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Abstract
The theory of quasifree quantum stochastic calculus for infinite-dimensional noise is devel-
oped within the framework of Hudson–Parthasarathy quantum stochastic calculus. The
question of uniqueness for the covariance amplitude with respect to which a given uni-
tary quantum stochastic cocycle is quasifree is addressed, and related to the minimality of
the corresponding stochastic dilation. The theory is applied to the identification of a wide
class of quantum random walks whose limit processes are driven by quasifree noises.

Keywords Quantum stochastic calculus · Quasifree representation · Heat bath · Repeated
quantum interactions · Noncommutative Markov chain · Quantum Langevin equation

Mathematics Subject Classification Primary: 81S25 · Secondary: 46L53 · 46N50 · 60F17 ·
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1 Introduction

Quantum stochastic calculus for gauge-invariant quasifree representations of the canonical
commutation (and anticommutation) relations was originally developed in the 1980s; see
[8,22,23,27]. The possibilities afforded for semigroup dilation using such a calculus were
further developed in [1] and [30], with the latter treatment using a theory of integral-sum
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2 A. C. R. Belton et al.

kernel operators. One-dimensional squeezed noise is analysed in [20], where additive and
multiplicative cocycles over a finite-dimensional quantum probability space are studied and
an Itô table is generated. Recently, quasifree stochastic calculus has been extended to the
cases of squeezed states and infinite-dimensional noise [31,32]. A key ingredient of the latter
theory is a partial transpose defined on a class of unbounded operators affiliated to the noise
algebra, which defies the failure of complete boundedness for the transpose.

Use of quasifree stochastic calculus may be preferred to the standard theory founded by
Hudson and Parthasarathy [24,35] for both physical and mathematical reasons [23]. On the
one hand, it describes systems which are more physically realistic, at non-zero temperatures
for example. On the other hand, the quasifree theory boasts a fully satisfactorymartingale rep-
resentation theorem [22,31], in contrast to the standard theory, whose representation theorem
is restricted by regularity assumptions which seem hard to overcome [36,37].

The purpose of this article is twofold. The first is to develop quasifree stochastic calculus
in a simplified form within the standard theory, restricting to quasifree states with bounded
covariance amplitudes and unitary quantum stochastic cocycles with norm-continuous
vacuum-expectation semigroups (Sects. 4 and 5). The second is to give a deeper explanation
of the continuous limit of the Hamiltonian description of a repeated-interactions model at
non-zero temperature. Various limits in a similar setting were investigated by Attal and Joye
in [5,6]. In particular, the paper [6] describes how the quantum Langevin equation, obtained
as limit of a repeated-interactions model with particles in a thermal state, is driven by noises
satisfying quasifree Itô product relations (Sect. 6). Those parts relating to the first objective are
written so as to facilitate the second. Our main results are Theorems 6.4 and 6.8, which may
be summarised as follows. From a faithful, normal state ρ on B(p), with the latter viewed as
the particle observable algebra, and a total Hamiltonian HT(τ ) of repeated-interaction form,
acting on the tensor product p⊗h for a system space h, we derive a gauge-invariant covariance
amplitude �(ρ) and a quantum stochastic cocycle Y with the following properties: Y satis-
fies a quantum Langevin equation of a particular form, with respect to �(ρ)-quasifree noise,
and the scaled quantum random walks generated by HT(τ ) converge to Y as the time-step
parameter τ converges to 0.

The quasifree CCR representations that we employ are of Araki–Woods type, determined
by two maps: the doubling map

ι =
[

Ik
−k

]
: k → k⊕ k; x �→

(
x

−x

)
,

where (k, k) is the Hilbert space conjugate to the quasifree noise-dimension space k, and an
operator

� =
[

�0
0 �1

0

�0
1 �1

1

]
∈ B(k⊕ k) =

[
B(k) B(k; k)

B(k; k) B(k)

]

for which the real-linear map � ◦ ι is symplectic. The corresponding Weyl operators W�( f )

act on the double Boson Fock space

�
(
L2(R+; k⊕ k)

) = �
(
L2(R+; k)

)⊗ �
(
L2(R+; k)

)
in the following manner:

W�( f ) := W (�ι( f )) = W (�0
0 f − �0

1 f ) ⊗ W (�1
0 f − �1

1 f ) for all f ∈ L2(R+; k),
where W (g) denotes the Fock–Weyl operator with test function g, and the operators ι and
� are extended to act on functions pointwise; for example, (�0

1 f )(t) := �0
1 f (t) for all
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Quasifree Stochastic Cocycles and Quantum RandomWalks 3

t ∈ R+. The symplectic hypothesis ensures that W� defines a CCR representation. This
class of representations is sufficiently general to include a range of interesting examples,
while being concrete enough to render the resulting stochastic calculus straightforward to
employ with a minimum of technicalities. Details of this representation theory are given in
Sect. 2.

Section 3 collects the relevant results from standard quantum stochastic analysis, chosen
in light of the requirements for the passage to quasifree stochastic calculus in Sect. 4. We
motivate the definition of quasifree stochastic integrals by combining the Itô-type quantum
stochastic integration of simple processes with the realisation of quasifree creation and anni-
hilation operators in terms of creation and annihilation operators for the Fock representation,
for the case of finite degrees of freedom. It is notable that quasifree stochastic integrability
is unaffected by squeezing the state; indeed, the resulting transformation of quasifree inte-
grands may be viewed as a change-of-variables formula for quasifree stochastic calculus
(Theorem 4.4). Our approach demonstrates the central rôle in the theory played by a partial
conjugation, which constrains the class of admissible integrands when the noise is infinite
dimensional. This corresponds to the partial-transpose operation at the heart of the general
quasifree stochastic analysis in [31,32]. Viewing quasifree integrals as particular cases of
standard quantum stochastic integrals allows us to employ the existing modern quantum
stochastic theory [28] and to avoid any application of Tomita–Takesaki theory. While main-
taining strict mathematical rigour, the simplicity of our approach makes it very suitable for
applications.

Some uniqueness questions are addressed in Sect. 5. We first show that the change-of-
variables effect of squeezing on quasifree integrals means that, for present purposes, we
may restrict to gauge-invariant quasifree states. Then the stochastic generators of quasifree
Hudson–Parthasarathy cocycles on an initial Hilbert space h are parameterised by triples
of operators (A, H , Q), where A ∈ B(k) is non-negative, H ∈ B(h) is self-adjoint,
and Q ∈ B(h; k ⊗ h) is k-conjugatable; see Definition 4.2. The set of triples that generate
the same cocycle is parameterised by a class of self-adjoint operators in B(k). Uniqueness
for quasifree Hudson–Parthasarathy cocycles inducing a given inner Evans–Hudson flow j
(Definition 3.17) is related to the minimality of j , as a stochastic dilation of its vacuum-
expectation semigroup, in the sense of [13].

The final section, Sect. 6, concerns quantum random walks and the repeated-interactions
model [7]. After a brief summary of the relevant results from the standard theory of quan-
tum random walks [9,12], we extend the example of Attal and Joye in two directions: to
allow infinite-dimensional noise, and to incorporate an enlarged class of interaction Hamil-
tonians. We show that their example is part of the following more general phenomenon.
If the particles in the repeated-interactions model are in a faithful normal state with den-
sity matrix � then the quantum Langevin equation which governs the limit cocycle U is
driven by a gauge-invariant quasifree noise with covariance amplitude determined by the
state. This is proved under the assumptions that � enjoys exponential decay of its eigen-
values, and the interaction Hamiltonian is conjugatable (with respect to the Hilbert space
p on which � acts) and has no diagonal part with respect to the eigenspaces of � (Theo-
rem 6.8). The result also includes sufficient further conditions, on the matrix components
of the interaction Hamiltonian, for the quasifree noise to be the unique one within the
class for which U is quasifree. The GNS space given by the particle state splits naturally
into mutually conjugate upper-triangular and lower-triangular parts; this splitting may be
viewed as being the origin of the double Fock space arising in the relevant CCR representa-
tion.
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4 A. C. R. Belton et al.

We expect our results to be of interest to researchers in quantum optics and related fields;
the importance of quantum stochastic calculus to quantum control engineering, for example,
is clearly demonstrated in many of the papers contained in the collection [19]. In future
work, we intend to explore quantum control theory within this quasifree framework. For
initial results on quasifree filtering, which show the potential benefit of using squeezed fields
for state restoration, see [14].

Notation and conventions Throughout, the symbol h, sometimes adorned with primes or
subscripts, stands for a generic Hilbert space; with this understanding, we usually refrain
from saying “let h and h′ be Hilbert spaces”, et cetera. All Hilbert spaces considered are
complex and separable, with inner products linear in their second argument. The space of
bounded operators from h to h′ is denoted B(h;h′), and B(h)sa, B(h)+, U (h) and B(h)×
denote respectively the sets of self-adjoint and non-negative operators in B(h) := B(h;h),
and the groups of unitary operators on h and operators in B(h) with bounded inverse.

A conjugateHilbert space of h is a pair (h, k) consisting of an anti-unitary operator k from
h to a Hilbert space h; this is unique up to isomorphism in the natural sense. For any x ∈ h
and A ∈ B(h), the vector kx ∈ h and the operator k Ak−1 ∈ B(h) are abbreviated to x and A
respectively. The closed linear span of a subset S of a Hilbert space is denoted Lin S; the
range of a bounded operator T and its closure are denoted Ran T and Ran T respectively.
The domain of an unbounded operator T is denoted Dom T . We employ the Dirac-inspired
bra and ket notation

〈x | : h → C; y �→ 〈x, y〉 and |x〉 : C → h; λ �→ λx,

for any vector x ∈ h.
Algebraic, Hilbert-space and ultraweak tensor products are denoted ⊗ ,⊗ and⊗ , respec-

tively. The indicator function of a set S is denoted 1S . The group of complex numbers with
unit modulus is denoted T. The integer part of a real number r is denoted �r�.

2 CCR Representations

In this section, we collect some key facts on CCR representations and quasifree states. In
particular, we introduce the squeezing matrices and AW amplitudes that determine the class
of quasifree states that are relevant to us.

Recall that every real-linear operator T : h → h′ is uniquely decomposable as L + A,
where L is complex linear and A is conjugate linear; L and A are referred to as the linear
and conjugate-linear parts of T . Explicitly,

Lx := 1
2

(
T x − i T (ix)

)
and Ax := 1

2

(
T x + i T (ix)

)
for all x ∈ h. (2.1)

Definition 2.1 A real-linear operator Z : h → h′ is symplectic if it satisfies

Im〈Z x, Z y〉 = Im〈x, y〉 for all x, y ∈ h.

We denote the space of symplectic operators from h to h′ by S(h;h′), or S(h) when h′ = h,
and the group of symplectic automorphisms of h by S(h)×.

For a complex linearmap T fromh toh′, it is easily verified that T is isometric if and only if
it is symplectic. In particular, U (h) is the subgroup of S(h)× consisting of its complex-linear
elements.
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Quasifree Stochastic Cocycles and Quantum RandomWalks 5

It is shown in the appendix that symplectic automorphisms ofh are automatically bounded.
Thus S(h)× is a subgroup of the group of bounded invertible real-linear operators on h.

A parameterisation B = BV ,C,P for the elements of S(h)× is also given in the appendix.
For the rest of this section, we fix a Hilbert space H and let (H, K ) be its conjugate Hilbert

space.

Fock Space

As emphasised by Segal [41], the Boson Fock space over H has two interpretations, particle
and wave:

�(H) =
∞⊕

n=0

H∨n = Lin{ε(x) : x ∈ H}.

Here H∨n denotes the nth symmetric tensor power of H, with H∨0 := C, and ε(x) is the
exponential vector corresponding to the test vector x :

ε(x) = (1, x, x⊗2/
√
2!, . . .).

The normalised exponential vector exp(− 1
2‖x‖2)ε(x) is denoted
(x), and the distinguished

vector ε(0) = 
(0) is denoted �H and called the Fock vacuum vector. For all x, y ∈ H,

〈ε(x), ε(y)〉 = exp〈x, y〉,
and the map λ �→ ε(x + λy) is holomorphic from C to �(H). As well as being total in �(H),
the exponential vectors are linearly independent.

For any orthogonal decomposition H = H1⊕H2, the Boson Fock space �(H) is identified
with the tensor product �(H1) ⊗ �(H2) via the natural isometric isomorphism which sends
the exponential vector ε(x1, x2) to ε(x1) ⊗ ε(x2) for all x1 ∈ H1 and x2 ∈ H2.

For any x ∈ H, the Fock–Weyl operator WH(x) is the unique unitary operator on �(H)

such that
WH(x)
(y) = exp(−i Im〈x, y〉)
(x + y) for all y ∈ H. (2.2)

For all x, y ∈ H,

the map t �→ WH(t x)
(y) is continuous from R+ to �(H), (2.3a)

Lin
{
WH(z)�H : z ∈ H

} = �(H), (2.3b)

and 〈�H, WH(x)�H〉 = exp(− 1
2‖x‖2). (2.3c)

CCR Representations

We let CC R(H) denote the universal C∗-algebra generated by unitary elements {wx : x ∈ H}
satisfying the canonical commutation relations in Weyl form:

wxwy = exp(−i Im〈x, y〉)wx+y for all x, y ∈ H.

Its existence, uniqueness and simplicity were established in [43]. By universality, each oper-
ator B ∈ S(H)×, determines a unique automorphism αB of CC R(H) such that

αB(wx ) = wBx for all x ∈ H;
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6 A. C. R. Belton et al.

see [15,39]. The gauge transformations of CC R(H) are the automorphisms induced by the
unitary operators on H of the form x �→ λx , where λ ∈ T.

If W is a map from H to U (h) satisfying the Weyl form of the canonical commutation
relations, then W = π ◦ w for a unique representation π of CC R(H) on h. We therefore
often refer to W itself as the representation. A representation W of CC R(H) is regular if,
for all x ∈ H, the unitary group (W (t x))t∈R is strongly continuous; in this case, the Stone
generator R(x) of the group is called the field operator corresponding to the test vector x for
the regular representation W .

Fock Representation

It follows from the definition (2.2) and properties (2.3a) and (2.3b) that the map x �→ WH(x)

defines a regular representation of CC R(H) with cyclic vector �H; this is called the Fock
representation. If {RH(y) : y ∈ H} is the corresponding set of field operators then, for any
x ∈ H, the creation operator a+

H (x) and annihilation operator a−
H (x) are defined by setting

a+
H (x) := 1

2 (RH(ix) + i RH(x)) and a−
H (x) := 1

2 (RH(ix) − i RH(x)).

They are closed and mutually adjoint operators with common domain Dom RH(i x) ∩
Dom RH(x), on which the following canonical commutation relations hold [15]:

‖a+
H (x)ξ‖2 = ‖a−

H (x)ξ‖2 + ‖x‖2‖ξ‖2.
For any dense subspace D of H, the subspace Lin{ε(z) : z ∈ D} is a common core for all
Fock creation and annihilation operators, on which their actions are as follows:

a+
H (x)ε(z) = d

dt
ε(z + t x)

∣∣∣
t=0

and a−
H (x)ε(z) = 〈x, z〉ε(z) for all x, z ∈ H.

Quasifree States and Representations

Let a be a non-negative real quadratic form on H, and suppose

a[x] a[y] �
(
Im〈x, y〉)2 for all x, y ∈ H. (2.4)

Then there is a unique state ϕ on CC R(H) such that

ϕ(wx ) = exp
(− 1

2a[x]
)

for all x ∈ H; (2.5)

see [15,39]. Being non-negative, the form a polarises to a symmetric bilinear form [25]; in
other words, the following map is real linear in each argument:

H× H → R; (x, y) �→ 1
4

(
a[x + y] − a[x − y]).

In particular, the following regularity property holds: for all x, y ∈ H, the map t �→ a[x + t y]
is continuous on R. If dimH < ∞ then a is bounded and therefore there exists a bounded
non-negative real-linear operator T on H such that a[x] = Re〈x, T x〉 for all x ∈ H.

Definition 2.2 A state ϕ on CC R(H) is said to be (mean zero) quasifree if it satisfies (2.5)
for some non-negative real quadratic form a satisfying (2.4); then a is called the covariance
of ϕ, and any real-linear operator Z : H → h such that ‖Z x‖2 = a[x] for all x ∈ H is called
a covariance amplitude for ϕ.

A state ϕ onCC R(H) is gauge invariant if it is invariant under each gauge transformation,
so that ϕ(wλx ) = ϕ(wx ) for all λ ∈ T and x ∈ H.
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Quasifree Stochastic Cocycles and Quantum RandomWalks 7

Remark Covariances of gauge-invariant quasifree states on CC R(H) are precisely the com-
plex quadratic forms a on H such that

a[x] � ‖x‖2 for all x ∈ H. (2.6)

Example 2.3 The Fock vacuum state ϕH on CC R(H), given by the identity

ϕH(wx ) = 〈�H, WH(x)�H〉 for all x ∈ H,

is the basic example of a gauge-invariant quasifree state, in view of (2.6) and the iden-
tity (2.3c).

Lemma 2.4 Let Z ∈ S(H;h). Then Z is a covariance amplitude for a quasifree state ϕ

on CC R (H) . Moreover, if Z is complex linear then ϕ is gauge invariant.

Proof The first part follows since

‖Z x‖‖Z y‖ � |〈Z x, Z y〉| � | Im〈Z x, Z y〉| = | Im〈x, y〉| for all x, y ∈ H.

The second part is immediate. ��
Remark Proposition 2.6 below shows that a covariance amplitude of a quasifree state need
not be complex linear for the state to be gauge invariant.

Definition 2.5 The doubling map for H is the following bounded real-linear operator defined
in terms of its conjugate Hilbert space (H, K ):

ι =
[

I
−K

]
: H → H⊕ H, x �→

(
x

−x

)
.

Note that the range of the doubling map is total, since(
x

z

)
= 1

2

(
ι(x − z) − i ι(ix + iz)

)
for all x, z ∈ H.

Now set

AW0(H) :=
{
� =

[
C 0
0 S

]
: S, C ∈ B(H)+, S2 + IH = C2

}
⊆ B(H⊕ H)+, (2.7)

and note that AW0(H) = {�A : A ∈ B(H)+
}
, where

�A :=
[
cosh A 0

0 sinh A

]
∈ B(H⊕ H)+.

Proposition 2.6 Let � ∈ AW0(H). The bounded real-linear operator � ◦ ι is symplectic, and
the quasifree state on CC R(H) with covariance amplitude � ◦ ι is gauge invariant.

Conversely, let ϕ be a gauge-invariant quasifree state on CC R(H), the covariance of
which is a bounded complex quadratic form on H. Then ϕ has a covariance amplitude of the
form � ◦ ι for a unique operator � ∈ AW0(H).

Proof Let � =
[

C 0
0 S

]
∈ AW0(H), and set A := sinh−1 S ∈ B(H)+, so that � = �A. Then,

for all x , y ∈ H,

〈�ι(x),�ι(y)〉 = 〈Cx, Cy〉 + 〈Sx, Sy〉 = 〈x, y〉 + 2Re〈Sx, Sy〉.
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8 A. C. R. Belton et al.

It follows that � ◦ ι is symplectic, and is therefore a covariance amplitude of a quasifree
state ϕ on CC R(H). The resulting covariance a� : x �→ ‖�ι(x)‖2 satisfies

a�[x] = ‖x‖2 + 2‖Sx‖2 = 〈x, cosh 2A x〉 for all x ∈ H, (2.8)

and is thereby manifestly gauge invariant.
Conversely, let a be the covariance of a gauge-invariant quasifree state on CC R(H) and

suppose that a is bounded. Since a is bounded and such that a[x] � ‖x‖2 for all x ∈ H, there
is a unique operator R ∈ B(H) such that 〈x, Rx〉 = a[x] for all x ∈ H, and R � IH. The map
A �→ cosh 2A is a bijection from B(H)+ onto {R ∈ B(H)+ : R � IH}, and therefore, by the
identity (2.8), it follows that a = a� for a unique operator � = �A ∈ AW0(H). ��

We now introduce the notion of squeezing, important in quantum optics. For any B ∈
S(H)×, set

MB :=
[

L −AK−1

−K A L

]
,

where L and A are the linear and conjugate-linear parts of B. Thus MB ∈ B(H⊕ H).

Proposition 2.7 (a) If B ∈ S(H)× then MB is the unique operator M ∈ B(H ⊕ H) such
that M ◦ ι = ι ◦ B.

(b) The map B �→ MB is a faithful representation of the group S(H)× on H⊕ H.
(c) The map (A, B) �→ �A MB from B(H)+ × S(H)× to B(H⊕ H) is injective.

Proof (a) First note that

MB ◦ ι =
[

L −AK−1

−K A L

] [
I

−K

]
=
[

L + A
−K (A + L)

]
= ι ◦ B.

The uniqueness part follows from the totality of Ran ι.
(b) By definition, the operator MIH equals IH⊕H. It follows from (a) that, for all B, B ′ ∈

S(H)×,

MB MB′ ◦ ι = MB ◦ ι ◦ B ′ = ι ◦ B B ′ = MB B′ ◦ ι,

and so MB MB′ = MB B′ . Thus, for each B ∈ S(H)×, the operator MB is invertible and
(MB)−1 = MB−1 . Furthermore, if B, B ′ ∈ S(H)× are such that MB = MB′ , then ι◦B = ι◦B ′,
so B = B ′ by the injectivity of ι. Hence (b) holds.

(c) Suppose (A1, B1), (A2, B2) ∈ B(H)+ × S(H)× are such that �A1 MB1 = �A2 MB2 .
It follows from part (b) that �A1 = �A2 MB , where B = B2B−1

1 . Set Ci = cosh Ai and
Si = sinh Ai , for i = 1, 2, and let L and A be the linear and conjugate-linear parts of B.
Then [

C1 0
0 S1

]
=
[

C2 0
0 S2

] [
L −AK−1

−K A L

]
=
[

C2L −C2AK−1

−K S2A S2L

]
.

As C2 and K are invertible, this implies that A = 0, so B is complex linear and thus unitary,
and C1 = C2B. This implies that C2

1 = C2B B∗C2 = C2
2 , so C1 = C2 and C1 = C1B. As

C1 is invertible, it follows that B = IH and (c) holds. ��
Definition 2.8 Set

M(H) := {MB : B ∈ S(H)×
}
,

AW (H) := {� M : � ∈ AW0(H), M ∈ M(H)
}
,

and �A,B := �A MB for all A ∈ B(H)+ and B ∈ S(H)×.
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Quasifree Stochastic Cocycles and Quantum RandomWalks 9

We refer to the elements of M(H), AW (H) and AW0(H) respectively as squeezing matrices,
AW amplitudes and gauge-invariant AW amplitudes for H.

Remarks (i) The AW abbreviation is in acknowledgement of Araki and Woods [2].
(ii) Each AW amplitude for H is of the form �A,B for a unique pair (A, B) ∈ B(H)+ ×

S(H)×, by Proposition 2.7.
(iii) Let � = �A,B ∈ AW (H). Then � ◦ ι is symplectic, since it is the composition of

symplectic maps (�A ◦ ι) ◦ B, and so is a covariance amplitude of a quasifree state on
CC R(H), by Lemma 2.4.

(iv) In terms of the parameterisation B = BV ,C,P := V (cosh P −C sinh P) of B ∈ S(H)×
as in Theorem A.2, the squeezing matrices take the following form:

MB = MV ,C,P :=
[

V cosh P V C sinh P · K−1

K V C sinh P V cosh P

]
,

(MB)−1 = MB−1 = MV ∗,−V CV ∗,V PV ∗
(2.9)

and

�A,B = �A,V ,C,P :=
[

cosh A · V cosh P cosh A · V C sinh P · K−1

K sinh A · V C sinh P sinh A · V cosh P

]
. (2.10)

Araki–Woods Representations

We are interested in the class of representations W� of CC R(H) of Araki–Woods type, and
the corresponding quasifree states ϕ� , determined by AW amplitudes � = �A,B as follows:

W� := WH⊕H ◦ � ◦ ι : x �→ WH⊕H

(
�ι(x)

)
and ϕ� : wx �→ 〈�H⊕H, W�(x)�H⊕H

〉
(x ∈ H).

Remark Let � = �A,B ∈ AW (H). On one hand, if A is injective then Ran� ◦ ι is total in
H⊕H from which it follows that �H⊕H is a cyclic vector for the representation W� [42] (see
[28, Proposition 2.1]). On the other hand, if A = 0 then W�(x) = WH(Bx) ⊗ I�(H) for all

x ∈ H, so Lin{W�(x)�H⊕H : x ∈ H} = �(H) ⊗ �H.

These AW representations W� inherit regularity from the Fock representation WH⊕H. As
in the Fock case, given any x ∈ H, setting

a+
�(x) := 1

2

(
R�(ix) + i R�(x)

)
and a−

�(x) := 1
2

(
R�(ix) + i R�(x)

)
defines creation and annihilation operators via the quasifree field operators {R�(z) : z ∈ H},
which are the Stone generators of the corresponding unitary groups (W�(t z))t∈R. We now
relate these to Fock creation and annihilation operators.

Let the AW amplitude � ∈ B(H⊕ H) have the block-matrix form

[
�0
0 �0

1
�1
0 �1

1

]
. The identi-

fication �(H⊕ H) = �(H) ⊗ �(H) gives that

W�(x) = WH⊕H(�0
0 x − �0

1 x, �1
0x − �1

1x)

= WH(�0
0 x − �0

1 x) ⊗ WH(�1
0x − �1

1x) for all x ∈ H.

It follows that R�(x) is the closure of the operator

RH(�0
0 x − �0

1 x) ⊗ I�(H) + I�(H) ⊗ RH(�1
0x − �1

1x),
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10 A. C. R. Belton et al.

by [40, Theorem VIII.33], which implies that

a+
�(x) ⊇ a+

H⊕H
(�0

0 x, �1
0x) + a−

H⊕H
(�0

1 x, �1
1x) (2.11a)

and a−
�(x) ⊇ a−

H⊕H
(�0

0 x, �1
0x) + a+

H⊕H
(�0

1 x, �1
1x). (2.11b)

Thus, in terms of a parameterisation � = �A,V ,C,P , as in (2.10),

a±
�(x) ⊇ a±

H⊕H

(
cosh A · U cosh P x, sinh A · UC sinh P x

)
+a∓

H⊕H

(
cosh A · UC sinh P x, sinh A · U cosh P x

)
for all x ∈ H.

In particular, for a gauge-invariant AW amplitude � = �A,

a±
�(x) ⊇ a±

H (cosh A x) ⊗ I�(H) + I�(H) ⊗ a∓
H

( sinh A x ) for all x ∈ H.

Remark The absence of minus signs in these relations is due to our choice of signs in the
definition of the doubling map ι, and the choice of parameterisation of the symplectic auto-
morphism B.

3 Quantum Stochastic Calculus

In this section we summarise the relevant elements of standard quantum stochastic calculus
[17,28,34,35] in a way which is adapted to the requirements of the quasifree stochastic
calculus developed in Sect. 4. This section ends with discussions of the non-uniqueness of
implementing quantum stochastic cocycles for an Evans–Hudson flow, andBhat’sminimality
criterion for quantum stochastic dilations.

For the rest of this article, we fix a Hilbert space h, which is referred to as the initial space
or system space. For this section, we also fix a Hilbert space K as the multiplicity space or
noise dimension space. In later sections, this will vary or have further structure.

Notation We use the abbreviations �, W , a+, a− and F for �H, WH, a+
H , a−

H and �(H),
respectively, where the Hilbert space H equals L2(R+; K). As is customary, we abbreviate
the simple tensor u ⊗ ε( f ) to uε( f ) whenever u ∈ h and f ∈ L2(R+; K).

For each t ∈ R+wehave the decompositionF = Ft)⊗F[t , whereFt) := �
(
L2([0, t); K)

)
and F[t := �

(
L2([t,∞); K)

)
.

The space of compactly supported step functions from R+ to K is denoted S. Although
we view S as a subspace of L2(R+; K), we always take the right-continuous version of each
step function, thus allowing us to evaluate these functions at any point in R+.

Note that S enjoys the following useful properties:

(i) If f ∈ S and t ∈ R+ then 1[0,t) f ∈ S;
(ii) the exponential subspace E := Lin{ε( f ) : f ∈ S} is dense in F ;
(iii) the subspace Lin{ f (t) : t ∈ R+} is finite dimensional, for all f ∈ S.

In what follows we restrict our attention, as much as possible, to processes composed of
bounded operators.

Definition 3.1 An h-h′ process, or h process if h = h′, is a function

X : R+ → B(h⊗ F;h′ ⊗ F); t �→ Xt

123



Quasifree Stochastic Cocycles and Quantum RandomWalks 11

which is adapted, so that

Xt ∈ B(h⊗ Ft);h′ ⊗ Ft)) ⊗ I[t for all t ∈ R+,

where I[t is the identity operator on F[t , and measurable, so that the function

R+ → h′ ⊗ F; t �→ Xtξ

is weakly measurable for all ξ ∈ h⊗F . By separability, weak measurability may be replaced
with strong measurability here.

An h-h′ process X is

(i) simple if it is piecewise constant and right continuous, so that there exists a strictly
increasing sequence (tn)n≥1 ⊆ R+ such that t1 = 0 and tn → ∞ as n → ∞, with X
constant on each interval [tn, tn+1);

(ii) continuous if t �→ Xtξ is continuous for all ξ ∈ h⊗ F ;
(iii) unitary if Xt is a unitary operator for all t ∈ R+.

Every h-h′ process X has an adjoint process, namely the h′-h process X∗ : t �→ X∗
t .

Clearly X∗ is simple if X is.

Notation It is convenient to augment the multiplicity space, by setting

K̂ := C ⊕ K, x̂ :=
(
1

x

)
for all x ∈ K and f̂ (t) := f̂ (t) for all f ∈ S and t ∈ R+.

Thus K̂⊗ h = h⊕ (K⊗ h) and any operator T ∈ B (̂K⊗ h; K̂⊗ h′) has a block-matrix form
[

T 0
0 T 0

1
T 1
0 T 1

1

]
∈
[

B(h;h′) B(K⊗ h;h′)
B(h; K⊗ h′) B(K⊗ h; K⊗ h′)

]
.

Remark One may also begin with a non-trivial Hilbert space K̂ and, by choosing a distin-
guished unit vector ω ∈ K̂, obtain K by setting K := K̂� Cω. This observation will be useful
in Sect. 6.

Definition 3.2 AK-integrand process onh, or simply an integrand process, is a K̂⊗hprocess F
such that, in terms of its block-matrix form

[
K M
L N

]
,

s → Ksvε(g) and s �→ Ms
(
g(s) ⊗ vε(g)

)
are locally integrable,

and s → Lsvε(g) and s �→ Ns
(
g(s) ⊗ vε(g)

)
are locally square-integrable,

for all v ∈ h and g ∈ S.

Remark Suppose F is a K̂⊗ h process such that, for all x , y ∈ K, the function

s �→ ∥∥Ks + Ms
(|x〉 ⊗ Ih⊗F

)∥∥+ ∥∥(〈y| ⊗ Ih⊗F )
(
Ls + Ns(|x〉 ⊗ Ih⊗F )

)∥∥2
is locally integrable. Then F is an integrand process.

Theorem 3.3 For any integrand process F, there exists a unique family �(F) := (�(F)t )t�0
of linear operators, with common domain h ⊗ E and codomain h⊗ F , such that

〈uε( f ),�(F)tvε(g)〉 =
∫ t

0

〈
f̂ (s) ⊗ uε( f ), Fs(ĝ(s) ⊗ vε(g))

〉
ds (3.1)
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12 A. C. R. Belton et al.

for all u, v ∈ h, f , g ∈ S and t ∈ R+. Furthermore, if r , t ∈ R+ are such that r � t then

‖(�(F)t − �(F)r )vε(g)‖ �
∫ t

r

∥∥(Ks + Ms(|g(s)〉 ⊗ Ih⊗F ))vε(g)
∥∥ ds

+ C(g)
{ ∫ t

r

∥∥(Ls + Ns(|g(s)〉 ⊗ Ih⊗F )
)
vε(g)

∥∥2 ds
}1/2

for all u, v ∈ h and f , g ∈ S, where C(g) := ‖g‖ + (1+ ‖g‖2)1/2.

Proof See [28, Theorem 3.13]. ��
Remark The identity (3.1) is known as the first fundamental formula of quantum stochastic
calculus.

Corollary 3.4 If F = [ K M
L N

]
is an integrand process and its adjoint process F∗ = [ K ∗ L∗

M∗ N∗
]

is also an integrand process then �(F∗)t ⊆ �(F)∗t for all t ∈ R+.

Remark If the integrand process F is such that the operator�(F)t is bounded, for all t ∈ R+,
then taking the closure of each operator defines a continuous h process which, by a slight
abuse of notation, we also denote by �(F).

Notation Let F = [ K M
L N

]
be an integrand process. Then

A◦(K ) :=�
( [

K 0
0 0

] )
, A−(M) := �

( [
0 M
0 0

] )
,

A+(L) :=�
( [

0 0
L 0

] )
and A×(N ) := �

( [
0 0
0 N

] )
are the time, creation, annihilation and preservation integrals, respectively.

The following proposition, which is readily verified, connects the definition of quantum
stochastic integrals of Theorem 3.3 with the classical Itô integration of simple processes.

Proposition 3.5 Suppose the noise dimension space K is finite dimensional, with orthonormal
basis (ei )i∈I. Let F = [ K M

L N

]
be a simple integrand process, let t > 0, and suppose the

partition {0 = t0 < t1 < · · · < tn = t} contains the points of discontinuities of F on [0, t).
Then

A+(L)t =
∑
i∈I

∫ t

0
Li (s) dA+(sei ) :=

∑
i∈I

n−1∑
j=0

Li (t j )
(
Ih ⊗ a+(ei1[t j ,t j+1))

)
on h ⊗ E

and

A−(M)t =
∑
i∈I

∫ t

0
Mi (s) dA−(sei ) :=

∑
i∈I

n−1∑
j=0

Mi (t j )
(
Ih ⊗ a−(ei1[t j ,t j+1))

)
on h ⊗ E,

where Li (s) := (〈ei | ⊗ Ih⊗F )L(s) and Mi (s) := M(s)(|ei 〉 ⊗ Ih⊗F ).

Remark The preservation integral A×(N ) has a similar expression (see [35]) and the time
integral is given by the straightforward prescription

A◦(K )t :=
n−1∑
j=0

K (t j )(t j+1 − t j ).
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The following result is the quantum Itô product formula, or second fundamental formula.
To state it, we define the quantum Itô projection

� :=
[
0 0
0 IK

]
∈ B (̂K),

which is ampliated to
[
0 0
0 IK⊗h

]
for appropriate choices of h without change of notation.

Theorem 3.6 Let F and G be integrand processes, let X0, Y0 ∈ B(h) ⊗ IF , and, for all
t ∈ R+, set Xt = X0 + �(F)t and Yt = Y0 + �(G)t . Then

〈Xt uε( f ), Ytvε(g)〉 = 〈X0uε( f ), Y0vε(g)〉
+
∫ t

0

{〈
f̂ (s) ⊗ Xsuε( f ), Gs

(
ĝ(s) ⊗ vε(g)

)〉

+
〈
Fs
(

f̂ (s) ⊗ uε( f )
)
, ĝ(s) ⊗ Ysvε(g)

〉

+
〈
Fs
(

f̂ (s) ⊗ uε( f )
)
,�Gs

(
ĝ(s) ⊗ vε(g)

)〉}
ds

for all u, v ∈ h, f , g ∈ S and t ∈ R+.

Proof See [28, Theorem 3.15]. ��
Definition 3.7 The map

E� : B(h⊗ F) → B(h), T �→ E�[T ] := (Ih ⊗ 〈�|) T (Ih ⊗ |�〉)
is called the vacuum expectation. For all t ∈ R+, let σ K

t be the normal ∗-endomorphism of
B(F) such that

σ K
t

(
W (g)

) = W (St g), where (St g)(s) :=
{

g(s − t) if s � t,
0 if s < t .

The family σ K := (σ K
t )t�0 is called the CCR flow of index K. We set

σt := idB(h) ⊗ σ K
t for all t ∈ R+.

Remark The vacuum expectation is normal, unital and completely positive, and the family
σ = (σt )t�0, is an E0 semigroup [3] such that:

E� ◦ σt = E� for all t ∈ R+. (3.2)

Definition 3.8 An h process Y is a quantum stochastic cocycle on h if

Y0 = Ih⊗F and Yr+t = σr (Yt )Yr for all r , t ∈ R+,

and an elementary QS cocycle if its vacuum expectation semigroup (E�[Yt ])t�0 is norm
continuous. AHudson–Parthasarathy cocycle, orHP cocycle in short, is a unitary elementary
QS cocycle.

Remark The fact that (E�[Yt ])t�0 is a one-parameter semigroup follows from the adapted-
ness relations

σr (Yt ) ∈ B(h) ⊗ IFr)
⊗ B(F[r ) and Yr ∈ B(h⊗ Fr)) ⊗ IF[r

and the identity (3.2): note that

E�[Yr+t ] = E�[σr (Yt )]E�[Yr ] = E�[Yt ]E�[Yr ] for all r , t ∈ R+.
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14 A. C. R. Belton et al.

Notation Let

B (̂K⊗ h)0 :=
{

T =
[

T 0
0 T 0

1
T 1
0 T 1

1

]
∈ B (̂K⊗ h) : T 1

1 = 0
}
.

Theorem 3.9 (a) Let F ∈ B (̂K⊗ h). The following are equivalent.

(i) F =
[

K −L∗W
L W−IK⊗h

]
where K = iH − 1

2 L∗L, for a self-adjoint operator H and

unitary operator W .
(ii) F∗ + F + F∗�F = 0 = F + F∗ + F�F∗.
(iii) There is a unitary h process U such that

Ut = Ih⊗F + �(F · U )t for all t ∈ R+, (3.3)

where (F · U )s := (F ⊗ IF )(IK̂ ⊗ Us) for all s ∈ R+.

In this case, U is the unique unitary h process satisfying (3.3).
(b) Let U be a unitary h process. The following are equivalent.

(i) U satisfies (3.3) for some operator F ∈ B (̂K⊗ h).
(ii) U is an HP cocycle.

In this case,

〈̂x ⊗ u, (F + �)ŷ ⊗ v〉 = lim
t→0+ t−1〈uε(x1[0,t)), (Ut − Ih⊗F )vε(y1[0,t))

〉
(3.4)

for all u, v ∈ h and x, y ∈ K. In particular, the vacuum expectation semigroup of U
has generator K , where K is the top left entry of the block matrix operator F.

(c) If F ∈ B (̂K⊗ h)0 then (i) and (ii) of (a) have the respective equivalents.

(i) F = [ K −L∗
L 0

]
, where K + 1

2 L∗L is skew-adjoint.
(ii) F∗ + F + F∗�F = 0.

Proof Part (a) is covered by Theorems 7.1 and 7.5 of [33]. For (b), see [28]. The identity (3.4)
is a straightforward consequence of (3.3), the first fundamental formula (3.1) and the strong
continuity of U . ��
Remark The quantum stochastic equation (3.3) is referred to as the quantum Langevin equa-
tion in the physics literature [18,45].

Definition 3.10 Given an HP cocycle U , the unique operator F , or triple (H , L, W ), asso-
ciated with U via (3.4) is called its stochastic generator. Conversely, for an operator
F ∈ B (̂K⊗h) having the block-matrix form given in Theorem 3.9(a)(i), the unique HP cocy-
cle satisfying (3.3) is denoted Y F or U (H ,L,W ).

Remark If F is the stochastic generator of an HP cocycle then Theorem 3.9 implies that F∗
is also such a generator, since[

iH − 1
2 L∗L −L∗W

L W − IK⊗h

]∗
=
[
iH̃ − 1

2 L̃∗ L̃ −L̃∗W̃

L̃ W̃ − IK⊗h,

]

where W̃ = W ∗, L̃ = −W ∗L and H̃ = −H . However, it is usually not the case that Y F∗

and (Y F )∗ are equal. An exception is when h = C, described in Example 3.13.

In this article, we are mainly concerned with the following subclass of HP cocycles
discussed in [29].
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Quasifree Stochastic Cocycles and Quantum RandomWalks 15

Definition 3.11 An HP cocycle is Gaussian if its stochastic generator lies in B (̂K ⊗ h)0.
Equivalently, its parameterisation has the form (H , L, IK⊗h).

Corollary 3.12 The prescription (H , L, W ) �→ U (H ,L,W ) defines a bijection

B(h)sa × B(h; K⊗ h) × U (K⊗ h) → {HP cocycles on h with noise dimension space K
}
,

and the restriction (H , L) �→ U (H ,L,I ) defines a bijection

B(h)sa × B(h; K⊗ h) → {Gaussian HP cocycles on h with noise dimension space K
}
.

Example 3.13 (Pure-noise cocycles) For any z ∈ K, setting W z := (W (z1[0,t)))t�0 defines
an HP cocycle on C. An operator F ∈ B (̂K) is the generator of an HP cocycle on C if and
only if

F =
[
iα − 1

2‖z‖2 −〈z|w
|z〉 w − IK

]
for some α ∈ R, z ∈ K and w ∈ U (K).

The Gaussian pure-noise cocycles are precisely those of the form (eiαt W z
t )t�0 for some

α ∈ R and z ∈ K.
As B(Fr)) ⊗ I[r and σ K

r

(
B(F)

) = Ir) ⊗ B(F[r ) commute for all r ∈ R+, the adjoint
process (Y F )∗ is equal to the HP cocycle Y F∗

in this case.

Lemma 3.14 Let U be an HP cocycle on h and let u be a pure-noise HP cocycle with the
same noise dimension space. Then

Ũ := ((Ih ⊗ ut )Ut )t�0

is an HP cocycle on h. Moreover, the stochastic generators F̃ ∼ (H̃ , L̃, W̃ ) of Ũ , F ∼
(H , L, W ) of U and f ∼ (α, |z〉, w) of u are related as follows:

F̃ = ( f ⊗ Ih) + F + ( f ⊗ Ih)�F

or, equivalently,

W̃ = (w ⊗ Ih)W ,

L̃ = (w ⊗ Ih)L + |z〉 ⊗ Ih

and H̃ = H + i
2

(
(〈w∗z| ⊗ Ih)L − L∗(|w∗z〉 ⊗ Ih)

)+ α Ih.

(3.5)

Proof That the unitary process Ũ is a QS cocycle follows from the fact that σr (Ut ) and
Ih ⊗ ur commute for all r , t ∈ R+. The quantum Itô product formula, Theorem 3.6, implies
that Ũt = Ih⊗F + �(F̃ · Ũ )t for all t ∈ R+, where F̃ = ( f ⊗ Ih) + F + ( f ⊗ Ih)�F . It

now follows from the uniqueness part of Theorem 3.9 that Ũ equals the HP cocycle Y F̃ , so
that Ũ = U (H̃ ,L̃,W̃ ) where (H̃ , L̃, W̃ ) is given by (3.5). ��
Remark More general conditions under which the product of two elementary QS cocycles is
a QS cocycle are given in [44].

Definition 3.15 A quantum dynamical semigroup P = (Pt )t�0 is a semigroup of completely
positive contractive normal maps on B(h) which is pointwise weak operator continuous. If
Pt is unital for all t ∈ R+ then P is called conservative.
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16 A. C. R. Belton et al.

Remark The generator L of a norm-continuous conservative quantum dynamical semigroup
is expressible in Lindblad form [26]: there exists a separable Hilbert space K, a self-adjoint
operator H ∈ B(h) and an operator L ∈ B(h; K⊗ h) such that

L(a) = −i[H , a] − 1
2 {L∗L, a} + L∗(IK ⊗ a)L for all a ∈ B(h), (3.6)

where [ , ] and { , } denote the commutator and anti-commutator, respectively.

Theorem 3.16 Let U be an HP cocycle with stochastic generator (H , L, W ). For all t ∈ R+,
let

jt : B(h) → B(h⊗ F); a �→ U∗
t (a ⊗ IF )Ut ,

and let

θ : B(h) → B(K̂⊗ h);
a �→

[−i[H , a] − 1
2 {L∗L, a} + L∗(IK ⊗ a)L (L∗(IK ⊗ a) − aL∗)W

W ∗((IK ⊗ a)L − La) W ∗(IK ⊗ a)W − IK ⊗ a

]
. (3.7)

(a) If jK := (idB(K̂) ⊗ jt )t�0, so that

jKt (A) = (IK̂ ⊗ Ut )
∗(A ⊗ IF )(IK̂ ⊗ Ut ) for all t ∈ R+ and A ∈ B (̂K⊗ h),

then
(
( jKt ◦ θ)(a)

)
t�0 is an integrand process for all a ∈ B(h) and

jt (a) = a ⊗ IF + �
(
( jK ◦ θ)(a)

)
t for all a ∈ B(h) and t ∈ R+. (3.8)

Furthermore, the family j = ( jt )t�0 is the unique mapping process consisting of normal
∗-homomorphisms that satisfies (3.8).

(b) The mapping process j obeys the cocycle relation

jr+t = ĵr ◦ σr ◦ jt for all r , t ∈ R+,

where ĵr is the normal *-homomorphism from Ran σr to B(h⊗ F) such that

ĵr (a ⊗ b) = jr (a)(Ih ⊗ b) for all a ∈ B(h) and b ∈ Ran σ K
r ⊆ B(F).

Moreover, setting P := (E� ◦ jt )t�0 defines a norm-continuous conservative quantum
dynamical semigroup on B(h), the vacuum expectation semigroup of j .

(c) For all a ∈ B(h), u, v ∈ h and x, y ∈ K,
〈̂
x ⊗ u, (θ(a) + � ⊗ a)ŷ ⊗ v

〉 = lim
t→0+ t−1〈uε(x1[0,t)), ( jt (a) − a ⊗ IF )vε(y1[0,t))

〉
.

In particular, the vacuum expectation semigroup of j has generator L, given by (3.6).

Proof That j satisfies (3.8) follows from the quantum Itô product formula. In turn, part (c)
follows from (3.8), the first fundamental formula, Theorem 3.3, and the strong continuity
of U . For (b) and the uniqueness part of (a), see [28] and [33]. ��

Definition 3.17 An inner Evans–Hudson flow on B(h), or inner EH flow in short, is amapping
process j induced by an HP cocycle on h, as above [16]. The map θ is called the stochastic
generator of j .
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Remark Let j be an inner EH flow on B(h). Using the ampliations introduced in Theo-
rem 3.16, the prescription J := (ĵt ◦ σt )t�0 produces an E0 semigroup on B(h⊗ F) such
that

Jt (A) := U∗
t σt (A)Ut for all A ∈ B(h⊗ F) and t ∈ R+,

where U is any HP cocycle inducing j . In turn, we can recover j from J , since jt = Jt ◦ ιF
for all t ∈ R+, where the ampliation

ιF : B(h) → B(h⊗ F); a �→ a ⊗ IF .

Given an HP cocycle U , Lemma 3.14 provides sufficient conditions for an HP cocycle U ′
to induce the same EH flow as U . In the next result we show that these conditions are also
necessary.

Proposition 3.18 Suppose j and j ′ are inner EH flows on B(h) with noise dimension
space K, induced by HP cocycles U and U ′ and having stochastic generators (H , L, W )

and (H ′, L ′, W ′), respectively. The following are equivalent.

(i) The flows j and j ′ are equal.
(ii) The process (U ′

t U
∗
t )t�0 is the ampliation to h of a pure-noise HP cocycle.

(iii) There is a scalar α ∈ R, a vector z ∈ K and an operator w ∈ U (K) such that

w ⊗ Ih = W ′W ∗,
|z〉 ⊗ Ih = L ′ − (w ⊗ Ih)L

and α Ih = H ′ − H − i
2

(
(〈w∗z| ⊗ Ih)L − L∗(|w∗z〉 ⊗ Ih)

)
.

Proof If (ii) holds then Lemma 3.14 implies that (iii) holds.
If (iii) holds then it is easily verified that θ ′, defined from (H ′, L ′, W ′) rather than

(H , L, W ), coincides with θ . Thus (i) holds by the uniqueness part of Theorem 3.16(a).
Finally, suppose that (i) holds, and let X denote the unitary process (U ′

t U
∗
t )t�0. For all

t ∈ R+, the operator Xt commutes with all operators in B(h) ⊗ IF , so Xt = Ih ⊗ ut for
some unitary operator ut ∈ B(F). This implies that Xr commutes with σr (U∗

t ) for all r ,
t ∈ R+, and so

σr (Xt )Xr = σr (U
′
t )Xrσr (U

∗
t ) = σr (U

′
t )U

′
r U∗

r σr (Ut )
∗ = U ′

r+tU
∗
r+t = Xr+t .

Hence u = (ut )t�0 is a unitary QS cocycle on C. Since (U ′)∗ and U∗ are both strongly
continuous and unitary, u is strongly continuous and therefore its vacuum expectation semi-
group P is too. As P is a semigroup on C, this implies that P is norm continuous. Thus u is
an HP cocycle and therefore (ii) holds. ��
Remarks Given a norm-continuous conservative quantum dynamical semigroup P on B(h),
its generator L is expressible in Lindblad form (3.6) for some separable Hilbert space K and
operators H = H∗ ∈ B(h) and L ∈ B(h; K⊗h). In turn, Theorem 3.16 implies that the inner
EH flow j induced by the HP cocycle with generator (H , L, IK⊗h) has vacuum expectation
semigroup P . In this sense, the flow j is a stochastic dilation of P .

The non-uniqueness of triples (K, H , L) determining the generatorL of a norm-continuous
quantum dynamical semigroup on B(h) is analysed in [38]; this may be compared to the
non-uniqueness of triples (H , L, W ) determining the stochastic generator θ of a given inner
EH flow j characterised in Proposition 3.18.

The construction of stochastic dilations was a major motivation for the original develop-
ment of quantum stochastic calculus [24,35].
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18 A. C. R. Belton et al.

We end this summary of standard quantum stochastic calculus by connecting it to Bhat’s
analysis of dilations of the above form, in particular the question of minimality.

Theorem 3.19 ([13, Theorem 9.1]) Let j be an inner EH flow. The following are equivalent.

(i) As a stochastic dilation of its vacuum expectation semigroup, the flow j is minimal:

Lin
{

jt1(a1) · · · jtn (an)u� : u ∈ h, n � 1, ai , . . . , an ∈ B(h), t1, . . . , tn ∈ R+
} = h⊗ F .

(ii) The stochastic generator (H , L, W ) of any HP cocycle which induces j satisfies

(〈z| ⊗ Ih)L /∈ CIh for all z ∈ K \ {0}.
Remarks To see directly that (ii) is independent of the choice of HP cocycle which induces j ,
note that for two suchHPcocycleswith stochastic generators (H1, L1, W1) and (H2, L2, W2),
it holds that{

(〈z| ⊗ Ih)L2 : z ∈ K \ {0}}+ CIh = {(〈z| ⊗ Ih)L1 : z ∈ K \ {0}}+ CIh,

by Proposition 3.18. This also gives the following further equivalent condition.

(iii) The stochastic generator (H , L, W ) of any HP cocycle which induces j is such that the
degeneracy space KL equals {0}; for the definition of KL , see (5.1).

Bhat actually deals with the associated E0 semigroup J := (ĵt ◦ σt )t�0 on B(h ⊗ F)

which, in view of the remark following Definition 3.17, is equivalent.

4 Quasifree Stochastic Calculus

In this sectionweproduce a simplified formof the coordinate-freemultidimensional quasifree
stochastic calculus [31,32] with respect to a fixed AW amplitude � = �A,B for a Hilbert
space k, the quasifree noise dimension space, whose conjugate Hilbert space we denote by
(k, k).

In contrast to the approach of [31,32], here we focus on that part of the quasifree stochastic
calculus that may be obtained inside the standard theory summarised in Sect. 3. Thus, whilst
being restricted to HP cocycles so that stochastic generators are all bounded, the results
developed here do not require faithfulness of the quasifree states employed.

The conjugate Hilbert space of L2(R+; k) is identified with L2(R+; k) (conjugation being
defined pointwise: f (t) := f (t)), and the orthogonal sum L2(R+; k)⊕ L2(R+; k) is identi-
fied with L2(R+; k⊕ k). Note that we are here working with the Boson Fock space F over
L2(R+; k⊕ k).

Motivation Let [�0 �1 ] =
[

�0
0 �0

1
�1
0 �1

1

]
be the block-matrix form of the AW amplitude �,

with �0 =
[

�0
0

�1
0

]
∈ B(k; k⊕ k) and �1 =

[
�0
1

�1
1

]
∈ B(k; k⊕ k). Following Proposition 3.5

and the relations (2.11a–b) expressing quasifree creation and annihilation operators a+
� and

a−
� in terms of Fock creation and annihilation operators, the following requirements for

quasifree stochastic integration become apparent.
Suppose the quasifree noise dimension space k is finite dimensional, with orthonormal

basis (ei )i∈I, let R be a simple (k ⊗ h)-h process, let t > 0 and suppose the partition
{0 = t0 < · · · < tn = t} contains the points of discontinuity of R on [0, t). (We are using the
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Quasifree Stochastic Cocycles and Quantum RandomWalks 19

symbol R here for convenience; there is no suggestion of any connection with field operators,
for which the symbol was used earlier.) Set

A−
�(R)t = I1(t) + I2(t),

where

I1(t) :=
∑
i∈I

n−1∑
j=0

Ri (t j )
(
Ih ⊗ a−

H⊕H
(�0

0ei1[t j ,t j+1), �
1
0ei1[t j ,t j+1))

)
,

and I2(t) :=
∑
i∈I

n−1∑
j=0

Ri (t j )
(
Ih ⊗ a+

H⊕H
(�0

1ei1[t j ,t j+1), �
1
1ei1[t j ,t j+1))

)
,

with H denoting L2(R+; k). Note that, for any u ∈ h, f , g ∈ Sk and x , y ∈ k,

a−
H⊕H

(�0
0ei1[t j ,t j+1), �

1
0ei1[t j ,t j+1))ε( f , g) =

∫ t j+1

t j

〈
(�0

0ei , �
1
0ei ), ( f (s), g(s))

〉
ε( f , g) ds,

〈(�0
0ei , �

1
0ei ), (x, y)〉 =

〈
ei , (�0)

∗
(

x

y

)〉

and
〈
ei , (�0)

∗
(

x

y

)〉
Ri (t j )uε( f , g) = R(t j )

(|ei 〉〈ei | ⊗ Ih⊗F
)(

(�0)
∗
(

x

y

)
⊗ uε( f , g)

)
.

Thus

I1(t)uε( f , g) =
∫ t

0
Rs

(
(�0)

∗
(

f (s)

g(s)

)
⊗ uε( f , g)

)
ds for all u ∈ h and f , g ∈ S,

and therefore

I1(t) ⊇ A−(R ((�0)
∗ ⊗ Ih⊗F )

)
t .

Applying this reasoning to I2(t)∗, and exploiting adaptedness to commute the terms Ri (t j )
∗

and Ih ⊗ a−
H⊕H

(�0
1ei1[t j ,t j+1), �

1
1ei1[t j ,t j+1)), where i ∈ I and j = 0, . . . , n − 1, yields the

relation

I2(t)
∗ = A−(RT∗ ((�1)

∗ ⊗ Ih⊗F )
)

t on h ⊗ EK,

where RT is the h-(k⊗ h) process such that

(〈ei | ⊗ Ih⊗F )RT
s = Rs(|ei 〉 ⊗ Ih⊗F ) for all i ∈ I and s ∈ R+;

RT is said to be partially transpose to R. It follows that

I2(t) ⊇ A+((�1 ⊗ Ih⊗F )RT)
t ,

and therefore

A−
�(R)t = A−(R((�0)

∗ ⊗ IF ))t + A+((�1 ⊗ IF )RT)t .

Moreover, this also shows, for a suitable h-(k⊗ h) process Q, that

A+
�(Q)t = A+((�0 ⊗ IF )Q

)
t + A−(QT((�1)

∗ ⊗ IF )
)

t ,

where QT is the (k⊗ h)-h process partially transpose to Q, given by (Q∗T∗
t )t�0.
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20 A. C. R. Belton et al.

Hence

A+
�(Q)t + A−

�(R)t = A+((� ⊗ Ih⊗F )
[

Q
RT

])
t

+ A−([R QT
]
(�∗ ⊗ Ih⊗F )

)
t

for all t ∈ R+.

The preceding discussion shows clearly the need for a partial transpose operation for
infinite-dimensional k. A comprehensive theory is developed in [31,32]. Here we specialise
to our context of AW amplitudes, and it is convenient to concentrate on the composition of
the partial transpose and adjoint operations.

First note that, for any Y ∈ B(h1;h⊗ h2), the quantity

c(Y ) := sup
{(∑

i∈I‖Y ∗(ei ⊗ u)‖2)1/2 : u ∈ h2, ‖u‖ = 1
}
∈ [0,∞]

is independent of the choice of orthonormal basis (ei )i∈I for h. When it is finite,

c(Y ) = sup
{‖Y ∗(Ih ⊗ |u〉)‖2 : u ∈ h2, ‖u‖ = 1

}
,

where ‖·‖2 denotes the Hilbert–Schmidt norm. Let H S(h;h′) denote the space of Hilbert–
Schmidt operators from h to h′.

Theorem 4.1 Let Y ∈ B(h1;h⊗ h2).

(a) The following are equivalent.

(i) There is an operator Y c ∈ B(h2;h⊗ h1) such that

(〈y| ⊗ Ih1)Y
c = Y ∗(|y〉 ⊗ Ih2) for all y ∈ h. (4.1)

(ii) The quantity c(Y ) is finite.

In this case, the operator Y c is unique and c(Y ) = ‖Y c‖; furthermore, c(Y c) = ‖Y‖
and Y cc = Y .

(b) Suppose that c(Y ) < ∞, and let

X ∈ B(h′;h′′), X1 ∈ B(h′1;h1), Z2 ∈ B(h2;h′2) and Z ∈ B(h).

The following statements hold.

(i) c(Y ⊗ X) < ∞ and (Y ⊗ X)c = Y c ⊗ X∗, so c(Y ⊗ X) = c(Y )‖X‖;
(ii) c(Y X1) < ∞ and (Y X1)

c = (Ih̄ ⊗ X∗
1)Y

c;
(iii) c((Ih ⊗ Z2)Y ) < ∞ and

(
(Ih ⊗ Z2)Y

)c = Y cZ∗
2 ;

(iv) c((Z ⊗ Ih2)Y ) < ∞ and
(
(Z ⊗ Ih2)Y

)c = (Z ⊗ Ih2)Y
c.

(c) Suppose that c(Y ⊗ Ih′) < ∞ for some non-zero Hilbert space h′. Then c(Y ) < ∞
and Y c ⊗ Ih′ = (Y ⊗ Ih′)

c.
(d) Let T ∈ H S(h0;h) and A ∈ B(h1;h2). Then c(T ⊗ A) = ‖T ‖2 ‖A‖ < ∞.

Proof Let (ei )i∈I be an orthonormal basis for h and note the trivial identity

Y ∗(|ei 〉 ⊗ Ih2)u = Y ∗(Ih ⊗ |u〉)ei for all i ∈ I and u ∈ h2. (4.2)

For (a), note first that if c(Y ) < ∞ then the prescription u �→∑i∈I ei ⊗ Y ∗(ei ⊗ u) defines
an operator Y c from h2 to h⊗ h1 which is bounded with norm c(Y ) and such that

(〈y| ⊗ Ih1)Y
cu =

∑
i∈I

〈ei , y〉Y ∗(ei ⊗ u) = Y ∗(y ⊗ u) for all y ∈ h and u ∈ h2,
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so that (4.1) holds. Conversely, suppose that an operator Y c ∈ B(h2;h⊗ h1) satisfies (4.1).
Then (4.2) implies that∑

i∈I
‖Y ∗(Ih ⊗ |u〉)ei‖2 =

∑
i∈I

‖(〈ei | ⊗ Ih1)Y
cu‖2 = ‖Y cu‖2 for all u ∈ h2,

so (ii) holds. Uniqueness of the operator Y c is immediate. The fact that Y cc = Y follows
from taking the adjoint of identity (4.1); therefore ‖Y‖ = ‖Y cc‖ = c(Y c).

Parts (b) and (d) are readily verified, and part (c) follows from the identity

Y ∗(Ih ⊗ |u〉) = (Ih1 ⊗ 〈u′|)(Y ⊗ Ih′)
∗(Ih ⊗ |u ⊗ u′〉),

which is valid for all u ∈ h and any unit vector u′ ∈ h′. ��
Definition 4.2 We let

Bc(h1;h⊗ h2) :=
{
Y ∈ B(h1;h⊗ h2) : c(Y ) < ∞},

and note that it is a subspace of B(h1;h⊗ h2) on which c defines a norm. The elements of
this space are h-conjugatable or partially conjugatable operators, and partial conjugation is
the conjugate-linear isomorphism

Bc(h1;h⊗ h2) → Bc(h2;h⊗ h1); Y �→ Y c.

An h-(k⊗h′) process Q is conjugatable if, for all t ∈ R+, the operator Qt is k-conjugatable;
in this case Qc := (Qc

t )t�0 is an h
′-(k⊗ h) process.

Remark Given any T ∈ B(h1;h2) and x ∈ h, the operator |x〉 ⊗ T is h-conjugatable, with
the result (|x〉 ⊗ T )c = |x〉 ⊗ T ∗. In particular, if dim h < ∞ then every operator Y in
B(h1;h⊗ h2) is h-conjugatable and ‖Y c‖ ≤ (dim h)‖Y‖.
Definition 4.3 A k̂⊗h process G with noise dimension space k and block matrix form

[ K R
Q 0

]
is a �-integrand process on h if, setting K = k⊕ k,

(a) the processes Q and R∗ are conjugatable, and
(b) the K̂⊗h process G� := [ K M

L 0

]
is a K-integrand process, in the sense of Definition 3.2,

where

Lt := (� ⊗ Ih⊗F )

[
Qt

R∗c
t

]
and Mt :=

[
Rt Qc∗

t

]
(�∗ ⊗ Ih⊗F ) for all t ∈ R+.

In this case, the quasifree stochastic integral of G is the process ��(G) := �(G�).

Remarks If G is a �-integrand process on h, with block-matrix form
[ K R

Q 0

]
, then

G� = �̂ G� �̂∗, where G� :=
⎡
⎣ K R Qc∗

Q 0 0
R∗c 0 0

⎤
⎦ and �̂ :=

[
1 0
0 �

]
⊗ Ih⊗F . (4.3)

A sufficient condition for a k̂ ⊗ h process
[ K R

Q 0

]
to be a �-integrand process is that the

function

t �→ ‖Kt‖ + ‖Qt‖2 + ‖Qc
t ‖2 + ‖Rt‖2 + ‖R∗c

t ‖2
is locally integrable on R+. If dim k < ∞ then this reduces to the local integrability of the
function t �→ ‖Kt‖ + ‖Qt‖2 + ‖Rt‖2.
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We will now show that �-integrability is unaffected by squeezing. The transformation
of integrands resulting from squeezing the AW amplitude may be viewed as a change-of-
variables formula.

Theorem 4.4 Let �̃ = � M, where M is a squeezing matrix for k, and let G be a �-integrand
process. Then there is a �̃-integrand process G̃ such that ��̃(G̃) = ��(G).

Proof Let G have block-matrix form
[ K R

Q 0

]
, let M = MV ,C,P as in (2.9), and let

Q̃t := (cV ∗ ⊗ I )Qt − (CsV ∗k−1 ⊗ I )R∗c
t and R̃t := Rt (V c ⊗ I ) − Qc∗

t (kV Cs ⊗ I )

for all t � 0, where c := cosh P , s := sinh P and I := Ih⊗F . To show that G̃ :=
[

K R̃
Q̃ 0

]
is

as desired, it now suffices to verify the following.

(a) The processes Q̃ and R̃ are conjugatable.
(b) For all t ∈ R+, it holds that

(�̃ ⊗ I )

[
Q̃t

R̃∗c
t

]
= (� ⊗ I )

[
Qt

R∗c
t

]
and

[
Rt Qc∗

t

]
(� ⊗ I )∗ = [R̃t Q̃c∗

t

]
(�̃ ⊗ I )∗;

equivalently,

(�̃ ⊗ I )

[
Q̃t R̃∗

t
R̃∗c

t Q̃c
t

]
= (� ⊗ I )

[
Qt R∗

t
R∗c

t Qc
t

]
for all t ∈ R+.

Now, Theorem 4.1 gives (a), and the following identities:

R̃∗c
t = (cV ∗ ⊗ I )R∗c

t − (ksCV ∗ ⊗ I )Qt ,

R̃∗
t = (cV ∗ ⊗ I )R∗

t − (sCV ∗k−1 ⊗ I )Qc
t

and Q̃c
t = (cV ∗ ⊗ I )Qc

t − (kCsV ∗ ⊗ I )R∗
t

for all t ∈ R+. Together these imply that[
Q̃t R̃∗

t
R̃∗c

t Q̃c
t

]
= (M ⊗ I )−1

[
Qt R∗

t
R∗c

t Qc
t

]
for all t ∈ R+,

and so (b) holds, as required. ��
The following identity is the first fundamental formula for quasifree stochastic integrals.

In view of Theorem 3.3, it holds by definition.

Proposition 4.5 Let G be a �-integrand process on h. With the notation given in (4.3),

〈
uε( f ),��(G)tvε(g)

〉 =
∫ t

0

〈
�̂∗ f (s) ⊗ uε( f ), G�

s

(
�̂∗g(s) ⊗ vε(g)

)〉
ds

for all u, v ∈ h, f , g ∈ SK and t ∈ R+.

The following is readily verified from the definitions. Let FH = �
(
L2(R+;H)

)
for any

choice of H.

Corollary 4.6 Suppose that the AW amplitude � is gauge invariant, so has the form �A, and
let k0 := Ker A. Then any �-integrand process G on h compresses to a k0-integrand process
G0 on h and �(G0)t is the compression of ��(G)t to h⊗ Fk0 , for all t ∈ R+.
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Remark Here k0 is being viewed as a subspace of K := k⊕k as well as of k, andFk0 is being
identified with the subspace Fk0 ⊗ �K�k0 of FK.

This observation shows the quasifree stochastic calculus constructed here incorporates
standard quantum stochastic integrals as well as purely quasifree stochastic integrals (i.e. QS
integrals with respect to integrators which are quasifree for a faithful state), making them
useful for the investigation of repeated interaction systems with particles in a non-faithful
state; see Sect. 6 and [11].

The following result is the second fundamental formula for quasifree stochastic integrals,
and should be compared with Theorem 3.6. The final term on the right-hand side is the
quasifree Itô correction term.

Theorem 4.7 Let X := (X0+��(G)t )t�0 and Y := (Y0+��(H)t )t�0, where G = [ K R
Q 0

]
and H = [ J T

S 0

]
are �-integrand processes and X0, Y0 ∈ B(h)⊗ IF . In the notation of (4.3),

〈Xt uε( f ), Ytvε(g)〉 = 〈X0uε( f ), Y0vε(g)〉
+
∫ t

0

{〈
�̂∗ f (s) ⊗ Xsuε( f ), H�

s

(
�̂∗g(s) ⊗ vε(g)

)〉

+
〈
G�

s

(
�̂∗ f (s) ⊗ uε( f )

)
, �̂∗g(s) ⊗ Ysvε(g)

〉

+
〈
(� ⊗ Ih⊗F )

[
Qs
R∗c

s

]
uε( f ), (� ⊗ Ih⊗F )

[
Ss

T ∗c
s

]
vε(g)

〉}
ds

for all u, v ∈ h, f , g ∈ SK and t ∈ R+.

Proof This follows immediately from Theorem 3.6, Definition 4.3 and the identity〈
G�

s (̂x ⊗ uε( f )),�H�
s (ŷ ⊗ vε(g))

〉
=
〈
(� ⊗ Ih⊗F )

[
Qs
R∗c

s

]
uε( f ), (� ⊗ Ih⊗F )

[
Ss

T ∗c
s

]
vε(g)

〉
,

which holds for all x , y ∈ K, u, v ∈ h, f , g ∈ SK and s ∈ R+. ��
Theorem 4.8 Let G ∈ B (̂k⊗ h)0. The following are equivalent.

(i) The operator G has block-matrix form
[

K −Q∗
Q 0

]
, where Q is conjugatable and

K + K ∗ + L∗L = 0 for the operator L := (� ⊗ Ih)

[
Q

−Qc

]
.

(ii) There is a unitary h process U with noise dimension space K = k⊕ k such that

(a) G · U := ((G ⊗ IF )( Îk ⊗ Ut ))t�0 is a �-integrand process, and
(b) Ut = Ih⊗F + ��(G · U )t for all t ∈ R+.

If either condition holds then U is the unique h process satisfying (a) and (b) of (ii).

Proof Suppose that (i) holds and set

F = G� :=
[

Ih 0
0 � ⊗ Ih

]⎡
⎣ K −Q∗ Qc∗

Q 0 0
−Qc 0 0

⎤
⎦
[

Ih 0
0 � ⊗ Ih

]∗
=
[

K −L∗
L 0

]
.

Then F ∈ B (̂K⊗h)0 and F∗+F+F∗�F = 0.Appealing toTheorem3.9 andDefinition 3.10,
there exists a unitary process U := Y F . Since (G · U )� = F · U , so G · U is a �-integrand
process and ��(G · U )t = �(F · U )t = Ut − Ih⊗F for all t ∈ R+, hence (ii) holds.
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Conversely, suppose that (ii) holds for a unitary h process U , and let
[ K R

Q 0

]
be the block-

matrix form of G. Theorem 4.1 implies that the operators Q and R∗ are conjugatable, and

(G · U )� = F · U , where F = G� :=
[

Ih 0
0 � ⊗ Ih

]⎡
⎣ K R Qc∗

Q 0 0
R∗c 0 0

⎤
⎦
[

Ih 0
0 � ⊗ Ih

]∗
.

(4.4)
Assumption (b) gives that Ut = Ih⊗F + �(F · U )t for all t ∈ R+, and so, by Theorem 3.9,
it holds that F∗ + F + F∗�F = 0 and U = Y F . In particular, the uniqueness claim is
established. The condition F∗ + F + F∗�F = 0 is equivalent to

(a)
[
R Qc∗] (�∗ ⊗ Ih) = −

(
(� ⊗ Ih)

[
Q

R∗c
])∗

and

(b) 0 = K ∗ + K + L∗L , where L = (� ⊗ Ih)
[

Q
R∗c
]
,

so it remains to prove that X := Q+R∗ = 0. Note that (a) is equivalent to (�⊗ Ih)
[

X
Xc

] = 0
and, in terms of the parameterisation �A,V ,C,P of the AW amplitude � given in (2.10) and
the notation k for the conjugation map from k to k, this is equivalent to

[
cosh A · V cosh P ⊗ Ih cosh A · V sinh P · Ck−1 ⊗ Ih

k sinh A · V C sinh P ⊗ Ih sinh A · V cosh P ⊗ Ih

] [
X
X c

]
= 0. (4.5)

It follows from (4.5) that X = −(tanh P · Ck−1 ⊗ Ih)X c, and so, by Theorem 4.1 and the
fact that C commutes with P and C2 = Ik,

X = (tanh P · Ck−1 ⊗ Ih)
(
(tanh P · Ck−1 ⊗ Ih)X c)c

= (tanh P · Ck−1 ⊗ Ih)(k tanh P · C ⊗ Ih)X

= (tanh2 P ⊗ Ih)X ,

thus 0 = ((Ik − tanh2 P) ⊗ Ih
)
X = (cosh2 P ⊗ Ih)−1X and so X = 0. ��

Remark From the preceding proof, we see that the unique unitary h processU determined by
an operator G ∈ B (̂k⊗ h)0 satisfying Theorem 4.8(i) equals Y F , where F = G� as defined
in (4.4). In particular, U is an HP cocycle. Cocycle aspects of quasifree processes are further
investigated in [32].

Definition 4.9 An HP cocycle U on h with noise dimension space k⊕ k is �-quasifree and
has �-generator G if U = Y F for F = G� , in which G ∈ B (̂k⊗ h)0 has the block-matrix

form
[

K −Q∗
Q 0

]
, where Q is k-conjugatable and

K + K ∗ + L∗L = 0 for the operator L := (� ⊗ Ih)

[
Q

−Qc

]
. (4.6)

Remark Thus �-quasifree HP cocycles form a subclass of the collection of Gaussian
HP cocycles with noise dimension space K having a decomposition k⊕ k.

Example 4.10 (Pure-noise cocycles) For a gauge-invariant AW amplitude � = �A, the
quasifree pure-noise cocycles are of the form

(
eiαt W�(x1[0,t))

)
t�0 for some x ∈ k and

α ∈ R, with corresponding �-generator

[
iα − 1

2‖
√
cosh 2A x‖2 −〈x |
|x〉 0

]
.
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Corollary 4.11 Let U be a Gaussian HP cocycle on h with noise dimension space k⊕ k and

stochastic generator
[

K −L∗
L 0

]
, let
[

L1
L2

]
be the block matrix form of L, and suppose that the

AW-amplitude is gauge-invariant, say � = �A. Then the following are equivalent.

(i) The cocycle U is a �-quasifree HP cocycle.

(ii) The operator L equals (�⊗ Ih)
[

Q
−Qc

]
for a k-conjugatable operator Q ∈ B(h; k⊗h).

(iii) The operator L1 is k-conjugatable and L2 = −(tanh A ⊗ Ih)Lc
1.

(iv) The operator L2 is k-conjugatable and Lc
2 = −(tanh A ⊗ Ih)L1.

When these hold, the cocycle U has �-generator
[

K −Q∗
Q 0

]
and

(〈x |⊗ Ih
)
Q−Q∗(|x〉⊗ Ih

) = (〈�ι(x)|⊗ Ih
)
L−L∗(|�ι(x)〉⊗ Ih

)
for all x ∈ k. (4.7)

Proof By Theorem 4.8 and Definition 4.9, (i) is equivalent to (ii), and these imply that U has

�-generator
[

K −Q∗
Q 0

]
. Properties of the partial conjugation, Theorem 4.1, now imply that

(ii) is equivalent to (iii); they also imply that (iii) is equivalent to (iv). When these conditions
hold, since(〈�ι(x)| ⊗ Ih

)
L = (〈x | cosh2 A ⊗ Ih

)
Q + Q∗(sinh2 A|x〉 ⊗ Ih

)
for all x ∈ k,

the identity (4.7) follows from the fact that cosh2 A − sinh2 A = Ik. ��

Theorem 4.12 Let U be a �-quasifree HP cocycle with �-generator
[

K −Q∗
Q 0

]
∈ B (̂k⊗h)0,

and let j be the corresponding inner EH flow. Set L := (� ⊗ Ih)
[

Q
−Qc

]
and H := 1

2i (K −
K ∗), and define the map

ψ : B(h) → B (̂k⊗ h); a �→
[−i[H , a] − 1

2 {L∗L, a} + L∗(Ik ⊗ a)L Q∗(Ik ⊗ a) − aQ∗
(Ik ⊗ a)Q − Qa 0

]
.

Then
(
( jkt ◦ ψ)(a)

)
t�0 is a �-integrand process for all a ∈ B(h), where jkt := idB (̂k) ⊗ jt ,

and

jt (a) = a ⊗ IF + ��
(
( jk ◦ ψ)(a)

)
t for all a ∈ B(h) and t ∈ R+.

Proof It is straightforward to verify that
(
( jk ◦ ψ)(a)

)�
s = ( jKs ◦ θ)(a) for all a ∈ B(h) and s ∈ R+,

where jKs := idB (̂K) ⊗ js for K = k ⊕ k, and θ is the map from B(h) to B (̂K ⊗ h) defined
in (3.7). It therefore follows from Theorem 3.16 that

jt (a) − a ⊗ IF = �
(
( jK ◦ θ)(a)

)
t = ��

(
( jk ◦ ψ)(a)

)
t for all a ∈ B(h) and t ∈ R+,

as claimed. ��

5 Uniqueness Questions

In this section, issues of uniqueness are considered.We begin with the question of uniqueness
of AW amplitudes for quasifree HP cocycles. Given an HP cocycle U with noise dimension
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space K and stochastic generator F =
[

K −L∗W
L W−IK⊗h

]
, we examine the class of pairs (�, Q)

such that

� is an AW amplitude, Q is a k -conjugatable operator and (� ⊗ Ih)

[
Q

−Qc

]
= L,

so that G :=
[

K −Q∗
Q 0

]
is a �-quasifree generator and F = G� . Immediate necessary

conditions for this class to be non-empty are that the HP cocycle U is Gaussian, thus F ∈
B (̂K ⊗ h)0, so W = IK⊗h, and K has a decomposition k ⊕ k, so K must not have finite odd
dimension.

We also consider the uniqueness of quasifree HP cocycles implementing a given EH flow
j and relate this to the minimality of j as a stochastic dilation of its expectation semigroup.

For the remainder of this section, we fix a quasifree noise dimension space k, and set
K = k⊕ k. Theorem 4.4 has the following consequence.

Corollary 5.1 Let �̃ = � M, where � and M are an AW amplitude and squeezing matrix
for k, respectively. Then every �-quasifree HP cocycle is also �̃-quasifree.

In light of the above corollary, we restrict to gauge-invariant AW amplitudes for the rest
of this section. For an operator X ∈ B(h; k⊗ h), let the k-degeneracy space of X be

kX := {x ∈ k : (〈x | ⊗ Ih)X = 0
}
. (5.1)

Proposition 5.2 Let � = �A be a gauge-invariant AW amplitude for k, and suppose U is

a �-quasifree HP cocycle with stochastic generator
[

K −L∗
L 0

]
and �-generator

[
K −Q∗
Q 0

]
,

where L has block-matrix form
[

L1
L2

]
. Then

kL1 = {0} ⇐⇒ kQ = {0}. (5.2)

Furthermore, if �̃ = � Ã is another gauge-invariant AW amplitude for k, then the following
are equivalent.

(i) The cocycle U is also �̃-quasifree.
(ii)
(
(tanh Ã − tanh A) ⊗ Ih

)
L1 = 0.

Proof Corollary 4.11 implies that L2 is k-conjugatable and Q is k-conjugatable, with

L1 = (cosh A ⊗ Ih)Q and Lc
2 = −(tanh A ⊗ Ih)L1. (5.3)

Thus (5.2) follows from the invertibility of cosh A. Corollary 4.11 also implies that (i) holds
if and only if Lc

2 = −(tanh Ã ⊗ Ih)L1. Therefore (i) and (ii) are equivalent, by (5.3). ��
For an HP cocycle U with noise dimension space k⊕ k, let

�(U ) := {� ∈ AW0(k) : U is �-quasifree
}

be the set of gauge-invariant AW amplitudes for k for which U is �-quasifree.

Corollary 5.3 Let U be an HP cocycle with stochastic generator
[

K −L∗
L 0

]
. If U is quasifree

with respect to a gauge-invariant AW amplitude �A then

�(U ) = {� Ã : Ã ∈ B(k)+ and Ran(tanh Ã − tanh A) ⊆ kL1
}

= {�tanh−1(X+tanh A) : X ∈ B(k)sa, spec(X + tanh A) ⊆ [0, 1) and Ran X ⊆ kL1
}
.

In particular, if kL1 = {0} then U is quasifree with respect to at most one gauge-invariant
AW amplitude.
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We now turn to the question of implementability of inner EH flows by quasifree HP cocy-
cles.

Proposition 5.4 Let U and Ũ be quasifree HP cocycles on hwith respect to a gauge-invariant

AW amplitude � for k, and let
[

K −Q∗
Q 0

]
,
[

K̃ −Q̃∗
Q̃ 0

]
be their respective �-generators and

H := 1
2i (K − K ∗) and H̃ := 1

2i (K̃ − K̃ ∗). The following are equivalent.

(i) The cocycles U and Ũ induce the same inner EH flow.
(ii) There exist x ∈ k and α ∈ R such that

Q̃ − Q = |x〉 ⊗ Ih and H̃ − H − i
2

(
(〈x | ⊗ Ih)Q − Q∗(|x〉 ⊗ Ih)

) = α Ih.

Proof Let C and T denote cosh A and tanh A, respectively, where � = �A, and let

L := (� ⊗ Ih)

[
Q

−Qc

]
and L̃ := (� ⊗ Ih)

[
Q̃

−Q̃c

]

By Proposition 3.18, (i) is equivalent the existence of z = (z1, z2) ∈ k⊕ k and α ∈ R such
that

L̃ − L = |z〉 ⊗ Ih and H̃ − H − α Ih = i
2

(
(〈z| ⊗ Ih)L − L∗(|z〉 ⊗ Ih)

)
. (5.4)

If z = (z1, z2) ∈ k⊕ k and α ∈ R are such that (5.4) holds then

0 = (T ⊗ Ih)
(
L1 + |z1〉 ⊗ Ih − L̃1

) = −Lc
2 + |T z1〉 ⊗ Ih + L̃2

c = |z2 + T z1〉 ⊗ Ih,

so z2 = −T z1, and therefore z = �ι(x), where x = C−1z1. It follows from (4.7) that (ii)
holds.

Conversely, suppose that (ii) holds, with x ∈ k and α ∈ R, and set z := �ι(x). Then

L̃ − L = (� ⊗ Ih)

[
Q̃ − Q

Qc − Q̃c

]
= (� ⊗ Ih)

[ |x〉 ⊗ Ih
−|x〉 ⊗ Ih

]
= |z〉 ⊗ Ih,

so Q̃ − Q = |C−1z1〉 ⊗ Ih = |x〉 ⊗ Ih and, by (4.7), condition (5.4) is satisfied. ��
Theorem 5.5 Let j be an inner EH flow which is a minimal dilation of its vacuum expectation
semigroup. Then there is at most one gauge-invariant AW amplitude � such that j is induced
by a �-quasifree HP cocycle.

Proof Suppose that j is induced by a�-quasifree HP cocycle U and a �̃-quasifree HP cocy-
cle Ũ , where � = �A and �̃ = � Ã are gauge-invariant AW amplitudes for k. Then U and

Ũ are Gaussian and so have stochastic generators of the form
[

K −L∗
L 0

]
and
[

K −L̃∗
L̃ 0

]
respec-

tively. Letting
[

K −Q∗
Q 0

]
and
[

K̃ −Q̃∗
Q̃ 0

]
be their respective quasifree generators, it follows

that

(� ⊗ Ih)

[
Q

−Qc

]
= L and (�̃ ⊗ Ih)

[
Q̃

−Q̃c

]
= L̃,

and Proposition 3.18 implies that L̃ = L + |z〉 ⊗ Ih for some z = (z1, z2) in k ⊕ k.
If T := tanh A and T̃ := tanh Ã then(

(T − T̃ ) ⊗ Ih
)
L̃1 = (T ⊗ Ih)

(
L1 + |z1〉 ⊗ Ih

)− (T̃ ⊗ Ih)L̃1

= −Lc
2 + |T z1〉 ⊗ Ih + L̃2

c

= |z2 + T z1〉 ⊗ Ih,
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so if y ∈ Ran(T − T̃ )∗ then(〈(y, 0)| ⊗ Ih
)
L̃ = (〈y| ⊗ Ih

)
L̃1 ∈ CIh.

Therefore, by Theorem 3.19, the minimality of j implies that Ran(T − T̃ )∗ = {0}, so T̃ = T ,
Ã = A and �̃ = �. ��

6 Quantum RandomWalks

In this section we first review the basic theory of unitary quantum random walks for particles
in a vector state and their convergence to quantum stochastic cocycles [9]; for an elementary
treatment via the semigroupdecomposition of quantumstochastic cocycles, see [12]. Stronger
theorems for more general walks may be found in [10], for particles in a faithful normal state,
and in [11], for particles in a general normal state. We then construct quantum random walks
in the repeated-interactions model for particles in a faithful normal state ρ. Thus let ρ be such
a state on B(p), for a Hilbert space p. Under the assumption that the interaction Hamiltonian
HI has no diagonal component with respect to the eigenspaces of the density matrix of ρ, we
demonstrate convergence to HP cocycles of the formU ⊗ I where I is the identity operator of
the Fock space over L2(R+; K0) for a subspace K0 of the GNS space of ρ. The construction
yields a quasifree noise dimension space k together with natural conjugate space k and, under
the assumption of exponential decay of the eigenvalues of the density matrix corresponding
to ρ, a gauge-invariant AW amplitude �(ρ) for k. We then show that U is �(ρ)-quasifree,
assuming only that HI is p-conjugatable. We also show that if the lower-triangular matrix
components of HI are strongly linearly independent then �(ρ) is the unique gauge-invariant
AW amplitude with respect to which U is quasifree.

Particles in a Vector State

For this subsection, we fix a noise dimension space K.

Definition 6.1 The toy Fock space ϒ over K is the tensor product of a sequence of copies
of K̂ := C ⊕ K with respect to the constant stabilising sequence given by ω := ( 10 ):

ϒ :=
∞⊗

n=0

(̂
K, ω
)
.

We also set

ϒ[m :=
∞⊗

n=m

(̂
K, ω
)

for all m � 1

and denote the identity operator on ϒ[m by I[m .

As is readily verified [9,12], toy Fock space over K approximates Boson Fock space over
K in the following sense. Let FJ = �

(
L2(J ; K)

)
for any subinterval J ⊆ R+, with �J its

vacuum vector, and, for all τ > 0, let

Dτ : ϒ →
∞⊗

n=0

(F[nτ,(n+1)τ ), �[nτ,(n+1)τ )

) = F
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be the isometric linear operator such that

((
1

xn

))
n�0

�→
∞⊗

n=0

(
1, τ−1/2xn1[nτ,(n+1)τ )

)

for any finitely-supported sequence (xn) in K. Then Dτ D∗
τ → IF in the strong operator

topology as τ → 0+.

Definition 6.2 For any G ∈ U (̂K ⊗ h), the quantum random walk generated by G is the
sequence (Un)n�0 in B(h⊗ ϒ) defined recursively as follows:

U0 = Ih⊗ϒ and Un+1 = (σn ◦ ι)(G)Un for all n � 0,

where the normal ∗-monomorphism

ι : B (̂K⊗ h) → B(h⊗ ϒ); A ⊗ X �→ X ⊗ A ⊗ I[1

and σn := idB(h) ⊗ σϒ
n is the ampliation of the right shift ∗-endomorphism of B(ϒ) with

range ÎK⊗n ⊗ B(ϒ[n).
Scaling maps on B (̂K⊗ h) are defined by setting

sτ

([
A C
B D

])
=
[

τ−1A τ−1/2C
τ−1/2B D

]
for all τ > 0.

Remarks If the generator is an elementary tensor A⊗X then the quantum randomwalk takes
the simple form (

Xn ⊗ A⊗n ⊗ I[n
)

n�0.

For us here, generators are of the form exp iH for operators H ∈ B (̂K⊗ h)sa.
In [12] we worked with left QRW’s and generators in B(h ⊗ K̂) instead; the two are, of

course, equivalent.

Henceforth we focus on the repeated-interactions model of [7]. Recall that in this model
one has a family of discrete-time evolutions of an open quantum system consisting of a
system S coupled to a heat reservoir modeled by an infinite chain of identical particles in
some (thermal) state ρ, repeatedly interacting with the system over a short time period of
length τ . The corresponding discrete-time evolution has unitary generator

exp iτ HT(τ ),

where the total Hamiltonian decomposes as

HT(τ ) = ÎK ⊗ HS + HP ⊗ Ih + τ−1/2HI ∈ B (̂K⊗ h)

for a system Hamiltonian HS ∈ B(h)sa, a particle Hamiltonian HP ∈ B (̂K)sa and an inter-
action Hamiltonian HI ∈ B (̂K ⊗ h)sa. The continuous limit of this model (embedded into
BosonFock space) at zero temperature is captured by the following theorem inwhich, for each
τ > 0, (U (τ )n)n�0 denotes the quantum random walk with unitary generator exp iτ HT(τ ).

Theorem 6.3 Suppose that (〈ω|⊗ Ih)HI(|ω〉⊗ Ih) = 0, so that iHI(|ω〉⊗ Ih) ∈ B(h; K̂⊗h)

has block-matrix form
[
0
L

]
for some L ∈ B(h; K⊗ h). For all τ > 0, set

U τ := ((Ih ⊗ Dτ )U (τ )�t/τ�(Ih ⊗ Dτ )
∗)

t�0
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and

F :=
[
iHS + i〈ω, HP ω〉Ih − 1

2 L∗L −L∗
L 0

]
∈ B (̂K⊗ h)0.

Then F∗ + F + F∗�F = 0 and, as τ → 0+,

sup
t∈[0,T ]

‖(U τ
t − Y F

t )ξ‖ → 0 for all ξ ∈ h⊗ F and T ∈ R+,

where Y F is a Gaussian HP cocycle with stochastic generator F, as in Definition 3.10.

Proof That F satisfies the structure relation is readily verified. The final claim holds by [9,
Theorem 7.6 and Remarks 4.8 and 5.10] (see also [12, Theorem 4.3]), since

lim
τ→0+ sτ

(
exp iτ HT(τ ) − Ih⊗F

) = F .

��

Particles in a Faithful State

We now fix a non-zero Hilbert space p, referred to as the particle space, and a faithful normal
state ρ on B(p). Let (γα)α�0 be the eigenvalues of its density matrix �, ordered to be strictly
decreasing, the index set being either Z+ or {0, 1, . . . , N } for some non-negative integer N .
For any index α, let Pα ∈ B(p) be the orthogonal projection with range kα , the eigenspace of
� corresponding to the eigenvalue γα . Thus � = ∑α�0 γα Pα and

∑
α�0 γαdα = 1, where

dα := dim kα = tr(Pα).
Let (̂K, π, η) denote the GNS representation of ρ. Thus (π, K̂) is a normal unital ∗-

representation of B(p), η is an operator from B(p) to K̂ with dense range,

π(X)η(Y ) = η(XY ) and 〈η(Z), π(X)η(Y )〉 = ρ(Z∗XY ) for all X , Y , Z ∈ B(p).

In particular, ρ(X) = 〈ω, π(X)ω〉 and η(X) = π(X)ω for all X ∈ B(p), where ω := η(Ip).
As is well known, the GNS representation is unique up to isomorphism; here, we take the
triple defined as follows:

K̂ := H S(p), π(X) := L X and η(X) := X�1/2 =
∑
α�0

√
γα X Pα for all X ∈ B(p),

where H S(p)denotes theHilbert–Schmidt class of operators onp and L X denotes the operator
of left multiplication by X . In particular, ω = �1/2. Now let

K := K̂� Cω, π̃ := π⊗ idB(h) and ρ̃ := ρ⊗ idB(h),

so that (π̃ , K̂ ⊗ h) is a normal unital ∗-representation of B(p ⊗ h) and ρ̃ is a normal unital
completely positive map from B(p⊗ h) to B(h). For all α, β � 0, let

kαβ := Lin
{|x〉〈y| : x ∈ kα, y ∈ kβ

}
,

and let

k :=
⊕

α>β�0

kαβ, k :=
⊕

0�α<β

kαβ, K1 := k⊕ k and K0 := K̂� (Cω ⊕ K1).

123



Quasifree Stochastic Cocycles and Quantum RandomWalks 31

Let k be the anti-unitary operator from k to k obtained by restricting the adjoint operation on
K̂ = H S(p). Then

K̂ = Cω ⊕ K1 ⊕ K0,

and (k, k) is a realisation of the conjugate Hilbert space of k. Note also that

Cω ⊕ K0 =
⊕
α�0

kαα. (6.1)

We now identify the one-dimensional subspace Cω of K̂ with C, so that

K̂ = K̂1 ⊕ K0, where K̂1 = C ⊕ K1, and ω =
⎛
⎝10
0

⎞
⎠ .

Theorem 6.4 Let the operators HS ∈ B(h), HP ∈ B(p) and HI ∈ B(p⊗ h) be self-adjoint,
and assume that (Pα ⊗ Ih)HI(Pα ⊗ Ih) = 0 for all α � 0. Then we have the following.

(a) The operator π̃(iHI)(|ω〉 ⊗ Ih) ∈ B(h; (K̂1 ⊕ K0) ⊗ h) has the block-matrix form
[
0
L
0

]
for some L ∈ B(h; K1 ⊗ h).

(b) For all τ > 0, let Ũ τ := ((Ih ⊗ Dτ )Ũ (τ )�t/τ�(Ih ⊗ Dτ )
∗)

t�0, where (Ũ (τ )n)n�0 is

the quantum random walk generated by π̃
(
exp iτ HT(τ )

)
and

HT(τ ) := Ip ⊗ HS + HP ⊗ Ih + τ−1/2HI ∈ B(p⊗ h),

and let F̃ := F ⊕ 0K0⊗h, where

F :=
[

K −L∗
L 0

]
∈ B(K̂1 ⊗ h) with K := iHS + iρ(HP)Ih − 1

2 ρ̃(H2
I ).

Then F̃∗ + F̃ + F̃∗�F̃ = 0 and, as τ → 0+,

sup
t∈[0,T ]

∥∥(Ũ τ
t − Y F̃

t )ξ
∥∥→ 0 for all ξ ∈ h⊗ F and T ∈ R+.

Proof (a) It must be shown that

Ran π̃(HI)(|ω〉 ⊗ Ih) ⊥ (Cω ⊕ K0) ⊗ h. (6.2)

If u, v ∈ h and T ∈ kαα for some index α, and Hu
v := (Ip ⊗ 〈u|)HI(Ip ⊗ |v〉), then〈

T ⊗ u, π̃(HI)(ω ⊗ v)
〉
= 〈T , Hu

v ω
〉 = √

γα

〈
T , Hu

v Pα

〉 = 0,

and so (6.2) follows from (6.1).
(b) Note that π̃

(
exp iτ HT(τ )

) = exp iτ H̃T(τ ) ∈ B (̂K⊗ h) for all τ > 0, where

H̃T(τ ) := ÎK ⊗ HS + π(HP) ⊗ Ih + τ−1/2π̃(HI).

Furthermore 〈ω, π(HP)ω〉Ih = ρ(HP)Ih and it is straightforward to verify that

L∗L =
⎡
⎣0L
0

⎤
⎦
∗ ⎡
⎣0L
0

⎤
⎦ = (〈ω| ⊗ Ih)π̃(H2

I )(|ω〉 ⊗ Ih) = ρ̃(H2
I ),

which implies that F is as claimed. The conclusion now follows from Theorem 6.3, since ω

is identified with
(
1
0
0

)
∈ K̂1 ⊗ K0 and Cω with C. ��
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Remarks Under the identification h⊗ FK = h⊗ FK1 ⊗ FK0 , where FH := �
(
L2(R+;H)

)
,

the limit process decomposes as

Y F̃
t = Y F

t ⊗ IFK0 for all t ∈ R+.

The condition on HI has the following physical interpretation: there is no contribution
from the interaction Hamiltonian unless the particle undergoes a transition.

Assumption 6.5 We impose an exponential-decay condition on the eigenvalues of the density
matrix �, by insisting that

mρ := inf{γα/γα+1 : α � 0} > 1.

This ensures that the following lemma yields an AW amplitude for k. To avoid it would
require more of the general theory developed in [31,32].

For all indices α and β, let Pαβ denote the orthogonal projection with range kαβ .

Lemma 6.6 Suppose the state ρ satisfies Assumption 6.5. Define an operator

S(ρ) := st.
∑

α>β�0

√
γα

γβ−γα
Pαβ ∈ B(k)+, (6.3)

where the series converges in the strong sense, and, let C(ρ) := √Ik + S(ρ)2, then

C(ρ) = st.
∑

α>β�0

√
γβ

γβ−γα
Pαβ and S(ρ) = st.

∑
α>β�0

√
γα

γβ−γα
Pβα. (6.4)

Proof If α, β � 0 with α > β, and ζ ∈ kα′ and η ∈ kβ ′ with α′, β ′ ∈ I , then

0 � γα

γβ−γα
= ( γβ

γα
− 1
)−1 �

( γβ

γβ+1
− 1
)−1 � (mρ − 1)−1, (6.5a)

1+ γα

γβ−γα
= γβ

γβ−γα
(6.5b)

and Pαβ

(|η〉〈ζ |) = (Pαβ

(|ζ 〉〈η|))∗ = δαα′δββ ′ |η〉〈ζ | = Pβα

(|η〉〈ζ |), (6.5c)

where δ is the Kronecker delta. From (6.5a) it follows that (6.3) defines a non-negative
bounded operator S(ρ) on k, and from (6.5c) it follows that Pαβ = Pβα for all α > β � 0,
so the identities (6.4) follow from (6.5b) and (6.5c). ��

Thus, under Assumption 6.5, with S(ρ) and C(ρ) as in the preceding lemma,

�(ρ) :=
[

C(ρ) 0
0 S(ρ)

]
∈ B(k⊕ k) (6.6)

defines a gauge-invariant AW amplitude for k.
Our goal now is to prove that the HP cocycle generated by F in Theorem 6.4 is �(ρ)-

quasifree, provided that the interaction Hamiltonian HI is p-conjugatable. To this end, note
first that, for all T ∈ B(p) and all indices α, β, α′ and β ′, PαT Pβ and Pα′T Pβ ′ are orthogonal
vectors in H S(p) unless α′ = α and β ′ = β, and therefore∑

α>β�0

(γβ − γα)‖PαT Pβ‖22 �
∑
β�0

γβ‖T Pβ‖22 � ‖T ‖2
∑
β�0

γβdβ = ‖T ‖2

and ∑
α>β�0

(γβ − γα)‖Pβ T Pα‖22 =
∑

α>β�0

(γβ − γα)‖PαT ∗Pβ‖22 � ‖T ∗‖2 = ‖T ‖2,
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so the following prescriptions define bounded operators:

φρ : B(p) → |k〉; T �→
∑

α>β�0

√
γβ − γα|PαT Pβ〉

and φρ : B(p) → |k〉; T �→
∑

α>β�0

√
γβ − γα|Pβ T Pα〉.

For the next proposition we adopt the notation

Bc(p⊗ h)∗ := {A∗ : A ∈ Bc(p⊗ h)
}
. (6.7)

Recall that Theorem 4.1 gives the inclusion H S(p) ⊗ B(h) ⊆ Bc(p⊗ h). We will show that
the maps φρ |H S(p) ⊗ idB(h) and φρ |H S(p) ⊗ idB(h) extend to operators from Bc(p ⊗ h)∗

to B(h; k⊗ h) and from Bc(p⊗ h)∗ to B(h; k⊗ h), respectively, and that the resulting maps
are related via partial conjugation.

Proposition 6.7 There are unique operators

φh
ρ : Bc(p⊗ h)∗ → B(h; k⊗ h) and φ

h
ρ : Bc(p⊗ h)∗ → B(h; k̄⊗ h)

such that 〈|ζ 〉〈η| ⊗ u, φh
ρ (A)v

〉 = √γβ − γα

〈
ζ ⊗ u, A(η ⊗ v)

〉
(6.8a)

and
〈|η〉〈ζ | ⊗ u, φ

h
ρ(A)v

〉 = √γβ − γα

〈
η ⊗ u, A(ζ ⊗ v)

〉
(6.8b)

for all A ∈ Bc(p⊗h)∗, u, v ∈ h and ζ ∈ kα , η ∈ kβ with α > β. Furthermore, we have that

‖φh
ρ (A)‖ � c(A∗) and ‖φh

ρ(A)‖ � c(A∗) for all A ∈ Bc(p⊗ h)∗,

and the following properties hold.

(a) If A ∈ Bc(p⊗h)∗ ∩ Bc(p⊗h) then φ
h
ρ (A) is k-conjugatable, φ

h
ρ(A∗) is k-conjugatable

and φ
h
ρ (A)c = φ

h
ρ(A∗). Thus

c
(
φh

ρ (A)
) = ‖φh

ρ(A∗)‖ � c(A) and c
(
φ
h
ρ(A∗)

) = ‖φh
ρ (A)‖ � c(A∗).

(b) The maps φ
h
ρ and φ

h
ρ are extensions of φρ |H S(p) ⊗ idB(h) and φρ |H S(p) ⊗ idB(h),

respectively.

Proof Uniqueness is clear. For existence, let A ∈ Bc(p ⊗ h)∗. For each α � 0, choose an
orthonormal basis

(
ei
α

)dα

i=1 for kα , and note that if u ∈ h then

∑
α>β�0

(γβ − γα)

dα∑
i=1

dβ∑
j=1

∥∥(〈ei
α| ⊗ Ih)A(e j

β ⊗ u)
∥∥2

�
∑
β�0

γβ

dβ∑
j=1

∥∥A(e j
β ⊗ u)

∥∥2 � c(A∗)‖u‖2.

Hence

u �→
∑

α>β�0

√
γβ − γα

dα∑
i=1

dβ∑
j=1

|ei
α〉〈e j

β | ⊗
(〈ei

α| ⊗ Ih
)

A(e j
β ⊗ u)
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defines an operator φh
ρ (A) from h to k⊗h such that ‖φh

ρ (A)‖ � c(A∗); it also satisfies (6.8a)
since, for all u, v ∈ h, ζ ∈ kα and η ∈ kβ , where α > β,

〈|ζ 〉〈η| ⊗ u, φh
ρ (A)v

〉 = √γβ − γα

〈
u,
(〈ζ | ⊗ Ih

)
A
(|η〉 ⊗ Ih

)
v
〉

= √γβ − γα

〈
ζ ⊗ u, A(η ⊗ v)

〉
.

In particular, the operator φ
h
ρ (A) does not depend on the choice of orthonormal bases made

above. Similarly, there is an operator φ
h
ρ(A) from h to k ⊗ h such that ‖φh

ρ(A)‖ � c(A∗),
the identity (6.8b) holds and, for any choice of orthonormal bases

(
ei
α

)dα

i=1 for kα ,

φ
h
ρ(A)u =

∑
α>β

√
γβ − γα

dα∑
i=1

dβ∑
j=1

|e j
β〉〈ei

α| ⊗
(〈e j

β | ⊗ Ih
)

A(ei
α ⊗ u).

(a) If A ∈ Bc(p⊗ h)∗ ∩ Bc(p⊗ h), u, v ∈ h and ζ ∈ kα , η ∈ kβ with α > β, then

〈
φh

ρ (A)u, |ζ 〉〈η| ⊗ v
〉 = √γβ − γα

〈
A(η ⊗ u), ζ ⊗ v

〉
= √γβ − γα

〈
η ⊗ u, A∗(ζ ⊗ v)

〉 = 〈|η〉〈ζ | ⊗ u, φ
h
ρ(A∗)v

〉
.

Therefore, by linearity,

〈
φh

ρ (A)u, T ⊗ v
〉 = 〈T ⊗ u, φ

h
ρ(A∗)v

〉
for all u, v ∈ h and T ∈ k,

so φ
h
ρ (A) is k-conjugatable and φ

h
ρ (A)c = φ

h
ρ(A∗).

(b) Let T ∈ H S(p) and X ∈ B(h). Then T ⊗X ∈ Bc(p⊗h)∗∩Bc(p⊗h), by Theorem 4.1.
Comparing matrix elements, the identities

φρ(T ) ⊗ X = φh
ρ (T ⊗ X) and φρ(T ) ⊗ X = φ

h
ρ(T ⊗ X)

are readily verified, so (b) follows. ��

Recall that a countable family of bounded operators C is said to be strongly linearly
independent if there is no non-zero function α : C → C such that

∑
T∈C α(T )T converges

to zero in the strong sense.

Theorem 6.8 Let HS ∈ B(h)sa, HP ∈ B(p)sa and HI ∈ B(p⊗h)sa, where (Pα ⊗ Ih)HI(Pα ⊗
Ih) = 0 for all indices α and, as in Theorem 6.4, set F = [ K −L∗

L 0

] ∈ B
(
K̂1 ⊗ h

)
0 where

K1 = k⊕ k, K = iHS + iρ(HP)Ih − 1
2 ρ̃(H2

I ) and L = iJ ∗π̃(HI)
(|ω〉 ⊗ Ih

);
J being the natural isometry from k⊕ k to C ⊕ (k⊕ k) ⊕ K0.

Suppose that the state ρ satisfies Assumption 6.5, and the operator HI ∈ B(p ⊗ h) is
p-conjugatable. Then the HP cocycle U := Y F is �(ρ)-quasifree with �(ρ)-generator[

K −Q∗
Q 0

]
, where Q = iφh

ρ (HI).

Suppose further that, with respect to some orthonormal bases
(
ei
α

)dα

i=1 for each kα , the

family
{
(〈ei

α| ⊗ Ih)HI(|e j
β〉 ⊗ Ih) : α > β � 0 i = 1, . . . , dα, j = 1, . . . , dβ

}
is strongly

linearly independent. Then �(ρ) is the unique gauge-invariant AW amplitude with respect
to which the HP cocycle U is quasifree.
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Proof Since U is a Gaussian HP cocycle with stochastic generator
[

K −L∗
L 0

]
, Corollary 4.11

implies that, for the first part, it suffices to verify the identity

L = (�(ρ) ⊗ Ih)

[
Q

−Qc

]
.

Since HI is a self-adjoint p-conjugatable operator, by assumption, Proposition 6.7 ensures

that the operators Q and R := iφ
h
ρ(HI) are well defined and conjugatable, with Qc =

−iφh
ρ (HI)

c = −R. Thus, for all ζ ∈ kα and η ∈ kβ with α > β, and all u, v ∈ h,〈|ζ 〉〈η| ⊗ u, Qv
〉 = i
√

γβ − γα

〈
ζ, Hu

v η
〉

and
〈|η〉〈ζ | ⊗ u, Qcv

〉 = −i
√

γβ − γα

〈
η, Hu

v ζ
〉
,

where Hu
v := (Ip ⊗ 〈u|)HI(Ip ⊗ |v〉). Hence, by Lemma 6.6,〈|ζ 〉〈η| ⊗ u, C(ρ)Qv

〉 = i
√

γβ

〈
ζ, Hu

v η
〉

and
〈|η〉〈ζ | ⊗ u, S(ρ)Qcv

〉 = −i
√

γα

〈
η, Hu

v ζ
〉
.

On the other hand, by definition, the operator L is such that

〈χ ⊗ u, Lv〉 = i〈χ, Hu
v ω〉 for all u, v ∈ h and χ ∈ k⊕ k.

Thus, in terms of the block-matrix decomposition L =
[

L1
L2

]
∈ B(h; (k⊕ k) ⊗ h),

L =
[

(C(ρ) ⊗ Ih)Q
−(S(ρ) ⊗ Ih)Qc

]
= (�(ρ) ⊗ Ih)

[
Q

−Qc

]
,

as required.
Finally, for each index α, let (ei

α)
dα

i=1 be an orthonormal basis for kα and, for indices α

and β, set ei j
αβ := |ei

α〉〈e j
β | for all i = 1, …, dα and j = 1, …, dβ . Then, for all x ∈ k \ {0},

the family
{〈x, ei j

αβ〉 : α > β � 0, i = 1, . . . , dα, j = 1, . . . , dβ

}
is not identically zero

and so, under the strong linear independence assumption,

(〈x | ⊗ Ih)L1 = st.
∑

α>β�0

dα∑
i=1

dβ∑
j=1

√
γβ 〈x, ei j

αβ〉
(〈ei

α| ⊗ Ih
)
iHI
(|e j

β〉 ⊗ Ih
)  = 0.

In other words kL1 = {0} and therefore, by Corollary 5.3, there is no other gauge-invariant
AW amplitude � with respect to which the HP cocycle U is �-quasifree. ��
Remark Theorems 6.4 and 6.8 comprise a significant generalisation of the main result of [6,
Theorem 7]. The restriction to finite-dimensional noise or particle space, is removed, and the
interaction Hamiltonian is of a more general form. In [6], the operator HI is taken to have the
form

[
0 V ∗
V 0

]
so that iHI is of the above form with L = iV . This assumption corresponds to

the �(ρ)-quasifree generator
[

K −Q∗
Q 0

]
satisfying

(〈e j,k | ⊗ Ih
)
Q = 0 for all j > k > 0.

In conclusion, a large class of unitary quantum random walks, with particles in a faithful
normal state, converge to HP cocycles governed by a quasifree quantum Langevin equation.

The results in this section could be applied to bipartite systems, as studied in [4], in
non-zero temperature. In this model, two non-interacting quantum systems are both coupled
to an environment comprising an infinite chain of identical and independent particles, with
each particle now in the same non-zero temperature state. For the zero temperature case see
[4, Theorem 3.1] and [12, Theorem 8.2]; the methods developed in [12] adapt nicely to the
quasifree context.
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Appendix

In this appendix, we prove that symplectic automorphisms of a Hilbert space h are neces-
sarily bounded, and give a parameterisation for the elements of the group S(h)×. For the
convenience of the reader, this is a streamlined version of the proof given in [21], which also
covers the case of unbounded symplectic automorphisms of separable pre-Hilbert spaces.

Proposition A.1 Let B ∈ S(h)×. Then B is bounded.

Proof Let L and A be the linear and conjugate-linear parts of B, as in (2.1). For all z, x ∈ h,

2〈Lz, x〉 = 〈Bz − iB(iz), x
〉

= Re〈Bz, x〉 + i Im〈Bz, x〉 + i Re〈B(iz), x〉 − Im〈B(iz), x〉
= Im〈Bz, ix〉 + i Im〈z, B−1x〉 + i Im〈B(iz), ix〉 − Im〈iz, B−1x〉
= Im〈z, B−1(ix)〉 + i Im〈z, B−1x〉 + i Im〈iz, B−1(ix)〉 + Re〈z, B−1x〉
= 〈z, B−1x〉 − i

(
Re〈z, B−1(ix)〉 + i Im〈z, B−1(ix)〉)

= 〈z, B−1x〉 − i〈z, B−1(ix)〉.
Thus L has everywhere-defined adjoint x �→ 1

2

(
B−1x − iB−1(ix)

)
, and so is closed, and

therefore bounded, by the closed graph theorem. Similarly, the conjugate-linear operator A
has everywhere-defined adjoint x �→ − 1

2

(
B−1x + iB−1(ix)

)
, and so is also bounded. Thus

B is bounded. ��
For a triple (V , C, P) consisting of a unitary operator V on h, a bounded non-negative

operator P on h and a conjugation (a self-adjoint anti-unitary operator) C on h, such that P
and C commute, we define the following bounded real-linear operator on h:

BV ,C,P := V (cosh P − C sinh P) (A.1)

Remark Since,with (V , C, P) as above, themap−C is also a conjugation onh that commutes
with P , a deliberate choice is being made here. The reason for this particular choice is that
it eliminates minus signs elsewhere.

Theorem A.2 (a) Let (V , C, P) be a triple as above.

(i) The operator BV ,C,P is a symplectic automorphism, with bounded inverse

(cosh P + C sinh P)V ∗ = BV ∗,−V CV ∗,V PV ∗ .

(ii) Suppose that BV ,C,P = BV ′,C ′,P ′ for another such triple (V ′, C ′, P ′). Then

V ′ = V , P ′ = P and C ′ agrees with C on Ran P.
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(b) Conversely, let B ∈ S(h)×. Then there is a triple (V , C, P) as above, such that B =
BV ,C,P .

Proof (a) (i) This is readily verified.
(ii) Set B = BV ,C,P , and let L and A be its linear and conjugate-linear parts. Then

V cosh P = L = V ′ cosh P ′ and − V C sinh P = A = −V ′C ′ sinh P ′.

Since the bounded operators cosh P and cosh P ′ are non-negative and invertible, and V and
V ′ are unitary, the uniqueness of polar decompositions implies that V ′ = V and cosh P ′ =
cosh P . The non-negativity of P ′ and P therefore implies that P ′ = P , and thus also
C ′ sinh P ′ = C sinh P . It follows that C ′ f (P ′) = C f (P) for all continuous functions
f : R+ → C satisfying f (0) = 0; in particular C ′P = C P , so C ′ and C agree on Ran P .
(b) Let L and A denote the linear and conjugate-linear parts of B. It follows from the

proof of Proposition A.1 that L∗ and −A∗ are respectively the linear and conjugate-linear
parts of B−1, so

Ih = (L∗ − A∗)(L + A) = L∗L − A∗A + L∗A − A∗L.

Therefore, taking linear and conjugate-linear parts,

L∗L = A∗A + Ih and L∗A = A∗L. (A.2)

Applying the first of these identities to the symplectic automorphism B−1, we see that

L L∗ = AA∗ + Ih. (A.3)

LetV |L| andW |A| be the polar decompositions of L and A, respectively, and setK := Ker |A|
and K∗ := Ker |A∗|. The conjugate-linear partial isometry W has initial space K⊥ and final
space K∗⊥, and the identities (A.2) and (A.3) imply that L is invertible, so V is unitary,
and |L| � Ih. Thus there exists a unique non-negative operator P ∈ B(h) such that |L| =
cosh P and |A| = (|L|2 − Ih)1/2 = sinh P . Now |L∗| = V |L|V ∗ and |L| = V ∗|L∗|V so,
for all x ∈ K and z ∈ K∗,

|L∗|V x = V |L|x = V x and |L|V ∗z = V ∗|L∗|z = V ∗z,

which implies that VK ⊆ K∗ and V ∗K∗ ⊆ K. Hence VK = K∗, and therefore also VK⊥ = K∗⊥.
It follows that, on h = K⊕ K⊥, V ∗W has the form {0} ⊕ D1 for an anti-unitary operator D1

on K⊥. Therefore, setting D := D0 ⊕ D1 for an arbitrary conjugation D0 on K,

B = L + A = V |L| + W |A| = V (cosh P + D sinh P),

|A|D = |A|V ∗W and V ∗W |A| = D|A|. Thus, using the identities (A.2) and (A.3) once
more,

|A|V ∗W = (|L|2 − I )1/2V ∗W = V ∗(|L∗|2 − I )1/2W = V ∗|A∗|W = V ∗W |A|.
Therefore D commutes with |A| = sinh P and so commutes with all continuous functions
of sinh P such as P itself and |L|. The second identity in (A.2) now implies that

〈|L|x, D|A|y〉 = 〈Lx, Ay〉 = 〈Ly, Ax〉 = 〈|L|y, D|A|x〉
= 〈|A|y, D|L|x〉 = 〈|L|x, D∗|A|y〉 for all x, y ∈ h,

so D and D∗ agree on Ran |A| = K⊥, and thus D∗
1 = D1. But D∗

0 = D0, since D0 is a
conjugation on K, therefore D∗ = D and so the anti-unitary operator D is a conjugation on
h. The proof is now completed by letting C be the conjugation −D. ��
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