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Abstract
The energy spectrum of incompressible turbulence is known to reveal a pileup of energy at
those high wavenumbers where viscous dissipation begins to act. It is called the bottleneck
effect (Donzis and Sreenivasan in J Fluid Mech 657:171–188, 2010; Falkovich in Phys
Fluids 6:1411–1414, 1994; Frisch et al. in Phys Rev Lett 101:144501, 2008; Kurien et al.
in Phys Rev E 69:066313, 2004; Verma and Donzis in Phys A: Math Theor 40:4401–4412,
2007). Based on direct numerical simulations of the incompressible Navier-Stokes equations,
results from Donzis and Sreenivasan (657:171–188, 2010) pointed to a power-law decrease
of the strength of the bottleneck with increasing intensity of the turbulence, measured by the
Taylor micro-scale Reynolds number Rλ. Here we report the first experimental results on
the dependence of the amplitude of the bottleneck as a function of Rλ in a wind-tunnel flow.
We used an active grid (Griffin et al. in Control of long-range correlations in turbulence,
arXiv:1809.05126, 2019) in the variable density turbulence tunnel (VDTT) (Bodenschatz
et al. in Rev Sci Instrum 85:093908, 2014) to reach Rλ > 5000, which is unmatched in
laboratory flows of decaying turbulence. The VDTT with the active grid permitted us to
measure energy spectra from flows of different Rλ, with the small-scale features appearing
always at the same frequencies. We relate those spectra recorded to a common reference
spectrum, largely eliminating systematic errors which plague hotwire measurements at high
frequencies. The data are consistent with a power law for the decrease of the bottleneck
strength for the finite range of Rλ in the experiment.

Keywords Turbulence · Fluid dynamics · Anemometry

1 Introduction

Turbulence is omnipresent in natural and technological flows. Its consequences for the asso-
ciated processes are essential in the fields of astrophysics, geophysics, meteorology, biology,
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and in many engineering disciplines from chemical engineering, combustion science, heat
and mass transfer engineering to aeronautics, marine science and renewable energy research.
From the fundamental perspective themathematical field theory of the incompressible Navier
Stokes equation continues to challenge pure and applied mathematicians [1]. In turbulence
fluid velocities and accelerations fluctuate greatly and any description can only be statistical
in nature. It is believed that at very high turbulence levels at spatial scales smaller than the
energy injection scale the turbulence shows universal properties, independent of the partic-
ular driving. According to Kolmogorov’s phenomenology from 1941 [2] (abbreviated K41),
the universal statistical spatial properties of fully developed turbulence can be captured in
three ranges of spatial scales. Kinetic energy is injected into the turbulent fluctuations at the
largest scales, whose properties are particular to the driving mechanism. The kinetic energy
is transformed into heat at the very smallest scales through viscous dissipation. If the range
of spatial scales found in the turbulent structures is large enough, a third range of scales
develops, where neither the peculiarities of energy injection, nor viscous dissipation influ-
ence the spatial scale-to scale energy transfer. This range is called the inertial range. In this
intermediate range statistical properties can be interpreted by the scale-to-scale transfer of
kinetic energy only, described by the kinetic energy dissipation range ε(dissipated power per
unit mass). The dimensionless quantity used to give the strength of turbulence and thus the
size of the inertial range scaling is the Taylor microscale Reynolds number

Rλ = uλ

ν
.

u is the rms of the velocity fluctuations, ν is the kinematic viscosity of the fluid, and λ is
the Taylor microscale, which is a measure for the mean length between two zero-crossings
of the velocity fluctuations [3]. λ can be thought of as a typical size of an inertial range
eddy. In statistically isotropic and homogeneous turbulence Rλ can be linked to the well-
known Reynolds number Re = uL/ν based on the large scales L via Rλ = √

15Re [4].
The integral scale L can be estimated as the integral over the velocity correlation function
L11 = ∫ 〈u(x + r)u(r)〉dr .

In K41 phenomenology for spatially homogeneous and statistically isotropic turbulence
the spatial energy spectrum in the inertial range is given by

E(k) = CK ε2/3k−5/3. (1)

CK is the Kolmogorov constant, k is the wavenumber. In this K41 spectrum the only free
parameter is the dissipation rate ε as indicated above.

Despite its simplicity, Eq. (1) describes the energy spectrum of observed and simulated
turbulent flows quite well (see [5] for a compilation and [6] for an experimental study on the
Rλ-dependence of the spectral slope). Nevertheless, important deviations are well known.
When analyzing the compensated spectrum E(k)ε−2/3k5/3, deviations from a k−5/3 scaling
are found. Prominent is an increase in amplitude of the compensated spectrum at the high-
wavenumber end of the inertial range. This pileup of energy is commonly called the bottleneck
effect [7–12]. It has been observed in laboratory flows (e.g. [5,13–15]) and direct numerical
simulations (DNS) [16–19] alike and is typically preceded by a distinct local minimum of
the compensated spectrum. The bottleneck peak is very shallow or almost absent in hot-wire
measurements of atmospheric boundary layer turbulence at very high Rλ > 104 [20–22]. It
is generally less pronounced in one-dimensional spectra than in three-dimensional ones [23].
The effect is also present in structure functions and influences the rapidity of the transition
between the viscous and inertial ranges in the second-order structure function [19,24], hints
of which can also be found in structure functions of higher orders [25]. The most extensive
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analysis of the bottleneck effect has been performed by Donzis and Sreenivasan [19] on
DNS at Rλ up to 1000. They found that the bottleneck effect can be characterized as the
difference between the bottleneck peak height and the level of the preceding minimum in
the compensated spectrum. They conclude that the bottleneck effect weakens as a function
of Rλ and report a scaling of h ∼ R−0.04

λ . Furthermore, they find that the peak of the bump
occurs around kη ≈ 0.13 in three-dimensional spectra, independent of Rλ. Here η is the
Kolmogorov length scale, where dissipative effects are expected to dominate.

From a theoretical perspective, various explanations exist for the bottleneck effect.
Falkovich [10] showed that a small perturbation to a K41 spectrum in the energy trans-
fer equation leads to a correction of the form δE(k) = E(k)(k/kp)−4/3 ln−1(kp/k), where
kp is the bottleneck wavenumber. Kurien et al. [9] argued that the time scale of helicity can
be comparable to the energy time scale in the inertial range, where the relative helicity is
already weak. They propose that the bottleneck effect is a change in the scaling exponent
of the energy spectrum from −5/3 to −4/3. Their DNS supports this claim as they find a
corresponding scaling range in the three-dimensional spectrum. The scaling is absent in the
one-dimensional versions of their spectra. Frisch et al. [8] studied hyperviscousNavier-Stokes
equations (Laplacian of order α ≥ 2) and attribute the bottleneck effect to an incomplete ther-
malization of high-wavenumber modes in the spatial spectrum. None of these studies directly
incorporates a Rλ-dependence of the bottleneck height. Verma andDonzis [11] study the non-
local and nonlinear mode-to-mode energy transfer in a shell model of turbulence and find
that a significant portion of the energy flux away from a wavenumber shell goes to distant
shells. Thus an efficient energy cascade requires a large inertial range. If the inertial range is
insufficient, the energy piles up at the dissipative drop-off. As the length of the inertial range
is tightly linked to Rλ, this implies a dependence of the bottleneck intensity on the Reynolds
number.

In summary, the bottleneck effect has been studied systematically in DNS and various
models. Numerical simulations indicate that the effect gets weaker with increasing Rλ, which
is also predicted byVerma andDonzis [11] and in agreement with atmosphericmeasurements
at ultra-high Rλ, where it is absent.

Here we present a detailed analysis of the Rλ-scaling of the bottleneck effect over an
unprecedented range of Rλ in a well controlled laboratory flow. The analysis of the bottle-
neck effect from experimental data can be demanding as systematic errors can cloud the
results. From the perspective of the measuring instrument a small bump in the compensated
spectrum is a subtle effect that occurs at rather high frequencies not yet resolvable in PIV or
PTV measurements and very difficult to achieve in LDV. We use classical constant temper-
ature hot-wire anemometry (CTA) assuming Taylor frozen flow hypothesis [26] in the Max
Planck variable density turbulence tunnel (VDTT) [15]. Even with very well-established hot-
wire technology, subtle changes in the energy spectrum at high frequencies can be heavily
influenced by amplification or attenuation at such frequencies (see Sect. 2.2 for a review).

In this manuscript we work around those effects and investigate the bottleneck effect from
the lowest Reynolds number at which it can be identified (∼ 200) up to the highest Rλ ever
measured in a wind tunnel flow.

The paper is organized as follows: first, we present a concise compilation of experimental
efforts to reach high Rλ and describe the variable density turbulence tunnel.We continue with
a brief review of challenges posed by constant temperature hot-wire anemometry, especially
its frequency responses. In Sect. 3 we introduce the relative spectra that allow us to eliminate
instrumentation errors to a large extent. Finally we report the results of our analysis and
discuss their relevance for the scaling of the bottleneck effect with Rλ.
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2 Experimental Methods

2.1 High R� and theVariable Density Turbulence Tunnel

Kolmogorov’s 1941 predictions of universal scaling in turbulent flows refer to the limit of
large Rλ, such that the regimes of energy injection and viscous dissipation are well separated
[2]. This condition is cumbersome to achieve practically. A large separation of scales and
therefore a large Rλ is found in atmospheric flows [20–22], where control is impossible and
stationary conditions are difficult to achieve. Flows of high Rλ are difficult to achieve in
controlled laboratory flows, where all scales can be reliably measured. To reach high Rλ

one can turn two knobs: the size of the energy injection scale L and the dissipation scale
η = (ν3/ε)1/4. In direct numerical simulations (DNS), a compromise between the size of the
periodoc box, (limiting L), the spatial and temporal resolution, the convergence time, and the
available resources needs to be found [27]. The largest Rλ = 2340 achieved in a DNS under
these constraints to date has been performed by Ishihara [17]. The limits of computational
capabilities in terms of resolution have been recently pointed out by Yeung et al. [27].

In a laboratory experiment the energy injection scale L is limited by the dimensions
of the apparatus. Large apparati can be built, e.g. the Modane wind tunnel [28], but are
prohibitively expensive to operate, especially considering the many realizations needed for
dedicated statistical studies of turbulence. To expand the inertial range the dissipative scales
of size ∼ η can be decreased by lowering the kinematic viscosity ν of the working fluid
demanding a higher resolution of the measurement instrument. Examples for experiments
in liquid helium, which has an ultra-low kinematic viscosity, are found for example in Refs.
[29–32]. The authors use liquid helium as working fluid in various flow configurations and
have been reported to reach Rλ up to 10000. The dissipative scales of these flows are so small
that they cannot be resolved by current technology.

Our approach to create a large inertial range is to use a closed-loop wind tunnel filled with
sulfur-hexaflouride (SF6) at pressures up to 15 bar [15]—the variable density turbulence
tunnel (VDTT). With classical grids it has been shown to create Rλ up to 1600 and Kol-
mogorov scales ∼ 10 µm, making even the smallest spatial scales experimentally accessible
[33]. With a specially designed autonomous active grid (see below) it is possible to increase
the energy injection scale and thus the inertial range. As Rλ ∼ (L/η)2/3, the VDTT features
two independent handles to change Rλ—pressure and active grid forcing. In combination
they create a laboratory flow of Rλ more than 5000 at scales resolvable with modern thermal
anemometry under the limitations described below.

The autonomous active grid consists of 111 individually controllable flaps of dimensions
11 cm × 11 cm that rotate around their diagonal. This is different from the Makita-style
grids, where the rows and columns of the flaps are mounted rigidly on rotating horizontal
and vertical bars [34]. The angle of rotation can be set to any angle between ± 90◦ The flow
obstruction is smallest (flap parallel to the flow) at 0◦. At angles ± 90◦ one of the flap sides
is facing the incoming flow, while the other side is facing away from the flow. The sign of the
angles determines the side that is facing the flow, while the magnitude defines the deviation
of the flap from the parallel position. As in a classical grid with rigid grid bars, wakes are
formed that interact with each other downstream of the grid to form a turbulent flow field.
The flexibility of the grid allows the superposition of larger structures onto those induced by
the individual flaps. A detailed account of the autonomous active grid and the algorithm is
given in Ref. [35] and briefly summarized here. A snapshot of several flaps of the autonomous
active grid is illustrated in Fig. 1.
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Fig. 1 Several flaps of the active grid. The flow points out of the page. Starting from the top left flap in
clockwise direction the flaps are set to 0◦, 45◦, 90◦, and 45◦. The side length of one flap is 11 cm, the black
boxes in the flap center are servo motors, the blue rods are the grid support

The algorithm updates the angle of each flap every 0.1s. Each time step starts with a
random set of angles and convolves each of those angles with the grid history and a pre-
defined kernel. The kernel is always defined by a certain shape (e.g. Gaussian), the spatial and
temporal correlations (the number of neighbors and time-steps included in the convolution),
and the desired mean absolute angle φRMS . For the experiments presented here, a ’Long Tail’
kernel has been used, whose description can be found in [35].

This algorithm leads to dynamically evolving patches of more open and more closed
flaps without periodicity, which in turn leads to spatial and temporal correlations of the flow
structures. The parameters σs and σt describing the correlation lengths that define the grid
behavior are typically linked via themean flow velocityU to avoid a strongly inhomogeneous
flow. The grid correlation lengths define the large-scale flow properties. To link these, we
consider the overall fluid volume that passes through a typical correlation patch given by
VCorr = σ 2

s σtU . The dimensions LCorr ≈ V 1/3
Corr are proportional to the largest scales in

the flow as demonstrated in Fig. 2a. The sine of the mean flap angle φRMS is proportional
to the mean area blocked by a single flap. The larger this blockage is, the stronger are the
fluctuations induced by the flaps. The product sin(
RMS)U is therefore a predictor for the
fluctuating velocity component. The knowledge of typical length scales and velocity defined
by the active grid naturally leads to the definition of a Reynolds number using the kinematic
viscosity ν of the gas.

ReGrid ∼
3
√
VCorr sin(φRMS)U

ν
,
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(b)

(c)

(a)

Fig. 2 a The correlation volume Vcorr = σ 2
s σtU influences the size of the largest flow scales L = ∫

C(r)dr .
b The grid Reynolds number defined as ReGrid = 3√Vcorr sin(φRMS)U/ν determines Rλ. The black line
indicates the isotropic relation Re = c · √

Rλ, where c was chosen to fit the data best. c The separation of

scales L/η as a function of Rλ. The black line indicates a best fit of the K41 prediction of L/η ∼ R3/2
λ .

We attribute the slight deviations from the scaling to the relation between L and u3/ε, which depends on the
large-scale structure of the flow (see Appendix D). The first spectrum of Dataset 1 is not shown in (a) and (b),
because VCorr is not defined for a stationary, open grid

Figure 2b shows that the a priori quantity ReGrid scales with the a posteriori Rλ with devi-
ations at ReGrid > 109. Each Dataset has been obtained by increasing VCorr while keeping
the pressure (and therefore ν) constant as indicated in Table 1. We attribute the slight devi-
ations at large ReGrid from a power law dependence to the fact that L is approaching half
the diameter of the measurement section because the rule-of-thumb σs ≈ σt · U is relaxed
slightly. This is a natural limit for a sensible energy injection in any tunnel. We would like
to add the word of caution that when approaching this limit, isotropy and homogeneity can-
not be assumed easily anymore, which leads to said deviations from the isotropic relation
Rλ ∼ Reζ

Grid with ζ ≈ 0.5 (black line in Fig. 2b). This effect can also be observed in Fig. 2c).

When approximating L = ∫ ∞
0 C(r)dr , deviations from the K41 prediction L/η ∼ R3/2

λ

appear. The scaling is recovered when calculating L = Cεu3/ε (not shown). We attribute
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Table 1 Properties of all spectra

All spectra of a Dataset are distorted by the same function T ( f ) describing the sensor- and instrument-
induced bias. This is ensured by changing Rλ only through large scales L and fixing the position of the small
scales in frequency space indicated by fη . A reference spectrum has been chosen from each dataset, which is
emboldened in this table

this to differences in Cε due to the turbulence forcing as discussed e.g. in Refs. [36–39] and
plotted for our experiments in the appendix. From a phenomenological of view, introducing
correlations into the flow using the active grid increases Rλ only up to a certain limit (prob-
ably related to the tunnel dimensions). When exceeding this limit, the integral length scale
L can no longer be estimated by the correlation length. Nevertheless, these data confirm that
the active grid is indeed another ’knob’ to change Rλ through the largest scales.

2.2 Thermal Anemometry

More than a century after its invention [40], hot-wire anemometry remains the technique of
choice to measure the energy spectrum of turbulent velocity fluctuations in a strong mean
flow. Constant temperature anemometry is responsive to fluctuations up to very high frequen-
cies. The sensing element’s resistance—and therefore its temperature—is kept constant by a
feedback circuit. As long as the feedback circuit is fast enough, the thermal lag of the wire
does not attenuate fluctuations faster than the thermal time scale of the wire. This comes at
the expense of a more complicated circuitry and frequency response.

The frequency response of CTA circuits has been studied extensively both through the-
oretical models and experimental testing. Freymuth [41] linearized a circuit with a single
feedback amplifier of infinitely flat frequency response and analyzed its response to square
and sine waves. He finds that the system can be modeled by a third-order ODE if the circuit
responds faster than the wire, and the frequency response is optimal (flat over the entire
range of frequencies) when the system response to a step perturbation by a single, slight
overshoot (critically damped system). Perry and Morrison [42] investigated more moder-
ate amplifier gains and bridge imbalances in their study yielding similar results. Wood [43]
expanded the Perry and Morrison analysis, but considered a single-stage amplifier with a
frequency-dependent response.Watmuff [44] further expanded themodel withmultiple, non-
ideal amplifier stages. He showed that at least two amplifier stages are necessary to model
the real amplifier properly. This introduces two additional poles to the system and makes the
frequency response more complicated. Samie et al. [45] recently studied anemometry with
sub-miniature probes in this model and compared it to a real CTA measurement. The results
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supported the further development of their in-house circuit, such that sub-miniature hot wire
probes could be operated successfully on this CTA for the first time.

These theoretical attempts to predict the frequency response of a CTA circuit are accompa-
nied by experimental approaches. Bonnet and de Roquefort [46] heated the wire periodically
by a perturbation voltage as well as laser heating to determing the frequency response. Weiss
et al. [47] used the aforementioned square wave test and interpreted its power spectrum as
a measure for the frequency response curve. Hutchins et al. [48] exploited the well-defined
frequency content of pipe flow at different operating pressures to obtain frequency response
curves without artificial heating. They were able to create flows of almost identical Reynolds
number, but different frequency content and could deduce the frequency-response curves
for different circuits and wires. They compared several anemometer circuits and wires and
found that the frequency responses are non-constant at frequencies as low as 500 Hz. For the
combination of CTA circuit and wire used in the present study, they report an attenuation
between 400 Hz and 7 kHz followed by a strong amplification of the signal. We therefore
cannot assume a flat frequency response for ourmeasurements and adress these effects below.

The energy spectrum measured by a hot wire is influenced by the effects of finite wire
length. Length scales smaller than the sensor’s sensing lengths l will be attenuated, but
also larger wavenumbers are influenced. Wyngaard [49] used a Pao model spectrum [50] to
investigate this attenuation of small scales. These resultswere reviewed inRef. [51] indicating
that for l/η = 2, the attenuation of the one-dimensional spectrum is still minimal at kη ∼ 0.3,
which was supported by Ashok et al. [52]. Sadeghi et al. [53] used sub-miniature hot wires
(NSTAPs) as a benchmark and found that spatial filtering of the energy spectrum is minimal
for l/η < 3.7 at kη < 0.1.

In this study we used conventional hot wires of sensing length 450 µm for pressures
below 2 bar, as well as nanoscale thermal anemometry probes (NSTAP) of sensing length
30 µm provided by Princeton University with a Dantec Dynamics StreamWare CTA circuit.
The NSTAP is a 100 nm thick, 2.5 µm wide, and 30 or 60 µm long free-standing platinum
film supported by a silicon structure and soldered to the prongs of a Dantec hot wire. The
production process and characteristics are detailed in Refs. [54–57]. For the conventional hot
wire l/η < 5 in all cases and for the NSTAP l/η < 3. Therefore, η cannot be fully resolved in
all cases. However, the bottleneck effect is typically found around 100η. The aforementioned
references show that we can regard the distortions due to finite wire length as minor in this
part of the energy spectrum.

To summarize, the spatial resolution of our measurement instruments is sufficient to study
the Rλ-dependence of the bottleneck effect. Nevertheless the nonlinear frequency response
of the circuitry remains a source of systematic error that is different from random noise
occuring at very high frequencies. Here we describe a procedure that takes the response into
account and thus removes this systematic measurement error.

3 Relative Spectra

3.1 The Concept

As outlined above, systematic errors influence the energy spectra recorded with a hot-wire
anemometer. Formally, this means that the one-dimensional energy spectrum E11( f ) is dis-
torted by a frequency-dependent transfer function T ( f ):

EM ( f ) = E11( f )T ( f )
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T ( f ) describes the effects of the thermal wire response, which depends on pressure and
speed, and the reponse of the constant temperature anemometry circuit. Ideally, T ( f ) is
a constant over the whole range of relevant frequencies, but the evidence detailed above
indicates a complex shape of amplification and attenuation of the signal. In this study we do
not make any attempt to find T ( f ). Instead, we control its effects by keeping T ( f ) the same
for several flows at different Rλ.

To ensure that the spectra only differ because of changes in the turbulent fluctuation and
not because of the frequency response curve of the anemometer, we need to ensure that the
response curve T ( f ) is unaltered between spectra. We achieve this in two steps. The ambient
pressure might influence the heat transfer of the wire and therefore T ( f ). Furthermore, T ( f )
is influenced by the CTA tuning (in particular the overheat), and the sensor itself. Therefore,
we fix the ambient pressure within a set of spectra (a ’Dataset’) and measure using the same
sensor and the same CTA settings.

The second step is to ensure that a given kη is influenced by the same part of the frequency
response curve T ( f ). Thus, we need to fix the position of a spectral feature in frequency
space. This means that the mean velocity U must be the same within one Dataset. T ( f )
mainly distorts the small-scale end of the spectrum [41–45,47,48,51], whose location in
frequency space at a given U is determined by the kinematic viscosity ν. ν is fixed within a
Dataset because the pressure remains constant.

We can, however, change the energy injection scale and thus Rλ with the autonomous
active grid. This way we can conduct measurements at different Rλ. Ultimately, we can
eliminate T ( f ) by relating each spectrum to a reference spectrum:

Ei
M ( f )

ERef
M ( f )

= Ei
11( f )T

i ( f )

ERef
11 ( f )TRef( f )

= Ei
11( f )T ( f )

ERef
11 ( f )T ( f )

= Ei
11(kU/2π)

ERef
11 (kU/2π)

. (2)

In the following we call the ratio of a spectra divided by a reference spectrum in the frequncy
domain, relative spectrum. We emphasize that the notion of relative spectra is not necessary
to investigate Rλ-scaling within one Dataset prepared in the aforementioned way. However,
the accessible range of Rλ by changing only the active grid forcing is limited. Therefore,
several of such Datasets with different frequency distortions need to be prepared by changing
kinematic viscosity ν andmean flow speedU to obtain a convincing scaling range. The notion
of relative spectra is then required to compare those Datasets.

3.2 Results

We created three sets of spectra that have identical T ( f ) each. We call these sets ‘Datasets‘.
Table 1 shows important parameters for each spectrum. Note that L changes significantly
within a given dataset leading to changes in Rλ, while fη = U/η remains almost constant
within the dataset. This indicates that we changed Rλ only by increasing the large scales,
while keeping all small-scale features of the spectrum at the same frequency. For example, in
Dataset 2, the peak of the spectral bump always lies at a frequency of ∼ 700 Hz, whereas the
beginning of the inertial range spans a factor of 4 in frequency (2 to 8 Hz). This exemplifies
the excellent control over Rλ permitted by the autonomous active grid as indicated in Fig. 2.

The lower graphs of Figs. 3, 4 and 5 show the spectra from each of the respective datasets
divided by the reference spectrum ERef

11 . ERef
M is plotted pre-compensated in the upper graphs
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Fig. 3 Reference spectrum at Rλ = 1305 (upper plot) and relative spectra from Dataset 1. The data have been
collapsed at kη = 0.015, which we defined as the beginning of the bottleneck region.We identified the peaks in
the relative spectra with the bottleneck peak of the absolute spectra. The peak height decreased with increasing
Rλ and different spectra of similar Rλ result in very similar relative spectra as expected. Furthermore, the
slope of the spectrum at kη < 0.015 seems to decrease with Rλ. The shaded areas are a measure of the noise
level

Fig. 4 Reference spectrum at Rλ = 1308 (upper plot) and relative spectra from Dataset 2. The trends in peak
height and slope from Fig. 3 continue
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Fig. 5 Reference spectrum at Rλ = 4247 (upper plot) and relative spectra from Dataset 3. Unlike in Datasets
1 and 2, the beginning of the bottleneck region around kη = 0.015 is identifiable in the relative spectra as a
local extremum

of the respective figure. Note that the absolute spectra in the upper graphs aremultiplied by an
unknown transfer function T ( f ) accounting for probe effects and therefore can not be used
to reliably measure the features of the bottleneck. However, the relative curves are corrected
and allow a measurement. The graphs are the result of a smoothing procedure and error
estimate detailed in the appendix. In brief, the spectra were smoothed using a 1/ f octave
filtering and the error is related to the noise level removed by the smoothing procedure. The
spectra have been divided by the reference spectrum in the frequency domain and collapsed at
kη = 0.015 afterwards to simplify interpretation.This is the approximate location of the local
minimum regularly found in compensated spectra and directly precedes the bottleneck peak
in wavenumber space. DNS studies by Donzis and Sreenivasan [19] and Ishihara et al. [17]
have shown that the magnitude of the compensated spectrum at kη = 0.015 is practically
independent of Rλ. It is difficult to achieve such a good collapse of compensated spectra
in experimental data, because of uncertainties in the measurement of the dissipation rate ε.
Donzis and Sreenivasan [19] regard the compensated spectrum around kη = 0.015 as the
true measure of the Kolmogorov constant and build their analysis of the bottleneck effect
on the difference between the local minimum and the bottleneck peak. By normalizing the
relative spectra at this point we follow their procedure and remove the effects of imperfect
estimates of ε. In other words, we define the bottleneck height as the relative departure of the
compensated spectrum from its magnitude at kη = 0.015 following the procedure described
in Ref. [19]. The remainder of the analysis is carried out on these relative spectra normalized
at kη = 0.015.

While in Dataset 3 the beginning of the bottleneck region around kη = 0.015 is accom-
panied by a change in the shape of the relative spectra, this point cannot be identified in the
relative spectra of Datasets 1 and 2. In the following we concentrate on the bottleneck effect
found at kη > 0.015 for the remainder of this section.
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The location of the spectral bump forming the bottleneck effect in relative spectra is
not obvious. Our data from one-dimensional spectra suggests that the peak occurs between
kη = 0.03 and kη = 0.06, which is consistent with the findings from DNS, where the
peak typically occurs at kη = 0.046 in the one-dimensional spectra (see e.g. Refs. [19],
[17]). However, when considering the background noise, the peak location is not the major
source of error. E.g. for Rλ = 1539, all points between 0.015 < kη < 0.07 are within the
errorband at kη = 0.05. We therefore define the extremum in the relative spectrum between
0.015 < kη < 0.08 as the relative height h of the bottleneck effect. This has the additional
advantage to be independent of the errors in the estimate of η. To preclude biases from this
definition, we repeat our analysis with different definitions of the relative bottleneck height
in Fig. 11 in the appendix.

Finally, the measured bottleneck height cannot depend on which spectrum is chosen as
reference. We have calculated the bottleneck height with all possible choices of ERef

11 and
found our results to be largely independent of that choice (see Appendix for details).

Figure 6 shows the bottleneck height—defined as above—as a function of Rλ/RRef
λ within

each dataset. The data shows a trend towards smaller peak heights in the relative spectrumwith
increasing Rλ. The data follows the numerical data we have compiled from various sources
[17,58–60].Wehave analyzed the data fromBuaria et al. [60] at Rλ up to 1000 (Rλ/RRef

λ < 1).
The increased small-scale resolution in comparison to [19] seems to have no noticable impact
on the bottleneck. Therefore, this data at is practically the same as the one used by Donzis &
Sreenivasan [19] for our purposes. The data from Rλ = 1300 (Rλ/RRef

λ = 1) was reported
in Ref. [58]. The numerical data at Rλ/RRef

λ ≈ 1.9, which corresponds to Rλ = 2340, is the
highest Rλ reported by Ishihara et al. [17]. The relative spectra of the numerical data were
analyzed equivalently to the experimental data and the spectrum at Rλ = 1300 was chosen
as a reference spectrum. We have used the one-dimensional spectra in our analysis of the
numerical data.

When excluding the lowest Rλ, the experimental data is in agreement with the power law
of

h ∼ (
Rλ/R

Ref
λ

)−0.061±0.007
.

The fit was obtained by a bootstrap procedure based on the error bars. It compares well with
the findings of Donzis and Sreenivasan [19], who report a bottleneck scaling of h ∼ R−0.04

λ .
Their analysis similarly defines the bottleneck height as the difference between the height
of the compensated spectrum at the bottleneck peak and the local minimum preceding this
peak.

The spectrum at Rλ = 193 follows the general trend of decreasing peak height with Rλ,
but its peak differs substantially from the predictions. The absolute spectrum (not shown)
exhibits no signs of a 5/3-scaling, and consequently the bottleneck region cannot be clearly
separated from the rest of the spectrum. This is substantially different from the other spectra,
where the end of the integral range could always be observed in the absolute spectra and we
therefore are not surprised that the relative spectrum at Rλ = 193 deviates from the remainder
of the data. This spectrum has consequently been ignored in our interpretation.

Further, we can change Rλ only by a factor of 5 through the autonomous active grid.While
Dataset 1 and 2 each feature a spectrum at the same Rλ, there is a gap between the highest Rλ

of Dataset 2 (2704) and the lowest of Dataset 3 (3641). To plot h as a function of Rλ alone,
we use the aforementioned power law fit from Fig. 6. Under this assumption we can bridge
the gap between the two datasets, because h1/h2 = (Rλ1/Rλ2)

−0.0061±0.007. Using the final
point of Dataset 2 as Rλ1 = 2704 and the corresponding height h1 we can construct h2 using
the lowest Rλ2 = 3641 from Dataset 3 to arrive at Fig. 7

123



Experimental Study of the Bottleneck in Fully Developed Turbulence 629
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Fig. 6 Bottleneck height relative to the corresponding reference spectra for all datasets as a function of
Rλ/RRef

λ . The reference spectra collapse at Rλ/RRef
λ = 1 and have a relative bottleneck height of 1 by

construction. Numerical simulations from Buaria et al. [60] at Rλ up to 1000 (Rλ/RRef
λ < 1), Buaria et al.

[58] (Rλ = 1) and Ishihara [17] (Rλ > 1 ) are added for reference. The DNS data for Rλ < 2000 is practically
identical to the data analyzed by Donzis and Sreenivasan [19]. A power law is fitted to the experimental data
with the lowest Rλ/RRef

λ excluded. (Rλ/RRef
λ )−0.061±0.007 is a good description of the experimental data

over one decade of Rλ (from 500 to 5000) and agrees with the numerical simulations as well. This power law
is used in Fig. 7 to combine Datasets 2 and 3

200 500 1000 2000 5000

1

1.1

1.2

1.3

Fig. 7 We have shifted Dataset 3 from Fig. 6 under the assumption of a power law ∼
(
Rλ/RRef

λ

)α
with

α = − 0.061±0.007, i.e. the position of Dataset 3 with respect to the other Datasets is constructed artificially
from the power law in Fig. 6 to allow us to plot the bottleneck scaling with Rλ alone, i.e. without dividing
by RRef

λ . We have no physical justification for this power law and stress that the position of Dataset 3 in this
figure is speculative
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4 Discussion

In this paper we studied the spectra of a turbulent wind tunnel flow of Rλ between 193
and 5131. We have used regular hot-wires as well as NSTAPs with a state-of-the-art
constant temperature anemometer to record single-point two-time statistics of the tur-
bulent fluctuations, in particular energy spectra. However, such spectra can be heavily
influenced by non-ideal frequency responses of the circuit. The frequency response is par-
ticularly complicated when operating sub-miniature wires like the NSTAP with a CTA
[45,48]. A constant current anemometer (CCA) might perform better in this respect, because
the frequency reponse is limited only by the thermal lag of the wire and no feedback
loop is involved. Still, this comes at the expense of a variable wire temperature and -
resistance.

In an attempt to interpret CTA data suffering from a non-flat frequency response, we con-
sider energy spectra relative to a reference spectrum. Such an analysis significantly restricts
the phenomena that can be observed. The bump in the energy spectrum at the transition from
the inertial to the dissipation range can still be identified in the relative spectra as a local
extremum beyond kη = 0.015.

To the best of our knowledge, no other wind tunnel achieves Rλ > 5000 in a gas. More-
over, we do not know of any other quantitative study of the scaling of the bottleneck effect
with Rλ in a laboratory experiment. We attribute this to the difficulties one faces when inter-
preting energy spectra from CTAmeasurements at relatively high frequencies: The spectrum
is stronlgy influenced by the CTA circuitry and these influences are hard to quantify or
eliminate.

With the aforementioned procedures we are able to extract information about the bottle-
neck effect from instrument-distorted hot wire spectra.We find indications that the bottleneck
effect decreases up to Rλ ∼ 5000.Wefit a power lawof (Rλ/RRef

λ )−α withα = 0.061±0.007,
which is close to the value of (Rλ)

−0.04 found by Donzis and Sreenivasan [19]. Their
numerical results are in general in good agreement with our experimental data, lending
support to the experiment and data anlysis procedure. Our data equally supports Verma
and Donzis [11], who predict that the bottleneck scales as h ∼ 1 − γ (1.5 log2(Rλ))

2/3.
Revisiting Fig. 6, the data is not inconsistent with different Rλ/RRef

λ -scalings of the rela-
tive bottleneck height in the different datasets. We have therefore calculated the scaling of
the individual datasets and found that while Dataset 2 and 3 have almost identical scaling
exponents (− 0.032 ± 0.012, and − 0.034 ± 0.029, respectively), Dataset 1 shows a scaling
of − 0.1528 ± 0.012. When excluding the two lowest Rλ, the scaling exponent becomes
− 0.083 ± 0.024. This points towards different behaviours at low Rλ, probably due to the
effects of a not properly developed inertial range, which contaminates the bottleneck scal-
ing. Such a claim is supported by the slopes of the spectra at 0.001 < kη < 0.015, which
clearly get steeper with increasing Rλ in Dataset 1, but change very little in Datasets 2
and 3, indicating a properly developed inertial range. Interestingly, this effect cannot be
seen in DNS, where the bottleneck scaling of R−0.04

λ can be found at low Reynolds num-
bers.

We attempt to plot the relative bottleneck height as a function of Rλ alone. This requires
the assumption that the aforementioned power law holds and can be extrapolated. Such an
assumption is highly speculative and the results should be considered as such.

We can not quantify the absolute height of the bottleneck bump. Yet, we can argue that
if the relative spectra are still changing with Rλ in the relevant region, the effect has not
completely vanished. We can find a systematic decrease of the peak in the relative spectra
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for Rλ < 3000. The data for Rλ > 3000 in Dataset 3 is inconclusive. A small, decreasing
trend can be found, consistent with the power law fit. However, the differences in height
are so small compared to the error bars that the claim of a constant bottleneck height at
Rλ > 3000 would also be supported by the data, especially when considering alternative
definitions of the bottleneck height in relative spectra as in Fig. 11 found in the appendix.
This is not in contradiction to the atmospheric spectra mentioned above, as they have an
even higher Rλ. Further, we note that a bottleneck effect might not show up as a peak in a
5/3-compensated spectrum, yet might be present when compensating by an intermittency-
corrected slope −(5/3 + β). In this case, the bottleneck effect would still be visible in the
relative spectrum. However, the claim that the bottleneck height does not change with Rλ for
Rλ > 3000 is not ruled out by the data.

As far as this study is concerned, the data matches the predictions of Verma and Donzis
[11]: The bottleneck height decreases with increasing Rλ, but relatively high Rλ are neces-
sary to make the effect vanish completely. Based on nonlinear and nonlocal shell-to-shell
energy transfer Verma and Donzis [11] estimate that the bottleneck is basically absent for
Rλ > 104, but acknowledge that this might be an overestimate. While lending support
to existing studies of the bottleneck effect, especially [19] and theories that incorporate a
Rλ-dependence of the peak height, an investigation of the effect in terms of absolutemeasure-
ments of spectra seems necessary to confirm these claims experimentally. With subminiature
probes of low thermal lag, such a study might be possible with a constant current anemome-
ter, whose frequency response is intriniscally more simple. However, the present study could
reliably measure how the bottleneck decreases with increasing Rλ for the first time in an
laboratory experiment and for Rλ much higher than achieved in DNS or other wind tunnel
studies.
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Appendix A: Brief Description of theWind Tunnel

The VDTT consists of two 11.7 m long straight cylindrical tubes connected by two elbows of
center-line radius of 1.75 m. The tunnel was filled with sulfur-hexaflouride (SF6) at pressures
between 1.5 and 15 bar for the measurements presented here.

The flow is propelled by a fan rotating at up to 24 Hz creating mean flow speeds of
up to 5.5 m/s. It passes the first elbow and enters a heat exchanger, which removes any
turbulent energy dissipated into heat and thus keeps the temperature in the tunnel constant.
The rectangular cross-section of the heat exchanger is smoothly adapted to the tunnel’s
circular geometry by contractions. The vertical slots of the heat exchanger are expected to
destroy large-scales structure present in the flow. After the heat exchanger, the flow passes
an 80 cm long expansion, which adapts it to the measurement section. While passing this
expansion the flow is stabilized and homogenized by three consecutive meshes of ascending
spacing. The flow enters a 9 m long measurement section through an 104 cm high active grid,
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which is directly followed by a 70 cm long expansion to the measurement section’s height
of 117 cm. The measurement section is followed by another elbow and enters a second
measurement section through another sequence of three meshes before being accelerated
again by the fan.

Appendix B: Data Acquisition and Analysis Procedure

TheNSTAPswere operated following largely [61] using aDantec StreamLine 90C10module
within a 90N10 frame. The CTA bridge was set to a 1:1 ratio and the overheat is determined
by an external resistor Rext connected to the system. Typical overheat ratios Rext/RProbe

were 1.2–1.3, where RProbe ∼ 100� denotes the probe cold resistance. The Dantec wires
were used in a 1:20 bridge utilizing the internal automatics to set the overheat. The data was
acquired in the following procedure: The hot wire frequency response and proper operation
was tested on a very basic level using the square wave test built into the Dantec CTA-system.
The hot-wire system was calibrated by scanning a range of mean flow speeds set by the fan
frequency in the tunnel. We determined the mean flow speed through the differential pressure
between a pitot tube and a static pressure probe. The differential pressure was picked up by
a Siemens SITRANS differential pressure transfucer/ We chose ∼ 20 calibration points
spaced by ∼ 0.1 m/s. The probe voltage was recorded for 60 s along with the mean pressure
difference, a voltage-velocity curve was calculated, and King’s law was fitted to the data. In
between calibration points we waited for 45 s for the mean flow to become stationary. The
data was recorded with a National Instruments NI PCI-6123 16-bit DAQ-Card at sampling
rates of 60 or 200 kHz. Higher sampling rates were used for NSTAP measurements, where
the CTA analog low-pass filter was set to 100 kHz. When using standard hot wires, the
filter frequency was set to 30 kHz and the data was sampled at 60 kHz. The data was
recorded in segments of 6 million voltage samples, each saved to disk in a 16-bit binary
format.

We shall briefly outline the initial data analysis procedure used to obtain essential tur-
bulence statistics as well as the power spectrum. Each of the following steps was carried
out on each segment and the results were averaged over all files in the end. We used King’s
law with parameters obtained from the calibration data to convert the voltages to veloci-
ties. Note that the shape of the energy-frequency spectrum is independent of the calibration,
which is only required to obtain its absolute value. Because the analog filtering was not
sufficient to filter out all noise, we low-pass filtered the data digitally using a butterworth-
Filter of order 3 in forward and reverse directions. This introduces edge effects, which
we remove by cutting the first and last 60 points of the time series. We then subtract the
mean U from the velocity time series to obtain a time series of u. The remaining analysis
is performed on this filtered dataset. The power spectra were calculated using MATLB’s
fft function, which is based on the FFTW-package . We calculate the correlation function
usingMATLAB’s xcorr function, which itself relies on the aforementioned fourier transform
procedure as well as structure functions of order 1 to 8. Finally, we obtain histograms of
velocity and voltage. We use Taylor’s Hypothesis, which assumes that a one-dimensional
velocity field can be obtained from a time series by multiplying the time increments by the
mean velocity: �x = �t · U . The power spectra are normalized using the assumption that∫
E(k)dk = u2.
We routinely calculate basic turbulence quantities in different ways and check the results

for consistency. The quantites Rλ, and η depend on the mean energy dissipation rate ε,
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which we measure using the third-order structure function S3(r) = 〈(u(x + r) − u(x))3〉 =
4/5(εr). The last step follows from the Navier-Stokes equations and is also predicted by
Kolmogorov’s 1941 theory. In practice we estimate ε = max(5/4 S3/r) and check the result
with ε = 15ν

∫
k2E(k)dk, and ε = max(S3/22 /r). The integral length scale is calculated as

L = ∫ ∞
0 C(r)dr , where C(r) = 〈u(x + r)u(x)〉 is the velocity auto-correlation function. Its

error mainly stems from the ambiguous choice of the upper integration limit, which leads to
a relative error about 10% in L .

Appendix C: Calculation and Cross-Check of Relative Spectra

To obtain relative spectra, the initial spectrum consisting of 3 million points was downsam-
pled to 50 000 logarithmically spaced datapoints. To remove the noise from these spectra,
we have smoothed them using a fractional octave smoothing algorithm. It multiplies the
spectrum at each frequency with a Gaussian centered around the current frequency fi with a
width of σi = ( fi/n)/π , where n determines the smoothing level. Therefore, the smoothing
window is larger for higher frequencies. To estimate the noise level in the spectrum and the
associated statistical error, we consider the data within 3σi of each frequency.We estimate the
standard error as δ = √

Var/N , where N is the number of points considered and Var denotes
their variance. Finally, the compensated spectra are calculated as ψ(k) = E11(k)k5/3ε−2/3,
which can be written as ψ( f ) by Taylor’s Hypothesis. Finally, we divide the i-th spec-
trum in a dataset by the reference spectrum: ψi ( f )/ψRef( f ). The result is normalized at
kη = 0.015 to remove offsets introduced by uncertainties in ε and to simplify compar-
isons.

An important cross-check of the technique is its independence from the choice of
reference spectrum. To this end we have calculated the bottleneck effect according to

Fig. 8 The bottleneck height in Dataset 1 with different choices of ERef
11 . If the analysis is independent of the

choice of reference spectrum, the graphs are parallel in this representation. Note that the reference spectrum
always has bottleneck height 1
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Fig. 9 Same as Fig. 8 for Dataset 2

Fig. 10 Same as Fig. 8 for Dataset 3

the analysis outlined above for all possible choices of reference spectra. The results are
shown in Figs. 8, 9 and 10. They show the peak height in the relative spectra as a
function of Rλ/RRef

λ . Rλ/RRef
λ has been normalized to the value that was chosen in the

main part of the paper to increase the clarity of the figures. If the analysis is indepen-
dent of the choice of reference spectrum ERef

11 , a different choice E ′Ref
11 , should move

the resulting curve by a factor of ERef
11 /ERef

11 upwards and RRef
λ /R′Ref

λ to the right. The
latter is trivial and has been removed from Figs. 8, 9 and 10 by the additional normal-
ization. Thus, if the spectra are independent of the choice of reference spectrum, the
bottleneck curves should be parallel. Figures 8, 9 and 10 show that this is valid in good
approximation showing that the analysis is largely independent of the choice of reference
spectrum within a dataset. In a similar way, Fig. 11 shows that the qualitative results are
largely independent of where the bottleneck effect is measured. The details are found in
Sect. 3.2.

123



Experimental Study of the Bottleneck in Fully Developed Turbulence 635

0.5 1 1.5 2

1

1.05

1.1

0.5 1 1.5 2

1

1.05

1.1

0.5 1 1.5 2

1

1.05

1.1

Fig. 11 Bottleneck height as function of Rλ/RRef
λ with different bottleneck definitions based on the height of

the relative spectra at a fixed kη. The power law is the one found using the initial definition of the bottleneck
height in Fig. 6. Upper graph: Bottleneck at kη = 0.03, middle graph at kη = 0.04, lower graph at kη = 0.046
(as predicted byDNS).Datasets 1 and 2 still follow the trend found in themain part. Dataset 3 is not inconsistent
with the claim of a constant bottleneck height at Rλ > 3000

Appendix D: On the quantity C" = L"/u3

In Fig. 2c we plot L/η as a function of Rλ and recover to a good approximation the expected
scaling of L/η ∼ R3/2

λ . This scaling is derived from the relation ε = Cεu3/L and the

definitions of η = (ν3/ε)1/4 and λ = √
15νu2/ε. Thus, the scaling depends on the constant

Cε, which is flow-dependent (see e.g. [36–38] for a review).We plot this constant as a function
of Rλ in Fig. 12, where we have used L = ∫

C(r)dr . Between Rλ 500 and 2000 the value
is approximately constant after being higher at lower Rλ. This behaviour is qualitatively
consistent with the findings reported by Sreenivasan [36]. In general, Cε is scattered around
1. We attribute the scatter to the fact that the exact vaue of Cε depends on the larg-scale flow
structure and is thereby influenced by the forcing mechanism. Considering that the active
grid forcing is our main means of fine-tuning Rλ, we expect such a scatter in Cε.
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Fig. 12 Cε = Lε/u3 as a function of Rλ. The data is scattered around Cε = 1. We attribute the scatter to the
dependence of Cε on the large scale flow structure, which is our main means of changing Rλ
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