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Abstract
Consider the free energy of a d-dimensional gas in canonical equilibrium under pairwise
repulsive interaction and global confinement, in presence of a volume constraint. When
the volume of the gas is forced away from its typical value, the system undergoes a phase
transition of the third order separating two phases (pulled and pushed).We prove this result (i)
for the eigenvalues of one-cut, off-critical randommatrices (log-gas in dimension d = 1)with
hard walls; (ii) in arbitrary dimension d ≥ 1 for a gas with Yukawa interaction (aka screened
Coulombgas) in a generic confining potential. The latter class includes systemswithCoulomb
(long range) and delta (zero range) repulsion as limiting cases. In both cases, we obtain an
exact formula for the free energy of the constrained gas which explicitly exhibits a jump in
the third derivative, and we identify the ‘electrostatic pressure’ as the order parameter of the
transition. Part of these results were announced in Cunden et al. (J Phys A 51:35LT01, 2018).

Keywords Random matrices · Coulomb and Yukaw gases · log-gases · Phase transitions ·
Extreme value statistics · Large deviations · Potential theory

1 Introduction and Statement of Results

Phase transitions—points in the parameter space which are singularities in the free energy—
generically occur in the study of ensembles of random matrices, as the parameters in the
joint probability distribution of the eigenvalues are varied [9]. The aim of this paper is to
characterise the pulled-to-pushed phase transition (defined later) in random matrices with
hard walls and, more generally, in systems with repulsive interaction in arbitrary dimensions.
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Given an interaction kernel Φ : Rd → (−∞,+∞] and a potential V : Rd → R, we
define the energy associated to a gas of N particles at position xi ∈ R

d (i = 1, . . . , N ) as

EN (x1, . . . , xN ) = 1

2

∑

i �= j

Φ(xi − x j ) + N
∑

k

V (xk), xi ∈ R
d . (1.1)

We regard −∇Φ(x − y) as the force that a particle at x exerts on a particle at y, and V (x) as
a global coercive potential energy, V (x) → +∞ as |x | → ∞. The typical interactions we
have in mind are repulsive at all distances, i.e. −∇Φ(x) · x ≥ 0. It is natural to assume that
the repulsion is isotropic Φ(x) = ϕ(|x |) and that the potential is radial V (x) = v(|x |).

The normalisation of the energy is done in such a way that both terms (the sum over pairs
and the sum of one-body terms) are of same order O(N 2) for large N . Indeed, in terms of
the ‘granular’ normalised particle density,

ρN = 1

N

∑

i

δxi , (1.2)

the energy (1.1) reads

EN (x1, . . . , xN ) = N 2
[
1

2

¨
x �=y

Φ(x − y)dρN (x)dρN (y) +
ˆ

V (x)dρN (x)

]
. (1.3)

The minimisers ρN of the discrete energy should achieve the most stable balance between
the repulsive effect of the interaction term and the global confinement. Finding global and
constrained minimisers of the discrete energy EN is a question of major interest in the theory
of optimal point configurations.

For a large class of interaction kernels, the sequence of minimisers ρN converges toward
some non-discrete measure ρ when N → ∞. It is therefore convenient to reframe the
optimisation problem in terms of a field functional E : P(Rd) → (−∞,+∞] defined on
the set of probability measures ρ ∈ P(Rd) by

E [ρ] = 1

2

¨
Rd×Rd

Φ(x − y)dρ(x)dρ(y) +
ˆ
Rd

V (x)dρ(x), (1.4)

where ρ(x) represents the normalised density of particles around the position x ∈ R
d .

Mean field energy functionals of the form (1.4) and their minimisers have received atten-
tion in the study of asymptotics of the partition functions of interacting particle systems.
Consider the positional partition function of a particle system defined by the energy (1.1) at
inverse temperature β > 0

Z N =
ˆ

e−βEN dx1 · · · dxN . (1.5)

For several particle systems including eigenvalues of random matrices, Coulomb and Riesz
gases, the leading term in the asymptotics of the free energy is the minimum of the mean
field energy functional [7,44,56]

− 1

βN 2 log Z N → min
ρ∈P (Rd )

E [ρ], as N → ∞. (1.6)

Remark 1 We stress that physically the change of picture {xi } → ρ(x) is accompanied by an
entropic contribution of the gas (the ‘number’ of microstates {xi } of the gas that contribute
to a given macroscopic density profile ρ(x)). However, the scaling in N of the energy is such
that the entropic contribution is always sub-leading in the large N limit, and the free energy
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1264 F. D. Cunden et al.

is dominated by the internal energy component. To see this, we remark that the Boltzmann
factor corresponding to the energy (1.1) can be written as

e−βEN (x1,...,xN ) = exp

⎧
⎨

⎩−βN

⎛

⎝ 1

2N

∑

i �= j

Φ(xi − x j ) +
∑

k

V (xk)

⎞

⎠

⎫
⎬

⎭ . (1.7)

Therefore, themean-field limit N → ∞ is simultaneously a limit of large number of particles
and a zero-temperature limit, with an energy O(N ) extensive in the number of particles as
in standard statistical mechanics. (We learned this argument from a paper by Kiessling and
Spohn [40].) One then expects that in the large-N limit, the free energy of N particles at
inverse mean-field temperature βM F = βN approaches the minimum energy since at zero
temperature the entropy is absent. This also explains the rescaling in (1.6), as βM F N = βN 2.

Having clarified the physical meaning of the mean-field functional (1.4), we now turn to the
problem addressed in this paper.

Notational remark Throughout the paper P(B) denotes the set of probability measures
whose support lies in B ⊂ R

d . The Euclidean ball of radius R centred at 0 is denoted
by BR = {x ∈ R

d : |x | = (x21 +· · ·+ x2d )1/2 ≤ R}. If F is a formula, then 1F is the indicator
of the set defined by the formula F . We also use the notation a ∧ b = min{a, b}.

1.1 Formulation of the Problem

Consider a particle systemswith Boltzmann factor as in (1.7) and assume that, for large N , the
partition function behaves like (1.6). Under general hypotheses, the balance between mutual
repulsion and external confinement allows for the existence of a compactly supported global
minimiser of the energy functional E in (1.4). In radially symmetric systems (Φ(x) = ϕ(|x |)
and V (x) = v(|x |)), the minimiser ρR� is supported on a ball

E [ρR� ] = inf
ρ∈P (Rd )

E [ρ],
ˆ

BR�

dρR� (x) = 1. (1.8)

We say that the gas is at equilibrium in a ball of radius R� with density ρR� .
Suppose that we want to compute the probability that the gas is contained in a volume BR

with R �= R�, i.e.

Pr (xi ∈ BR, i = 1, . . . , N ) =

´
xi ∈BR

e−βEN dx1 · · · dxN

´
xi ∈Rd

e−βEN dx1 · · · dxN
= Z N (R)

Z N (∞)
. (1.9)

The denominator is nothing but the partition function of the gas Z N (∞) = Z N , while the
integral in the numerator is the partition function Z N (R) of the same gas constrained to stay
in the ball BR . In view of the asymptotics (1.6), for large N

log Z N (R) = −βN 2E [ρR] + o(N 2), (1.10)

where ρR is the equilibrium measure of the gas confined in BR

E [ρR] = inf
ρ∈P (BR)

E [ρ]. (1.11)
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Fig. 1 The pulled-to-pushed transition for a log-gas in dimension d = 1 in a quadratic potential (GUE)

(Note that ρR = ρR� for all R ≥ R�.) We conclude that the probability (1.9) decays as

Pr (xi ∈ BR, i = 1, . . . , N ) ≈ e−βN2F(R), (1.12)

where the large deviation function F(R) is

F(R) = − lim
N→∞

1

βN 2 (log Z N (R) − log Z N (∞)) = E [ρR] − E [ρR� ]. (1.13)

Clearly, F(R) ≥ 0 and is non-increasing. The physical interpretation of F(R) and ρR is clear:
F(R) is the excess free energy of the gas, constrained within BR , with respect to the situation
where it occupies the unperturbed volume BR� ; the measure ρR describes the equilibrium
density of the constrained gas in the limit of large number of particles N .

The general picture is as follows (see Fig. 1):

(i) In the unconstrained problem (BR = R
d ) the global minimiser ρR� is supported on the

ball BR� ;
(ii) If R > R�, the constraint in (1.13) is immaterial (BR contains BR� ), and hence the

equilibrium measure is ρR = ρR� and F(R) = 0. This is the so-called pulled phase,
borrowing a terminology suggested in [48];

(iii) If R < R� the system is in a pushed phase, the constraint is effective, and the equilibrium
energy of the system increases E [ρR] ≥ E [ρR� ].

(iv) At R = R� the gas undergoes a phase transition and the free energy F(R) displays a
non-analytic behaviour. Typically atmicroscopic scales one expects a crossover function
separating the pushed and pulled phases.

The goal of this work is to investigate the properties of the excess free energy

F(R) = inf
ρ∈P (BR)

E [ρ] − E [ρR� ] (1.14)

at the critical point R� for certain systems with pairwise repulsive interactions. Explicitly
solvable models related to random matrices suggest that in the vicinity of the critical point

F(R) � (R� − R)31R≤R� , (1.15)

implying that the transition between the pushed and pulled phases of the gas is third-order.
Here we demonstrate that (1.15) is generically true for a large class of systems with repulsive
interactions. More precisely, we prove (1.15):

(i) For the log-gas Φ(x) = − log |x | in dimension d = 1 (eigenvalues of one-cut, off-
critical random matrices with hard walls);
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1266 F. D. Cunden et al.

(ii) For the Yukawa gas Φ(x) = Φd(x) with

Φd(x) = 1

a22
d
2 −1

1

Γ
( d
2

)
(

m

a|x |
) d

2 −1

K d
2 −1

(
m|x |

a

)
(1.16)

in arbitrary dimension d ≥ 1, including its limiting cases m → 0 (Coulomb gas) and
a → 0 (Thomas–Fermi gas). In (1.16), Kν denotes the modified Bessel function of the
second kind.

The precise assumptions on the confining potential V (x) are presented together with the
statements of Theorems 2 and 5 below.

1.2 Extreme Eigenvalues of RandomMatrices and Log-Gases with HardWalls

1.2.1 Hermitian RandomMatrices

Many random matrix theory (RMT) phenomena have been first discovered for invariant
measures on the space of N × N complex Hermitian matrices M of the form

dP(M) = e−βN Tr V (M)dMˆ
e−βN Tr V (M ′)dM ′

, (1.17)

where V is a scalar function referred to as the potential of the matrix model and β = 2.
Expectations of conjugation-invariant random variables with respect to these measures

can be reduced, via the Weyl denominator formula, to an integration against the joint density
of the eigenvalues x1, . . . , xN , which has the form

pN (x1, . . . , xN ) = 1

Z N
e−βEN (x1,...,xN )

EN (x1, . . . , xN ) = −1

2

∑

i �= j

log |xi − x j | + N
∑

k

V (xk), xi ∈ R.

This energy is of the form (1.1) in dimension d = 1 and with Φ(x) = − log |x |. Hence,
Z N = ´

R
e−βEN dx1 · · · dxN can be interpreted as the partition function of a log-gas (or a

2d Coulomb gas) of N repelling particles on the line in a global confining potential V . This
physical interpretation also suggests that we may consider generic values of the Dyson index
β > 0, interpreted as inverse temperature.

In the large-N limit the eigenvalue empiricalmeasureρN = 1
N

∑
i δxi weakly converges to

a deterministic density. This limit is the equilibrium measure (theminimiser) of the functional

E [ρ] = −1

2

¨
R×R

log |x − y|dρ(x)dρ(y) +
ˆ
R

V (x)dρ(x). (1.18)

For concreteness, let us focus on the Gaussian Unitary Ensemble (GUE) defined by the
measure (1.17) with V (x) = x2/2 and β = 2. In this case, the equilibrium measure is
supported on the symmetric interval [−R�, R�] where R� = √

2, with a density named after
Wigner (semicircular law)

dρN → 1

π

√
2 − x21|x |≤R�dx . (1.19)
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Moreover, as N → ∞, the extreme statistics max |xi | converges to the edge R�, namely
Pr (max |xi | ≤ R) converges to a step function: 0 if R < R�, and 1 if R > R�. For large N ,
the fluctuations of the spectral radius max |xi | around R� at the typical scale O(N−2/3) are
described by a squared Tracy–Widom distribution. In formulae [18,25],

lim
N→∞ Pr

(
max |xi | ≤ R� + t√

2N 2/3

)
= F 2

2 (t), (1.20)

whereFβ(t) is known as the β-Tracy–Widom distribution [59] and can be expressed in terms
of the Hastings-McLeod solution of the Painlevé II equation. The macroscopic (atypical)
fluctuations of max |xi | are instead described by a large deviation function. More precisely,
for all β > 0 the following limit exists

− lim
N→∞

1

βN 2 log Pr (max |xi | ≤ R) = − lim
N→∞

1

βN 2 log
Z N (R)

Z N (∞)
= F(R). (1.21)

For the log-gas in d = 1, the asymptotics of the partition function

log Z N (R) = −βN 2E [ρR] + o(N 2), with E [ρR] = inf
ρ∈P (BR)

E [ρ], (1.22)

has been rigorously established in several works. When R ≥ R�, the equilibrium density
is supported on the ball of finite radius R�, so that ρR = ρR� (the volume constraint is
ineffective). Hence, the large deviation function is the excess free energy (1.14) of the gas
of eigenvalues forced to stay between two hard walls at ±R. It is clear that F(R) = 0 for
R ≥ R� (pulled phase), while F(R) ≥ 0 for R < R� (pushed phase) when the log-gas gets
pushed by the hard walls at ±R.

The calculation of F(R) for the GUE and its β > 0 extensions was performed in detail
by Dean and Majumdar [19,20] who found explicit expressions for the density

ρR(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

π

2 + R2 − 2x2

2
√

R2 − x2
1|x |<R if R < R� (pushed phase)

1

π

√
2 − x21|x |≤R� if R ≥ R� (pulled phase),

(1.23)

and for the excess free energy

FGUE(R) =
⎧
⎨

⎩

1

32

(
8R2 − R4 − 16 log R − 12 + 8 log 2

)
if R < R�

0 if R ≥ R�.

(1.24)

A closer inspection of the latter formula provides a thermodynamical characterisation of the
pulled-to-pushed transition. Indeed, we see that

FGUE(R) ∼
√
2

3
(R� − R)31R≤R� , (1.25)

as R → R�. Therefore, the third derivative of the free energy of the log-gas at the critical
point R� = √

2 is discontinuous.
Similar phase transitions of the pulled-to-pushed type have been observed in sev-

eral physics models related to random matrices [13,47], including large-N gauge theo-
ries [3,36,57,64], longest increasing subsequences of random permutations [39], quantum
transport fluctuations in mesoscopic conductors [12,33,34,62,63], non-intersecting Brow-
nian motions [28,58], entanglement measures in a bipartite system [17,26,27,49], random
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1268 F. D. Cunden et al.

tilings [10,11], random landscapes [29], and the tail analysis in the KPZ problem [41]. (See
also the recent popular science articles [5,65]).

An explanation of the critical exponent ‘3’ has been put forward by Majumdar and
Schehr [47] (see also [2]) based on a standard extreme value statistics criterion and a match-
ing argument of the large deviation function behaviour in the vicinity of the critical value R�

and the left tail of the Tracy–Widom distribution [52]

F ′
β(x) ≈ exp

(
− β

24
|x |3

)
, x → −∞. (1.26)

The criterion predicts that if the equilibrium density of a log-gas in the pulled phase vanishes
as ρR� (x) ∼ √

R2
� − x2 at the edges—the so-called off-critical case—then the pulled-to-

pushed phase transition is of the third order. This conjectural relation between the particular
behaviour of the gas density and the arising non-analyticities in the free energies has been
verified in several examples, even though each particular case (i.e. each matrix ensemble
defined by a potential V ) requires working out explicitly the model-dependent F(R) to
compute the critical exponent.

In this paper we derive a general explicit formula for the free energy F(R) of a log-gas in
dimension d = 1 in presence of hard walls, and we prove the universality of the third-order
phase transition for one-cut, off-critical matrix models. This proves the prediction arising
from the extreme value statistics criterion formulated in [47].

While here we examine problems with radial symmetry in both the potential and the hard
walls as they constitute a paradigmatic framework and allow for a systematic treatment, the
electrostatic interpretation we present in Sect. 1.4.2 below enjoys a wider range of appli-
cation. In Remark 5, indeed, we will show how the formulae and conclusions concerning
the symmetric case carry over without extra efforts to non-symmetric potentials or random
matrices with a single hard-wall as well.

The constrained minimisation problem for the log-gas in d = 1 is usually solved by using
complex-analytic methods or Tricomi’s formula, which are well-known to those working in
potential theory and randommatrices. Nevertheless, we found a particularly convenient (and
perhaps not sowell-known)method based on the decomposition into Chebyshev polynomials
which iswell-suited to this class of problems.At the heart of themethod is the following point-
wise multipole expansion of the two-dimensional Coulomb interaction (proven in Appendix
B)

− log |x − y| = log 2 +
∑

n≥1

2

n
Tn(x)Tn(y) x, y ∈ [−1, 1], x �= y, (1.27)

where the Tn’s are the Chebyshev polynomials of the first kind. They are defined by the
orthogonality relation

ˆ 1

−1

Tn(x)Tm(x)√
1 − x2

dx = δnmhn with hn =
{

π if n = m = 0

π/2 if n = m ≥ 1
, (1.28)

and they form a complete basis of L2([−1, 1]) (with respect to the arcsine measure). The
above identity was recently used and discussed in [30,32] (the authors refer to some unpub-
lished lecture notes by U. Haagerup).

We consider potentials V (x) satisfying the following assumptions.

Assumption 1 V (x) is C3(R), symmetric V (x) = V (−x), strictly convex and satisfies
lim inf |x |→∞ V (x)

log |x | > 1.
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We remark that strictly convex and super-logarithmic V (x)’s are in the class of one-cut,
off-critical potentials.

We are going to present and discuss two theorems for the log-gas that will be proven in
Sect. 3.

Theorem 1 In dimension d = 1, let Φ(x) = − log |x |, and V (x) be a potential satisfying
Assumption 1. Then

(i) there exists a unique probability measure that is solution of the constrained minimisation
problem (1.11) for the energy functional (1.4), and it takes the form

dρR(x) =

⎧
⎪⎨

⎪⎩

1

π

PR(x)√
R2 − x2

1|x |<R dx if R < R�(pushed phase)

1

π
Q(x)

√
R2

� − x21|x |≤R� dx if R ≥ R�(pulled phase),
(1.29)

where PR(x) and Q(x) = limR↑R� PR(x)/(R2 − x2) are nonnegative on the support
[−R, R] and [−R�, R�], respectively.

(ii) An explicit expression of PR(x) (and Q(x)) is as follows. Denote by cn(R) the Chebyshev
coefficients of V (Rx). i.e.,

cn(R) = 1

hn

ˆ 1

−1

V (Rx)Tn(x)√
1 − x2

dx . (1.30)

Then, the equilibrium measure (1.29) is uniquely determined as

PR(x) = 1 −
∑

n≥1

ncn(R)Tn(x/R). (1.31)

The critical radius R� is the smallest positive solution of the equation
∑

n≥1

ncn(R�) = 1. (1.32)

In other words, Eq. (1.29) shows that in the pulled phase the equilibrium density ρR(x) =
ρR� (x) is supported on a single interval on the real line (one-cut property), is strictly positive
in the bulk, and vanishes as a square root at the edges ±R� (off-critical case). Moreover,
since Q(R�) > 0 one gets

PR� (R�) = 0 but P ′
R�

(R�) �= 0, (1.33)

a fact that will be used later on.
On the other hand in the pushed phase, the density is strictly positive in its support and

has an integrable singularity at the hard walls ±R (cf. with the GUE case (1.23)). See Fig. 1.
A corollary of formulae (1.29)–(1.31) is the first main result of this paper.

Theorem 2 With the assumptions of Theorem 1, the excess free energy (1.14) of the log-gas
is

F(R) = 1

2

ˆ R�

R∧R�

Pr (r)2

r
dr . (1.34)

Moreover, F(R) displays the following non-analytic behaviour at R�:

F(R) > 0, for R < R�, F(R) = 0, for R ≥ R�, (1.35)
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1270 F. D. Cunden et al.

and

F(R) ∼ C�(R� − R)31R≤R� , as R → R�, (1.36)

with C� > 0, that is

F(R�) = F ′(R�) = F ′′(R�) = 0, but lim
R↑R�

F ′′′(R) = −3!C� < 0. (1.37)

Remark 2 In the statement of the results, the family of strictly convex potentials is not the
largest class of potentials where the above result holds true. What is really required is that
in the pulled phase the associated equilibrium measure is supported on a single interval, and
vanishes as a square root at the endpoints. (An explicit characterisation of these conditions
is quite complicated.) More precisely, Theorem 1 is true when V (x) is a one-cut potential.
‘One-cut’ means that the equilibrium measure is supported on a single bounded interval.
Theorem 2 is valid under the hypotheses that V (x) is one-cut and off-critical potential. ‘Off-
critical’ means that PR� (R�) = 0 but P ′

R�
(R�) �= 0 so that ρR� (x) ∼ √

R2
� − x2 at the edges.

This is certainly true for strictly convex potentials. For ‘critical’ potentials the pulled-to-
pushed transition is weaker than third-order (see Eq. (3.18) in the proof). These potentials
are however ‘exceptional’ in the ‘one-cut’ class. The problem for ‘multi-cut’ matrix models
remains open.

Example 1 Wereconsider the free energyof theGUE(the log-gas on the real line in a quadratic
potential V (x) = x2/2). There are only two nonzero Chebyshev coefficients (1.30)

c0(R) = c2(R) = R2

4
. (1.38)

From (1.32) we read that the critical radius R� is the positive solution of R2/2 = 1, i.e.,
R� = √

2. From (1.31), in the pushed phase PR(x) = (2 + R2 − 2x2)/2, so that Pr (r) =
(2 − r2)/2. Applying the general formula (1.34), one easily computes the large deviation
function as

FGUE(R) = 1

2

ˆ √
2

R

(
2 − r2

)2

4r
dr = 1

32

(
8R2 − R4 − 16 log R − 12 + 8 log 2

)
(1.39)

for R ≤ √
2, and zero otherwise. This coincides with the known result (1.24).

Theorem 2 and the previous discussion might lead to conclude that the universality of
the third-order phase transition is inextricably related to the presence of a Tracy–Widom
distribution separating the pushed andpulled phases.Ahint that this is not the case comes from
the study of extreme statistics of non-Hermitian matrices whose eigenvalues have density in
the complex plane.

1.2.2 Non-Hermitian RandomMatrices

Consider a log-gas in dimension d = 2 (the ‘true’ 2d Coulomb gas in the plane)

EN (x1, . . . , xN ) = −1

2

∑

i �= j

log |xi − x j | + N
∑

k

V (xk), xi ∈ R
2. (1.40)

The gas density for large N converges to the equilibrium measure of the energy func-
tional (1.18) extended to measures supported on the complex plane. When V (x) = |x |2/2
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and β = 2, with the identificationC � R
2, the model corresponds to the density of eigenval-

ues of the complex Ginibre (GinUE) ensemble of random matrices, a non-Hermitian relative
of the GUE. The equilibrium measure in this case is uniform in the unit disk (circular law)

dρN → 1

π
1|x |≤R�dx, (1.41)

with R� = 1, but the typical fluctuations of the extreme statistics max |xi | are not in the
Tracy–Widom universality class. More precisely, setting γN = log N −2 log log N − log 2π ,
Rider [55] proved that

lim
N→∞ Pr

(
max |xi | ≤ R� + γN + t√

4NγN

)
= G(t), (1.42)

where the limit is theGumbel distributionG(t) = exp(− exp(−t)). This result is universal [6]
for the log-gas in the plane at inverse temperature β = 2. The atypical fluctuations are
described by a large deviation function FGinUE(R) which can be computed by solving the
constrained variational problem of a log-gas in the plane. For the Ginibre ensemble, this was
computed by Cunden et al. [14] who found1

dρR(x) =

⎧
⎪⎨

⎪⎩

1

π
1|x |≤Rdx + (1 − R2)

δ(|x | − R)

2π R
if R < R� (pushed phase)

1

π
1|x |≤R�dx if R ≥ R� (pulled phase),

(1.43)

FGinUE(R) =
⎧
⎨

⎩

1

8
(4R2 − R4 − 4 log R − 3) if R < R�

0 if R ≥ R�.
(1.44)

Of course, the explicit form of the large deviation function is specific to the model (for
instance FGUE(R) �= FGinUE(R)). The surprising fact is that even in dimension d = 2, the
pushed-to-pulled transition of the log-gas is of the third order

FGinUE(R) ∼ 4

3
(R� − R)31R≤R� , as R → R�. (1.45)

We remark that, in this case, the order of the phase transition is not predicted by the classical
‘matching argument’. In fact, for the log-gas in d = 2, the matching between the typical
fluctuations (Gumbel) and the large deviations is more subtle due to the presence of an
intermediate regime, as found recently in [42,43]. This suggests that the critical exponent
‘3’ is shared by systems with repulsive interaction whose microscopic statistics belongs to
different universality classes.2 For which interactions can Theorem 2 be extended?

1.3 Beyond RandomMatrices: Yukawa Interaction in Arbitrary Dimension

The logarithmic interactionΦ(x − y) = − log |x − y| is the Coulomb potential in dimension
d = 2, namely the Green’s function of the Laplacian on the plane

− Δ(− log |x |) = 2πδ(x), x ∈ R
2. (1.46)

1 This formula is also implicit in the work of Allez et al. [1].
2 For the 1d Coulomb gas on the line, the pulled-to-pushed transition is of the third-order, despite the fact
that the typical fluctuations of extreme particles are neither Tracy–Widom nor Gumbel. See [22,23].
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1272 F. D. Cunden et al.

Based on this observation, in [15] we put forward the idea of considering energy functionals
whose interaction potential Φ is the Green’s function of some differential operator D:

DΦ(x) = Ωdδ(x), x ∈ R
d , (1.47)

where the constantΩd = 2πd/2/Γ (d/2) is the surface area of the unit sphere inRd (Ω1 = 2,
Ω2 = 2π , Ω3 = 4π , etc.)

1.3.1 Coulomb and Thomas–Fermi Gas

When D = −Δ in R
d , the system corresponds to a d-dimensional Coulomb gas (a system

with long range interaction)

Φ(x) =
⎧
⎨

⎩

1

(d − 2)

1

|x |d−2 if d �= 2

− log |x | if d = 2.
(Coulomb) (1.48)

The constrained variational problem for a d-dimensional Coulomb gas (inRd ) can be solved
using macroscopic electrostatic considerations.

Another solvablemodel is the gaswith delta potential corresponding toD = I (the identity
operator) in R

d . In this case, the repulsive kernel is proportional to a delta function (zero
range interaction)

Φ(x) = Ωdδ(x), x ∈ R
d , (1.49)

and the energy

E [ρ] = Ωd

2

ˆ
Rd

ρ(x)2dx +
ˆ
Rd

V (x)ρ(x)dx (1.50)

is an energy functional in the Thomas–Fermi class.

Theorem 3 [15,16] Let Φ be a Coulomb (1.48) or a Thomas–Fermi (1.49) interaction.
Assume that V (x) is C3(Rd), radially symmetric V (x) = v(|x |), with v increasing and
strictly convex. In the case of Coulomb interaction, assume also the growing condition
lim|x |→∞ V (x)

Φ(x)
= +∞. Then, the constrained equilibrium measure (1.11) of the energy

functional (1.4) for Coulomb and Thomas–Fermi gases is unique and is given by

dρR(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

Ωd
ΔV (x)1|x |≤R∧R�dx + c(R)

δ(|x | − R)

Ωd Rd−1 (Coulomb)

1

Ωd
(μ(R) − V (x))1|x |≤R∧R�dx (T homas − Fermi).

(1.51)

The critical radius R� is the unique positive solution of the equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rd−1
� v′(R�) = 1 (Coulomb)

v(R�)
Rd

�

d
−
ˆ R�

0
v(r)rd−1dr = 1 (T homas − Fermi),

(1.52)
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while c(R) and μ(R) are given by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(R) = max{0, 1 − Rd−1v′(R)} (Coulomb)

μ(R) = max

{
v(R�),

d

Rd

(
1 +

ˆ R

0
v(r)rd−1dr

)}
(T homas − Fermi).

(1.53)

In the pulled phase, the equilibrium density of the Coulomb gas is supported on the ball
of radius R� and there is no accumulation of charge on the surface (c(R) = 0 for R ≥ R�).
In the pushed phase, the equilibrium density in the bulk does not change, while an excess
charge (c(R) > 0 for R < R�) accumulates on the surface.

For the Thomas–Fermi gas, R�—the edge in the pulled phase—is determined by the
condition that the gas density vanishes on the surface, i.e. μ(R�) = v(R�) for R ≥ R�. In the
pushed phase R < R�, the chemical potential increases to keep the normalisation of ρR , but
there is no accumulation of charge on the surface, i.e. singular components in the equilibrium
measure (otherwise the energy would diverge).

A direct calculation yields the free energy [15,16]

F(R) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

2

ˆ R�

R∧R�

c(r)2

rd−1 dr (Coulomb)

1

2

ˆ R�

R∧R�

(
μ(r) − v(r)

)2
rd−1dr (T homas − Fermi).

(1.54)

From the exact formulae above, one can check that F(R) has a jump in the third-derivative at
R = R�. Therefore, the critical exponent ‘3’ is shared by systemswith long-range (Coulomb)
and zero-range (delta) interaction. This suggests that the third-order phase transition is even
more universal than originally expected.

1.3.2 Yukawa Gas in Generic Dimension

The ubiquity of this transition calls for a comprehensive theoretical framework, which should
be valid irrespective of spatial dimension d and the details of the confining potential V , and
for the widest class of repulsive interactions Φ.

Fix two positive numbers a, m > 0, and define Φ = Φd as the solution of

DΦd(x) = Ωdδ(x), x ∈ R
d , where D = −a2Δ + m2. (1.55)

The explicit solutionΦd(x) in terms of Bessel functions is (1.16). See Appendix A. Note that
this kernel naturally interpolates between the Coulomb electrostatic potential in free space
(long-range, for a = 1 and m = 0), and the delta-like interaction (zero-range, for a = 0 and
m = 1); intermediate values a, m > 0 correspond to the Yukawa (or screened Coulomb)
potential.

Assumption 2 V (x) is C3(Rd), radially symmetric V (x) = v(|x |), with v increasing and
strictly convex.

The condition that v(r) is increasing implies the confinement of the gas whenever m > 0.
Indeed, using the asymptotic expansion of Kν(z) for large argument, the following limit
holds [50, Eq. 10.25.3]

lim
r→∞

v(r)

ϕd(r)
=
( a

m

) d−3
2

lim
r→∞ v(r)r

d−1
2 emr/a = +∞ , (1.56)
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1274 F. D. Cunden et al.

as long as there is screening (m > 0). By a routine argument, this implies the existence and
uniqueness of the minimiser of E in P(Rd). The minimiser ρR� is compactly supported
supp ρR� = BR� with R� < ∞. In particular, the support is simply connected.

The solution of the constrained equilibrium problem for the Yukawa interaction
(announced in [16]) is stated below.3

Theorem 4 Let a > 0, m ≥ 0, and let Φd(x) be the Yukawa interaction (1.16) solution
of (1.55). Let V (x) satisfy Assumption 2. In the case of Coulomb interaction, m = 0, assume
also the growing condition lim|x |→∞ V (x)

Φd (x)
= +∞. Then, the constrained equilibrium mea-

sure (1.11) of the energy functional (1.4) for the Yukawa gas is unique and is given by

dρR(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

Ωd
σR(x)1|x |≤Rdx + c(R)

δ(|x | − R)

Ωd Rd−1 if R ≤ R�(pushed phase)

1

Ωd
σR� (x)1|x |≤R�dx if R ≥ R�(pulled phase),

(1.57)

where

σR(x) = (−a2Δ + m2)(μ(R) − V (x)) (1.58)

is nonnegative for |x | ≤ R, and c(R) ≥ 0 with c(R) = 0 if and only if R ≥ R�.
The chemical potentialμ(R) and the excess charge c(R) are explicit functions of Φd(x) =

ϕd(|x |), V (x) = v(|x |), and the constants a and m:

c(R) = a
1 −

(
a2 − m2R

d
ϕd (R)

ϕ′
d (R)

)
v′(R)Rd−1 − m2Rd

d v(R) + m2
ˆ R

0
rd−1v(r)dr

a − m2R
d

ϕd (R)

aϕ′
d (R)

1R≤R� ,

(1.59)

μ(R) =

⎧
⎪⎪⎨

⎪⎪⎩

v(R) − ϕd (R)

aϕ′
d (R)

(
av′(R) + c(R)

a Rd−1

)
for R ≤ R�

v(R�) − ϕd (R�)

ϕ′
d (R�)

v′(R�) for R ≥ R�.

(1.60)

The critical value R� is the smallest positive solution of c(R�) = 0, i.e. the solution of
(

a2 − m2R�

d

ϕd(R�)

ϕ′
d(R�)

)
v′(R�)Rd−1

� + m2Rd
�

d
v(R�) − m2

ˆ R�

0
rd−1v(r)dr = 1.(1.61)

In particular: (i) in the pulled phase the equilibrium measure is absolutely continuous with
respect to the Lebesgue measure on Rd ; (ii) when the gas is ‘pushed’, the density in the bulk
increases by a constant and a singular component builds up on the surface of the ball BR .

Theorem 4 implies the second main result in this paper : the universality of the jump in
the third derivative of excess free energy of a Yukawa gas with constrained volume. This
universality extends to the limit cases m → 0 (Coulomb gas) and a → 0 (Thomas–Fermi
gas) solved in [15,16], respectively. See Remark 3 below.

Remark 3 One can check that, in the limit cases of Coulomb (m = 0) and delta interactions
(a → 0), the expression (1.57) for the equilibrium measure simplifies as in (1.51). Indeed,
Eq. (1.57) for m = 0 and a = 1 yields

dρR(x) = 1

Ωd
ΔV (x)1|x |≤R∧R�dx + c(R)

δ(|x | − R)

Ωd Rd−1 . (1.62)

3 In dimension d = 3 the equilibrium density of Yukawa gases in a harmonic potential without hard walls
appeared in [37,45].
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Equation (1.59) for m = 0 becomes c(R) = (1 − v′(R)Rd−1)1R≤R� , while equation (1.61)
for R� reduces to v′(R�)Rd−1

� = 1, that is their respective expressions for the Coulomb gas.
The limit a → 0 is more delicate. By using the asymptotic expansion of Kν(z) ∼ √

π/2z
for large argument z → ∞ [50, Eq. 10.25.3], one easily gets

ϕd(R)

ϕ′
d(R)

∼ − a

m
, as a → 0, (1.63)

for m > 0. Therefore, in the Thomas–Fermi gas there is no condensation, c(R) → 0 as
a → 0. When a → 0 and m = 1, from equation (1.60) we recover the value of the chemical
potential in the Thomas–Fermi gas (1.53), and

dρR(x) = 1

Ωd
(μ(R) − V (x))1|x |≤R∧R�dx . (1.64)

Moreover, Eq. (1.61) for the critical radius R� reduces to its corresponding expression (1.52)
for the Thomas–Fermi gas.

Theorem 5 Under the assumptions of Theorem 4, the excess free energy (1.14) for a Yukawa
gas is given by

F(R) = 1

2

ˆ R�

R∧R�

c(r)2

a2rd−1 dr . (1.65)

This formula implies that

F(R) > 0, for R < R�, F(R) = 0, for R ≥ R�, (1.66)

and

F(R) ∼ C�(R� − R)31R≤R� , as R → R�, (1.67)

with C� > 0, that is

F(R�) = F ′(R�) = F ′′(R�) = 0, but lim
R↑R�

F ′′′(R) = −3!C� < 0. (1.68)

Remark 4 The formula of the free energy F(R) clearly matches (1.54) for m = 0 and a = 1.
The limit a → 0 can be obtained as above by using the limit (1.63). Indeed from the
expression (1.59) of c(R) one gets for m = 1 and R ≤ R�

lim
a→0

c(R)

a
=

1 − Rd

d v(R) +
ˆ R

0
rd−1v(r)dr

R
d

= Rd−1(μ(R) − v(R)
)
, (1.69)

and from (1.65) we recover the expression of the free energy of the Thomas–Fermi gas (1.54).

Example 2 Consider the two-dimensional gas d = 2 with a = 1, m = 0 (Coulomb gas) in a
quadratic potential v(r) = r2/2. This coincides with the eigenvalue gas of the GinUE. An
easy calculation from (1.59) and (1.61) shows that the excess charge is

c(R) = 1 − R2, (1.70)

and the critical radius is R� = 1. The excess free energy can by easily computed using (1.65)

FGinUE(R) = 1

2

ˆ 1

R

(
1 − r2

)2

r
dr = 1

8
(4R2 − R4 − 4 log R − 3) (1.71)

for R ≤ 1, and zero otherwise, in agreement with (1.44).
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1276 F. D. Cunden et al.

1.4 Order Parameter of the Transition

The universal formulae (1.34) and (1.65) for the free energy F(R) are remarkably simple. It
feels natural to ask whether it is possible to derive them from a simpler physical argument.
Moreover, it would be desirable to express the free energy in terms of a quantity that captures
the non-analytic behaviour in the vicinity of the transition. This quantity, traditionally called
order parameter of the transition, must be zero in one phase and nonzero in the other phase.

In the following, we outline a heuristic argument that reproduces formulae (1.34)
and (1.65), and identifies the ‘electrostatic pressure’ as the order parameter of the transi-
tion.

1.4.1 Electrostatic Pressure: Screened Coulomb Interaction

For the pushed-to-pulled phase transition we can identify the order parameter as follows.
Note that the derivative of F(R) is essentially the variation of the free energy with respect
to the volume of the system. The volume of the ball is vol(BR) = Ωd Rd/d , so that

dF

dR
=
(

∂vol

∂ R

)(
∂ F

∂vol

)
= Ωd Rd−1

(
∂ F

∂vol

)
= Ωd Rd−1P, (1.72)

where P = (
∂ F
∂vol

)
is the pressure of the gas confined in BR .

The increase in free energy of the constrained gas should match the work WR�→R done
in a compression of the gas from the initial volume voli = vol(BR� ) to the final volume
vol f = vol(BR), the system being in equilibrium with density ρr at each intermediate stage
R ≤ r ≤ R�. In formulae,

F(R) = −WR�→R with WR�→R =
ˆ vol f

voli
P dV = Ωd

ˆ R

R�

p(r)rd−1dr , (1.73)

where P = p(r) is the pressure on the gas confined in Br . In other words, p(r)Ωdrd−1dr
is the elementary work done on the surface of the ball of radius r being compressed from
r + dr to r . We now show that the ‘electrostatic’ pressure for a Yukawa gas is quadratic in
the excess charge on the surface in the pushed phase, and zero in the pulled phase.

How to compute the pressure exerted by the surface’s field on itself? The argument that
follows is similar to the one used to evaluate the ‘electrostatic pressure’ on a layer of charges,
e.g. the surface of a charged conductor. This is a problem that some textbooks in electrostatics
occasionally mention (see the classical books of Jackson [38, Section 3.13] and Purcell [51,
Section 1.14]), but which is rarely discussed due to the difficulty of making the argument
rigorous for conductors of generic shapes. To stress the analogy and for the lack of a better
terminology, in the following we will keep using the expressions ‘electrostatic’ pressure,
force, field, Gauss’s law, etc. even though the interaction we are considering is Yukawa
(screened Coulomb).

When the system is confined in a ball Br at density ρr , the pressure is given by the normal
force per unit area,

p(r) = lim
ΔA→0

|ΔFn |
ΔA

, (1.74)

where ΔA = rd−1ΔΩ is a small area on the sphere of radius r . An intuitive guess for the
force ΔFn experienced by the surface element ΔA during the compression is

ΔFn
?= (charge in ΔA) × (electrostatic field across ΔA). (1.75)
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c(r)
ΔA

Ωdrd−1

Br

hole
disk

Ehole Edisk

Esurface

Ebulk

Edisk

Fig. 2 The electrostatic pressure on the spere. Left: consider removing a small disk of area ΔA from the
surface of the sphere. The electric field experienced by a point in ΔA on the sphere corresponds to the field
on the hole generated by the sphere with the small disk removed (in the limit where ΔA → 0). Right: the
electric field on the hole can be computed from the total electric field generated by the sphere and the field
generated by the disk using the superposition principle. Note that in the bulk the electric field must be zero at
equilibrium. Therefore Ehole must be equal in magnitude to Edisk and directed outward

This is almost right, but it contains a serious flaw. Indeed, note that the electric field across
ΔA includes contributions from the total amount of charge on the sphere—thus including
the charge that is being acted upon by the field! We must therefore be ‘over-counting’, as the
charge on ΔA cannot act upon itself. To fix the over-counting, we may imagine to open a
small hole corresponding to ΔA and compute the electrostatic field produced by the charge
distribution ρr minus the hole. A glance at Fig. 2 may be helpful. The electrostatic field in
the hole is the field experienced by the charges in ΔA. Hence, the force acting on ΔA is

ΔFn = (charge in ΔA) × (electrostatic field in the hole). (1.76)

When the gas density is ρr , the amount of charge in ΔA is clearly given by

(charge in ΔA) = c(r)
ΔA

Ωdrd−1 , (1.77)

as the charge in the bulk is a continuous distribution and does not contribute. There is a clever
argument to compute the electric field in the hole: we know that the field in the hole plus the
field in the disk gives the field produced by the sphere

Ehole + Edisk = Esphere =
{

Esurface, just outside the sphere

Ebulk, just inside the sphere.

From basic considerations, it is clear that the field Ebulk is zero inside the ball Br (a con-
sequence of electrostatic equilibrium) and perpendicular to the surface immediately outside
the ball (a necessary condition for electrostatic equilibrium). Therefore Ehole = −Edisk.

What is Edisk? Denote by Φr (x) the potential generated at x ∈ R
d by the charge in ΔA.

The electrostatic field produced by this tiny amount of charge is −∇Φr (x). Fortunately, we
only need to know this in the vicinity of the disk Edisk = −∇Φr (x) with |x | = r , where the
disk can be approximated by a planar surface with uniform density c(r) ΔA

Ωdrd−1 , see Fig. 2.
Consider a small cylinder C(h,ΔA) of height 2h and base ΔA cutting across the surface of
the ball of radius r as in Fig. 3. To compute the field on the surface, one should integrate the
screened Poisson equation

123



1278 F. D. Cunden et al.

Fig. 3 The field in the vicinity of
the sphere can be computed
integrating the screened Poisson
equation over a small volume
enclosed by a ‘Gauss surface’.
(At that scale, the sphere can be
approximated by an infinite
plane)

disk

disk

ΔA 2h

(−a2Δ + m2)Φr (x) = Ωdc(r)
ΔA

Ωdrd−1 1x∈ΔA. (1.78)

If we integrate (1.78) over the small cylinder (see Fig. 3), we get

− a2
ˆ

C(h,ΔA)

ΔΦr (x)dx + m2
ˆ

C(h,ΔA)

Φr (x)dx = c(r)
ΔA

rd−1 . (1.79)

By symmetry, the electrostatic field −∇Φr is perpendicular to the bases, along x̂ = x/r ,
and, using the divergence theorem,

− a2ΔA
[∇Φr (x + hx̂) · x̂ − ∇Φr (x − hx̂) · x̂

]+ m2
ˆ

C(h,ΔA)

Φr (x)dx = c(r)
ΔA

rd−1 .

(1.80)
Letting h → 0, the volume integral on the left hand side vanishes and we get

Edisk = −∇Φr (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1

2

c(r)

a2rd−1 x̂ immediately outside the disk

−1

2

c(r)

a2rd−1 x̂ immediately inside the disk.

(1.81)

Therefore, we conclude that

Ehole = 1

2

c(r)

a2rd
x . (1.82)

As a byproduct, we see instead that Esurface = c(r)

a2rd x ; this is the familiar statement that, at
equilibrium, the electrostatic field generated by a charged conductor immediately outside is
perpendicular to its surface and proportional to the charge density.

Putting everything together, we obtain

p(r) = lim
ΔA→0

1

ΔA

(
c(r)

ΔA

Ωdrd−1 × 1

2

c(r)

a2rd−1

)
= 1

2

1

Ωdrd−1

c2(r)

a2rd−1 . (1.83)

Plugging (1.83) into (1.73) we get

WR�→R = Ωd

ˆ R

R�

p(r)rd−1dr = −1

2

ˆ R�

R

c2(r)

a2rd−1 dr , (1.84)

which is exactly (minus) the excess free energy (1.65).

1.4.2 Electrostatic Pressure: RandomMatrices

The argument outlined above can be repeated almost verbatim for the log-gas on the line
(eigenvalues of random matrices). However there is a twist in the computation. Again, by

123



Third-Order Phase Transition: RandomMatrices... 1279

conservation of energy, the increase in free energy must match the work WR�→R done in
a compression of the gas from the initial volume (length) voli = vol(BR� ) = 2R� to the
final volume vol f = vol(BR) = 2R, with the system in equilibrium with density ρr at each
intermediate stage R ≤ r ≤ R�. In formulae,

F(R) = −WR�→R with WR�→R =
ˆ vol f

voli
P dV = 2

ˆ R

R�

p(r)dr , (1.85)

where 2p(r)dr is the elementary work done in an infinitesimal compression (the factor 2
comes from axial symmetry).

When the system is confined in a ball Br at density ρr , the pressure is given by the
normal force per unit length. The force Fn(x) at point x is equal to the charge ρr (x)dx in the
infinitesimal segment dx around x times the electric field. To proceed in the computation it
is convenient to use complex coordinates (recall that − log |x | is the Coulomb interaction in
dimension d = 2).

The electric field generated by ρr (y)dy at z ∈ C \ [−r , r ] is the Stieltjes transform

G(z) =
ˆ

ρr (y)

z − y
dy. (1.86)

Note that ρr (z) = 0 when z /∈ [−r , r ]. Using Gauss’s theorem (Plemelj formula), when z
approaches the real axis, the field generated by ρr is

lim
ε↓0 G(x ± iε) =

 
ρr (y)

x − y
dy ∓ iπρr (x) = V ′(x) ∓ iπρr (x), (1.87)

when |x | < r , where
ffl
denotes Cauchy’s principal value. Note that, at equilibrium, the real

part of G(x ± iε) cancels with the field−V ′(x) generated by the external potential V (x) (the
net tangential field must be zero). Therefore, the electric field experienced by a point in the
vicinity of x is

Re E = lim
ε↓0 Re G(x ± iε) − V ′(x) = 0 (1.88)

Im E = lim
ε↓0 Im G(x ± iε) = ∓πρr (x). (1.89)

The force (= electric field× charge) per unit length is

lim
Δ�→0

Fn(z)

Δ�
= E(z)ρr (z). (1.90)

In the vicinity of x it becomes

lim
ε↓0 lim

Δ�→0

Fn(x ± iε)

Δ�
= ∓iπρ2

r (x) = ∓ i

π

P2
r (x)

r2 − x2
. (1.91)

Note, in particular, that the tangential force experienced by a point x inside the conductor is
zero (as it should be at equilibrium).

At the edge x = r (similar considerations for x = −r ) the situation is more delicate.
By symmetry, the total field Eedge generated by ρr (x) at x = r must be directed along the
x-axis, but must be zero for x < r − ε. Therefore, repeating the argument of the previous
section, the field experienced by the ‘hole’ at the edge x = r is half the field generated by
ρr (x) at r + ε, i.e. Ehole = (1/2)Eedge.
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To compute the pressure, we look at the edge x = r , we sum the forces on a small circular
contour of radius ε centred at r , and then we take the limit ε → 0 (see Fig. 4)

p(r) = lim
Δ�→0

|Fn(r)|
Δ�

=
∣∣∣∣ limε→0

ˆ
cε

1

2

i

π

P2
r (z)

r2 − z2
dz

∣∣∣∣ , (1.92)

where the factor 1/2 comes from the fact that Ehole = (1/2)Eedge. Remembering that the
force is eventually zero on the semicircular part of the contour in the bulk, the integral is
given by π i times the residue at z = r :

p(r) =
∣∣∣∣π i Resz=r

i P2
r (z)

2π(r2 − z2)

∣∣∣∣ = P2
r (r)

4r
. (1.93)

Inserting this formula in (1.85) we indeed recover (1.34).

Remark 5 These electrostatic considerations indicate a route to compute large deviation
functions for extreme eigenvalues of random matrices more general that those fulfilling
Assumption 1. For instance, one may ask whether it is possible to obtain an electrostatic
formula for the large deviation of the top eigenvalue xmax (i.e. the rightmost particle) of a
randommatrix from a β-ensemble.While this question does not fit into the symmetric setting
considered so far, it can be nevertheless easily answered within the electrostatic framework
developed above. For a one-cut matrix model with typical top eigenvalue equal to b�, the rate
function function F(b) in the large deviation decay

Pr (xmax ≤ b) ≈ e−βN2F(b), (1.94)

is zero in the ‘pulled phase’ (F(b) = 0 for b ≥ b�) and nonnegative on the left b ≤ b�. One
can reproduce the previous heuristic considerations and argue that the rate function is the
work done in pushing the gas with a hard wall from b� to b

F(b) = −
ˆ b

b�

p(u)du, (1.95)

where the electrostatic ‘pressure’ experienced by the gas is now given by

p(b) = π2

2
|Resz=b ρ2

b (z)|. (1.96)

ρb(x) is the density of the log-gas (with support in [a, b]) constrained to stay on the left of
the hard wall at x = b.

One can easily check the validity of this formula for a few cases already considered in
previous works. For instance, the constrained density of the GUE ensemble with one hard
wall is [19,20]

ρb(x) = 1

2π

√
x − a

b − x
(b − a − 2x), with a = −2

√
b2 + 6 − b

3
. (1.97)

In this case

p(u) = π2

2
|Resz=u ρ2

u (z)| = 1

27

(
u3 +

√
u2 + 6u2 + 6

√
u2 + 6 − 18u

)
, (1.98)

and inserting this expression into (1.95) one recovers the known result [47, Eq. (21)].
The calculations are similar for random matrices from the Wishart ensemble (a log-gas

on the positive half-line). For simplicity we report the calculation for matrices with c = 1
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r
c

Ebulk=0

(x<r)
r(x) 0

Fig. 4 Left: Electrostatic field generated by the pushed log-gas ρr (x) (GUE in this example). Right: Contour
of integration cε around the edge x = r . The field on the contour is not zero. As ε → 0 only the right
semicircular arc contributes to the integral

(see [61, Sect. 3.1]) where the equilibrium measure is the Marchenko-Pastur distribution
supported on the interval [0, 4]. The constrained density with a wall at b ≤ 4 reads

ρb(x) = 1

2π

b/2 + 2 − x√
x(b − x)

. (1.99)

Computing the residue

p(u) = π2

2
|Resz=u ρ2

u (z)| = u2 − 8u + 16

32u
. (1.100)

The rate function for b ≤ 4 is

F(b) = −
ˆ b

4
p(u)du = − b2

64
+ b

4
− 1

2
log

b

4
− 3

4
, (1.101)

which coincides with [61, Eq. (35)–(36)].

Remark 6 The calculation of the work done in a compression of a log-gas in dimension
d = 1 bears a strong resemblance to a way to calculate the work (energy) per unit fracture
length for a crack propagating in a continuous medium. In linear elastic fracture mechanics,
Cherepanov [8] and Rice [54] have independently developed a line integral called the J -
integral that is contour independent. The usefulness of this integral comes about when the
contour encloses the crack-tip region, as this is where the most intense (actually divergent)
fields are found (c.f. the edge of the cut in the log-gas). Evaluating the J -integral then gives
the variation of elastic energy. An analogous integral in electrostatics has been discovered
later [31].

It is likely that the computations outlined above can be recast in the language of linear
elastic mechanics/electrostatics. The link between ‘eigenvalues of random matrices’ and the
‘theory of fractures’ suggested here will be explored in future works.

1.5 Outline of the Paper

The rest of the article is organised as follows. In Sect. 2 we recall some general variational
arguments for the solution of the constrained equilibrium problem. Section 3 contains the
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proof of Theorems 1 and 2 for the log-gas. In Sect. 4 we present the proof of Theorem 4
(equilibrium problem for Yukawa interaction) and Theorem 5 (universality of the jump in
the third derivative of the free energy). Finally, the Appendices A and B contain the proof of
some technical lemmas.

2 Variational Approach to the Constrained Equilibrium Problem

We resort to a variational argument to derive necessary and sufficient conditions for ρR to be
the minimiser of the energy functional E over P(BR). (These arguments are not new at all.
They appear in many different forms and specialisations in the literature, see, e.g., [4,21,46].)

Denote by ρR ∈ P(BR) a local equilibrium and let

ρ = ρR + σ ∈ P(BR). (2.1)

Here σ is a (small) perturbation of zero mass. Of course, the perturbation σ must be nonneg-
ative on (supp ρR)c, the complement of supp ρR .

The functional E is quadratic in ρ, hence

E [ρ] = E [ρR] + E1[ρR, σ ] + E2[σ, σ ] , (2.2)

where E1 and E2 are the first and second variations, respectively. They are given explicitly by

E1[ρR, σ ] =
ˆ (ˆ

Φ(x − y)dρR(y) + V (x)

)
dσ(x) , (2.3)

E2[σ, σ ] = 1

2

¨
Φ(x − y)dσ(y)dσ(x) . (2.4)

A sufficient condition for ρR to be the global minimiser inP(BR) is that E1[ρR, σ ] ≥ 0 and
E2[σ, σ ] > 0 for all perturbations σ .

Consider the first variation (2.3) and suppose that σ varies among the perturbations whose
support lies in supp ρR . Because σ is arbitrary and zero mass, for the first variation E1 to
vanish, it must be true thatˆ

Φ(x − y)dρR(y) + V (x) = μ(R), for x ∈ supp ρR, (2.5)

for some constant μ(R). Consider now perturbations σ with support in BR . Remembering
that σ ≥ 0 in (supp ρR)c, we see that a sufficient condition for E1 ≥ 0 is that

ˆ
Φ(x − y)dρR(y) + V (x) ≥ μ(R), for x ∈ BR \ supp ρR . (2.6)

The conditions (2.5)–(2.6) are known as Euler-Lagrange (E-L) conditions and can be sum-
marised by saying that if ρR is a minimiser of E in P(BR) then there exists a constant
μ(R) ∈ R such that

⎧
⎪⎨

⎪⎩

ˆ
Φ(x − y)dρR(y) = μ(R) − V (x) in supp ρR,ˆ
Φ(x − y)dρR(y) ≥ μ(R) − V (x) in BR .

(2.7)

The constant μ(R) is called chemical potential. In general, the E-L conditions provide the
saddle-point(s) of the energy functional. To show that ρR is actually the minimiser it remains
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to check that the E is strictly convex, i.e. that the second variation E2 > 0. Denote by σ̂ the
Fourier transform of σ . Then,

E2[σ, σ ] = 1

2

¨
Φ(x − y)dσ(y)dσ(x)

= 1

2

¨
Φ̂(k)|̂σ(k)|2dk.

For the class of interactions considered in this paper, Φ̂(k) > 0 (see Appendix A), and this
ensures that E2[σ, σ ] > 0. Therefore, for all R > 0, the solution of the E-L conditions is the
unique minimiser of the energy functional E in P(BR).

3 Proof of Theorems 1 and 2

Part i) of Theorem 1 is a classical result in potential theory, see [21]. There are two cases:

– if thewalls are not active (pulled phase) the density is supported on supp ρR� = [−R�, R�]
with R� solution of

1

π

ˆ +R�

−R�

V ′(x)√
R2

� − x2
dx = 1, (3.1)

and the density is given by Tricomi’s formula [60]

ρR� (x) = 1

π
√

R2
� − x2

(
1 −

 +R�

−R�

1

π

√
R2

� − t2V ′(t)
x − t

dt

)
, (3.2)

where
ffl
denotes Cauchy’s principal value.

– if the walls are active (pushed phase) the density is supported on supp ρR = [−R, R]
and is given by (3.2) with the replacement R� �→ R.

The new content of the theorem is part ii). To prove it, we expand the potential V and the
regular part of the density into Chebyschev polynomials

V (Ru) =
∑

n≥0

cn(R)Tn(u), PR(Ru) =
∑

n≥0

an(R)Tn(u), (3.3)

where

an(R) = 1

hn

ˆ 1

−1

PR(Ru)Tn(u)√
1 − u2

du, cn(R) = 1

hn

ˆ 1

−1

V (Ru)Tn(u)√
1 − u2

du. (3.4)

A priori, the above expansions are in L2([−1, 1]). In fact, V ∈ C3 implies that cn(R) =
O(n−3) so that the series

∑
n≥0 cn(R)Tn(u) and its derivative are pointwise convergent almost

everywhere to V and V ′, respectively. We will see in the course of the proof that the absolute
convergence of

∑
n ncn(R) implies the pointwise convergence of

∑
n an(R)Tn(u), too. Note

also that cn = 0 if n is odd (the potential V (x) is symmetric by Assumption 1). To proceed
we use the following identity.

Lemma 1 Let n ≥ 0 be an even integer. Then,

uT ′
n(u) = nT0(u) + nTn(u) + 2n (T2(u) + T4(u) + · · · + Tn−2(u)) . (3.5)
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We first express the equation (3.1) for the critical radius R� in terms of the cn’s. After the
change of variable x = R�u, (3.1) becomes

1 = R�

π

ˆ 1

−1
uV ′(R�u)

du√
1 − u2

= 1

π

ˆ 1

−1

∑

n≥0

cn(R�)uT ′
n(u)

du√
1 − u2

=
∑

n≥0

ncn(R�),

where we used Lemma 1 and the orthogonality relation (1.28). Note that ncn(R�) = O(n−2)

and hence the series is absolutely convergent. This proves that R� is the solution of (1.32).
The Chebyshev polynomials satisfy the following electrostatic formula (for a proof see

Appendix B).

Lemma 2 (Chebyshev electrostatic formula) Let x ∈ R. Then

−
ˆ 1

−1
log |x − y| Tn(y)

π
√
1 − y2

dy =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δn,0 log 2 + (1 − δn,0)
1

n
Tn(x) |x | ≤ 1

1

n
e−nz (with x = cosh z) |x | ≥ 1.

(3.6)

From the E-L equation, an application of the Chebyshev electrostatic formula (3.6) gives

−
ˆ R

−R
log |x − y|ρR(y)dy + V (x)

= − log
R

2
+ a0(R)c0(R) +

∑

n≥1

(
1

n
an(R) + cn(R)

)
Tn

( x

R

)
= μ(R) if |x | ≤ R.

This equation and the normalisation of ρR(x) imply that

a0(R) = 1,
1

n
an(R) + cn(R) = 0 ∀n ≥ 1. (3.7)

In particular, we have an explicit formula for the chemical potential

μ(R) = − log
R

2
+ c0(R) = − log

R

2
+
ˆ R

−R

V (x)

π
√

R2 − x2
dx . (3.8)

Equation (3.7) shows that

PR(Ru) = 1 −
∑

n≥1

ncn(R)Tn(u). (3.9)

The sequence ncn(R) is O(n−2) and hence the series is pointwise convergent almost every-
where. This concludes the proof of Theorem 1.

To prove Theorem 2 we begin by computing F(R):

F(R) = 1

2

(
μ(R) +

ˆ R

−R
V (x)ρR(x)dx

)

= 1

2

(
μ(R) +

ˆ 1

−1
V (Ru)

PR(Ru)

π
√
1 − u2

du

)

= 1

2

⎛

⎝μ(R) +
∑

n,m≥0

ˆ 1

−1
cn(R)am(R)

Tn(u)Tm(u)

π
√
1 − u2

du

⎞

⎠
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= 1

2

⎛

⎝μ(R) + c0(R)a0(R) + 1

2

∑

n≥1

cn(R)an(R)

⎞

⎠

= 1

2

⎛

⎝− log
R

2
+ 2c0(R) −

∑

n≥1

nc2n(R)

2

⎞

⎠ . (3.10)

(The first identity follows from the definition of F(R) as energy difference (1.18), and the
E-L condition; then we expanded in Chebyshev polynomials and used their orthogonality
relation; the last equality follows from (3.8) and (3.7).) Therefore

F ′(R) = − 1

2R

⎛

⎝1 − 2Rc′
0(R) + R

∑

n≥1

ncn(R)c′
n(R)

⎞

⎠ . (3.11)

We want to prove that the above expression is equal to −PR(R)2/(2R). First, notice that
PR(R) is

PR(R) =
∑

n≥0

an(R)Tn(1) =
∑

n≥0

an(R) = 1 −
∑

n≥1

ncn(R) ,

so that

− PR(R)2

2R
= − 1

2R

⎛

⎝1 −
∑

n≥1

ncn(R)

⎞

⎠
2

. (3.12)

Comparing with (3.11), the identity to show to complete the proof is

1 − 2Rc′
0(R) + R

∑

n≥1

ncn(R)c′
n(R)

?=
⎛

⎝1 −
∑

n≥1

ncn(R)

⎞

⎠
2

. (3.13)

Using Lemma 1 and the identity u∂V (Ru)/∂u = R∂V (Ru)/∂ R, we have

c′
n(R) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

m≥1

mcm(R)

R
if n = 0

∑

m≥n

2mcm(R)

R
− ncn(R)

R
if n > 0.

(3.14)

Therefore we find

1 − 2Rc′
0(R) + R

∑

n≥1

ncn(R)c′
n(R)

= 1 − 2
∑

m≥1

mcm(R) +
∑

n≥1

ncn(R)

(
∑

m≥n

2mcm(R) − ncn(R)

)

= 1 − 2
∑

m≥1

mcm(R) +
∑

m,n≥1

ncn(R)mcm(R)

=
⎛

⎝1 −
∑

n≥1

ncn(R)

⎞

⎠
2

.

This concludes the proof of the integral formula (1.34).
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We proceed to prove that F(R) has a jump in the third derivative. First, note that F(R)

is identically zero for R ≥ R�, while F(R) ≥ 0 for R ≤ R�. From (1.34) and the fact that
PR� (R�) = 0, one sees that

lim
R↑R�

F(R) = 1

2

ˆ R�

R�

Pr (r)2

r
dr = 0, (3.15)

lim
R↑R�

F ′(R) = −1

2

PR� (R�)
2

R�

= 0, (3.16)

lim
R↑R�

F ′′(R) = −2PR� (R�)P ′
R�

(R�)R� − PR� (R�)
2

2R2
�

= 0 . (3.17)

On the other hand,

lim
R↑R�

F ′′′(R) = − P ′
R�

(R�)
2

R�

< 0. (3.18)

Indeed, by Assumption 2 on the potential V (x), it is easy to check that P ′
R�

(R�) < 0
strictly. �� .

4 Proof of Theorems 4 and 5

A systematic analysis of the equilibrium problem for the screened Coulomb interaction does
not seem to have appeared in the existing literature.Herewe solve the problem (Theorem4). In
this Section we put forward a sensible ansatz for ρR depending on two parameters (chemical
potential μ and surface charge c), that we then prove to be the minimiser by imposing the
E-L conditions that fix μ = μ(R) and c = c(R). The only thing that needs to be checked
is the positivity of the candidate solution (Remark 7). In solving the problem, we will make
the most of its spherical symmetry. A key technical ingredient in the derivation will be a
shell integration lemma (Lemma 3), the analogue of Newton’s formula (4.20) for a Yukawa
interaction in generic dimension d ≥ 1.

4.1 General Form of the ConstrainedMinimisers

The usual strategy in these minimisation problems is to look for a candidate solution of the
E-L conditions (2.7). The condition E2 > 0 guarantees that the saddle-point is the minimiser
in P(BR).

In absence of volume constraints, i.e. BR = R
d , the global minimiser is supported on

a ball of radius R�. For R > R�, the density of the gas does not feel the hard walls and
ρR = ρR� . We anticipate here that for R < R�, supp ρR = BR (thus explaining the name
’pushed phase’) so that the second E-L condition (2.7) is immaterial. A first idea to find ρR

is to use the property DΦd(x) = Ωdδ(x). Applying D to both sides of the first E-L condition
we formally get

dρR(x)
?= 1

Ωd
D
(
μ(R) − V (x)

)
1|x |∈R∧R�dx . (4.1)

However the above ansatz is, in general, incorrect. In particular, the equality (4.1) is not true
if ρR contains singular components.
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One can prove the absence, at equilibrium, of condensation of particles in the bulk (absence
of δ-components). To see this, one compares the energy of a density containing a δ-function in
the bulk to one where the δ-function has been replaced by a narrow, symmetric mollification
δε (see [4, Section 3.2.1] for details). This argument fails on the boundary where it is not
possible to consider symmetric mollifications δε contained in the support.

As a matter of fact, condensation of particles, though not possible in the bulk, can and do
occur on the boundary of the support! For Coulomb gases (D = −Δ) this statement is the
well-known fact that, at electrostatic equilibrium, any excess of charge must be distributed
on the surface of a conductor. In a rotationally symmetric problem, any accumulation of
charge must be uniformly distributed on the ‘surface’, i.e. the boundary of the support of ρR .
Using the same argument, one can argue that in the unconstrained problem—pulled phase—
the accumulation of charge on the surface is not possible (otherwise it would be possible to
mollify the δ-components on the surface, lowering the energy). Therefore, a more appropriate
ansatz is

dρR(x) = 1

Ωd
D
(
μ(R) − V (x)

)
1|x |∈R∧R�dx + c(R)

δ(|x | − R)

Ωd Rd−1 , (4.2)

for some constants μ(R) and c(R) to be determined. In the following we will show that, for
all R, there exists a unique choice of μ(R) and c(R) such that (4.2) is a saddle-point.

Remark 7 In spherical coordinates x = rω, r = |x | ≥ 0, ω = x/|x | ∈ Sd−1, Eq. (4.2) reads

dρR(r , ω) = 1

Ωd

[
f (r)1r≤R∧R� + c(R)

Rd−1 δ(r − R)
]
drdω, (4.3)

where we split the contribution on the surface c(R) and the density f (r) in the bulk

f (r) = m2(μ(R) − v(r))rd−1 + a2(rd−1v′(r))′. (4.4)

The equilibrium measure ρR is continuous in the bulk |x | < R, and contains, in general,
a singular component on the surface |x | = R. From the explicit formulae (1.59)–(1.60) for
c(R) and μ(R), it is not yet obvious to see that ρR is a positive measure, nor that the critical
radius R� is nonzero. We show here that the equilibrium measure is both positive in the bulk
and on the surface.

Consider first the pushed phase R < R�. Starting from the surface, note that c(R) is
continuous for R ≥ 0 and differentiable at least twice for R > 0 and R �= R�. Moreover,

1 − m2R

a2d

ϕd(R)

ϕ′
d(R)

= m R

ad

K d
2 +1

(m R
a

)

K d
2

(m R
a

) → 1 as R → 0, (4.5)

and is nondecreasing (for R > 0). Since v(r) and v′(r)rd−1 are both strictly increasing, we
conclude that c(0) = 1, and c(R) is strictly decreasing. Therefore, there exists a positive
radius R� > 0 such that c(R�) = 0. The pulled phase is characterised by the absence of
condensation of charge on the surface: c(R) = 0 for R ≥ R�. Hence the singular component
on the surface is nonnegative for all R ≥ 0.

We now analyse the bulk. This amounts to showing that f (r) in (4.4) is nonnegative.
First, note that a2(rd−1v′(r))′ is positive by assumption. Since v(r) is strictly increasing, it
is enough to show that μ(R) − v(R) ≥ 0 to imply that μ(R) − v(r) ≥ 0 for all r ≤ R. In
the pushed phase

μ(R) − v(R) = −ϕd(R)

ϕ′
d(R)

(
v′(R) + c(R)

a2Rd−1

)
. (4.6)
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The ratio ϕd (R)

ϕ′
d (R)

is negative while c(R) and v′(R) are both positive. Therefore, f (r) ≥ 0 for

r ≤ R ∧ R�.

Before embarking in the calculations leading to the explicit formulae for μ(R) and c(R), we
derive the universal formula of the free energy (Theorem 5) assuming Theorem 4.

Proof of Theorem 5 First, note that for R ≥ R�,

ρR = ρR� ⇒ F(R) = E [ρR] − E [ρR� ] = 0. (4.7)

For R < R�, we compute E [ρR] by inserting the explicit form of the minimiser ρR in the
functional. This calculation is made possible by using the explicit formulae (1.58)–(1.60) for
ρR and, crucially, a shell theorem for Yukawa interaction (see Lemma 3 below). Eventually,
we find for R < R�:

F(R) = 1

2

ˆ R�

R

c(r)2

a2rd−1 dr > 0. (4.8)

Combining (4.7) and (4.8) we obtain the claimed formula (1.65).
To prove the jump in the third derivative, we remark again that c(R) is continuous for

R ≥ 0 and differentiable at least twice for R > 0 and R �= R�. Moreover, R� > 0, and
c(R�) = 0. From the explicit formula (1.65):

lim
R↑R�

F(R) = 1

2

ˆ R�

R�

c(r)2

a2rd−1 dr = 0, (4.9)

lim
R↑R�

F ′(R) = − 1

2a2

c(R�)
2

Rd−1
�

= 0, (4.10)

lim
R↑R�

F ′′(R) = − 1

2a2

(
2c(R�)c′(R�)Rd−1

� − (d − 1)c(R�)
2Rd−2

�

R2(d−1)
�

)
= 0 . (4.11)

On the other hand,

lim
R↑R�

F ′′′(R) = − 1

a2

c′(R�)
2

Rd−1
�

< 0 , (4.12)

since c(R) is strictly decreasing in the pushed phase. ��

4.2 Chemical Potential and Excess Charge

The chemical potential μ(R) and the excess charge c(R) are fixed by the normalisation of
ρR and the E-L conditions.

Assume R ≤ R� (note that at this stage R� is not known). We show here that in the pushed
phase the chemical potential and the excess charge are solution of the following linear system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ′
d(R)

ϕd(R)
μ(R) + 1

a2Rd−1 c(R) = ϕ′
d(R)

ϕd(R)
v(R) − v′(R),

m2Rd

d
μ(R) + c(R) = 1 − a2v′(R)Rd−1 + m2

Ŕ

0
v(r)rd−1dr ,

(4.13)
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from which the expressions for μ(R) and c(R) in (1.59)–(1.60) follow. Note that, for all R,

det

⎛

⎜⎜⎜⎜⎝

ϕ′
d(R)

ϕd(R)

1

a2Rd−1

m2Rd

d
1

⎞

⎟⎟⎟⎟⎠
= −m2R

a2d

K d
2 +1

(m R
a

)

K d
2 −1

(m R
a

) �= 0 , (4.14)

therefore the solution of the linear system (4.13) is unique.
The normalisation condition is
ˆ

dρR(x) = 1 ⇒ m2Rd

d
μ(R) − m2

ˆ R

0
v(r)rd−1dr + a2Rd−1v′(R) + c(R) = 1.

(4.15)

The E-L condition in the support of ρR is
ˆ

ϕd(|x − y|)dρR(y) = μ(R) − v(|x |), for |x | ≤ R. (4.16)

At this stage, we need an analogue of the electrostatic shell theorem to perform the angular
integration in (4.16). For Yukawa interaction the potential outside a uniformly ‘charged’
sphere is the same as that generated by a point charge at the centre of the sphere with a dressed
charge (dependent on the radius of the sphere); inside the spherical shell the potential is not
constant. The precise statement is a ‘shell theorem’ for screened Coulomb interaction.

Lemma 3 (Shell integration formula)

1

Ωd

ˆ

|y|=r

ϕd (|x − y|) dS(y) = ψd (min {|x |, r}) ϕd (max {|x |, r}) , (4.17)

where dS is the (d − 1)-dimensional surface measure, with

ψd(r) =
(
2a

mr

) d
2 −1

Γ

(
d

2

)
I d
2 −1

(mr

a

)
. (4.18)

(Iν denotes the modified Bessel function of the first kind.)

Proof See Appendix B. ��

Remark 8 The integration formula (4.17) has already appeared in disguised form in the
literature, see [24, Theorem 6] or [53, Theorem 4.2]. In dimension d = 1, 2, and 3:

ψ1(r) = cosh(mr/a), ψ2(r) = I0(mr/a), ψ3(r) = sinh(mr/a)

mr/a
. (4.19)

It is interesting to compare (4.17) with the classical shell theorem when ϕd is the d-dim
Coulomb potential

1

Ωd

ˆ

|y|=r

ϕd (|x − y|) dS(y) = ϕd (max {|x |, r}) . (4.20)
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Using (4.17), we can perform the angular integration in (4.16)

ϕd(z)
ˆ z

0
ψd(r) f (r)dr + ψd(z)

ˆ R

z
ϕd(r) f (r)dr + c(R)ϕd(R)ψd(z) = μ(R) − v(z),

(4.21)

where we set z = |x | ≤ R.
Differentiating with respect to z,

ϕ′
d(z)

ˆ z

0
ψd(r) f (r)dr + ψ ′

d(z)
ˆ R

z
ϕd(r) f (r)dr + c(R)ϕd(R)ψ ′

d(z) + v′(z) = 0.

(4.22)

Using integration by parts and the properties of ψd and ϕd we findˆ z

0
ψd(r) f (r)dr = a2ψd(z)zd−1v′(z) + a2ψ ′

d(z)zd−1(μ(R) − v(z)),

ˆ R

z
ϕd(r) f (r)dr = a2ϕd(R)Rd−1v′(R) + a2ϕ′

d(R)Rd−1(μ(R) − v(R))

− a2ϕd(z)zd−1v′(z) − a2ϕ′
d(z)zd−1(μ(R) − v(z)) . (4.23)

Therefore, Eq. (4.22) reads

a2ψd(z)zd−1v′(z) + a2ϕd(R)Rd−1v′(R) + a2ϕ′
d(R)Rd−1(μ(R) − v(R))

− a2ϕd(z)zd−1v′(z) + c(R)ϕ(R)ψ ′
d(z) + v′(z) = 0 , (4.24)

which can be simplified using the following lemma.

Lemma 4 For z �= 0,

ϕ′
d(z)ψd(z) − ϕd(z)ψ ′

d(z) = − 1

a2

1

zd−1 . (4.25)

Proof Iν and Kν are solutions of the modified Bessel equation

z2
d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0. (4.26)

Equation (4.25) is a straightforward application of Abel’s identity to the Wronskian of Iν
and Kν , see [50, Eq. 10.28.2]. ��
Using the above lemma, Eq. (4.22) simplifies as

a2ϕd(R)Rd−1v′(R)ψ ′
d(z) + a2ϕ′

d(R)Rd−1(μ(R) − v(R))ψ ′
d(z) + c(R)ϕ(R)ψ ′

d(z) = 0 .

(4.27)

The above equality must be true for all z. Therefore, the E-L equation can be eventually
written as

c(R)

Rd−1 + a2 ϕ′
d(R)

ϕd(R)
(μ(R) − v(R)) + a2v′(R) = 0 . (4.28)

The above relation between μ(R) and c(R) is the first equation in (4.13).
We finally get the explicit formulae

μ(R) =
v(R) − 1

a2Rd−1
ϕd (R)

ϕ′
d (R)

(
1 − m2

´ R
0 v(r)rd−1dr

)

1 − m2R
a2d

ϕd (R)

ϕ′
d (R)

, (4.29)
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x
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*

R
*

x

d(|x−y|) R(y)dy + V(x)

−R R
x

d(|x−y|) R(y)dy + V(x)

R > R
*
(Pulled Phase) R > R* (Pushed Phase)

m2 ( (R)−v(x)) + a2 v'' (x)
2

1
2 c(R) (x+R) 1

2 c(R) (x−R)

(R* )

(R)

m2 ( (R
*
) − v(x)) + a2 v '' (x)

2

Fig. 5 Top: Equilibrium measure of a one-dimensional (d = 1) Yukawa gas in the pulled and pushed phases.
Here the gas is confined in a quadratic potential v(r) = r2/2, and a = m = 1/2. Bottom: energy density (on
a convenient scale) corresponding to the equilibrium measures. The energy density is constant, and equal to
the chemical potential μ, in the support of the equilibrium measure

c(R) =
1 −

(
a2 − m2R

d
ϕd (R)

ϕ′
d (R)

)
v′(R)Rd−1 − m2Rd

d v(R) + m2
´ R
0 rd−1v(r)dr

1 − m2R
a2d

ϕd (R)

ϕ′
d (R)

. (4.30)

At this stage, what would remain to do is just checking the positivity of ρR . We did this in
Remark 7. This concludes the proof of the theorem (Fig. 5).
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Appendix A: Yukawa Interaction

Writing the distributional identity (1.55) in Fourier coordinates

Φ̂d(k) = Ωd

a2|k|2 + m2 ⇒ Φd(x) = Ωd

(2π)d

ˆ
Rd

e−ikx

a2|k|2 + m2 dk. (A.1)

123
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One way to invert the Fourier transform is by writing

Φd(x) = Ωd

(2π)d

ˆ
Rd

dk
ˆ +∞

0
dte−ikx e−(a2|k|2+m2)t , (A.2)

and work out first the Gaussian integral in k:

Φd(x) = Ωd

(4πa2)
d
2

ˆ +∞

0

e
−m2t− |x |2

4a2 t

t
d
2

dt . (A.3)

One recognises the integral representation of the Bessel function of the second kind [50,
Eq. 10.32.10]

Φd(x) = ϕd(|x |), ϕd(r) = 1

a22
d
2 −1

1

Γ
( d
2

)
( m

ar

) d
2 −1

K d
2 −1(mr/a) . (A.4)

In dimension d = 1, 2, and 3 we have the familiar expressions

ϕ1(r) = e−mr/a

am
, ϕ2(r) = K0(mr/a)

a2 , ϕ3(r) = e−mr/a

a2r
. (A.5)

Appendix B: Proofs of lemmas

Proof of Eq. (1.27) We wish to prove the identity

− log |x − y| = log 2 +
∑

n≥1

2

n
Tn(x)Tn(y) |x | ≤ 1, |y| ≤ 1, x �= y. (B.1)

The identity follows from Tn(cos θ) = cos(nθ). Calling X = arccos x and Y = arccos y,
we have to evaluate the sum S = ∑

n≥1
cos(nX) cos(nY )

n on the right hand side . Using the
trigonometric identity

2 cosα cosβ = cos(α − β) + cos(α + β), (B.2)

we have

S = 1

2

⎡

⎣
∑

n≥1

cos(n(X − Y ))

n
+
∑

n≥1

cos(n(X + Y ))

n

⎤

⎦

= 1

2
Re

⎡

⎣
∑

n≥1

exp(in(X − Y ))

n
+
∑

n≥1

exp(in(X + Y ))

n

⎤

⎦

= −1

2
Re
[
log(1 − ei(X−Y )) + log(1 − ei(X+Y ))

]

= −1

4

[
log(2 − 2 cos(X − Y )) + log(2 − 2 cos(X + Y ))

]
. (B.3)

Therefore, all we need to compute is

cos (arccos x ± arccos y) = cos(arccos x) cos(arccos y) ∓ sin(arccos x) sin(arccos y)

= xy ∓
√
1 − x2

√
1 − y2, (B.4)
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using the standard trigonometric addition formula. After simplifications

S = −1

4
log[4(x − y)2] = −1

2
(log 2 + log |x − y|) . (B.5)

Substituting in the r.h.s. of (B.1), we obtain the claim. ��
Proof of Lemma 2 The case |x | < 1 is an immediate application of the identity (1.27) and the
orthogonality relation (1.28) of the Chebyshev polynomials.

We consider now the case x ≥ 1 (the case x ≤ −1 is similar). When x ≥ 1, cosh−1(x) =
log(x + √

x2 − 1), so that the identity we wish to prove for n ≥ 1 is

In(x) = −
ˆ 1

−1
log(x − y)

Tn(y)

π
√
1 − y2

dy = 1

n
(x +

√
x2 − 1)−n x ≥ 1. (B.6)

Set x = (1 + t2)/(2t), for t > 1. Multiplying (B.6) by zn and summing for n ≥ 1

∑

n≥1

In

(
1 + t2

2t

)
zn =

∑

n≥1

zn

ntn
= − log

(
1 − z

t

)
. (B.7)

After elementary manipulations we find (n ≥ 1)

In

(
1 + t2

2t

)
= −Jn(t), where Jn(t) =

ˆ 1

−1
log
(
1 + t2 − 2t y

) Tn(y)

π
√
1 − y2

dy, (B.8)

so that

∑

n≥1

In

(
1 + t2

2t

)
zn = −

∑

n≥1

Jn (t) zn . (B.9)

Therefore the identity is established if we show that
∑

n≥1

Jn (t) zn = log
(
1 − z

t

)
|z/t | < 1 . (B.10)

The left hand-side is
∑

n≥1

Jn (t) zn = ´ 1
−1 log

(
1 + t2 − 2t y

) ∑
n≥1 Tn(y)zn

π
√

1−y2
dy

= ´ 1
−1 log

(
1 + t2 − 2t y

) ∑
n≥0 Tn(y)zn−T0(y)

π
√

1−y2
dy. (B.11)

Using
ˆ 1

−1
log
(
1 + t2 − 2t y

) T0(y)

π
√
1 − y2

dy = 2 log t, (B.12)

and the generating function of the Chebyshev polynomials [50, Eq. 18.12.8]

∑

n≥0

Tn(y)zn = 1 − zy

1 − 2zy + z2
, (B.13)

we get

∑

n≥1

Jn (t) zn =
ˆ 1

−1
log
(
1 + t2 − 2t y

) 1

π
√
1 − y2

1 − zy

1 − 2zy + z2
dy − 2 log t . (B.14)
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It is convenient to evaluate the t-derivative

∂

∂t

∑

n≥1

Jn (t) zn = −2

t
+
ˆ 1

−1

2t − 2y

1 + t2 − 2t y

1

π
√
1 − y2

1 − zy

1 − 2zy + z2
dy. (B.15)

The last integral can be evaluated with a partial fraction expansion and we find (for t > 1
and −1 < z < 1)

∂

∂t

∑

n≥1

Jn (t) zn = −1

t
+ 1

t − z
. (B.16)

Comparing with the right hand-side of (B.10), we conclude that
∑

n≥1

Jn (t) zn = log
(
1 − z

t

)
+ k(z). (B.17)

To fix the constant k(z), we may appeal to the large-t behaviour from the right-hand side
of (B.15)

lim
t→∞

∑

n≥1

Jn (t) zn = 0. (B.18)

Therefore, k(z) = 0 and the proof of (B.7) is complete. ��
Proof of Lemma 3 Using the integral representation of the Bessel function K d

2 −1 and writing

|x − y|2 = |x |2 + |y|2 − 2(x · y), the integral becomes

1

(4πa2)d/2

ˆ ∞

0

dt

td/2 e
−m2t− 1

4a2 t
(|x |2+r2)

ˆ
|y|=r

dy exp

(
1

2a2t
x · y

)
. (B.19)

Noting that the problem is rotationally invariant, without loss of generality we can assume
that x has all zero components but one, x = (|x |, 0, . . . , 0). Introducing d-dimensional
spherical coordinates

y1 = r cosφ1

y2 = r sin φ1 cosφ2

y2 = r sin φ1 sin φ2 cosφ3

...

yd = r sin φ1 · · · sin φd−2 sin φd−1 (0 ≤ φ1 ≤ 2π, 0 ≤ φ j ≤ π, for 2 ≤ j ≤ d),

(B.20)

the integral over the sphere becomesˆ
|y|=r

dy exp

[
1

2a2t
x · y

]
= C

ˆ π

0
dφ1 exp

[ |x |r
2a2t

cosφ1

]
(sin φ1)

d−2, (B.21)

with C =
ˆ 2π

0
dφd−1

d−2∏

j=2

ˆ π

0
dφ j

(
sin(φ j )

)d−1− j
. (B.22)

The φ1-integral corresponds to the integral representation of the modified Bessel function
I d
2 −1 and, after simplifications, the original integral over the sphere (4.17) is shown to be

equivalent to the one-dimensional integral

(|x |r)1−d/2

2a2

ˆ ∞

0

dt

t
e
−m2t− 1

4a2 t
(|x |2+r2)

Id/2−1

( |x |r
2a2t

)
. (B.23)
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After the change of variables z = |x |r
2a2t

, we can use the following cute identity (a version
of [35, Eq. 6.635.3])

ˆ ∞

0

dz

z
Iν(z) exp

(
−ηξ

2z
− z

2

(
η

ξ
+ ξ

η

))
=
{
2Kν(η)Iν(ξ) for η ≥ ξ

2Iν(η)Kν(ξ) for η < ξ
, (B.24)

valid for ν ≥ 0 and ξ, η > 0. This concludes the proof of the Lemma. ��
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