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Abstract
In this paper we revisit the problem of explaining phase transition by a study of a form of
the Boltzmann equation, where inter-molecular attraction is included by means of a Vlasov
term in the evolution equation for the one particle distribution function. We are able to show
that for typical gas densities, a uniform state is unstable if the inter-molecular attraction is
large enough. Our analysis relies strongly on the assumption, essential to the derivation of
the Boltzmann equation, that ν � 1, where ν = d/l is the ratio of the molecular diameter
to the mean inter-particle distance; in this case, for fluctuations on the scale of the molecular
spacing, the collision term is small, and an explicit approximate solution is possible. We
give reasons why we think the resulting approximation is valid, and in conclusion offer some
possibilities for extension of the results to finite amplitude.

Keywords Phase transition · Boltzmann equation · Stability theory

1 Introduction

The application of the Boltzmann equation to the fluid mechanical properties of matter has
been extraordinarily successful. The Chapman–Enskog expansion [8] of its solution provides
amechanistic explanation of viscosity and thermal conductivity, and equally Boltzmann’s H -
theoremprovides an explicit basis for the concept of entropy and the laws of thermodynamics.

In this context, one of the intriguing properties ofmaterials is that of phase transition,which
on the face of it is inconsistent with the H -theorem, which provides a Lyapunov function
for the velocity distribution which drives it to a unique (Maxwellian) equilibrium. On the
other hand, phase changes correspond to the existence of multiple steady states, as instanced
for example by the van der Waals equation, which seems prima facie contradictory to the
H -theorem. Actually, it is not as straightforward as this, since the equilibrium Maxwellian
distribution depends on number density and temperature, and assumes these quantities are
spatially uniform; if one allows spatially varying number density, other possibilities can
occur, and indeed this is the subject of the present paper.

B A. C. Fowler
andrew.fowler@ul.ie

1 MACSI, University of Limerick, Limerick, Ireland

2 OCIAM, University of Oxford, Oxford, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-019-02222-6&domain=pdf
http://orcid.org/0000-0002-2062-6372


1012 A. C. Fowler

Of course, the resolution of this apparent conundrum lies in the fact that the H -theorem
assumes a one particle distribution function f (r, v, t) which is independent of the spatial
variable r. If this restriction is lifted, the possibility of spatial variation arising through an
instability occurs, with the interpretation of such an instability being the onset of condensa-
tion. It is therefore of interest to examine the stability of the spatially uniform equilibrium of
the Boltzmann equation, with a view to understanding how phase transition occurs.

There is, however, nothing in the Boltzmann equation which seems to provide a mech-
anism for instability; to provide such a mechanism, we will interpret the intermolecular
potential as consisting of two parts: a steep repulsive part, which we model as the usual
Boltzmann collisional interaction, and a longer range attractive part, and it is this which pro-
vides the instability mechanism: attractive forces between molecules induce a tendency to
form clusters, and this tendency is enhanced in conditions of high density or low temperature.

Anumber of authors have investigated this problem.Theoriginal approachusesmethods of
classical statistical mechanics (e. g., Born and Fuchs [4], Mermin [16] and vanKampen [20]),
which allow the derivation of the van der Waals equation of state from a virial expansion
of the grand partition function (e. g., Schwabl [19], p. 236 ff). Later authors address the
problem directly. For example, Grmela [13] enunciates essentially the same problem which
is of concern here. And indeed, his approach is similar: he writes down a Boltzmann–Vlasov
equation similar to that which we present below, where the reference to Vlasov reflects the
additional attractive term which is used in theories of plasma dynamics [22]. But in common
with much of the literature on kinetic theory, the presentation is discursive, and the difficulty
of dealing with the linearised collision operator prevents any clear conclusion.

Liboff [15] also presents similar stability results to those we derive below, for a range of
different attractive power law potentials, but largely ignores the effects of collisions, only
modifying his analysis by including a simplified (algebraic) collision term due to Bhatnagar
et al. [3], yielding the so-calledBGKapproximation, which is analytically tractable. A similar
approach has recently been adopted by Benilov and Benilov [2].

De Sobrino [10] takes the application of the Boltzmann equation further. Insofar as phase
transition can be understood by derivation of the van der Waals equation of state, he shows
that by including the two essential constituents of this equation, intermolecular attraction
and molecular crowding, in the prescription of the closure for the two-particle distribution
function, the van der Waals equation emerges as the equation of state of the equilibrium
solutions. Other approaches and related discussions can be found in the papers of Penrose
[18], Wisnivesky [21] and Chen [9].

In this paper we consider the problem of condensation from the point of view of kinetic
theory, by analysing the Boltzmann–Vlasov equation for the one particle distribution func-
tion, which includes the Boltzmann collision integral and the Vlasov term describing the
intermolecular attraction. Although the ideas of scale have been adumbrated before, here we
explicitly non-dimensionalise the model, and show that the collision term is small, providing
the gas is sufficiently rarified, in the sense that ν = d/l � 1: here d is molecular diameter
and l is the mean inter-particle spacing; in practice this assumption is justified, except near
the critical point. This allows us to derive an explicit condition for instability, much in the
manner of Liboff [15]; however, we go further by considering explicitly the corrective rôle
of the collision integral, and we show that it is small, although we surmise that this is not the
case in the condensed phase equilibrium.

The rest of the paper proceeds as follows. In Sect. 2,wepresent theBoltzmann equation and
its modification by the Vlasov term, andwe non-dimensionalise the system, which introduces
two important dimensionless parameters: ν, as described above, and β, which measures the
strength of the inter-molecular attraction. In Sect. 3, we linearise the model to study spatial
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Fig. 1 The Lennard-Jones
potential for inter-particle forces,
as given by (2.3)

-1

 0

 1

 2

 0  1  2  3  4

W
/W

0

r/d

instability of theMaxwellian equilibrium, and derive an explicit instability criterion when the
density parameter ν is small. We then study the perturbative effect of the collision integral,
and show that its effect is uniformly small, thus validating the accuracy of the approximate
stability criterion. Finally, in the concluding Sect. 4, we offer some conjectures about the
subsequent nonlinear evolution of the system.

2 The Boltzmann Equation

The basic equation of statistical mechanics is the Liouville equation, from which we can
derive the BBGKY hierarchy:

∂ fs
∂t

+
s∑

i=1

⎡

⎣vi · ∇ri fs +
⎧
⎨

⎩g +
s∑

j=1

ai j

⎫
⎬

⎭ · ∇vi fs

⎤

⎦ = −
s∑

i=1

∫

P
ai,s+1 · ∇vi fs+1 dγs+1.

(2.1)

Here fs is the s-particle distribution function, and is a function of the positions ri ∈ V and
velocities vi ∈ U of the s particles, as well as time t, P = V × U is the six-dimensional
configuration space of position and velocity, and dγi is the volume element of that space,
g is the external acceleration (typically gravity), and ai j is the inter-particle acceleration on
particle i due to particle j . If the inter-particle potential is Wi j = W (|ri − r j |), then

ai j = − 1

m
∇ri Wi j . (2.2)

A typical example of such a potential is the Lennard-Jones potential given by

W = W0

[(
d

r

)12

−
(
d

r

)6
]

, (2.3)

where d is the molecular diameter; the potential is portrayed in Fig. 1.
Particularly, the one-particle distribution function f1 = f (r, v, t) satisfies the first equa-

tion in the hierarchy:

∂ f

∂t
+ v · ∇r f + g · ∇v f = −

∫

P
a · ∇v f2 dγ2, (2.4)
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where a = a12. The Boltzmann equation now follows from the assumption that the locations
of two particles in P are independent of each other, so that we take

f2(r, v; s,w; t) = f (r, v, t) f (s,w, t), (2.5)

and in this case we obtain

∂ f

∂t
+ v · ∇r f + g · ∇v f = Q, (2.6)

where the collision integral takes the form

Q = −
∫

P
a(r − s) · ∇v f (r, v, t) f (s,w, t) ds dw. (2.7)

2.1 Intermolecular Forces

Henceforth we ignore the external body force, thus g = 0.We are nowmotivated by the form
of the potential in Fig. 1 to consider W to consist of two parts: an increasing part for r > d
corresponding to long range attractive forces, and a vertical line at r = d which corresponds
to collisions between particles. In more detail, we consider W = WC(r) + WLR(r), with
both potentials being zero for r < d, and WLR < 0 is an increasing function, tending to 0 as
r → ∞, while the collisional potential WC is 0 for r > d, but ranges from 0 to ∞ at r = d,

representing perfectly elastic collision. In this case, the collision integral can be taken to be
the sum of two terms,

Q = QC + QLR, (2.8)

where QC is the usual Boltzmann form of the collision integral representing perfectly elastic
collisions,

QC =
∫

U

∫

�+
[ f (r, v′, t) f (r,w′, t) − f (r, v, t) f (r,w, t)] d� dw,

v′ = v + (V · k̂)k̂, w′ = w − (V · k̂)k̂, V = w − v; (2.9)

here U = R3 is velocity space, v and w are the velocities of two colliding particles, V their
relative velocity, k̂ a unit vector along the line between their centres at the point of collision,
and d� = d2V · k̂ dω, with the solid angle element dω being taken over all solid angle
subtended at v such thatV · k̂ > 0 (so that the particles are actually colliding, not separating).
A more accurate expression due to Enskog allows for the finite size of the particles, but this
is not necessary in the present discussion. Further discussion of the Enskog modification is
provided in Sect. 4. QC is associated with the vertical (repulsive) part of the potential, while
QLR represents the longer range attractive force,

QLR = −A · ∇v f , (2.10)

where for an inter-particle potential as in (2.2), we have from (2.7)

A = −
∫

V

a(ξ)ξ

ξ
n(r − ξ , t) dξ , (2.11)

in which

n =
∫

U
f dv (2.12)

123



Phase Transition in the Boltzmann–Vlasov Equation 1015

Fig. 2 Integration with respect to
(scaled) solid angle � over the
antipodal sphere

v
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θ

is the number density,

a(ξ) = W ′(ξ)

m
(2.13)

is the acceleration associated with the attractive part of the potential [thus we take a = 0
for ξ < d: equivalently, the integral in (2.11) is taken over ξ ∈ R3, ξ > d], and V is spatial
volume. As mentioned above, the integral in (2.9) over �+ is with respect to solid angle in
velocity space. Specifically, as shown in Fig. 2, integration is over the solid angle subtended
at v over the antipodal sphere through the antipodal points v and w, and more precisely

d� = d2k̂ · V dω(k̂) = d2 dS

V
, (2.14)

where d ismolecular diameter, dω is the element of solid angle indicated in Fig. 2,V = w−v,
dS is the element of surface area, and k̂ is the unit vector in the direction of v′ − v. Note that
d� has units of velocity. For the Lennard-Jones potential in (2.3), we would take

a(ξ) = 6W0d6

mr7
, r > d, (2.15)

and this will be assumed later [after (3.14)]; for now a(ξ) is quite general. The Boltzmann
equation (2.6) with g = 0 thus takes the form

∂ f

∂t
+ v · ∇ f + A · ∇v f = QC, (2.16)

and we write ∇r = ∇. This equation forms the basis of our study.

2.2 Non-dimensionalisation

It is convenient to non-dimensionalise the model. To do this, we define the thermal velocity
scale

v0 =
√
kT0
m

, (2.17)

an acceleration scale

a0 = W0

md
, (2.18)

and a mean inter-molecular distance

l = 1

n1/30

, (2.19)
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where n0 is a typical value of the number density. We then scale the variables1 as

n ∼ n0, f ∼ n0
v30

, r ∼ l, a = a0a
∗
(

ξ

d

)
,

v ∼ v0, t ∼ l

v0
, A ∼ a0d4

l4
, QC = n20d

2

v20
Q, (2.20)

and this leads us to the non-dimensional form of the equation,

∂ f

∂t
+ v · ∇ f + βA · ∇v f = ν2Q,

Q =
∫

U

∫

�+
[ f (r, v′, t) f (r,w′, t) − f (r, v, t) f (r,w, t)] d� dw,

A = −1

ν

∫

V

a(ξ)ξ

ξ
n(r − νξ , t) dξ , (2.21)

in which all the variables are dimensionless (in particular d� = dS/V ), we have dropped
the asterisk from a∗, and the dimensionless parameters are defined by

β = a0d4

v20l
3

, ν = d

l
. (2.22)

This form of scaling the equation is that used by Keller [14], although in his case the inter-
pretation of the parameter ν is rather different.

In the absence of any spatial variation, A = 0 and the left hand side of the equation
is simply ∂ f /∂t . As is well known, the existence of Boltzmann’s H -function assures us

that f approaches an equilibrium on a time scale of O

(
1

ν2

)
, and this is the Maxwellian

distribution, which in its dimensionless form is given by

f = f0(v) = 1

(2π)3/2
e− 1

2 v2 , (2.23)

where for convenience we will assume that the mean velocity is zero. It is the stability of this
state to spatial perturbations which is our concern.

3 Linear Stability

Before we linearise the equation, it is convenient first to define

f = e
, (3.1)

so that (2.21)1 takes the form

∂


∂t
+ v · ∇
 + βA · ∇v
 = ν2

∫

U

∫

�+
[exp(�
) − 1]) f (r,w, t) d� dw, (3.2)

1 We have chosen for simplicity to use the particle diameter d as the length scale over which the long range
forces vary. A more general approach allows a to vary over a length scale dLR 	 d, and this would allow
extra flexibility in the analysis, at the expense of introducing a further dimensionless parameter. But in fact
the present analysis includes this more general assumption as a special case.
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Phase Transition in the Boltzmann–Vlasov Equation 1017

where for ψ(v),

�ψ = ψ(v′) + ψ(w′) − ψ(v) − ψ(w). (3.3)

The Maxwellian corresponds to


0 = − 1
2v

2 − 3
2 ln(2π), (3.4)

and �
0 = 0.
We now linearise the equation about the steady state by writing


 = 
0 + φ, (3.5)

and neglecting nonlinear terms; the linearised form of (3.2) is

φt + v · ∇φ − βA · v = ν2Lφ, (3.6)

where the linearised form of A is

A = −1

ν

∫

P

a(ξ)ξ

ξ
f0(v)φ(r − νξ , v, t) dv dξ , (3.7)

and the linearised collision operator is

Lφ =
∫

U

∫

�+
f0(w)�φ d� dw. (3.8)

We now seek normal mode solutions to this equation of the form

φ = ψ(v)eik·r+σ t , (3.9)

where k is the wave vector. This leads to the eigenvalue problem for ψ(v) in the form

(σ + ik · v)ψ − βB · v = ν2Lψ, (3.10)

where

B = −1

ν

∫

V

a(ξ)ξ

ξ
e−iνk·ξ dξ , (3.11)

and we have assumed a normalisation in which
∫

U
f0(v)ψ(v) dv = 1. (3.12)

To evaluate B,we take Cartesian coordinates in V = R3 with the z axis in the k direction.
By symmetry, the x and y components are zero, and therefore we can write

B = iC(νk)k, (3.13)

and by changing to spherical polar coordinates, we find that (writing K = νk)

C(K ) = 4π

K 2

∫ ∞

1
ra(r)

[
sin Kr

Kr
− cos Kr

]
dr . (3.14)

This expression was derived by Liboff [15]. The function C(K ) is plotted in Fig. 3; its
asymptotic limits for small and large K are [taking a = 6/r7, corresponding to (2.15), and
with a0 given in (2.18)]

C ∼ 8
3π − 4

5πK 2 + · · · , K → 0,

C ∼ 24π sin K

K 3 + · · · , K → ∞. (3.15)
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Fig. 3 The function
C(νk) = C(K ) defined by
(3.14). The thin lines give the
asymptotic limits from (3.15)

Some further detail of the expansion for small K is given in the Appendix. As a consequence,
(3.10) is

(σ + ik · v)ψ − iβCk · v = ν2Lψ. (3.16)

Our aim is to solve this equation to determine σ(k). Eigenfunctions ψ for which Re σ > 0
are unstable.

3.1 The Limit � → 0

Before we begin, we summarise some of what is known about the linear integral operator L
(e. g., Cercignani [7], p. 159 ff). Under the definition of an inner product

〈φ,ψ〉 =
∫

U
f0(v)φ(v)ψ̄(v) dv, (3.17)

L is self-adjoint. Its null-space N is the span of the functions 1, v and 1
2v

2; all other eigen-
functions have negative eigenvalues. Something is known about the action of L on tensors;
for example,

L[g(v)v] = h(v)v, L [
G(v)

{
vv − 1

3δ
}] = H(v)

[
vv − 1

3δ
]
, (3.18)

and such results can be extended to higher order tensors; they are due to a rotational invariance
of the operator L. However, the ability to directly solve an equation such as (3.16), despite
all this structure, is not clear, and we therefore resort to an approximate method.

Since β ∝ v−1
0 ∝ T−1/2

0 , we would hope that as the ambient temperature decreases,
the instability that we seek will appear at a sufficiently large value of β. On the other hand,
while molecular spacings in liquids are of order d, those in gases are significantly larger
(because gas densities are typically much lower at normal temperatures and pressures).2

This suggests that we consider a gas in which l 	 d, and thus ν � 1. This immediately
allows us to provide an approximate solution of (3.16). The neglect of the collision integral
requires consideration, in case it allows a singular perturbation; in the sequel we give some
consideration to this possibility, although we might suspect, since the neglected term is an
integral, that the induced perturbation is in fact regular.

2 This is not true near the critical point, but we are mainly interested in normal conditions.

123



Phase Transition in the Boltzmann–Vlasov Equation 1019

If we neglect the term of O(ν2) in (3.16), we simply have

ψ = iβCk · v
σ + ik · v , (3.19)

and the normalisation condition (3.12) implies

iβC
∫

U

f0(v)k · v dv
σ + ik · v = 1, (3.20)

and it is this which determines σ.

To evaluate (3.20), we take Cartesian axes (vx , vy, ζ ) in the velocity space U , with the
ζ axis in the direction of k, so that k · v = kζ. Carrying out the integrals in vx and vy, this
leads to

iβC√
2π

∫ ∞

−∞
kζ e− 1

2 ζ 2 dζ

σ + ikζ
= 1. (3.21)

Defining

σ = √
2kη, (3.22)

this can be manipulated to the form

1

βC
= 1√

π

∫ ∞

−∞
ze−z2 dz

z − iη
, (3.23)

and then

1 − 1

βC
= η

i
√

π

∫ ∞

−∞
e−z2 dz

z − iη
= 2η2√

π

∫ ∞

0

e−z2 dz

z2 + η2
. (3.24)

This integral is related to a form of the ‘plasma dispersion function’ (Fettis et al. [12],
Abramowitz and Stegun [1], p. 297). Specifically, if we define

w(iη) ≡ W (η) = eη2erfc η, (3.25)

then, providing Re η > 0, the integral in (3.24) is proportional to W (η), and

1 − 1

βC
= √

πηW (η) = √
πηeη2erfc η. (3.26)

If η is a root of (3.23), then so is −η̄ (by taking the complex conjugate of the equation): it
follows that we can take Re η ≥ 0 without loss of generality, since for Re η < 0, we simply
consider −η̄. By taking the imaginary part of the second integral in (3.24), it follows that in
fact either η is real or purely imaginary. The latter case corresponds to neutral stability, and
is discussed later. For real η, we can then suppose η > 0. In this case, (3.24) shows that a
root only exists if βC > 1, and this is shown in Fig. 4.

This is the principal result that we obtain: for values βC > 1, the uniform state is unstable,
and we associate this with a transition to condensation. With C(νk) as shown in Fig. 3, we
see that the criterion for instability is that

β >
3

8π
, (3.27)

or in dimensional terms,

T0 < Tc, Tc = d2

km1/3

(
8πW0 p

3

)2/3

, (3.28)
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Fig. 4 The scaled growth rate

η = σ√
2k

as a function of βC,

given by (3.26)

where for illustrative purposes we have used the perfect gas law p = n0kT0, even though
this may not be appropriate for a Boltzmann–Vlasov gas.

We can see from Fig. 3 that in the typical case where β ∼ O(1) (and β > 3
8π ), βC

decreases to one as k increases from zero to a value of O(1/ν), and thus Fig. 4 shows that
η decreases monotonically to zero as k increases. Hence σ is a concave unimodal function
which first increases from zero and then decreases back to zero. In particular, the maximum

growth rate occurs for k ∼ 1

ν
, and is of order

1

ν
.

Instability first sets in when β increases through 3
8π , and near this value, long wavelength

disturbances are amplified since K � 1. We use the expansion in (3.15) for small K , and
expand (3.26) for small η, and this leads to the approximation

σ ≈
√

2

π
k

[( 8
3βπ − 1

) − 3
10ν

2k2
]
, (3.29)

for which the maximum growth rate occurs at

k ≈ 1

3ν

[
10

( 8
3βπ − 1

)]1/2
. (3.30)

In practice, it is only such long wavelength modes which are of interest.

3.2 An Approximate Correction

We now turn to the consideration of the accuracy of this stability criterion. The issue is
whether the neglect of the collision integral term ν2Lψ in (3.16) is justified. Taking (3.19)
as our definition of ψ, we have

ψ(v′) − ψ(v) = iβCσk · (v′ − v)
(σ + ik · v′)(σ + ik · v) , (3.31)

and it follows that

|ψ(v′) − ψ(v)| ≤ βCσk|v′ − v|
{σ 2 + (k · v′)2}1/2{σ 2 + (k · v)2}1/2 ≤ βCk|v′ − v|

{σ 2 + (k · v)2}1/2 .

(3.32)
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Phase Transition in the Boltzmann–Vlasov Equation 1021

It can be seen that the concession admitted in the last inequality is quite weakening, but we
have not found any easy way round this. In a similar way we have

|ψ(w′) − ψ(w)| ≤ βCk|v′ − v|
{σ 2 + (k · w)2}1/2 , (3.33)

using the fact that w′ − w = −(v′ − v). It follows that

|�ψ | ≤ βCk

[
1

{σ 2 + (k · v)2}1/2 + 1

{σ 2 + (k · w)2}1/2
]

|v′ − v|, (3.34)

and thus that

|Lψ | ≤ βCk
∫

U
f0(w)

[
1

{σ 2 + (k · v)2}1/2 + 1

{σ 2 + (k · w)2}1/2
] ∫

�+
|v′ − v| d� dw.

(3.35)

The integral with respect to � can be evaluated (using the geometry of Fig. 2), and is 2
3πV 2,

where V = |v − w|. Therefore

|Lψ | ≤ 2
3πβCk

∫

U
f0(w)|v − w|2

[
1

{σ 2 + (k · v)2}1/2 + 1

{σ 2 + (k · w)2}1/2
]
dw

= 2
3πβCk

∫

U
f0(w)(v2 + w2)

[
1

{σ 2 + (k · v)2}1/2 + 1

{σ 2 + (k · w)2}1/2
]
dw,

(3.36)

where the integral proportional to v·w vanishes due to symmetry considerations. The integrals
can be evaluated, and this leads finally to

|Lψ | ≤ 1
3βCk

[
v2 + 3

{σ 2 + (k · v)2}1/2 + 1

k
√
2π

{
(v2 + 2)eξ K0(ξ) − 2ξ [eξ K0(ξ)]′}

]
,

(3.37)

where

ξ = σ 2

4k2
. (3.38)

Thus our upper bound implies |L(ψ)| ≤ O(v2), which would imply that the neglect of the

collision term in (3.16) becomes invalid when v ∼ 1

ν2
. We surmise, however, that in fact

this is not the case, and that actually |L(ψ)| ≤ O(v).

Our reasons for this surmise follow from consideration of Lψ when v is large. Because
the Maxwellian f0 decays rapidly as w increases, the integral overU in the definition of L is
only significant when w ∼ 1. The integral over �+ thus splits into two parts: a region near
the origin where dS ∼ 1 and thus d� ∼ 1/V , where either v′ or w′ ∼ 1, �ψ ∼ 1, and this
part of the integral is O(1/V ). Over the rest of �+, v′ ∼ w′ ∼ v,

�ψ = βCσ

σ + ik · w + O

(
1

V

)
, (3.39)

and thus we have (since
∫
�+ d� = πV )

Lψ = πβCσ

∫

U

|v − w| f0(w) dw
σ + ik · w + O(1), (3.40)

123



1022 A. C. Fowler

and is thus of O(v): specifically,

Lψ ≈ πβCσv

∫

U

f0(w) dw
σ + ik · w = πβCσv√

2π

∫ ∞

−∞
e− 1

2 ζ 2 dζ

σ + ikζ
= π3/2βCvηeη2erfc η,

(3.41)

where we take the ζ axis in the direction of k, and η is still defined through (3.22). In view
of (3.26), this is simply

Lψ ≈ π(βC − 1)v, (3.42)

and allows a correction to (3.19) as

ψ = iβCk · v + ν2π(βC − 1)v

σ + ik · v , (3.43)

and this could be used to provide an improved estimate for σ ; the main point, however, is
that the collision term appears to provide a regular correction to our leading order result.

3.3 WaveMotion

The question arises, of course, as to what happens if βC < 1. In this case, the only possibility
is a pure wavemotion in which σ = −iω, and in that case the defining equation forψ, (3.16),
can be written as

(k · v − ω)ψ − βCk · v = 0, (3.44)

where again we neglect the collision term on the basis that ν is small , andwe again normalise
ψ by (3.12), that is,

∫

U
f0(v)ψ(v) dv = 1. (3.45)

The solution of (3.44) is singular,

ψ = βCk · v
k · v − ω

, (3.46)

and it is necessary to enquire how one should interpret the resulting integral in (3.45). One
way to do this is to consider (3.46) as the limit as ε → 0 of the non-singular solution

ψ = βCk · v
k · v − ω − iεk

, (3.47)

corresponding to σ = εk − iω. With v = (vx , vy, ζ ), and carrying out the integral with
respect to vx and vy (and with ζ in the direction of k), (3.45) leads to

βC√
2π

∫ ∞

−∞
ζe− 1

2 ζ 2 dζ

ζ − c − iε
= 1, (3.48)

where c = ω/k is the wave speed. If we take ε > 0, then we can replace the contour in (3.48)
by one which is indented by a lower semi-circle of radius δ � 1. We then let ε → 0, and
subsequently δ → 0, and this leads to taking the limit of (3.48) as

βC√
2π

[
−
∫ ∞

−∞
ζe− 1

2 ζ 2 dζ

ζ − c
+ iπce− 1

2 c
2

]
= 1, (3.49)
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which is equivalent to interpreting (3.46) as

ψ = βC

[
P

(
k · v

k · v − ω

)
+ iπk · v δ(k · v − ω)

]
, (3.50)

where P indicates that principal value integration should be applied in (3.45), and we have
used the result |a|δ(at) = δ(t).

However, (3.49) evidently has no solution. What has gone wrong? The problem is that the
singularity of (3.44) allows the more general solution to be

ψ = βCk · v
k · v − ω

+ √
2π A δ

(
ζ − ω

k

)
, (3.51)

where A is an arbitrary constant, since in the sense of generalised functions, tδ(t) = 0
(Carrier et al. [5], p. 320). This situation occurs in a number of other examples. Particularly,
we may think of the (two-dimensional) stability of inviscid Couette flow [6], which can be
described by the eigenvalue problem

(ky − ω)(φ′′ − k2φ) = 0, (3.52)

with boundary conditions φ(0) = φ(1) = 0. In the linearised problem, the basic flow is
(u, v) = (y, 0), and the perturbed stream function is given by the normal mode solution

ψ = φ(y) exp[i(kx − ωt)]. (3.53)

There are no regular solutions of (3.52) at all (the discrete spectrum is empty), and solutions
are obtained from

φ′′ − k2φ = δ(y − c), (3.54)

where c = ω/k is the (real) wave speed. With 0 < c < 1, the solutions are just the Green’s
functions for the differential operator, and they form the continuous spectrumof the problem.3

For the instability of more general shear flows (U (y), 0), the inviscid stability equation is
the Rayleigh equation [11]

(U − c)(φ′′ − k2φ) −U ′′φ = 0, (3.55)

and the solutions are still singular
The normalisation condition now leads, after some algebra, to

βC�√
π

−
∫ ∞

−∞
e−t2dt

t − �
+ Ae−�2 = (1 − βC), (3.56)

where we have defined

ω = √
2k�, (3.57)

and using the Plemelj formulae together with the definition of w(z) in (3.24) and (3.25), this
leads to the definition of A as

A = 2βC�

∫ �

0
et

2
dt + (1 − βC)e�2

. (3.58)

It may be noted that if βC < 1, the possibility of A = 0 is not available. In view of (3.57),
the wave speed is

√
2�.

3 Almost the same result occurs in the Eady model of baroclinic instability (Pedlosky [17], p. 523).
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4 Discussion and Conclusions

It has been previously shown [15] that the Maxwellian equilibrium distribution of a (rarified)
gas is spatially unstable at sufficiently low temperatures, providing the collisional operator
can be ignored. Efforts to include collisional effects have been limited to the algebraic BGK
approximation [2,15], or other such simplifications [13]. In this paper, we have followed a
different approach analogous to that of Keller [14], where direct asymptotic solutions of the
Boltzmann–Vlasov equation are sought. At leading order this reduces the stability problem to
that of the collisionless Vlasov problem, but we have additionally shown that the correction
due to the collisional term remains small, so that the resulting stability criterion remains
accurate.

It remains to consider the nonlinear evolution of the distribution function. This is beyond
the scope of the present paper, but the results of de Sobrino [10] and the scaled equation in
(2.21) suggest a way forward. First, the closure for the two-particle distribution function in
(2.5) is replaced by

f2(r, v; s,w; t) = C
{ 1
2 (r + s), t

}
f (r, v, t) f (s,w, t), (4.1)

where C is a crowding coefficient, designed to represent the reduction of available space in
dense conditions; de Sobrino suggests

C = 1

1 − bn
, b = 2

3πd
3. (4.2)

Second, the collision integral in (2.9) is replaced by the more accurate

QC =
∫

U

∫

�+
[ f2(r, v′; r + dk̂,w′; t) − f2(r, v; r − dk̂,w; t)] d� dw; (4.3)

hence

QC =
∫

U

∫

�+

[
C

(
r + 1

2dk̂, t
)
f (r, v′, t) f (r + dk̂,w′, t)

− C
(
r − 1

2dk̂, t
)
f (r, v, t) f (r − dk̂,w, t)

]
d� dw. (4.4)

The dimensionless form of this, using (2.20), is

Q =
∫

U

∫

�+

[
C

(
r + 1

2νk̂, t
)
f (r, v′, t) f (r + νk̂,w′, t)

− C
(
r − 1

2νk̂, t
)
f (r, v, t) f (r − νk̂,w, t)

]
d� dw, (4.5)

where from (4.2),

C = 1

1 − 2
3πν3n

, (4.6)

and additionally

∂ f

∂t
+ v · ∇ f + βA · ∇v f = ν2Q,

A = −1

ν

∫

V

a(ξ)ξ

ξ
n(r − νξ , t) dξ ,

n =
∫

V
f dv. (4.7)
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For small ν, the system reduces to that studied earlier, so that the instability result is the
same. It is of at least mathematical interest to ask what state the system then evolves to.
Naturally, we would hope that this state would correspond to a condensed liquid, although
we recognise that it is generally considered that the Boltzmann (or Boltzmann–Vlasov, or
Enskog–Vlasov) equation becomes inapplicable in this case, when the particle spacing is
of order d. Despite this, it is of interest to enquire whether the solution of (4.7) evolves to
a ‘liquid-like’ state. The obvious suggestion is that f evolves without the collision term
towards a singularity, in which a rescaling becomes necessary when f ∼ 1/ν3, r ∼ ν, and
thus n ∼ 1/ν3, A ∼ 1/ν, t ∼ ν and Q ∼ 1/ν6, following which the system is described
by (4.5) and (4.7), with ν replaced by one everywhere. Exploration of this possibility is
postponed to a future study.
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Appendix

The function C(K ) defined in (3.14) can be written also in the form [taking a(r) = 6/r7]

C(K ) =
[

4

K 2 + 1 − K 2

6

]
sin K

K
+

[
− 4

K 2 − 1

3
+ K 2

6

]
cos K + πK 3

12
− Si(K ),

(A.1)

where

Si(K ) =
∫ K

0

sin s ds

s
. (A.2)

Taylor expansion of this leads to the expression

C(K ) = π

(
8

3
− 4K 2

5
+ πK 3

12

)
+

∞∑

2

(−1)rπar K
2r , (A.3)

where

ar = − 4

(2r + 3)! + 4

(2r + 2)! + 1

(2r + 1)! + 1

3(2r)!
+ 1

6(2r − 1)! + 1

6(2r − 2)! − 1

6(2r − 3)(2r − 3)! . (A.4)

The values of the coefficients a2 to a8 are tabulated in Table 1.
If terms are included out to O(K 10), the Taylor series more or less coincides with C(K )

until the point where the large K result takes over. The one term expansion at large K in
(3.15) can be extended by continued integration of parts as

C ∼ 24π

[
sin K

K 3

(
1 − 35

K 2 . . .

)
− 5 cos K

K 4

(
1 − 56

K 2 . . .

)]
, (A.5)
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Table 1 The values of a2 to a8
given by (A.4) a2 −2.85714285714286 × 10−2

a3 −1.76366843033503 × 10−4

a4 −1.20250120250144 × 10−6

a5 −6.6071494642872 × 10−9

a6 −2.85494112655234 × 10−11

a7 −9.81454168794222 × 10−14

a8 −2.73178032811039 × 10−16

but the higher order terms evidently do not become effective until K 	 6, whereas the first
order expression in (3.15) is already accurate for K � 6.
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