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Abstract
A particle with internal degrees of freedom is in contact with a bath of photons (necessitating
a relativistic treatment). The occurrence of decoherence is established and the density matrix
is found to be diagonal in momentum space. In the case of non-trivial internal degrees of
freedom and selection rules there is a first order phase transition separating those degrees of
freedom. Finally, because probability amplitudes become probabilities, Einstein’s proposal
that more than one detector could respond to a signal is answered.
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1 Introduction

In a recent publication [1] we showed that—subject to technical assumptions—a particle
that is bombarded by others tends to a diagonal state in momentum space. Moreover, that
diagonal state is just the thermal state ∝ exp(−βm p2/2) with β the inverse temperature
(and the Boltzmann constant taken to be unity). In other words it decoheres, but is left with
a not-quite-diagonal density matrix in coordinate space, namely there are off-diagonal terms
on the scale of the thermal wavelength, λthermal ∼ �

√
β/m. This result contradicted certain

results in the literature [2]. Moreover, it established the spatial limits of decoherence, limits
that were not probed when scattering was treated with a no-recoil assumption [3]. In [1], as
well as in [4] and [5], the no-recoil assumption was dropped.

In the present paper the bombardment comes from a bath of photons. The conditions
suggest a relativistic treatment and it turns out that this is much simpler to implement. Here
too we make certain technical assumptions, but again find that the limiting density matrix for
a particle in a thermal bath of photons is itself a thermal state, diagonal in momentum space.

We alsomake the usual physical assumptions. Namely we live with contradictory views of
the scattering process. On the one hand, the S-matrix is used to describe a single scattering; on
the other—even though the S-matrix nominally goes from time = −∞ to time = +∞—we
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imagine that many scatterings take place. The use of S-matrix theory is nevertheless justified
if the collisions are reasonably separated from one another (obviating the use of this method
to draw conclusions about liquids or solids) and if the collisions are exponentially distributed
as they are expected to be.

In a concluding sectionwe examine someof the consequences of our calculation, including
the possibility of phase transitions, a topic not discussed in [1], since internal degrees of
freedom were not considered. We also address an old question of Einstein.

2 Defining the States

Themicroscopic state of the particle is (p, τ ), with τ = 1, . . . , n labeling the internal degrees
of freedom and p = (pμ) = (p0, p) is the 4-momentum. When the particle has internal
state τ its energy is

p0(τ ) =
√
M2

τ + | p|2 , (1)

with Mτ the internal mass and c = 1.
The photons are considered to form a bath and are characterized by occupation numbers

{Nk}, with k the 4-momentum (so that k2 = 0).
The density matrix of the particle is

ρS (p, τ |p′, τ ′) . (2)

For the photon bath the density matrix is

ρB ({Nk}|{N ′
k}) . (3)

For a thermal bath of photons at temperature β−1, ρB is diagonal and

ρB ({Nk}|{N ′
k}) = 1

ZB,β

∏
k

δ(Nk − N ′
k)e

−βNkk0 . (4)

3 Evolution of the Particle Density Matrix

The initial density matrix for the particle and bath is ρS ⊗ ρB . The evolution is given by the
S-matrix

S
(
(p1, τ1), {N1,k}|(p0, τ0), {N0,k}

)
, (5)

followed by a trace over the bath occupation numbers. The dynamics is defined by the
S-matrix. Its asymptotic states are (p, τ ) and {N0,k} and S is defined by the underlying
Hamiltonian dynamics. S satisfies conservation of 4-momentum

(p01(τ1), p1) +
∑
k

N1,kk = (p00(τ0), p0) +
∑
k

N0,kk , (6)
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where p0i (τi ) is given by Eq. (1). The evolution induces a “superoperator” R on the density
matrix of the particle, given by

(RρS )(p1τ1|p′
1τ

′
1) =

∑ ∫
dp00(τ0) dp0 dp

′0
0 (τ ′

0) dp
′
0 S

(
(p1, τ1), {N1,k}|(p0, τ0), {N0,k}

)

×ρS (p0, τ0|p′
0, τ

′
0)ρB ({N0,k}|{N ′

0,k})
×S†

(
(p′

0, τ
′
0), {N ′

0,k}|(p′
1, τ

′
1), {N ′

1,k}
)

. (7)

The sum in Eq. (7) is over the various collections of occupation numbers; the integral is over
the momenta together with a summation on the internal states of the particle. The integrals
over energy are left in the formulas despite the presence of δ-functions in S so as not to clutter
our expressions with square roots of the energy. Conservation of momentum gives

(p01(τ1), p1) +
∑
k

N1,kk = (p00(τ0), p0) +
∑
k

N0,kk, (8)

(p′0
1 (τ ′

1), p
′
1) +

∑
k

N ′
1,kk = (p′0

0 (τ ′
0), p

′
0) +

∑
k

N ′
0,kk , (9)

We examine the special case where the photon bath density matrix is diagonal. Then
N0,k = N ′

0,k for any k. Subtracting Eq. (8) from Eq. (9) gives

(p′
1, τ

′
1) − (p1, τ1) = (p′

0, τ
′
0) − (p0, τ0) , (10)

which implies that

p′
1 − p1 = p′

0 − p0 and (11)

p01
′
(τ ′

1) − p01(τ1) = p00
′
(τ ′

0) − p00(τ0) . (12)

In particular, the diagonal element of RρS , namely (RρS )(p1, τ1|p′
1, τ

′
1), depends only on the

diagonal elements of ρS , i.e., ρS (p0τ0|p0τ0). In other words, R induces a stochastic matrix,
R(p1, τ1|p0, τ0) so that

(RρS )(p1, τ1|p1, τ1) =
∑
τ0

∫
dp00(τ0) dp0 R(p1, τ1|p0, τ0)ρS (p0, τ0|p0, τ0) . (13)

In general (RρS )(p1, τ1|p′
1, τ

′
1) depends only on the elements ρS (p0, τ0|p′

0, τ
′
0) satisfying

Eq. (10) (or equivalently Eqs. (11)–(12)).
Again we consider the case where the photon bath is thermal (Eq. (4)). Then the thermal

state of the particle

ρS β(p, τ |p′, τ ′) = δττ ′δ(p − p′)e
−β p0(τ )

Z p,β
, (14)

is preserved under the dynamics. In other words, if the system is in a thermal state, it stays
there.

Proof Insert Eqs. (4) and (14) into RρS given by Eq. (7). It has already been shown that Rρ

is diagonal. Moreover, by conservation of energy

p00(τ0) = p01(τ1) −
∑
k

N0,kk
0 +

∑
k

N1,kk
0 (15)
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(here τ0 = τ ′
0, τ1 = τ ′

1), so that

(RρS )(p1τ1|p1τ1) = exp(−β p01(τ1))

Z p,β

∑∫
dp00(τ0) dp0

× ∣∣S((p1, τ1), {N1,k}|(p0, τ0), {N0,k})
∣∣2 exp(−β

∑
N1,kk0)

ZB,β

. (16)

In the last term of Eq. (16) we sum first over (p0τ0) and {N0,k} and by unitarity

∑∫
dp00(τ0)dp0

∣∣S((p1τ1), {N1,k}|(p0τ0), {N0,k})
∣∣2 = 1 .

Finally, by normalization ∑
exp(−β

∑
N1,kk01)

ZB,β

= 1 . (17)

Therefore in Eq. (16)

(RρS )(p1τ1|p1τ1) = exp(−β p01(τ1))

Z p,β
. (18)

�	

4 Decoherence and Convergence to the Thermal State

4.1 Proof that the Non-diagonal Elements of RN�S in a Momentum Basis Tend to
Zero as N → ∞ for a Diagonal Photon Bath

We know that (RρS )(p1, τ1|p′
1, τ

′
1) depends only on the elements ρS (p0, τ0|p′

0, τ
′
0) with

(p′
1, τ

′
1) − (p1, τ1) = (p′

0, τ
′
0) − (p0, τ0) .

Define
q = (p′

1, τ
′
1) − (p1, τ1) = (p′

0, τ
′
0) − (p0, τ0) . (19)

One can write
∫

dp01(τ1)dp1RρS (p1, τ1|(p1, τ1) + q)

≤
∑
τ0

∫
dp00(τ0)dp0|ρS (p0, τ0|(p0, τ0) + q)|C((p0, τ0), q) . (20)

with

C((p0, τ0), q) =
∣∣∣∣
∑∫

dp01(τ1)dp1S
(
(p1, τ1), {N1,k}|(p0, τ0), {N0,k}

)
ρB

×S†
(
(p0, τ0) + q, {N ′

0,k}|(p′
1, τ

′
1) + q, {N ′

1,k}
)∣∣∣∣ . (21)

Here the sum is over occupation numbers as well as on τ1. If q = 0, then by unitarity

C((p0, τ0), q = 0) = 1 . (22)
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If q �= 0, then by the Cauchy–Schwarz inequality

C((p0, τ0), q) ≤
(∑∫

dp01(τ1)dp1
∣∣S (

(p1, τ1), {N1,k}|(p0, τ0), {N0,k}
)∣∣2 ρB ({N ′

0,k})
)1/2

×
(∑∫

dp01(τ1)dp1
∣∣S (

(p′
1, τ

′
1) + q, {N ′

1,k}|(p′
0, τ

′
0) + q, {N ′

0,k}
)∣∣2 ρB ({N ′

0,k})
)1/2

.

(23)

with strict inequality in Eq. (23) if
∣∣S (

(p1 + q, τ1){N1,k}|(p0 + q, τ0){N0,k}
)∣∣ �= ∣∣S (

(p1, τ1){N ′
1,k}|(p0, τ0){N ′

0,k}
)∣∣ ,

for at least one state (p1, {N1,k}) or {N0,k}.
Moreover, in the second term in Eq. (23) each factor in the product is 1, by the unitarity

of S. Therefore

C((p0, τ0), q) < 1 if q �= 0 .

It follows that for q �= 0

∑
τ1

∫
dp01(τ1)dp1 |Rρ(p1, τ1|(p1, τ1) + q)|

<
∑
τ0

∫
dp00(τ0)dp0 |ρ(p0, τ0|(p0, τ0) + q)| . (24)

4.2 Convergence to Thermal Equilibrium

The diagonal elements of Rρ are given by Eq. (13). We assume that the stochastic matrix
R(p1, τ1|p0, τ0) in the second term of Eq. (13) is irreducible. In that case the diagonal
elements of RNρ converge to the thermal state as N → ∞ because the thermal state is a
stationary state for the stochastic matrix R and is unique if R is irreducible. Therefore RNρ

converges to the thermal state when N → ∞.

4.3 Detailed Balance

Finally, the stochastic matrix R of Eq. (13) which describes the evolution of the diagonal
elements of ρ satisfies detailed balance

R(p1, τ1|p0, τ0) exp(−β p00(τ0)) = R(p0, τ0|p1, τ1) exp(−β p01(τ0)) . (25)

This implies that R has real eigenvalues.

4.4 Phase Transitions

We order the internal parameters, τ so that

Mτ ≤ Mτ+1 for 1 ≤ τ ≤ n − 1 .
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Thus

R(p1, τ1|p0, τ0) =
∑∣∣S (

(p1, τ1), {N1,k}|(p0, τ0), {N0,k}
)∣∣2 e−β

∑
k N0,kk0

ZBβ

. (26)

The summation is over the two collections of occupation numbers.
To obtain a phase transition it is necessary and sufficient that the first m eigenvalues after

1 be almost degenerate with 1 and that smaller eigenvalues be much smaller [6–9]. Thus,
if the eigenvalues are ordered by magnitude, 1 ≡ λ0 >∼ λ1 >∼ . . . >∼ λm � |λm+1|. For the
situation at hand we assume that transitions in the internal parameter are relatively rare so
that in this case n = m + 1. R can then be decomposed in diagonal blocks with small matrix
elements connecting different blocks, representing the transitions between internal quantum
numbers. Each diagonal block represents a phase, while inside a block the dynamics is given
by rapid equilibration, leading to smaller (more rapid) eigenvalues.

Suppose, for example, that the transitions between τ0 = 1 and a nearby value, say τ1 = 2,
is strongly forbidden (this could be due to conservation of angular momentum at some level
of perturbation theory). Then the S-matrix values connecting (p0, τ0 = 1) and (p1, τ1 = 2)
are very small, so that

R(p1, τ1|p0, τ0) and R(p0, τ0|p1, τ1) < ε . (27)

for some small ε (for (p0, τ0 = 1) and (p1, τ1 = 2)). In this case R is almost degenerate and
we have a phase transition, which each phase having a different value of τ .

Remark If M1 � M2 ≤ M3 ≤ . . . , a transition from (p0, τ0 = 1) to (p1, τ1 = 2) requires
at least the absorption of a photon of momentum k with k0 ≥ M2 − M1 and thus by Eq. (25)

R(p1, τ1|p0, τ0) ≤ e−β(M2−M1)

ZB,β

, (28)

which is very small at low temperatures. But R(p0, τ0|p1, τ1) can still be large, so that
condition Eq. (28) alone does not imply a phase transition.

5 Conclusions

We have shown that the eventual state of a bombarded particle leaves it in a thermal state,
and in particular one that is not diagonal in coordinate space, but rather in momentum space.
The scale of the coordinate space off-diagonal elements is λthermal ∼ �

√
β/m. The present

calculation is performed for bombardment by photons, and although a relativistic treatment
is called for and might have been considered troublesome, it actually turns out to be easier
than the non-relativistic calculation.

We have also found that one can allow the internal state of the particle to change.Moreover,
if there is an approximate conservation law that causes there to be selection rules, the matrix
of transition probabilities turns out to exhibit the features of a phase transition—eigenvalues
near unity with a subsequent dropoff. (All eigenvalues are real, because of detailed balance,
which was also demonstrated.) These different internal states correspond to “channels” in
scattering theory.
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There is another old question partially answered by this calculation. Back in 1927 Einstein
asked [10]1 (paraphrasing), “Why don’t we get two detector clicks from the same electron?”
“Why when a particle is surrounded by a collection of detectors does it excite only one of
them?” In fact, this was eventually tested experimentally [11] and indeed there was but one
click per particle. Einstein’s question was asked at the fifth Solvay conference and in our
opinionwasnot satisfactorily answeredby those advocating theCopenhagen interpretation. In
the present calculation we have shown that a photon bath will convert probability amplitudes
to probabilities, that is, on the scale of the thermal wavelength the density matrix is diagonal.
The thermalwavelength due to cosmic background radiation is already quite small (λthermal ∼
10−34

√
1/2.7 × 1.4 × 10−23 × 10−30 ∼ 15 nm for an electron in MKS units), answering

Einstein’s question, at least for electrons and typical detectors.
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