−i,n− j+1)

∨ (−Jm−i,n− j+1) ∨ (−Im−i+1,n− j )
)
.

Focus on the expression in the parenthesis. We will show that it is always 0, and there-
fore the lemma follows by (5.6). We use Eqs. (3.3) and (3.8). If (Im−i+1,n− j , Jm−i,n− j+1)

= (1, 1) then αm−i,n− j = 1 and the first maximum is zero. Similarly, when the triple
(ωm−i+1,n− j+1, Im−i+1,n− j , Jm−i,n− j+1) = (0, 0, 0), αm−i,n− j = 0 and the value is
zero again. When exactly one of Im−i+1,n− j , Jm−i,n− j+1 is zero the overall maximum in
the parenthesis is 0, irrespective of the values of αm−i,n− j , ωm−i+1,n− j+1. Finally, when
ωm−i+1,n− j+1 = 1 and both the increment variables (Im−i+1,n− j , Jm−i,n− j+1) = (0, 0),
the first term is either 0 or −1 and again the overall maximum is zero. ��
Throughout the paper quantities defined in the reversed process will be denoted by a super-
script ∗, and they will always be equal in distribution to their original forward versions.

5.1.4 Competition Interface for the Forward Process Versus Maximal Path for the
Reversed Process

We want to show that the competition interface defined in (5.2) is always below or coincides
(as piecewise linear curves) with the down—most maximal path π̂∗ for the reversed process.
The steps of the competition interface for the forward process coincide with those of π̂∗ in
all cases, except when (Ii, j , Ji, j , ωi, j ) = (0, 1, 1). In that case, π̂∗ will go diagonally up,
while ϕ will move horizontally. Thus, ϕ is to the right and below π̂∗ as curves.

Now, define

v(n) = inf{i : (i, n) = ϕk for some k ≥ 0}
w(m) = inf{ j : (m, j) = ϕk for some k ≥ 0} (5.11)
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with the convention inf ∅ = ∞. In words, the point (v(n), n) is the left-most point of the
competition interface on the horizontal line j = n, while (m, w(m)) is the lowest point on
the vertical line i = m. This observation implies

v(n) ≥ m �⇒ w(m) < n or w(m) ≥ n �⇒ v(n) < m. (5.12)

Then, on the event {w(m) ≥ n}, we know that π̂∗ will hit the north boundary of the rectangle
at a site (�, n) so that

m − � = ξ∗
e1(π̂

∗), � ≤ v(n).

Then, we have just showed that

Lemma 5.3 Let ϕ be the competition interface constructed for the process G(λ) and π̂∗ the
down-most maximal path for the process G∗,(λ) defined by (5.5) from (m, n) to (0, 0). Then
on the event {v(n) ≥ m},

m − v(n) ≤ ξ∗(λ)
e1 (π̂∗) (5.13)

Finally, note that by reversed process definition we have

ξ∗(λ)
e1

D= ξ (λ)
e1 . (5.14)

5.2 Last Passage Time Under Different Boundary Conditions

In our setting the competition interface is important because it bounds the region where the
boundary conditions on the axes are felt. For this reason we want to give a Lemma which
describes how changes in the boundary conditions are felt by the increments in the interior
part.

Lemma 5.4 Given two different weights {ωi, j } and {ω̃i, j } which satisfy ω0,0 = ω̃0,0, ω0, j ≥
ω̃0, j , ωi,0 ≤ ω̃i,0 and ωi, j = ω̃i, j for all i, j ≥ 1. Then all increments satisfy Ii, j ≤ Ĩi, j and
Ji, j ≥ J̃i, j .

Proof By following the same corner-flipping inductive proof as that of Lemma 3.3 one can
show that the statement holds for all increments between points in Lψ ∪ Iψ where Lψ and
Iψ are respectively defined in (3.6) and (3.9) for those paths for which Iψ is finite. The base
case is when Iψ is empty and the statement follows from the assumptionmade on the weights
{ωi, j } and {ω̃i, j } and from the definition of the increments made in (3.3). ��
Lemma 5.5 We are in the settings of Lemma 5.4. Let GW=0 (resp.GS=0) be the last passage
times of a system where we set ω̃0, j = 0 for all j ≥ 1 (resp. ωi,0 = 0) and the paths are
allowed to collect weights while on the boundaries. Let v(n) be given by (5.11).

Then, for v(n) < m1 ≤ m2,

G(1,1),(m2,n) − G(1,1),(m1,n) ≤ GW=0
(0,0),(m2,n) − GW=0

(0,0),(m1,n)

= G(0,0),(m2,n) − G(0,0),(m1,n).
(5.15)

Alternatively, for 0 ≤ m1 ≤ m2 < v(n),

G(1,1),(m2,n) − G(1,1),(m1,n) ≥ GS=0
(0,0),(m2,n) − GS=0

(0,0),(m1,n)

= G(0,0),(m2,n) − G(0,0),(m1,n).
(5.16)
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Proof We prove (5.16) and similar arguments prove (5.15). The first inequality in (5.16)
follows from Lemma 5.4 in the case ω̃0, j = ω̃i,0 = 0. The subsequent equality comes
from the fact that if v(n) ≥ m1 ≥ m2. By (5.11) the target points (m1, n) and (m2, n)

are above the competition interface ϕ and therefore, by (5.4) are strictly above ϕ̃. This
implies that (m1, n) and (m2, n) belong to the cluster C↑,↗ and therefore we can choose the
respective maximal paths to not take a horizontal first step. In turn, the maximal path does
not need to go through the x-axis and hence it does not see the boundary values ωi,0. Thus,
GS=0

(0,0),(m,n) = G(0,0),(m,n). ��

5.3 Lower Bound

In this section we prove the lower bound for the order of the variance. Before giving the
proof we need to prove two preliminary lemmas. For the rest of this section, whenever we
say maximal path, we mean the down-most maximal path.

Lemma 5.6 Let a, b > 0 two positive numbers. Then there exist a positive integer N0 =
N (a, b) and constant C = C(a, b) such that for all N > N0 we have

P

{
sup

0≤z≤aN2/3

{
S (u)

z + G(z∨1,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N ))

} ≥ bN 1/3
}

≤ Ca3(b−3 + b−6). (5.17)

Proof First note that if the supremum in the probability is attained at z = 0 then the expression
in the braces is tautologically 0 and the statement of the lemma is vacuously true. Therefore
without loss of generality, we can prove the bound for the supremum when 1 ≤ z ≤ aN 2/3.

Select and fix any parameter 0 < r < b/a and let N large enough. The exact dependence
of r on the parameters a and b will be obtained later in the proof. Define λ by

λ = u − r N−1/3. (5.18)

and use it to define boundary weights on both axes using that parameter and independently
of the original boundary weights with parameter u. The environment in the bulk is the same
for both processes. Let ϕ(λ) be the competition interface under environment ω(λ) and let
v(λ) be as in Eq. (5.11). Restrict on the event vλ(n) > m. Define the increment V(λ)

z−1 =
G(λ)

(0,0),(m,n) − G(λ)
(0,0),(m−z+1,n). Then use Lemma 5.5 to obtain

G(1,1),(m,n) − G(1,1),(m−z+1,n) ≥ V(λ)
z−1.

Recall that V(λ)
z−1 is a sum of i.i.d. Bernoulli(λ) variables and it is independent ofS (u)

z . When
(m, n) equals the characteristic direction (mu(N ), nu(N )) corresponding to u,

P

{
sup

1≤z≤aN2/3

{
S (u)

z + G(z,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N ))

} ≥ bN 1/3
}

≤ P

{
v(λ)

(⌊N
p

(
p + (1 − p)u

)2⌋) ≤ �N�
}

+ P

{
sup

1≤z≤aN2/3
{S (u)

z − V(λ)
z−1} ≥ bN 1/3

}

≤ P

{
v(λ)

(⌊N
p

(
p + (1 − p)u

)2⌋) ≤ �N�
}

(5.19)
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+ P

{
sup

1≤z≤aN2/3
{S (u)

z−1 − V(λ)
z−1} ≥ bN 1/3 − 1

}
. (5.20)

Where the first inequality is obtained by applying the law of total probability and making

P

{
sup1≤z≤aN2/3{S (u)

z +G(z,1),(mu(N ),nu(N )) −G(1,1),(mu(N ),nu(N ))} ≥ bN 1/3|v(λ)
(⌊

N
p

(
p+

(1 − p)u
)2⌋) ≤ �N�

}
= P

{
v(λ)

(⌊
N
p

(
p + (1 − p)u

)2⌋)
> �N�

}
= 1. We bound the two

probabilities separately. We begin with (5.20). Define the martingale as Mz−1 = S
(u)
z−1 −

V(λ)
z−1 − E[S (u)

z−1 − V(λ)
z−1], and note that for 1 ≤ z ≤ aN 2/3,

E[S (u)
z−1 − V(λ)

z−1] = (z − 1)u − (z − 1)λ ≤ raN 1/3. (5.21)

From (5.21) follows that

S
(u)
z−1 − V(λ)

z−1 ≤ Mz−1 + raN 1/3.

Using this result and taking N large enough so that

b > ra + N−1/3 (5.22)

we get by Doob’s inequality, for any d ≥ 1.

P

{
sup

1≤z≤aN2/3

{
S

(u)
z−1 − V(λ)

z−1

} ≥ bN 1/3 − 1

}

≤ P

{
sup

1≤z≤aN2/3
Mz−1 ≥ N 1/3(b − ra − N−1/3)

}

≤ C(d)N−d/3

(b − ra − N−1/3)d
E[|M�aN2/3�|d ] ≤ C(d, u)ad/2

(b − ra − N−1/3)d
. (5.23)

Then for N ≥ 43b−3 the above bound is further dominated by C(d, u)ad/2( 3b4 − ra
)−d

which becomes C(d, u)a3b−6 once we choose

r = b

4a
, (5.24)

d = 6, and properly re-define the constant C(d, u). This concludes the bound for (5.20).
For (5.19), we rescale N as

N ′ =
(
p + (1 − p)u

p + (1 − p)λ

)2

N .

Then we write

P

{
v(λ)

(⌊N ′

p

(
p + (1 − p)λ

)2⌋)
<
⌊( p + (1 − p)λ

p + (1 − p)u

)2
N ′⌋}

Since u > λ, then
⌊( p + (1 − p)λ

p + (1 − p)u

)2
N ′⌋ ≤ �N ′�.

Thus, by redefining (2.7) and (5.13) with N ′ and λ, we have that the event v(λ)(� N ′
p (p+ (1−

p)λ)2�) < �( p+(1−p)λ
p+(1−p)u )2N ′� is equivalent to
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ξ∗(λ)
e1 (N ′) ≥ �N ′� − v(λ)

(⌊N ′

p

(
p + (1 − p)λ

)2⌋)

> �N ′� −
⌊( p + (1 − p)λ

p + (1 − p)u

)2
N ′⌋.

By (5.14), we conclude

P

{
v(λ)

(⌊N
p

(
p + (1 − p)u

)2⌋)
< �N�

}

= P

{
ξ (λ)
e1 (N ′) > �N ′� −

⌊( p + (1 − p)λ

p + (1 − p)u

)2
N ′⌋}. (5.25)

Utilizing the definitions (5.18) and (5.24) of λ and r , for N ≥ N0 there exists a constant
C = C(u) such that

�N ′� −
⌊( p + (1 − p)λ

p + (1 − p)u

)2
N ′⌋ ≥ CrN ′2/3.

Combining this with Corollary 4.10 and definition (5.24) of r we get the bound

P

{
v(λ)

(⌊N
p

(
p + (1 − p)u

)2⌋)
< �N�

}
≤ P

[
ξ (λ)
e1 (N ′) > CrN ′2/3]

≤ Cr−3 ≤ C(a/b)3. (5.26)

The result now follows. ��
The other Lemma gives an asymptotic limit of the probability order of the exit point from
the x-axis. We will discuss the exit point from the y-axis as a Corollary of this Lemma.

Lemma 5.7 Let u ∈ (0, 1) and (mu(N ), nu(N )) the characteristic direction. Then the exit
point of a maximal path from 0 to (mu(N ), nu(N )) satisfies

lim
δ→0

lim
N→∞ P

{
0 ≤ ξ (u)

e1 (N ) ∨ ξ (u)
e2 (N ) ≤ δN 2/3

}
= 0.

Proof We only show the result for ξ
(u)
e1 (N ). The same result for ξ

(u)
e2 (N ) follows by inter-

changing vertical and horizontal directions and the fact that both boundaries have Bernoulli
variables.

First pick a parameter δ > 0. Recall that ξ
(u)
e1 (N ) = 0 if the down-most maximal path

makes the first step diagonally or up. Also keep in mind that ξ
(u)
e1 (N ) = 0 is the right-most

possible exit point, therefore all paths that exit later, have to have a obtain smaller passage
time. Then, we may bound

P
{
0 ≤ ξ (u)

e1 (N ) ≤ δN 2/3} ≤ P

{
sup

δN2/3<x≤N2/3

{
S (u)

x + G(x,1),(mu(N ),nu(N ))

}

< sup
0≤x≤δN2/3

{
S (u)

x + G(x∨1,1),(mu(N ),nu(N ))

}}
.

Then, we subtract the term G(1,1),(m(N ),n(N )) from both sides and we bound the resulting
probability from above by
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P

{
sup

δN2/3<x≤N2/3

{
S (u)

x + G(x,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N ))

}

< sup
0≤x≤δN2/3

{
S (u)

x + G(x∨1,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N ))

}}

≤ P

{
sup

δN2/3<x≤N2/3

{
S (u)

x + G(x,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N ))

}
< bN 1/3

}

(5.27)

+ P

{
sup

0≤x≤δN2/3

{
S (u)

x + G(x∨1,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N ))

}
> bN 1/3

}
.

(5.28)

(5.28) is bounded from above using Lemma 5.6 by Cδ3(b−3 + b−6).
To bound (5.27) we use similar arguments that we employed in the proof of Lemma 5.6.

Define an auxiliary parameter λ

λ = u + r N−1/3, (5.29)

where conditions on r will be specified in the course of the proof. From Lemma 5.5 the
following inequalities hold

G(x,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N )) ≥ G(λ)
(0,0),(mu(N )−x+1,nu(N )) − G(λ)

(0,0),(mu(N ),nu(N ))

= −V(λ)
x−1 ≥ −V(λ)

x .

whenever v(λ)
(⌊

N
p

(
p + (1 − p)u

)2⌋) ≤ �N� − x . Using these, we have

P

{
sup

δN2/3<x≤N2/3

{
S (u)

x + G(x,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N ))

}
< bN 1/3

}

≤ P

{
v(λ)

(⌊N
p

(
p + (1 − p)u

)2⌋)
> �N� − N 2/3

}
(5.30)

+ P

{
sup

δN2/3<x≤N2/3

{
S (u)

x − V(λ)
x

}
< bN 1/3

}
. (5.31)

We claim that, for η > 0 and parameter r , it is possible to fix δ, b > 0 small enough so that,
for some N0 < ∞, the probability in (5.31) satisfies

P

{
sup

δN2/3<x≤N2/3

{
S (u)

x − V(λ)
x

}
< bN 1/3

}
≤ η for all N ≥ N0. (5.32)

In order to prove this, we use a scaling argument: Uniformly over y ∈ [δ, 1] as N → ∞,

N−1/3
E

[
S

(u)

�yN2/3� − V(λ)

�yN2/3�
]

= N−1/3(�yN 2/3�u − �yN 2/3�(u + r N−1/3)) → −ry

and

N−2/3 Var
(
S

(u)

�yN2/3� − V(λ)

�yN2/3�
)

= y

(√
u(1 − u) +

√
(u + r N−1/3)(1 − u − r N−1/3)

)2

→ 4u(1 − u)y = σ 2(u)y
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(mu(N),n u(N))
(v(λ)(nu(N)),n u(N))

ϕ(λ)

(m̃u(N), ñu(N))
(v

( p(1−λ)
λ+p(1−λ) )

(ñu(N)), ñu(N))

ϕ
( p(1−λ)

λ+p(1−λ) )

π̃∗

ϕ̃
( p(1−λ)

λ+p(1−λ) )

Fig. 4 Comparison of various curves in ωi, j and ω̃i, j = ω j ,i environments. The thickset blue curve (color
online) in the left figure is the competition interface in ωi, j and the reflected curve can be seen in the same
color to the right. The green curve is the competition interface in ω̃i, j weights which is higher than the reflected
ϕ and the red curve is the right-most maximal paths in the reversed ω̃∗

i, j weights with boundaries on north and
east, which is higher than both the other curves

Since we are scaling the supremum of a random walk with bounded increments, the proba-
bility (5.32) converges as N → ∞, to

P

{
sup

δ≤y≤1
{σ(u)B(y) − ry} ≤ b

}

where B(·) is a standard Brownian motion. The random variable

sup
δ≤y≤1

{σ(u)B(y) − ry}

is positive almost surely when δ is sufficiently small. Therefore, the above probability is less
than η/2 for a suitably small b. This implies (5.32).

Finally we bound (5.30). Using (5.12) and the transpose environment ω̃i, j = ω j,i for
i, j ≥ 0 under the measure P̃

P

{
v(λ)

(⌊N
p

(
p + (1 − p)u

)2⌋)
> �N − N 2/3 − 1�

}

≤ P̃

{
v

(
p(1−λ)

λ+p(1−λ)

)
(�N − N 2/3 − 1�) ≤

⌊N
p

(
p + (1 − p)u

)2⌋}
. (5.33)

Undermeasure P̃ the environment is still i.i.d. and the only change is the alternation of param-
eter values on the boundaries. Moreover, in the transposed environment, the new competition

interface ϕ
(

p(1−λ)
λ+p(1−λ)

) constructed using (5.2), would be above (as a curve) from the transposed
competition interface ϕ(λ), so it would still exit from the north boundary. (see Fig. 4). From
(5.29) substitute u as a function of λ,

Probability in (5.33) = P̃

{
v

(
p(1−λ)

λ+p(1−λ)

)
(�N − N 2/3 − 1�)

≤
⌊N
p

(
p + (1 − p)λ

)2 − 2

p
(p + (1 − p)λ)(1 − p)r N 2/3 + o(N 2/3)

⌋}
.

Define N ′ as

N ′ = N − N 2/3 − 1 �⇒ N = N ′ + N ′2/3 + o(N ′2/3).
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Replace N with N ′ in the probability above to obtain

Probability in (5.33) ≤ P̃

{
v

(
p(1−λ)

λ+p(1−λ)

)
(�N ′�) ≤

⌊N ′

p
(p + (1 − p)λ)2

⌋
− K N ′2/3},

where K = p−1(p + (1 − p)λ)(2(1 − p)r − (p + (1 − p)λ)) which is positive for r large
enough. Using (5.13) and (5.14)

Probability(5.33) = P̃

{
ξ

∗
(

p(1−λ)
λ+p(1−λ)

)
e1 (N ′) > K N ′2/3] = P̃

{
ξ

(
p(1−λ)

λ+p(1−λ)

)
e1 (N ′) > K N ′2/3]

≤ CK−3,

where the last inequality follows from Corollary 4.10.We are now ready to prove the lemma.
Start with a fixed η > 0. Then, fix an r large enough so that CK−3 < η and probability
(5.30) is controlled. This also imposes a restriction on the smallest value of N that we can
take, since we must have λ < 1. Under a fixed r , we can modulate δ, b and select them
small enough, so that (5.32) holds. Finally, make δ smaller so that Cδ3(b−3 + b−6) < η and
probability (5.28) is also controlled. Thus, unifying all these results we have

P
{
0 ≤ ξ (u)

e1 (N ) ≤ δN 2/3} ≤ 2η. (5.34)

Note that by shrinking δ while b remains fixed, (5.32) is reinforced. This concludes the proof
of the lemma. ��
Proof of Theorem 2.3, lower bound We first claim that

AN (u) ≥ E

⎛
⎝ξ −

ξ∑
i=1

ωi,0

⎞
⎠ = E

⎛
⎝ ξ∑

i=1

(1 − ωi,0)

⎞
⎠. (5.35)

Under this claim, we can write

AN (u) = E

⎛
⎜⎝

ξ
(u)
e1∑
i=1

(1 − ωi,0)

⎞
⎟⎠ ≥ E

⎛
⎝1

{
ξ (u)
e1 (N ) ≥ δN 2/3}

⌊
δN2/3⌋∑
i=1

(1 − ωi,0)

⎞
⎠

≥ αN 2/3
P

⎧⎨
⎩ξ (u)

e1 (N ) ≥ δN 2/3,

⌊
δN2/3⌋∑
i=1

(1 − ωi,0) ≥ αN 2/3

⎫⎬
⎭.

Fix an η positive and smaller than 1/4. Now, by making δ sufficiently small, we can make the
event {ξ (u)

e1 (N ) ≥ δN 2/3} have probability larger than 1−η by Lemma 5.7, for N sufficiently

large. With δ fixed, we can make α smaller, so that the event
{∑⌊

δN2/3⌋
i=1 (1−ωi,0) ≥ αN 2/3

}
also has probability larger than 1 − η. Therefore their intersection has probability greater
than 1 − 2η.

By Eq. (4.5) and the fact that we are in a characteristic direction, the result follows.
It now remains to verify (5.35). From Eq. 4.6, we can write

H
(ε)
i,0 ∨ ωi,0 − ωi,0 = H

(ε)
i,0 − H

(ε)
i,0 ωi,0.
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Then begin from (4.17) to bound

EP⊗με
(N uε − N (u)) ≥ EP⊗με

(
S

uε

ξ
(u)
e1

− S
(u)

ξ
(u)
e1

)
= EP⊗με

⎛
⎜⎝

ξ
(u)
e1∑
i=1

H
(ε)
i,0 − H

(ε)
i,0 ωi,0

⎞
⎟⎠

= εE
(
ξ (u)
e1

) − EP⊗με

⎛
⎜⎝

ξ
(u)
e1∑
i=1

H
(ε)
i,0 ωi,0

⎞
⎟⎠

= εE
(
ξ (u)
e1

) − EP⊗με

⎛
⎝mu (N )∑

y=1

y∑
i=1

H
(ε)
i,0 ωi,01

{
ξ (u)
e1 = y

}
⎞
⎠

= εE
(
ξ (u)
e1

) − EP⊗με

⎛
⎝mu (N )∑

i=1

H
(ε)
i,0 ωi,01

{
ξ (u)
e1 ≥ i

}
⎞
⎠

= εE
(
ξ (u)
e1

) − εE

⎛
⎝mu (N )∑

i=1

ωi,01
{
ξ (u)
e1 ≥ i

}
⎞
⎠

= εE
(
ξ (u)
e1

) − εE

⎛
⎜⎝

ξ
(u)
e1∑
i=1

ωi,0

⎞
⎟⎠.

Combine the expectations and divide by ε. Then take a limit as ε → 0 to finish the proof. ��

6 Variance in Off-Characteristic Directions

In this section we want to deduce the central limit theorem for rectangles that do not have
characteristic shape.

Proof of Theorem 2.4 Weprove the theorem in the case c < 0and analogous arguments follow
for c > 0. Set m∗

u(N ) = mu(N ) + �cNα�. Now, the point (m∗
u(N ), nu(N ) + �cNα�) is in

the characteristic direction. Thus

G(u)
mu (N ),nu(N )+�cNα� = G(u)

m∗
u(N ),nu(N )+�cNα� +

mu(N )∑
i=m∗

u (N )+1

Ii,nu(N )+�cNα�.

Note that the second the term on the right hand side is a sum of mu(N )−m∗
u(N ) = |�cNα�|

i.i.d. Bernoulli distributed with parameter λ. We center by the mean of each random variable
and we indicate them with a bar over the random variable. Multiply both sides by N−α/2 to
obtain

N−α/2Ḡ(u)
mu(N ),nu(N )+�cNα� = N−α/2

⎛
⎝Ḡ(u)

m∗
u(N ),nu(N )+�cNα� +

mu(N )∑
i=m∗

u (N )+1

Īi,nu(N )+�cNα�

⎞
⎠.

The first term on the right hand side is stochastically O(N 1/3−α/2). Since α > 2/3 this term
converges to zero in probability. On the other hand the second term satisfies a CLT. ��
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Note that for any λ ∈ (0, 1), for any ε > 0 the endpoint (N , pN−εN ) (resp. (N , N/p+εN ))
will always be the north-east corner of an off-characteristic rectangle—no matter what the
value of λ.

7 VarianceWithout Boundary

In this sectionwe prove some results for the last passage time in themodel without boundaries
but still with fixed endpoint. The case of the flat edge is particularly discussed as the order
of the variance changes there.

We begin recalling the last passage time of the model without boundaries to reach a point
in the characteristic direction (2.7) is G(1,1),(mu(N ),nu(N )) and the last passage time of the

model with boundaries to reach the same point is G(u)
(0,0),(mλ(N ),nλ(N )). We want to prove

another version of Lemma 5.6.

Lemma 7.1 Fix 0 < α < 1. Then there exist a positive integer N0 = N (b, u) and constant
C = C(α, u) such that, for all N ≥ N0 and b ≥ C0 we have

P
{
G(u)

(0,0),(mλ(N ),nλ(N )) − G(1,1),(mu(N ),nu(N )) ≥ bN 1/3} ≤ Cb−3α/2.

Proof We prove only the case where the maximal path exits from the x-axis. Similar argu-
ments hold for the maximal path exits from the y-axis and find the same bound.

Note that

P

{
G(u)

(0,0),(mλ(N ),nλ(N )) − G(1,1),(mu(N ),nu(N )) ≥ bN 1/3
}

≤ P

{
sup

1≤z≤aN2/3

{
S (u)

z + G(z,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N ))

} ≥ bN 1/3

}
(7.1)

+ P

{
sup

1≤z≤aN2/3

{
S (u)

z + G(z,1),(mu(N ),nu(N ))

} �= G(1,1),(mu(N ),nu(N ))

}
. (7.2)

For (7.2) using Corollary 4.10, there exists a C = C(u) such that

P

{
sup

1≤z≤aN2/3

{
S (u)

z + G(z,1),(mu(N ),nu(N ))

} �= G(1,1),(mu(N ),nu(N ))

}

≤ P[ξ (u)
e1 (N ) ≥ aN 2/3] ≤ Ca−3.

(7.3)

For(7.1) we use the results from the proof of Lemma 5.6. Define

λ = u − r N−1/3

From (5.20) and (5.23), where we choose a = bα/2, d = 2, and r = bα/2 we have the upper
bound

P

{
sup

1≤z≤aN2/3

{
S

(u)
z−1 − V(λ)

z−1

} ≥ bN 1/3 − 1

}
≤ C(α, u)bα/2

(b − bα − N−1/3)2
(7.4)

where C(α, u) > 0 is large enough so that for b ≥ C (5.22) is satisfied and the denominator
in (7.4) is at least b/2. Then we can claim that for all b ≥ C and N ≥ N0 = 43b−3
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P

{
sup

1≤z≤aN2/3

{
S (u)

z + G(z,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N ))

} ≥ bN 1/3

}

≤ P

{
v(λ)

(⌊N
p

(
p + (1 − p)u

)2⌋) ≤ �N�
}

+ Cbα/2−2.

Since N ≥ N0 we can use the result (5.26) and remembering that r = bα/2 in this case we
obtain

P

{
sup

1≤z≤aN2/3

{
S (u)

z + G(z,1),(mu(N ),nu(N )) − G(1,1),(mu(N ),nu(N ))

} ≥ bN 1/3

}

≤ Cb−3α/2 + Cbα/2−2.

(7.5)

Combining (7.5) and (7.3) we obtain the final result. ��

All the constants which will be defined in this section depend on the values x, y and p.

Proof of Theorem 2.6 By Chebyshev, Theorem 2.3 for the upper bound, Lemma 7.1

P
{|G(1,1),(�Nx�,�Ny�) − Ngpp(x, y)| ≥ bN 1/3}

≤ P

{∣∣∣G(1,1),(mu(N ),nu(N )) − G(u)
(0,0),(mλ(N ),nλ(N ))

∣∣∣ ≥ 1

2
bN 1/3

}

+ P

[∣∣∣G(u)
(0,0),(mλ(N ),nλ(N )) − Ngpp(x, y)

∣∣∣ ≥ 1

4
bN 1/3

]

≤ Cb−3α/2 + Cb−2 ≤ Cb−3α/2.

To get the moment bound,

E

[∣∣∣∣G(1,1),(�Nx�,�Ny�) − Ngpp(x, y)

N 1/3

∣∣∣∣
r]

=
∫ ∞

0
P

[∣∣∣∣G(1,1),(�Nx�,�Ny�) − Ngpp(x, y)

N 1/3

∣∣∣∣
r

≥ b

]
db.

At this point using (2.10) where b in this case is b1/r

∫ ∞

0
P

[∣∣∣∣G(1,1),(�Nx�,�Ny�) − Ngpp(x, y)

N 1/3

∣∣∣∣
r

≥ b

]
db ≤ C0 +

∫ ∞

C0

Cb
−3α
2r db < ∞,

which converges iff 1 ≤ r < 3α/2. ��

7.1 Variance in Flat-Edge DirectionsWithout Boundary

We only treat explicitly the case for which y ≤ px . Since our model is symmetric, the same
arguments can be repeated to prove the case y ≥ 1

p x .
We forcemacroscopic distance from the critical line, i.e. we assume that we can find ε > 0

so that the sequence of endpoints (N , n(N )) satisfy

lim
n→∞

n(N )

N
≤ p − ε. (7.6)

123



634 F. Ciech, N. Georgiou

Proof of Theorem 2.7 Consider the following naive strategy: We construct an approximate
maximal path π for GN ,n(N ), knowing that for large n(N ) < �(p − ε/2)N� without using
the boundaries. π enters immediately inside the bulk andmoves right until it finds a weight to
collect diagonally. After that this procedure repeats. For each iteration of this procedure, the
horizontal length of this path increases by a random Geometric(1/p) length, independently
of the past.

The probability that π will take more than N steps before reaching level n(N ) is the same
as the probability that the sum of n(N ) independent Xi ∼ Geometric(1/p) r.v.’s exceeds the
value N which is a large deviation event. In symbols

P{GN ,n(N )(π) < n(N )} = P

⎧⎨
⎩

n(N )∑
i=1

Xi > N

⎫⎬
⎭ ≤ P

⎧⎨
⎩

�(p−ε/2)N�∑
i=1

Xi > N

⎫⎬
⎭ ≤ e−cN .

Now, let A = {GN ,n(N )(π) = n(N )}.
Var(GN ,n(N )) = E(G2

N ,n(N )) − (E(GN ,n(N )))
2

≤ (n(N ))2 − (E(GN ,n(N )1A)2 = (n(N ))2 − (n(N ))2P{A}2
≤ (n(N ))2(1 − (1 − e−cN )2) ≤ CN 2e−cN → 0. ��

8 Fluctuations of theMaximal Path in the BoundaryModel

In this last section we prove the path fluctuations in the characteristic direction in the model
with boundaries. The idea behind it is to study how long the maximal path spends on any
horizontal (or vertical) level and find a bound for the distance between the maximal path and
the line which links the starting and the ending point which corresponds to the macroscopic
maximal path.

Fix aboundaryparameterλ and for this section the characteristic direction (mλ(N ), nλ(N ))

is abbreviated by (m, n) and it is the endpoint for the maximal path. Consider two rectangles
R(k,�),(m,n) ⊂ R(0,0),(m,n) with 0 < k < mλ(N ) and 0 < � < nλ(N ). In the smaller rect-
angleR(k,�),(mλ(N ),nλ(N )) impose boundary conditions on the south and west edges given by
the distributions defined in Lemma 3.5.

Ii,�
D= Ii,0 Jk, j

D= J0, j with i ∈ {k + 1, . . . ,m}, j ∈ {� + 1, . . . , n}. (8.1)

Recall that (2.13) and (2.14) define respectively the i coordinate where the maximal path
enters and exits from a fixed horizontal level j . Since we are interested in studying either the
horizontal and vertical fluctuations we also define the j coordinate where the maximal path
enters and exits from a fixed vertical level i as

w0(i) = min{ j ∈ {0, . . . , n} : ∃k such that πk = (i, j)}, (8.2)

and

w1(i) = max{ j ∈ {0, . . . , n} : ∃k such that πk = (i, j)}. (8.3)

123



Order of the Variance in the Discrete Hammersley Process... 635

To make our notation clearer we distinguish the exit point for the path which starts from
(0, 0) to the one which starts from (k, �) adding the superscript (0, 0) or (k, �). We define
the exit point from the south edge of the rectangle R(k,�),(m,n) as

ξ (k,�)
e1 = max

π∈�(k,�),(m,n)

{r ≥ 0 : (k + i, �) ∈ π for 0 ≤ i ≤ r , π is the right-most maximal}.
(8.4)

Observe from (8.1) that ξ (k,�)
e1 and v1(�) − k have the same distribution, i.e.

P
{
ξ (k,�)
e1 = r

} = P{v1(�) = k + r}. (8.5)

Proof of Theorem 2.9 Note that if τ = 0 (2.15) and (2.16) are already contained in (4.34) and
(5.34).

For 0 < τ < 1 set v = �bN 2/3� and (k, �) = (�τm�, �τn�). We add a superscript P(·,·){·}
when we want to emphasise the target point for which we are computing the probability.
Remember that the rectangle R(k,�),(m,n) has boundary condition (8.1). By Lemma 3.5

P
(m,n){v1(�τn�) ≥ �τm� + v} = P

(m,n)
{
ξ (k,�)
e1 ≥ v

}
, by (8.5)

= P
(m−k,n−�)

{
ξ (0,0)
e1 ≥ v

}
, by (3.1), (8.1).

(8.6)

Note that (m − k, n − �) is still in the characteristic direction since (m − k, n − �) =
(1 − τ)(m, n). Therefore, from (8.6) and Corollary 4.10

P
(m,n)

{
v1(�τn�) > τm + bN 2/3} ≤ C2b

−3.

To prove the other part of (2.15) notice that

P
(m,n){v0(�τn�) < �τm� − v} ≤ P

(m,n){w1(�τm� − v) ≥ �τn�}. (8.7)

Let k = �τm�−v and � = �τn�−�nv/m�. Then, up to integer-part corrections, k/� = m/n.
For a constant Cλ > 0 and N sufficiently large , �τn� ≥ � + CλbN 2/3. Note that from (8.1)
we can write

P
(m,n)

{
ξ (k,�)
e2 = r

} = P
(m,n){w1(k) = � + r}. (8.8)

The vertical analogue of (8.6) for w1 is

P
(m,n){w1(�τm� − v) ≥ �τn�} = P

(m,n)
{
w1(k) ≥ � + CλbN

2/3}
= P

(m,n)
{
ξ (k,�)
e2 ≥ CλbN

2/3} by (8.8)

= P
(m−k,n−�)

{
ξ (0,0)
e2 ≥ CλbN

2/3} by (3.1), (8.1).

Combine this last result with (8.7) and from Corollary 4.10 applied to ξe2 (2.15) follows.
Finally, we prove (2.16). We want to compute

P
{∃ k such that |π̂k − (τm, τn)| ≤ δN 2/3}.

If the path π̂ comes within �∞ distance δN 2/3 of (τm, τn), then it necessarily enters through
the south or west side of the rectangle R(k+1,�+1),(k+4�δN2/3�,�+4�cδN2/3�) (or via a diagonal
step from the south-west corner), where the point (k, �) = (�τm� − 2�δN 2/3�, �τn� −
2�cδN 2/3� and the constant c > m/n for large enough N . The constant c is there to make
the rectangle of characteristic shape.

From the perspective of the rectangle R(k,�),(m,n) this event is equivalent to either 0 ≤
ξ

(k,�)
e1 ≤ 4δN 2/3 or 0 ≤ ξ

(k,�)
e2 ≤ 4cδN 2/3. For these reasons we have
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P
(m,n)

{∃k such that |π̂k − (τm, τn)| ≤ δN 2/3}
≤ P

(m,n)
{
0 < ξ(k,�)

e1 ≤ 4δN 2/3 or 0 < ξ(k,�)
e2 ≤ 4cδN 2/3

}

= P
(m−k,n−l)

{
0 ≤ ξ (0,0)

e1 ≤ 4δN 2/3 or 0 ≤ ξ (0,0)
e2 ≤ 4cδN 2/3

}
.

We get the result using Eq. (5.34) for both exit points. ��
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Appendix: Notation for the Various Passage Times

Symbol Explanation Definition

GV
0,(m,n)

Last passage time from 0 = (0, 0) up to (m, n) using potential V of
(1.1)

Equation (1.2)

G0,(m,n) Last passage time from 0 = (0, 0) up to (m, n) in i.i.d. environment
using potential V of (1.1)

Section 1.5

Gm,n Same as above (when starting point is (0, 0) is omitted unless
necessary)

Section 1.5

G(k,�),(m,n) Last passage time from (k, �) up to (m, n) in i.i.d. environment
using potential V of (1.1)

Section 1.5

G(u)
m,n Last passage time from 0 up to (m, n) in environment (2.3) with

parameter u. Often called the passage time for the boundary
model. Change in superscript implies change in parameter

Equation (2.4)

GSuε
m,n Last passage time from 0 up to (m, n) in a perturbed environment

(4.8)
Below Eq. (4.8)

GWuε
m,n Last passage time from 0 up to (m, n) in a perturbed environment

(4.10)
Below Eq. (4.11)

G∗
i, j Reversed last passage time from (0, 0) up to (i, j), (which is also a

gradient of forward passage times from (m − i, n − j) up to
(m, n)) in the reversed environment (5.8)

Equation (5.5)

GS=0
(0,0),(m,n)

Last passage time from (0, 0) up to (m, n), when the horizontal axis
only has 0 weight, when paths are allowed to collect boundary
weights. Similarly defined is GW=0

(0,0),(m,n)
for the vertical axis

Lemma 5.5

Superscript (u) Quantity in the invariant model of parameter u
Superscript ∗ Quantity in the reversed model
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