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Abstract

Wilson (Proceedings of the twenty-eight annual acm symposium on the theory of comput-
ing, pp. 296-303, 1996) in the 1990s described a simple and efficient algorithm based on
loop-erased random walks to sample uniform spanning trees and more generally weighted
trees or forests spanning a given graph. This algorithm provides a powerful tool in ana-
lyzing structures on networks and along this line of thinking, in recent works (Avena and
Gaudilliere in A proof of the transfer-current theorem in absence of reversibility, in Stat.
Probab. Lett. 142, 17-22 (2018); Avena and Gaudilliere in J Theor Probab, 2017. https://
doi.org/10.1007/s10959-017-0771-3; Avena et al. in Approximate and exact solutions of
intertwining equations though random spanning forests, 2017. arXiv:1702.05992v1; Avena
et al. in Intertwining wavelets or multiresolution analysis on graphs through random forests,
2017. arXiv:1707.04616, to appear in ACHA (2018)) we focused on applications of spanning
rooted forests on finite graphs. The resulting main conclusions are reviewed in this paper by
collecting related theorems, algorithms, heuristics and numerical experiments. A first foun-
dational part on determinantal structures and efficient sampling procedures is followed by
four main applications: (1) arandom-walk-based notion of well-distributed points in a graph,
(2) a framework to describe metastable-like dynamics in finite settings by means of Markov
intertwining dualities, (3) coarse graining schemes for networks and associated processes,
(4) wavelets-like pyramidal algorithms for graph signals.
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1 Introduction: Networks, Trees and Forests

The aim of this paper is to survey some recent results [2—5] on a certain measure on spanning
forests of a given graph and its applications within the context of networks analysis. We call
a network on n € N vertices a directed and weighted graph

g=W, & w),

where V denotes a finite vertex set of size |V| = n, £ stands for a directed edge set seen as
a prescribed collection of ordered pairs of vertices {(x, y) € Vx V},andw : V x V > RT is
a weight function, which associates to each ordered pair (x, y) € £ astrictly positive weight
w(x, y). We will consider irreducible networks where for every two distinct vertices x, y €
V, there is always a directed path connecting them, that is, a sequence {¢; = (x;, y,-)}ﬁ=1 cé&
for some / € N such that x; = x, y; = y and y; = x;4 foreveryi </ — 1. Let us introduce
the measure at the core of this work. A rooted spanning forest ¢ is a subgraph of G without
cycle, with V as set of vertices and such that, for each x € V), there is at most one y € V
such that (x, y) is an edge of ¢. The root set R(¢) of the forest ¢ is the set of points x € V
for which there is no edge (x, y) in ¢; the connected components of ¢ are trees, each of
them having edges that are oriented towards its own root. We call F the set of all rooted
spanning forests and we see each element ¢ in F as a subset of £. See Fig. 1. For fixed
positive ¢ € RT, we are interested in the random forest ®, defined as the random variable
with values in F with law:

w(g)g @)
Z(q)

where w(¢) = Hee‘b w(e) is the weight associated to the forest ¢ € F, |R(¢)| is the

number of roots, which is also the number of trees, and Z(q) = Z¢€ Vs w(gp)gR@I is
the normalizing partition function. In particular ¥ € F is the spanning forest made of n
degenerate trees reduced to simple roots and w(#) = 1. We can include the case ¢ = +00
in our definition by setting @, = {J € F in a deterministic way. In the sequel we denote by
E expectation w.r.t. the random forest law P.

Let us notice that the random forest ®, induces a partition of the graph into trees, and
hence the measure in (1) can be seen on the one hand as a clustering measure similar in spirit
to the well-known FK-percolation [19]. On the other hand, the forest @, is rooted and the
set of roots R(®,) forms an interesting random subset of vertices whose distribution can be
explicitly characterized. Figures 2 and 3 show how the associated partition denoted by P(®,)
and set of roots R(®,) look like in two different geometrical settings. As we will show, the
presence of the tuning parameter ¢, controlling size and number of trees, and related efficient
sampling algorithms make this measure particularly flexible and suitable for applications.

P(®y =¢) = . QEF, (&)

1.1 Content of the Paper

This survey is organized in two parts. The first three sections constitute a first foundational
part, followed by a second part on applications presented in the remaining sections. We
will start by presenting basic properties of the measure in (1), Sect. 2, and some sampling
algorithmic counterparts, Sect. 3. We then move to three main applications:

(I) InSect.4, we will show how the set of roots R (P, ) can be used to define a probabilistic
notion of subset of well distributed points in a graph and to practically sample it.
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Random Forests and Networks Analysis 987

Fig. 1 An example of an element of F with 5 roots on a two-dimensional 5 x 4 box of 72

Fig.2 A sample of P(®4) and R(P,) on a two-dimensional box of 72 with constant unitary nearest-neigbour
weights and periodic boundary conditions. We used different shades of blue for blocks in the partition identified
by different trees. Cyan lines separate neighbouring trees and roots are at the centers of red diamonds (Color
figure online)

(II) As a second application, a network coarsening scheme is presented in Sect. 5, based
on the forest ®; and the notion of Markov chain intertwining. Motivations stem
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988 L. Avena et al.

from questions in metastability and in signal processing and we provide two different
algorithms and related theorems to control the quality of the resulting coarse grained
network.

(IIT) We conclude with a last application, which actually constitutes our most developed
novelty (at the current stage) as far as the real-world-analysis of data sets on networks
is concerned. Supported by theorems and related experiments, in Sect. 6 we propose
a new wavelet basis construction and an associated multiscale algorithm for signal
processing on arbitrary weighted graphs.

To conclude this introductory part, we describe briefly the origin of this measure and related
literature, Sect. 1.2, and introduce some basic crucial objects and notation needed along the
paper, Sect. 1.3. Apart from Wilson’s algorithm, Theorem 1, Propositions 8 and 13, and parts
of Theorems 2 and 11, all other statements, algorithms and experiments are original and they
were recently derived by the authors.

1.2 Uniform Spanning Tree and a Zoo of Random Combinatorial Models

The uniform spanning tree (UST) constitutes a by now classical topic in probability theory
and it consists of a random spanning tree sampled uniformly among all possible spanning
trees of a given graph. The analysis of this object can be traced back at least to the work of
Kirchhoff [23] where the number of spanning trees of a graph was characterized in terms
of minors of the corresponding discrete Laplacian matrix (matrix-tree theorem). In the last
decades, UST has been playing a central role in probability and statistical mechanics due to
its deep relation with Markov chain theory and its surprising connections with challenging
random combinatorial objects of current interest: e.g. loop erased random walks, percolation,
dimers, sandpile models, Gaussian fields. We refer to [6,10,17,19-22,24-26] for an overview
on the vast literature on the subject. What makes this object particularly interesting is in part its
determinantal nature, namely, related local statistics have a closed-form expression in terms
of determinants of certain kernels, together with the fact that there is an efficient random-
walk-based-algorithm due to Wilson [40] for sampling, which will be presented in Sect. 3.1.
The forest measure in (1) is actually a simple variant of the UST measure and it appeared
already as a remark in [40] where the author mentions how to sample it. As for the UST
measure, there are many interesting questions related to scaling and infinite volume limits
of observables of the forest measure in (1). Nonetheless, our focus here is on applications
within the context of networks analysis and for this reason we will not insist on this very
interesting fundamental line of investigation and we will restrict only to networks with finite
number of vertices.

1.3 Basic Objects and Notation: Random Walks, Graph Laplacian, Green’s Function

Given the finite, irreducible, directed and weighted graph G = (V, £, w) on n vertices, let
X = {X(¢) : t = 0} be the irreducible continuous-time Markov process with state space
V and generator L given by

LH® =Y wEN[fW—f®], f:V—>C,  xeV (@)

yeV

In view of the finiteness and irreducibility assumptions, there exists a unique invariant
measure for the Markov process X which will be denoted by 1. Averages of functions w.r.t.
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n will be denoted by w(f). We recall that the invariance of u is equivalent to u(Lf) = 0
for arbitrary functions f. We will denote by P, and E, respectively, law and expectation
w.r.t. the random walk X starting from x € V. Note that L acts on functions as the matrix,
still denoted by L:

L(x,y)=w(x,y)forx #y; L(x,x):—Zw(x,y). 3)
Vx

We refer to the operator L as the weighted graph Laplacian and we set

Wmax = mMax —L(x, x). “4)
xeV

We will denote by X the discrete-time skeleton chain associated to L defined as the Markov
chain with state space V and transition matrix

P =

+ Idy, (5)

Wmax

with Idy being the identity matrix of size |V|.
In the sequel we deal with restrictions of various matrices: for any .4, B C V and any
matrix M = (M(x, y) : x, y € V), we write [M] 4,5 for the restricted matrix

(Mlas=(M(x,y):x €A yeB).

In case A = B, we will simply write [M] 4.
For a subset A C V

T4 =inf{t > 0 : X(r) € A} is the hitting time of the set .4, (6)

with the convention Ty = oo.
Finally, for a given (possibly random) time 7 and arbitrary x, y € V, we write :

T
Gr(x,y)=E, |:/ Lix )=y} dt} for the Green’s function up to time 7, (7)
0

i.e. the mean time X spends in y up to time 7" when starting from x. In case T is a random
variable independent of the random walk, we will slightly abuse notation and still use E for
expectation w.r.t. the random walk and the extra randomness.

Let us conclude with basic notation for normed spaces. We will denote by

LWV ={f:V=>RI[Ifll,y <o}, p=1, ®)

the £,,-space of functions on V w.r.t. the norm

1/p
1A,y = (Z [fColP M(X)> : ©))

xeV

ForV Cc Vand f : V — R, we will also use
1/p

Fl L — = _qp H(X)
Hpr,v— )§|f(x)| (D) . (10)
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990 L. Avena et al.

Further, for arbitrary probability measures v; and v, on V, their total variation distance
is given by

1
dTV(V17V2):§Z|V1(x)—v2(x)| . an

xeV

2 Random Spanning Forests

2.1 Laplacian Spectrum and Determinantality

We start here an account of the basic fundamental results characterizing the distribution of the
main objects related to the random forest ®,. It will be convenient for the sequel to consider
the following generalized version of the random forest. For any B C V we denote by @, 53
arandom variable in 7 with the law of &, conditioned on the event {B - R(QDq)}. We then
have, for any ¢ in F,

w(¢)qIR(¢)I—IBI

Plous=9)=""7 0

LBcr@) (12)
with
Zs@)= ), w(g)gOIEL (13)
»R($)DB

The original definition in Eq. (1) is recovered by simply setting B = @, so that &, = D, ¢
and Z(g) = Zy(g). This extended law is non-degenerate even for ¢ = 0, provided that B
is non-empty. And if B is a singleton {r}, then ®g (, is the classical random spanning
tree with a given root r, namely, a spanning tree T rooted at r sampled with probability
proportional to [],c, w(e). Let us emphasize that actually, for ¢ > 0, &, = @, ¢ itself
is also a special case of the usual random spanning tree on the extended weighted graph
G = (V', &, w') obtained by addition of an extra point  to V—to form V' = V U {r}—and
by adding extra edges to r with weights w’(x, r) = g and w’(r, x) = 0 for all x in V. Indeed,
to get @, from the random spanning tree on V' rooted in r, one only needs to remove all the
edges going from V to r.

As a first result we characterize the partition function in terms of the Laplacian spectrum.
To this end we denote by Ao 3 < A1,p < -+ < Aj—1,8, withl = |V \ B| and some B C V,
the eigenvalues of [—L]y\ 5 in increasing order.

Theorem 1 (Partition function and Laplacian spectrum) For any B C V, Zp is the charac-
teristic polynomial of [L1y\5, i.e.,

Z5(q) = det [qldys — [LIn5] = H(q +x;8), q<R.
j<l

The above result can be seen as a version of the well-known matrix-tree-theorem (see for
instance [1]). The proof can be derived in several ways. We refer to [3, Prop. 2.1] for an
elementary proof by a classical argument based on loop-erased random walks and using the
notation herein.

As mentioned above, one of the nice features of the forest measure (as well as for the
random spanning tree measure) is its determinantal structure which allows for explicit com-
putations. We start by recalling the determinantality of the edge set for which we need some
more notation.
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For an oriented edge e = (x, y) we denote the starting and ending vertex, respectively,
ase_ = x and e = y. We will also write —e for (y, x). For any given B C V and ¢ > 0,
we write G4, 5 for the Green’s function in Eq. (7) with T = T, A T , the minimum between
the hitting time of B (see Eq. (6)) and time 7, denoting an independent exponential time
of parameter ¢. G, ;5 can then be identified with the operator [¢Id — L];{ 5 so that,

TanTs Id— L1 4 (x, forx,y e V\ B
X [/ ]l{X(t)=y}dt:| = {([)" s(x: ) y €VA

G x,y)=FE .
g5 ) otherwise.

For x € YV and e in &, we call
I o) =Ed[|{s < Ty ATs: X(s2) = e; X(5) = ex }|] = Gy (x, e w(e)
the expected number of crossings of the (oriented) edge ¢ up to time 7; A T, and
Jo.sx,e) =T, B(x e)—J, e, —e),
the net flow through e starting from x.

Theorem 2 (Determinantal edges: transfer-current) Fix B C V and q > 0. Then, for any

={el,...,e} C &
P(Ak - Qq,B) = P(el,ez,.. sep € Dy 3) = det[ . B]A
k
with
I gle,e) = Jfple—.e) = I z(es,e), e e e€. (14)
In addition, denoting by {*ey, ..., xey € O, 5} the event that for all i < k either e; or —e;
belong to ® g, it holds
P (+ter, ..., tex € @y ) = det [Iq,B]Ak (15)
with
Ipsle.¢) = Jyple—.é) — Jyples.e), ee €E. (16)

The above theorem is a version of the celebrated transfer-current theorem due to Burton and
Pemantle [10]. Inits original form, this theorem was proven in an undirected graph, extensions
to the directed setup have appeared for e.g. in the recent Chang [12] and the statement in
Theorem 2 is nothing but a probabilistic reformulation of Thm. 5.2.3 and Coro. 5.2.4 in [12].
For a simple proof using our notation, we refer the reader to [2, Thm. 7.1].

Theorem 2 says that ®, 5 is a determinantal process with kernel I +B interpretable in
terms of random-walk-flow. If from a computational point of view, this allows to get explicit
formulas, from a phenomenological perspective, when the kernel is symmetric, being deter-
minantal means that the corresponding objects tend to repel each other, more precisely, they
are negatively correlated:

Pler, ez € @4, 8) <Pley € Dy 5)P(ez € D,y ) foranyey,e; € £.

Inherited by the determinantal nature of ®, g, also the set of roots R(®, ) is determi-
nantal with a remarkable stochastic kernel given by the random walk X killed at time 7, A Tj3:

Theorem 3 (Determinantal roots with killed random walk kernel) Fix B C V and q > 0.
Then, forany ACV :
P (A C R(®y.5)) =det[Ky 5] 4,
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with
KyB(x,y) :==qGyB(x,y) =P (X(Ty ATg) =y), x,y€eV.
In case B =9, ®, g = &, and we simply write
Ky(x,y) = P(X(T)) =y), x,y€V. )

This theorem has been derived in [3, Prop. 2.2]. We next move to the characterization
of [R(®g4,5), that is, the number of roots/connected components/trees. The next statement
corresponds to [3, Prop. 2.1]. Recall that Re(A; 5) > O forany B C Vand j > O as a
consequence of Gershgorin circle theorem.

Theorem 4 (Number of roots) Fix B C V and g > 0 and letl = |V \ B|. Set

q .
pjl@g)=———, 0=j=<Il-1, (18)
/ q+ijnB

Decompose
Jo={j<l—-1:2;5€R]},
Jy={j<I-1:Im@;p) > 0},

Jo={j:ImG; ) <0},
and define independent random variables B;’s and C;’s, respectively, with laws:
P(Bj=1) =pj(q), P(B;=0)=1-pjq), Jje<,
and for j € Jy,
P(C; =2) = |pj@)*,
P(C; =1) = 2Re (p;(@)) — 2Ip; (@),
P(C; =0) = 1 —2Re (p;(@) +p;j@).
Then, whenever g > 0 or B # , the random variable |R(®, g)| is distributed as
Ses=IBl+> Bj+ Y Cj
Jj€Jdo J€J+

Notice that in case the spectrum of the graph Laplacian is real and B is empty, [R(®)|
is simply given by the sum of independent Bernoulli’s B;’s (J4 being empty). In particular,
since Ag = 0, Bg = 1 and we recover the fact that |R(<I>q)| >1a.s.

Further, we emphasize that in general momenta of the |R(®,)| have simple expressions
and can be easily obtained by differentiating w.r.t. ¢ the normalizing partition function Z(g).
For example, mean and variance are given by

2
E[|R(¢q)|]=2% and Var[[R(®)] = fk‘_( f»). (19)
j<nq J j<nq J q J

2.2 Dynamics: Forests, Roots and Partitions

Before moving to sampling algorithms, it is worth mentioning that it is possible to construct
a stochastic process with values in F which allows to couple at once all ®,’s as g varies
in RT. A few comments on this coupling are postponed to Sect. 3.3 and Fig. 5. We state
here the main theoretical results and collect some related remarks. The following statement
corresponds to [3, Thm. 2].
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Theorem 5 (Forest dynamics: coupling all ¢’s) There exists a (non-homogeneous) continuous-
time Markov process F = {F (s) : s > 0} with state space F that couples together all forests
@, for g > 0 as follows: for all s > 0 and ¢ € F it holds

P(F(s) = ¢) =P(P1r = ¢) =P(®, = ¢)
witht = 1/q, s = In(1 + wmaxt) and wmax as in (4).

The coupling t — &1, = F(n(l + wmax?)) is associated with a fragmentation and
coalescence process, for which coalescence is strongly predominant, and at each jump time
one component of the partition is fragmented into pieces that possibly coalesce with the
other components. In particular, the process F starts from F(0) = &, = @ € F, thatis, the
degenerate spanning forest made of n trees reduced to simple roots, and eventually reaches
in finite time a unique spanning rooted tree.

As a corollary of the above coupling theorem, we get a determinantal characterization
of the finite-dimensional distributions of the process ¢ + R(®,,), which can be seen as a
dynamical extension of Theorem 3.

Corollary 6 (Dynamic roots distribution) For any choice0 < t; < -+ <ty < tr+1 = 1/qr+1
and any sequence Ay, ..., Ak, Aky1 of subsets of V, it holds

P(Aet1 C R(@ryg,,) | Ak C R(@iyg), - .., A1 C R(Piypy))

-y > Y ﬁ( fi )IB”(l—t">Af\Bidet[qu+1,B]Ak+1

1, 1
BiCA, BiCA,_,  BicAi=1 > T kel
with A;c = Ay, .A;(,l = A1 \ Ar, ... A/l =A\ (A UA—1 U---UAy)
k
and B= UB,'.

i=1
(20)

This statement corresponds to [3, Prop. 2.4]. We do not have a similar characterization for
the partition process ¢ — P(®y/,). More generally, as we saw, while a precise understanding
and characterization of ®, and R(®,) is possible, we know very little about the induced
partition P ().

We conclude this part on the relevant theoretical results by mentioning a last property of
the root set, namely, by conditioning on the induced partition P(®,) the roots are distributed
according to the equilibrium measure p of the random walk X restricted to each component
of the partition:

Theorem 7 (Roots at restricted equilibria) Let [ Ay, ..., A, ] be denoting an arbitrary par-
tition of V inm < n subsets and fixr; € A;j,i = 1,...,m. Then

P(R(®@g) = {11, r} | P@) = A1, .. An]) = [T

provided that the conditioning event has non-zero probability and with | 4, denoting the
invariant measure of the restricted dynamics with generator L; defined by

LiNHE =Y wE N[O - fW], xed, f:4->C
yeA;

This statement is a consequence of the well-known Markov chain tree theorem (cf. e.g. [1]),
see [3, Prop. 2.3].

@ Springer



994 L. Avena et al.

3 Sampling Algorithms

The flourishing literature around the random spanning tree theme is mainly due to Wilson’s
algorithm (cf. [32,40]), which is not only a practical procedure to sample ®,, 3, but actually
also a powerful tool to analyze its law. The reader not acquainted with this topic is invited
to look into the proofs of the results presented in Sect. 2 which heavily exploit the power of
this algorithm in action. We will start by recalling it, Sect. 3.1. We then explain how to get an
approximate sample of a forest with a prescribed number of roots, Sect. 3.2, and we conclude
this sampling algorithmic part with some comments about sampling the forest dynamics in
Theorem 5, Sect. 3.3.

3.1 Wilson'’s Algorithm: Sampling a Forest for Fixed q

The following algorithm due to Wilson [40] samples ®, ;5 for g > 0 or B # @:

a. start from By = B and ¢9 = @, choose x in V \ By and seti = 0;

b. run the Markov process starting at x up to time T, A Tj; with T; an independent expo-
nential random variable with parameter g (so that 7, = 400 if ¢ = 0) and T}, the hitting
time of 5;;

c. with

k—1
T g = (X0, X1, - x0) € ) x (VN (B U{x)) x (V\ {x})
the loop-erased trajectory obtained from X : [0, T; A T;] — V, set
Bit1 = Bi U{xo, x1,..., Xk}

and ¢ 11 = ¢; U {(x0, x1), (x1, x2), ..., (Xk—1, Xk)} (so that ¢; 1 = ¢; if k = 0);
d. if Bi+1 # V,choose x in V\ ;| and repeat b—c with i 4+ 1 in place of i, and, if B;+| =V,

set Py 3 = Pit1.

It is worth stressing that in steps a. and d. the choice of the starting points x is arbitrary,
a remarkable fact which represents the main strength of this algorithm.

There are at least two ways to prove that this algorithm indeed samples ®, 5 with the
desired law. One option is to follow Wilson’s original proof in [40], which makes use of the
so-called Diaconis—Fulton stack representation of Markov chains, cf. [15]. An alternative
option is to follow Marchal who first computes in [28] the law of the loop erased trajectory
F;" g obtained from the random trajectory X : [0, T, A Tg] — V started at x € V' \ B and
stopped in B or at an exponential time 7, if T}, is smaller than the hitting time 7. One has
indeed:

Proposition 8 (Distribution of loop-erased walks) If (xo, x1,...,Xx) € VL s a self-
avoiding path such that xo = x, X1, ..., X—1 in V' \ B, then
T wes. x; 1)det[qfd— LInBUfxo, ..xx-1)) ifxi € B
i A detlgld — Lly\s ’
X _ _
P(Fq’B = (x0, X1, .-, Xk)) = 1_[ S~ )det[q[d — LIV (BUixo, ... 5 ) ifx ¢ B
1 b dellgld = Ly ke s

From this result one can easily compute the law of @, 5 following the steps of the algorithm
above to get the law in Eq. (12). Further, from this statement we see how determinants of the

@ Springer



Random Forests and Networks Analysis 995

Laplacian emerge. Concerning the average running time of Wilson’s algorithm, it is smaller
than n/g—so that the numerical complexity is of order nwmax /g—and typically much smaller
than the random walk cover time. In particular, it can be explicitly characterized in spectral
terms as the sum of the inverse of the n — | B| eigenvalues of [¢ — L]y 5, see e.g. [28, Prop. 1].

3.2 Forests with a Prescribed Number of Roots: Approximate Sampling

We have seen that Wilson’s algorithm provides a practical way to sample &, . In applications,
one might be interested in sampling @, conditioned on having a prescribed number of roots,
that is, conditioned on {|’R(<I>q)| = m} for fixed m < n. Unfortunately, we do not know any
efficient algorithm providing such an outcome. Nevertheless we can exploit Theorem 4 to get
a procedure to sample @, with approximately m roots, with an error of order y/m at most.
In fact, it is not difficult to check that Var(|R(®,)|) < 2E[|R(P,)|] and, in view of (19), it
suffices to find the solution ¢* of the equation

qux-=m' Q1)
J

j<n

However, solving Eq. (21) requires to compute the eigenvalues A;’s of —L which is in
general computationally costly especially if we are dealing with a big size network. One way
to find an approximate value of the solution ¢* is to use, on the one hand, the fact that ¢* is
the only one stable attractor of the recursive sequence defined by gr4+1 = f(gx) with

7 m m
g g X 7 = T
Zj<” qtr; Zj<n q+Xrj

and on the other hand, the fact that [R(®,)| and E[IR(d)q ) I] are typically of the same order,
at least when E[|R(®,)|], i.e. g, is large enough, since Var(|R(®q)])/E*[|R(P)I] <
2/ ]E[|R(d>q) |]. We then propose the following algorithm to sample ®, with m +2./m roots.

a. Start from any go > 0, for example go = wWmax = Maxyey —L(x, x), and seti = 0.

b. Sample &, with Wilson’s algorithm.

c. If[R(®g)| & [m—2y/m, m+2/m)],setgir1 = mq;/|R(Pg,)| and repeat b with i + 1
instead of i. If |R(®y,)| € [m — 2/m, m + 2/m], then return ®,, .

We refer the reader to [3, Section 2.2] to argue that indeed this algorithm rapidly stops.

3.3 Coalescence-Fragmentation Process: Sampling for Different g's at Once

The Markov process F in Theorem 5 is based on the construction of a coalescence-
fragmentation process with values in F making use of Diaconis—Fulton’s stack representation
of random walks. For a detailed account on this algorithm and a number of related open ques-
tions, we refer the reader to [3, Section 2.3].

We mention that this algorithm allows to couple forests for different values of ¢’s. The
corresponding coupling is not monotone, in the sense that if ¢’ < g, it is not true that
IR(®y )| < |R(P,)| a.s. under the coupling measure, despite the fact that IE[|R(<I>q/)|] <
E[|’R(Cl>q)|], see e.g. Eq. (19). Yet this coupling is a very valuable tool in applications. In
fact, it allows to practically sample @, starting from a sampled @, for any ¢" < ¢, and more
generally, by running this algorithm once in a chosen interval [0, t*], we get samples of the
whole forest trajectory (1) : t < t¥).
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4 Applications: Well Distributed Points in a Network

Given a map of a city modeled as a network G where road crossings are identified with
vertices, assume that we are interested in locating a number of monumental statues at some
crossings in an optimal way so that random walkers through the city will take on average
the same amount of time to reach the statues independently of where they started. We can
rephrase this problem by finding a subset B C V for the locations of the statues such that for
any x € V:

E[Tg] is independent of x. (22)

In other words, B C V would constitute a set of well distributed points in the network. We
immediately realize that unless we have as many statues as the number of crossings, B =V,
there is no deterministic proper subset R satisfying the property in (22). Hence this notion of
well distributed points is in principle meaningless but, by thinking in terms of disorder, we
can turn it into a well-posed definition by finding a random set satisfying (22) in an averaged
sense. That is, a random set B(w) C V is chosen according to some law with expectation E
so that

E[E . [TB(w)]] is independent of x. (23)

It then raises the question: does it exist such a random subset?

Our set of roots R(®P,) might be a good candidate since as previously noticed, the deter-
minantality of the roots set stated in Theorem 3 implies (in the undirected setup) negative
correlations suggesting that the roots in ®, tend to spread far apart from each other irrespec-
tive of the given network structure. It turns out that indeed R(®,) gives a positive answer
to this question for any ¢ (even in the general directed setup). Further, as the next statement
shows, the same is true when conditioning on having exactly m statues, that is, with random
subsets of prescribed size:

Theorem 9 (Roots are well distributed) For all x € V and all positive integer m < n it holds

1 Aj
IE[EX[TR(%)]] =111+
q j>0 q+ )\'j
and il
E[Ed[Treo,)] | IR =m] = 4L, 4)
m

where a,+1 = 0, and ay. denotes the coefficient of order k of the characteristic polynomial
of L.

This statement corresponds to [3, Thm. 1]. When conditioning in Eq. (24) with either
m = 1 orm = n — 1, it turns out that the property in (23) actually characterizes the
law of B(w). In particular, for m = 1, the Markov tree-theorem, see e.g. [1], ensures that
conditionnally on {|R(d>q)| = l}, R(®,) coincides with a point sampled according to the
equilibrium measure p of X. In this case, Eq. (24) was already known in the literature and
often referred to as the random target lemma, cf. e.g. [25, Lemma 10.8]. Our theorem is
therefore a natural extension of this random target to subsets of arbitrary sizes. To get some
insights in the corresponding proof, it is worth mentioning that the expected hitting time of
a given deterministic set B in Eq. (22) admits the following characterization due to Freidlin
and Wentzell in terms of forests, cf. [3, Lemma 3.1] and [18, Lemma 3.3]:
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Fig. 3 Tllustration of the roots in a non-trivial geometrical setup. The network is given by a triangulation of
a brain cortex model due to J. Lefevre (LSIS, Marseille, France) with 1868 roots denoted by white squares
sampled from (®,) out of 19,576 vertices (Color figure online)

Tg] =) Gp(x.2) = Z()Z > w@),

g8 2¢B ¢:R($)=BU{z}
R(tx(¢))=z
with G denoting the Green’s function in Eq. (7) stopped at the hitting time 7 = Tp, and
7, (¢p) standing for the tree in ¢ € F containing x € V (Fig. 3).
Concrete applications of this result will be given in the next sections to build up suitable
subsampling procedures in the context of networks reduction and signal processing.

5 Applications: Network Coarse Graining Via Intertwining

The goal of this section is to propose a random network coarse graining procedure which
exploits the rich and flexible structure of the random spanning forest. The problem can be
formulated as follows:

(P1) Given anetwork G on n nodes, find a smaller network G onm < n nodes “mimicking”
the original network G.

For the sake of simplicity, we will restrict ourselves to networks in a reversible setup, that
is, when u(x)w(x, y) = u(y)w(y, x) for any x, y € V, with u being the invariant measure
of the Markov process X. Now, it is a priori not clear what “mimicking” means and any
meaningful answer would strongly depend on the implemented method and on the specific
applications one has in mind.

Our approach will be process-driven. Namely, we saw that the structure of the starting
network G is encoded in the weighted graph Laplacian in Eq. (2) which characterizes the
Markov process X with state space V. In view of the one-to-one correspondence between G
and the process X, we can look fora G in correspondence to another process X on a state space
V with m = |V| < |V| = n points being some sort of coarse grained version of the process
X . In this way, we are shifting perspective from graphs to Markov processes and, within this
context, there is an interesting duality notion called Markov chain intertwining which will
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be our lighthouse while addressing (P1). Before discussing this duality, we anticipate that
for the applications, our main motivation stems from two different problems:

o metastability studies outside any asymptotic regimes (like low temperature or large vol-
ume limits),
e signal processing on arbitrary networks.

We will hence propose in Sects. 5.2 and 5.3 two network reduction procedures (similar
in spirit) well-suited for these two problems. If for the applications in metastability, the
framework described in Sect. 5.2 deserves still a deeper investigation to fully understand its
potential, the framework presented in Sect. 5.3 forms the basis for the new wavelets-transform
on graphs described in Sect. 6 (and derived in [5]) which can be considered a novel general
method to process data sets on networks. It is worth mentioning that the latter was developed
as a consequence of our understanding (even though still partial) on the metastability problem
and framework discussed in Sect. 5.2. Further, the presented reduction schemes might also
be useful for other applications, hence we will start by discussing where the difficulties lie
when looking at network reduction problems through intertwining equations. We start by
introducing and discussing the intertwining duality.

5.1 Intertwining and Squeezing

Given two Markov chains with transition matrices P and P, and state spaces V and V, and
given a rectangular stochastic matrix A : V x V — [0, 1], we say that the two chains are
intertwined w.r.t. A if :

AP = PA. (25)

Denoting by {v; = A(X, ) : ¥ € V} the family of probability measures on V identified
by A, we see that this algebraic relation among matrices can be rewritten as
viP = AP(X,-) = PA(¥,) =Y P(% yvy, forallkeV, (26)
yev
which says that:

the one-step-evolution of the vi’s according to P remains in their convex hull.

This duality notion can be equivalently formulated for continuous-time Markov processes
by saying that two Markov processes X and X with generators L and L and state spaces
V and V are intertwined w.r.t. A if

AL = LA. 27

By associating to the Markov process X with generator L in (2) the_discrete-time skeleton
chain X as in (5), we see that (27) is equivalent to (25) if P = ﬁ + Idy;, and Eq. (26)
reads as :

viL= ) L&y —vil. (28)
FeV\(F)
which says again that, for each x € fﬁ,_by evolving the distribution vz according to L, the
process under consideration, with rate L(x, y) is distributed according to vy.
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5.1.1 Intertwining in the Literature

Intertwining relations appeared in the context of diffusion processes in a paper by Rogers and
Pitman [33] as a tool to state identities in laws when the measures vz ’s have disjoint supports.
This method was later successfully applied to many other examples (see for instance [11,29]).
In the context of Markov chains, intertwining was used by Diaconis and Fill [14] without the
disjoint support restriction to build strong stationary times and to control convergence rates
to equilibrium. At the time being, applications of intertwining include random matrices [16],
particle systems [39], random partitioning [8], etc.

5.1.2 Solutions to Intertwining Equations, Overlap and Heisenberg Principle

In the above references, intertwining relations have often been considered with |V| being
(much) larger than or equal to |V|. To address (P1), we will instead be naturally interested in
the complementary case |V| < |V| and with the coarse grained process (or network identified
by) P being irreducible. In this setup it is not difficult to show the existence of solutions (A, P)
to Eq. (25), how they are related to the spectrum of P , and how to construct some of them.
We refer the interested reader to [4, Section 2.2]. On the other hand, there is still the problem
of building explicit solutions that are “good” for our applications. Let us remark here two
important consequences of the statements in [4, section 2.2]:

e the intertwining equations generally have many solutions, including the trivial ones when,
for any P, all the v; are equal to the invariant measure i of P,

o the stability of the convex hull of the vz implies the stability of the vector space they span
and the fact that the vz have to be linear combinations of at most |V| left eigenvectors of
P.

Looking at the eigenvectors of the generator L as the analogue of the usual Fourier basis,
which diagonalizes the Laplacian operator, we will say that the solutions vz’s of the inter-
twining equations have to be frequency localized. But for our applications in metastability
and signal processing, we will naturally look for solutions for which the corresponding vx’s
should also be “space localized” or with “small joint overlap”. We next make precise what
is meant here. Let us simply stress for now that having both frequency and space localiza-
tion would contradict a (unfortunately not well established for arbitrary graphs) Heisenberg
principle, see [5, Section 1.3] for more details. To overcome this difficulty we will look at
approximate solutions of intertwining equations and we will focus on their squeezing, which
is a measure of their joint overlap or space localization, that we can now introduce.

5.1.3 The Squeezing Functional

On the space of probability measures on V with [V| = n, let us denote by (., -),, the scalar
product defined as

v1(x) va(x) V1 (x)va(x)
(v1, 12) =§ ux) = E _—, (29)
A ) ) = )

for arbitrary probability measures vy, v, on V, with respect to a reference measure @ on V
(which will be chosen to be the invariant measure of the Markov process in consideration),
and let [|-]|,, be the corresponding norm.
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Given a family {v; = A(X, ) : ¥ € V}, since these measures form acute angles between
them ((vz, v5), > O forall x and y in V) and have disjoint supports if and only if they are
orthogonal, one could use the volume of the parallelepiped they form to measure their “joint
overlap”. The square of this volume is given by the determinant of the Gram matrix I';,:

Vol(A) = /detT,,,

with I', the square matrix on V with entries Iu(x,y) = (vg, vy),, thatis
T, = AD(/w)A", (30

where D(1/) is the diagonal matrix with entries given by (1/u(x), x € V), and A’ is the
transpose of A. Loosely speaking, the less overlap, the largest the volume.
We will instead use the squeezing of A (w.r.t. ), that we defined by
400 if det(I'y,) =0,
Su(A) = 0 . (3D
{ Trace(FM ) €10, +oo[ otherwise,
to measure this “joint overlap”. We call it “squeezing” not only because the vz and the
parallelepiped they form is squeezed when S, (A) is large, but also because S, (A) is half
the diameter of the rectangular parallelepiped that circumscribes the ellipsoid defined by the
Gram matrix I, : this ellipsoid is squeezed too when S, (A) is large. We note finally that
our squeezing controls the volume of A. Indeed, by the comparison between harmonic and
geometric mean applied to the eigenvalue of the Gram matrix, small squeezing implies large
volume: Vol(A)'/"S, (A) > /n.
The next statement, corresponding to [4, Prop. 1], gives bounds on this squeezing func-
tional suitable for our approach.

Theore_m 10 (Bounds on the squeezing functional) Let {vz : X € VY be a collection of
m = |V| probability measures on V. Consider a probability measure u on V. Then:

(32)

Equality holds if and only if the vi’s are pairwise orthogonal.
e Assume further that w is a convex combination of the {vz : x € V}. Then,

Su(A) = 1.
Equality holds if and only if the vi’s are pairwise orthogonal.

We notice in particular that S, (A) is maximal when the measures {v; : X € V) are linearly
dependent, and minimal when they are orthogonal. Moreover, we know the minimal value
of S;,(A), when p is a convex combination of the v;’s. Note that this is necessarily the case
if the convex hull of the v; is stable under P, i.e. when (25) holds for some stochastic P.
Indeed it is then stable under e’ for any ¢ > 0 and the rows of Ae'l converge to . when ¢
goes to infinity. We are now in shape to move to the applications.

5.2 Intertwining and Metastability Without Asymptotics

A classical problem in metastability studies can be described as follows. Associated with
Markovian models one is interested in making a coarse grained picture of a dynamics which
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Fig. 4 Snapshots of a kinetic Ising model at times 471, 7482 and 13,403 for the first line, 14,674, 15,194,
15,432, 15,892 and 16,558 for the second line, 17,328, 23,645 and 40,048 for the last line (Color figure online)

evolves on a large, possibly very large, configuration space, according to some generator
L. A metastable state can be thought as a stationary distribution on this large configuration
space up to some random exponential time that triggers a transition to a different metastable
state, possibly a more stable one. By different metastable states we mean distributions “con-
centrated on different parts of the large configuration space.” In the literature, this is usually
addressed in some asymptotic regime such as low temperature or large volume limits, see
e.g. [9] for a recent account. As Theorem 11 below shows, a natural and mathematically
rigorous way to perform such a coarse graining avoiding limiting procedures, would be to
provide solutions (A, L) to (27) with linking measures {vy = A(Xx,-) : X € V) having
minimal squeezing S, (A). In such an intertwining L would be the generator of the coarse
grained Markovian dynamics, and the measures v;’s (i.e. the rows of A) would describe the
different metastable states. To better explain our proposal, let us recall a canonical exam-
ple of challenging metastable dynamics: the kinetic Ising model. In the following pictures
(cf. Fig. 4) we consider a Metropolis—Glauber kinetic Ising model for a spin system started
from aligned minus spins (yellow pixels on the pictures, red pixels standing for plus spins)
and evolving under a small magnetic field 7 = 0.14, at subcritical temperature 7 = 1.5,
in a n x n rectangular box 5, with periodic boundary conditions and n = 256 (thus here
V = {4, —}B25%). The first three pictures can be thought as samples of a metastable state,
which is concentrated on “a minus phase” of the system, that is stationary up to the appearance
(nucleation) of a supercritical droplet. We do not mean here the usual minus phase of the
Ising model which is associated with 0 magnetic field and—boundary condition. We simply
mean some distribution for which—spins dominate and that is stationary conditionally on
the fact that the system did not escape the set R of subcritical configurations introduced in
[34] for the infinite volume dynamics. We refer to [7] for a description of metastable systems
with such conditionally stationary or quasi-stationary distributions. The appearance of this
droplet triggers the relaxation to a stable state, which is concentrated on “a plus phase”,
where + spins dominate, and samples of which are given by the last three pictures. In this
case, if we do not want to take infinite volume or low temperature limits, we may consider
two probability measures on V = {+, —}5" that describe these — and + phases and hope to
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find L, a2 x 2 matrix, solving (27). Actually, in this case since the nucleation time is “long”
(in the simulation, the time needed for the supercritical droplet to invade the whole box is
short with respect to the time needed for its appearance), solving (27) with little overlapping
vi’s (if possible), would lead to L with very small entries. It is therefore natural to look, with
the same kind of link A, for an intertwining relation between Markovian kernels (rather than
generators) of the form:

AK, = PA, (33)

with K/ (x,-) as in (17). The measure K, (x,-) is indeed the distribution of the original
process, with generator L, started at a configuration x € V and looked at an exponential time
T, with parameter ¢’. This parameter should be of the same order as the nucleation rate in
the kinetic Ising model example. The next theorem explains in which sense such a program,
if feasible, gives a coarse grained description of the evolution of the original process in terms
of a smaller chain that describes its evolution among different “metastable states” or local
equilibria. We state it in discrete-time since (33) is as in (25) with P = K.

Theorem 11 (Local equilibria and intertwining) Let X be an irreducible Markov chain with
finite state space V and transition kernel P. Assume Eq. (25) holds for some (A, P). Then
for each X in V, there exists a stopping time Tz for X and a random variable Yz with values
in V\ {x} and law P such that:

o T: is distributed as a geometric variable with parameter 1 — P(X, X);
vz is stationary up to time Tk, i.e., forall t > 0,

P (R = |1 < T5) = ve (34)

o P(V=3)= lfg(;l) forall § in V\ (F);
Po (X(To) =+ | e =7) = vy

(17);, )A((Y_})) and Tz are independent.

This statement (cf. [4, Prop. 6] ) is a partial rewriting of [14, Section 2.4] in the spirit of [30].
The first two points explain why we can refer to vz’s solution of (33), as local equilibria
that last for a time of order (¢’(1 — P(x, x))~'. The last three points make then precise
in which sense the process X can be described through the Markov chain X with kernel
P. We emphasize that this program is clearly of no use if, for example, we take the “most
overlapping” A, thatis, with all its rows vz ’s identically equal to the equilibrium measure  of
the considered process X (as previously mentioned, for any m < n, any P can be intertwined
to any P with respect to such a trivial A). This is why we introduced the squeezing S, (A)
as a measure of overlap between the rows vz’s of A and for a given P we think of a “good
solution” for a pair (A, P) satisfying (25) with S;, (A) small. The good news is that as it turns
out, for all positive m < n, there always exists non-degenerate solutions (A, }_’), ie. with A
of rank m, see [4, Section 2.2], but except for peculiar models, we can not expect for such
solutions that the corresponding vz’s have disjoint supports (as clearly desirable). Further,
for interesting truly metastable models with huge configuration spaces, as for the Glauber
example in Fig. 4, we do not know how to write explicitly down solutions of such intertwining
equations with A having small squeezing (even with non-empty intersections for the supports
of the corresponding vz’s). Nonetheless, while the main results in metastability studies are
usually written in some asymptotic regime, e.g. 1 < 1 for the Glauber dynamics in [34],
in view of Theorem 11, looking at metastable dynamics through intertwining equations
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makes possible to deal with such dynamics outside of any asymptotic regime. It remains the
problem of constructing explicit “good solutions” to Eq. (33) for interesting relevant models.
At the present stage, we do not know how to give a satisfactory answer to this problem
which certainly deserves further investigation. However, in the next section we will present
a practical algorithmic scheme which can lead (depending on the model and the number of
nodes) to build “good approximate solutions”. Our Glauber dynamics of Fig. 4, with its state
space of size 2256% , will be out of reach, but we will give examples of applications for smaller
networks.

5.2.1 A Coarse-Graining Algorithm for Metastability: From Processes to Measures

To make use in practice of the result in Theorem 11, as motivated so far, starting from P one
wish to find explicit good solutions (A, P) to (33), i.e. with corresponding v;’s having small
joint overlap (small squeezing S, (A) ). Unfortunately for relevant non-trivial examples such
a quest could be too difficult if not unfeasible. We introduce here a deterministic algorithm
depending on some tuning parameters to circumvent this problem. For a given Markov
process X with a big state space (or equivalently the given associated network G), the goal is
to build a measure-valued process on a small state space “mimicking” dynamical aspects of
the original process in the sense of Theorem 11. We will accomplish our task if the generator
of the resulting measure-valued process is close to be intertwined with the original one, and if
the associated A has small squeezing. To guarantee these properties, we will then randomize
the procedure through the random forests and give appropriate estimates for the tuning of
the involved parameters.

Deterministic Algorithm Based on Partitioning

Given an irreducible and reversible network G on n vertices (as usual, denote by X the
associated Markov process and by w its invariant measure):

a. Pick m < n and consider a partition of the vertices of the graph P(G) = [Ay, ..., Ay]
into m blocks.
b. SetV := {1, ..., m} for the new vertex set;

c. Setthe duality linking matrix A tobe the matrix withrows given by the restricted equilibria
associated to each block, i.e. : for any x € V,

Ax, ) =vz() = Az (), (35)

with p 4 being the probability measure w conditioned to A C V, i.e. ug = u(-|.A);
d. The new process is given by

Py(x,5) = P, [X(T)) € A5], (36)

for any X,y € V and with T, being an independent exponential random variable of
parameter ¢’ > 0. In other words, P,/ (x, y) is the probability that on time scale T/, X
reaches the set A5 when starting from its restricted equilibrium associated to the set Az.

A few remarks are in place:

o The linking measures in (35) have minimal squeezing S, (A) equal to one: they have
disjoint supports.

e Provided that the pair (A, Pq/) given by (35) and (36) is close to be a solution_to the
intertwining Eq. (33), Theorem 11 says that the network G = G(g') identified by P, can
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be seen, up to an error, as a reduced measure-valued description of the original network
g on time-scale 7/, hence a possible answer to our original problem (P1). In particular,
by construction, inherited from X, P, is again irreducible and reversible w.r.t. u.

e For any choice of the parameter ¢’ > 0, in view of step d. and the irreducibility assump-
tion, the resulting network G will be given by a complete graph with non-homogenous
weights identified by (36).

It remains to clarify how to choose the initial partition P(G) in step a. above and how to
guarantee that (A, }_’q,) is an approximate solution to the intertwining Eq. (33). To this end, we
can exploit the nice properties of the random forests in (1) and randomize this deterministic
algorithm as follows.

Randomization through forests:

Set
m=m(q) :=|R(Py)| <n and P(G) :=P(®y) =[A1, ..., Aug] (37)

in step a. of the previous algorithm, for some ¢ > 0. The choice of the random partition
P(®,) is motivated by Theorems 7 and 9 and the fact that by Wilson’s algorithm, two nodes
x,y € Vtend to be in the same block of P(®,) if on scale T, the process X is likely to walk
from x to y or vice-versa.

Figure 5 illustrates the coupled partitions (cf. Sect. 3.3) associated with different values
of ¢ for a random walk in random potential. We consider a Metropolis nearest-neighbour
random walk associated with Brownian sheet potential V and inverse temperature § on
the square box [0, 51112 N Z2. This means that the rates w(x, y) are given by w(x, y) =
exp{ —BLV(y) — V(x)]+} if x and y are nearest neighbours, and 0 if not. In this picture, the
vertical and horizontal axes are oriented southward and eastward respectively, so that V is 0
on the left and top boundaries. Since the value of V at the bottom-right corner is of order 500
(it is the sum of 510% independent normal random variables), we already have a metastable
situation for the case 8 = 0.16, illustrated in Fig. 5: on the time scales 1/g corresponding
to the different partitions P(®,), the random walk tends to be trapped in each piece of the
partition.

The following theorem quantifies in which sense the pair (A, }_’q/) identified by (35)
and (36) and randomized as in (37) is an approximate solution to (33) and can serve as a
guideline to tune the involved parameters (g, q’). Since for each ¥ € V, AK,(x,-) and
Py A(x, -) are probability measures on V, we will use the total variation distance defined
in(11).

Theorem 12 (Control on intertwining error for metastability) Let p > 1, and p* its conjugate
exponent, i.e., Ly % = 1. Fix positive parameters (q, q'), and let (A, Isq/) be the pair given
by (35) and (36) randomized through ®, as in (37). Then,

IR(®,) , 1/p*
E| D drv(AKy () Py A ) | < (E[[R@g)[])” ((i, > E[ir; l]> ’
x=1 xeVy
(38)
where |T'%,| in the r.h.s. denotes the length (i.e. the number of crossed edges) of the trajectory
of a loop-erased random walk on the original graph started from x € V and stopped at an

exponential time Ty (recall Proposition 8), and K as in (17).

The proof of the above statement, together with some insights on how to tune (g, g’)
to guarantee the bound in the r.h.s. to be small, can be found in [4, Thm. 4] and related
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Fig. 5 Coupled partitions P(®4) for a Metropolis random walk in Brownian sheet potential at inverse tem-
perature B = 0.16 and in a 512 x 512 square grid. Cyan lines separate neighbouring trees, the roots are at the
center of red diamonds and the other vertices are colored according to their potential: the darker the blue, the
deeper the potential. The values of g are 1.22 x 10_4, 3.05 x 10_5, 7.63 x 10_6, 1.91 x 10_(’, 4.77 x 10_7,
1.19 x 1077, 2.98 x 108 and 7.45 x 10~ (Color figure online)

discussion therein. The r.h.s. in Eq. (38) gives an explicit upper bound on the error in such
an intertwining. Our choice of ﬁq/ in (36) was partially motivated by the “nice” form of this
bound, in fact, we notice that if the loop-erased walk starts from a point sampled from a
“metastable state” (which can be thought as a valley of a potential energy or a local minima
of an hamiltonian for spin-like systems as the Glauber dynamics previously mentioned) then
its typical length will be short. If one is intended to simulate the Markov chain on a long
time scale 1/q’, the iterative procedure described in Sect. 5.3.3 will be more useful than
Theorem 12. But this result already shows that the random forest captures some structure of
the metastable states.

Let us summarize a few advantages and disadvantages of the framework and algorithmic
scheme proposed in this section, as well as the main points that according to us deserve
further investigation.

5.2.2 Advantages and Limitations of the Proposed Scheme

e As discussed, Theorem 11 gives a clear notion of coarse-grained description of the
evolution of the distribution of a given dynamics in a finite setup. Further, such a notion
can be related to the renormalization scheme derived in [35] for low-temperature regimes.

e For truly interesting metastable dynamics on huge state spaces, finding an exact good
solution to the intertwining relation in Theorem 11 seems in general out of reach and that
is why we looked for approximate solutions. Still, for some systems with nice geometrical
structures we may hope to find analytically good exact solutions. As a simple example,
one may consider a random walk on two copies of a complete graph linked by one
bottleneck edge (possibly weighted).

e It is worth mentioning that in the proposed deterministic algorithm, it is always possible
to modify the measures in (35) to get an exact intertwined relation though for small
enough ¢’ which we are currently not capable of quantifying. The interested reader is
referred to [4, Thm. 5] and corresponding proof for the latter statement.
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e At the current stage, we do not know how the conclusions in Theorem 11 get affected by
a small intertwining error.

e For many systems inherited from statistical mechanics it is practically impossible to run
such algorithms: the configurations space is too large. For the Glauber dynamic illustrated
in Fig. 4, we would need to deal with a network made of |V| = 205536 podes. Still, it
could be that a different but similar coarse-graining procedure applied on the graph on
which the spin are defined (the 256 x 256 two-dimensional torus in our example), rather
than on the configuration graph (with its 26733 nodes), can be used to derive a coarse
description of the original dynamics. We believe that such an approach would deserve
some deeper analysis.

e Another difficulty is that working with metastable dynamics one can have to go to very
small values of ¢, then very long running times, to get partitions into a few blocks. The
last three pictures of Fig. 5 show that the partition hardly changed when ¢ decreased
by a factor of order 10. To overcome such a difficulty we can use a renormalization
procedure in the spirit of [35]: we will work with smaller and smaller coarse grained
graphs rather than coupled partitions of a constant and large state space. But contrarily to
[35] we will not need any “low temperature limit”, we will use a different coarse-graining
procedure, inspired by signal processing issues and still based on approximated solutions
of intertwining equations. After describing it in the next section we will illustrate this
approach with another “metastable Brownian sheet” in Sect. 5.3.3.

5.3 Network Coarse-Graining for Signal Processing

We present here a different network reduction scheme. Our original motivation will be fully
explained in the next Sect. 6 where we construct a pyramidal algorithm to process signals
(i.e. real valued functions) defined on the vertex set of a network. In first approximation, the
idea of these pyramidal algorithms is to build from a given network and associated signal,
a multiscale invertible reduction scheme where at each scale, after so-called downsampling
and filtering procedures, one can define a network of smaller size (typically having a fraction
of the original nodes) with associated a coarse grained approximation of the signal. We again
have to address problem (P1) from the beginning of this section, but the purpose is different.
We will follow a similar strategy as for metastability, but looking at solutions (A, L) to
Eq. (27) under a different perspective. In this case, as intertwining rectangular matrix of size
[V| x V], we use

A=Ay :=[Kylpy, with parameter q >0, 39)

that is, the matrix obtained by restricting the kernel in (17) to indexes in V x V. This is a
convenient choice for our application explained in more details in Sect. 6. Based on the specific
problem under investigation, other suitable kernels could also be used. As for metastability,
the measures identified by the rows of A should concentrate on different regions of the
underlying state space. As we will see in Sect. 6, they will play the role of low frequency
filters in the wavelets construction to build coarse-grained versions of the original signal
through local averages. In particular, for the wavelets construction to come, the intertwining
relation guarantees frequency localization properties. Anyhow, in this section, we focus only
on the network reduction step, that is, on the L we want to consider, and how we can guarantee
that it is almost intertwined with the given L.
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5.3.1 Graph Reduction Via Roots Subsampling and the Trace Process

The reduction algorithm presented here makes use of the notion of Schur complement of a
matrix which we first recall. Let M be a matrix of size n = p + r and let

v- (2

be its block decomposition, A being a square matrix of size p and D a square matrix of size
r.If D is invertible, the Schur complement of D in M is the square matrix of size p defined
by

Sy(D):=A—BD™'C.

Deterministic Algorithm Based on Representative Vertices
Given an irreducible and reversible network G on n vertices:

a. Let V C V be asubset of m = |V| < n selected vertices in G.
b. For the reduced process, set

L to be the Schur complement of [L]y; in L (40)

with V =V \ V.

c. The coarse-grained network G is the graph with vertex set V, weights w (%, y) := L(%, )
and edge set identified by positive weights among vertices, thatis, € = {(¥, ) € Vx V :
w(x,y) > 0}.

This graph reduction is known as Kron’s reduction. Before discussing this algorithm, in
the following proposition, we recall relevant properties of the Schur complement and its
probabilistic interpretation. Its proof can be found in [5, Lemma 8].

Proposition 13 (Schur complement and trace process) Let V be any subset of V and L as
in (2) reversible w.r.t. . Set V=y \ V. Then the restricted matrix [L]y, is invertible, and
the Schur complement L of [L]y in L is an irreducible Markov generator on V reversible
w.rt. . This Markov process with generator L is often referred to as trace process on the
set V. Further, the discrete-time kernel given by P = Id + L/wmax admits the following
interpretation:

P(x.3) = P; [X(Tg) - y] . forallZ,5 €V, (41)
with T; being the first return time of X in V.

Let us stress the main features of the presented algorithm.

e In view of Proposition 13 we may sum up the proposed algorithm as follows: subsample
a desired number of nodes in V to build the set V, link any such nodes x, y € V with a
weight (possibly zero) proportional to (41), that is, the probability that the original walk
X starting from ¥ lands in  when hitting again the subset V C V.

o Asforthealgorithm in Sect. 5.2.1, the resulting process with generator L is still irreducible
and reversible (due to Proposition 13), thus allowing for successive iterations of this coarse
graining procedure (see example in Fig. 6).
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original 1845 roots 1280 roots

Fig. 6 Two successive reductions of the Minnesota’s graph using the algorithm in Sect. 5.3. The wider the
edge (in grey), the larger its weight. The roots downsampled on each graph to obtain the successive one are in
blue (Color figure online)

e The resulting network G tends to be (depending on local bottlenecks and the locations
of the selected vertices in the original graph) a complete graph with non-homogenous
weights, cf. Eq. (41). Depending on the specific problem, one may wish to obtain a
sparser graph (e.g. when iterating the scheme, dealing with sparse matrices can reduce
the algorithmic complexity). To this aim, a possibility is to disconnect edges with weights
below a certain threshold and redistribute part of the masses in (41). An example of such
a “sparsification” procedure will be briefly mentioned in Sect. 5.3.2 below.

e Unlike the algorithm presented in Sect. 5.2.1, for any ¢’ > 0, the measures identified
by A4 do not have disjoint supports. Thus quantitative bounds on their squeezing are
desirable (cf. Eq. (45) below).

e As in the case of metastability, the pair (A, L) identified by (39) and (40) is not a
solution to (27), but can be turned into an approximate solution as explained below (see
Eq. (43)).

In view of the well distributed property of the roots in Theorem 7, a natural way to select
the reduced vertex set in step a. of the above algorithm is to consider

V=V(q) = R(®,), forsomegq >0, (42)

which, as for metastability, makes the pair (A4, i) randomized w.r.t. ®,. We next move to
control squeezing and intertwining error for this pair (A, L) for which we use the £ ,-norms
in (9)and in (10) rather than the total variation distance as in Theorem 12.

Theorem 14 (Squeezing vs. intertwining) Fix q' > 0. Consider V C V, and set V =V \ V.
Then the deterministic pair (A4, L) given by (39) and (40) satisfies:

5

H (I:Aq/ — AgL) f”p,f) =2 (wmax (RAIPRY (43)

B ) nO)/p
forany p > 1, p* being its conjugate exponent, and any f in £,(V, u), where

I Y P, 2)E.[Ty] and P asin (5). (44)
B sV iy
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Further, by randomizing (A, L) as in Eq. (42) for some q > 0, we get the squeezing
control:

E[S(Ay) | IR(@)| =m] (45)

min {‘/1 + % exp («/S,,Tn — Vn) i/ 1+ T, exp (% _ Vn)]

P[IR(®y)| = m]

<

forany m < n, with

n—1 n—1 2
Si= 8. a) =Y pi@’ (1= @) To=Talg.q) =3y 2L
= o pitd)

Vi =Valg) = Y21 pj(@) (1 = p;(9)) and p;(-) as in (18) with B = 0.

This result corresponds to part of [4, Thm. 3] and [5, Proposition 16]. Note that the upper
bound on the squeezing depends on L through its spectrum only. For general remarks and
insights on how to tune (g, ¢’) based on this result, we refer the reader to [5, Section 6]. In
particular, [5, Section 6.2] gives estimates on 8 defined in (44). We conclude this part on
coarse-graining algorithms by giving two concrete examples.

5.3.2 An Experiment: Reduction of Minnesota Road Network

As previously mentioned in the comments after Prop. 13, an original sparse graph can rapidly
be reduced into a dense one after a few Kron’s reductions. To get a sparser network at each
iteration-step, we may build a sparsification procedure on the basis of the intertwining error
in (43) as follows. After computing the Schur complement L and hence the weights w (X, ¥)
of the reduced network, we set down to O all weights below a certain threshold (and in
particular we remove the corresponding edges) to obtain a sparser reduced Laplacian, say,
L,. This threshold is chosen in such a way that for each x the new error ||vz L — LiA(%, ) loo
does not exceed the original one ||vzL — LA, oo by more than a fraction of it. We refer
to [5, Section 7.2] for more details.

Figures 6 and 7 illustrate a few iterations of our recursive coarse-graining algorithm in
Sect. 5.3.1 with and without sparsification procedure on the Minnesota road network with
unitary weights [31]. Some insights on the choice of the involved parameters is given in
Sect. 6.4.

Figure 6 illustrates the graph densification issue. Figure 7 shows the much sparser graphs
we obtain after sparsification. These graph sequences are associated with approximate inter-
twining equations with errors of the same order. Our graph reduction has been used in Sect. 6.5
to analyse and compress signals defined on non-regular graphs. Figure 18 shows that as far as
compression is concerned, our procedure is good, and that when we add a sparsification step,
not only the computation time is shortened, but also the numerical results are improved.

5.3.3 A Metastable Example: Reduction of a Random Walk in Random Potential
As mentioned in the last remark of Sect. 5.2.2, the very nature of metastable dynamics makes

impossible in practice to run Wilson’s algorithm with very small g (the running time would
be huge) to get a partition P(®,) with a few pieces only, even for relatively small networks.
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1868 roots 1316 roots 961 roots

Fig.7 Two successive reductions of the Minnesota’s graph using the algorithm in Sect. 5.3 with sparsification.
Colors are as in Fig. 6 (Color figure online)

However, the recursive procedure described in Sect. 5.3.1, with at each step a downsampling
parameter ¢ of the same order as the current maximal jumping rate wpay, is indeed feasible
and hence gives a possible coarse-grained description of the long time dynamics through the
computation of the trace process on a very small set of points. Figure 8 shows some of these
reduced graphs for the random walk in Brownian potential as in Fig. 5 on a grid of size 64 x 64
(thus smaller than the one in Fig. 5 but with larger inverse temperature § = 2.56, so that the
same kind of difficulty holds). In particular, this reduction allows to describe this dynamics
up to convergence to equilibrium, which occurs on a time scale of order 103, Indeed, by
Theorem 9 and Markov inequality, X = X visits p(®y,) with large probability within time
1/ q() > 1/qo, regardless of the starting point. In the spirit of [35], the trace process X of X¢
on p(®y,) is then a coarse-grained version of X on time scale 1/ q(’). In the same way, each
X1 s a coarse-grained version of X on time scale 1/q; > 1/qy. Since 1/gx > 1/q0, Xi41
is also a coarse-grained version of X on time scale 1/g; . The last nine networks of Fig. 8 are
the graph representations of these Xy when p(®,,) is reduced to 36, 26, 19, 16, 10, 8, 6, 3
and 2 roots, which are coarse-grained representations of X on time scales that are large with
respect to 105, 10°, 107, 108, 10%, 10'3, 10’3, 10'5 and 10?3. Since this last coarse-grained
version, which is a two-state Markov chain, has a relaxation time of order 1033, so has X.

6 Applications: Intertwining Wavelets, Multiresolution for Graph
Signals

Weighted graphs provide a flexible representation of geometric structures of irregular
domains, and they are now a commonly used tool to encode and analyze data sets in numerous
disciplines including neurosciences, social sciences, biology, transport, communications...
Edges between vertices represent interactions between them, and weights on edges quantify
the strength of the interaction. In data modeling, it is often the case that a graph signal comes
along with the network structure G, this is simply a real-valued function on the vertex set of
the network:

f:v—-~R
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44 roots wmax=3.002e-05 36 roots wmax=2.7875e-06 26 roots wmax=8.6428e-07

) -

'S
—

19 roots wmax=1.3712e-08 16 roots wmax=5.1857e-09 10 roots wmax=3.7223e-13

8 roots wmax=1.4559e-15 6 roots wmax=1.4559e-15 3 roots wmax=2.8858e-28

N

N\

N N
= VN N

2 roots wmax=4.7727e-33

Fig. 8 Successive reduced networks for a random walk in Brownian sheet potential described at the end of
Sect. 5.2.2. The starting grid has size 64 x 64. The vertex number as well as the largest jump rate are reported
on each picture

Functional magnetic resonance images measuring brain activity in distinct functional regions
are classical examples of such a graph signal. Signal processing is the discipline devoted to
develop tools and theory to process and analyze signals. Depending on concrete instances,
processing means e.g. classifying, removing noise, compressing or visualizing. In case of
signals on regular domains very robust tools and algorithms have been developed over more
than half a century mainly based on Fourier analysis. For signals on arbitrary networks studies
are less advanced and only in recent years significant efforts from different communities have
been dedicated to develop suitable efficient methods. We refer to [36] for a recent review
on this growing investigation line. We present here a new and rather general multiresolution
scheme we introduced in [5]. Multiresolution scheme is a generic name for several multiscale
algorithms allowing to decompose and process signals. We will start with a quick recap of
classical multiresolution schemes on regular domains. In Sect. 6.2 we then present our new
forest-algorithmic-scheme and in Sect. 6.3 we collect the main theorems providing a solid
theoretical framework to our method and guidelines for the practice. Illustrative numerical
experiments of various nature are given in the concluding Sect. 6.5.
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6.1 Classical Multiresolution: Wavelets and Pyramidal Algorithms on Regular Grids

Let us consider a discrete periodic function f : Z, = Z/nZ — R, viewed as a vector in R".
The multiresolution analysis of f is based on wavelet analysis which roughly amounts to
compute an “approximation” f € R"/2 and a “detail” component f eRr? through classical
operations in signal processing such as “filtering” and “downsampling”. The idea is that the
approximation gives the main trends present in f whereas the detail contains more refined
information. This is done by splitting the frequency content of f into two components: the
approximation f focuses on the low frequency part of f whereas the high frequencies in f
are contained in f .

e Filtering is the operation allowing to perform such frequency splittings and it consists
of computing a convolution f*k for some well chosen kernel k: K;(f) = fxk; yields
K;(f) as a low frequency component of f and K, (f) = fxkj yields K;,(f) as a high
frequency version of f.

o Downsampling: The vectors f and f are “downsampled” versions of K;(f) and Kj(f)
by a factor of 2, which means that one keeps one coordinate of K;(f) and K, (f) out of
two, to build f and f respectively. Thus the total length of the concatenation of the two
vectors [ f, f ] is exactly n, hence the length of f.

To sum up we have
[ = Ki(/)®) = {gx, f) = Approximation
= downsampled low-frequency components of f,
and

f@® = Kn(/)®) = (¢, f) = Detail

downsampled high-frequency components of f,

where

e X belongs to the set of downsamples Z, isomorphic to Z/ 5 7.

o {¢5,X € Z,} is the set of functions such that the equality between linear forms <
@x, . >= K;(-)(x) holds for all x € Zj,. o
e In the same way, {{x, X € Z,} is such that < ¥, . >= K (-)(X) holds for all X € Z,.

The choice of k; and &y, is clearly crucial and done in a way that perfect reconstruction
of f from f and f is possible with no loss of information in the representation [ f, f 1. By
denoting fo = f, fi = f and g = f , we see that this splitting scheme can be successively
iterated starting from f to obtained a sequence fy € R”/ZN, gN € R”/ZN, ..., 81 € RV
for any integer N where the total length of the concatenated vectors [ fn, gn, ..., g1] 18
exactly n. This leads to

The Multiresolution scheme:
fosf—>h=Ff—>fH-—>fn

N N N (46)
g =f & gn

with f;, g e R i =0...,N.
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We remark that the perfect reconstruction condition amounts to have {¢x, V5, % € Z,}
a basis for the signals f on Z,. A famous construction by Ingrid Daubechies [13] derives
several families of orthonormal compactly supported such basis. It is worth mentioning that
these families combine localization in space around the point X and localization properties
in frequency due to the filtering step they have been built from. Using this space-frequency
localization one can derive key properties of the wavelet analysis of a signal which rely on the
deep links between the local regularity properties of f and the behavior and decay properties
of detail coefficients. We refer the interested reader to one of the numerous books on wavelet
methods and their applications such as [13] or [27]. In all these methods the word wavelets
denotes the family {5, X € Z,} spanning for the high-frequencies components.

6.2 Forest-Multiresolution-Scheme on Arbitrary Networks

When considering signals f on irregular networks G, it is not clear how to reproduce the
classical multiresolution scheme described above. In other words, in a non-regular network,
there are no canonical neither obvious answers to the following questions:

(Q1) What kind of downsampling should one use? What is the meaning of “every other
point”?

(Q2) On which weighted graph should the approximation fj be defined to iterate the
procedure?

(Q3) Which kind of filters should one use? What is a good notion of low frequency com-
ponents of a signal?

In light of the properties and applications of the random spanning forests described in the
previous sections, we do have natural answers to the first two questions. In fact, Theorem 9
suggests that the set of roots is a random downsample tailored to any network providing a
possible answer to (Q1)." And the network coarse-graining algorithm presented in Sect. 5.3
is a good candidate to address (Q2). It remains to make sense of filtering in (Q3), that is,
how to capture the low frequencies components or the main trend of a graph signal f. But if
we use the algorithm in Sect. 5.3, then it is natural to define the approximation component
£ (%) as a local average around the downsampled X € V w.r.t. the measures identified by the
intertwining matrix A = Ay in (39). That is, for each downsampled x € Y

@ =ve(f) =) AGEX)f(x).
xeV
Before proceeding with our construction, let us give some remarks on one of the main
problems in defining good filters in signal processing.

6.2.1 Filtering: Fighting Against Heisenberg

To be of any practical use in signal processing, the filters {vz, X € V} have to be well localized
both in space and frequency. This is violating Heisenberg uncertainty principle, a delicate
problem which needs a proper compromise. In the graph context, frequency localization
means that the filters belong to an eigenspace of the graph laplacian L. Hence, we are
interested in solutions to Eq. (27) such that the measures {vi, X € V} (our proposed filters)
are linearly independent measures tending to be non-overlapping (space localization), and

! This proposal has already received some attention within the signal processing community, cf. [38], in
particular Proposition II.3 therein and the discussion right after.
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contained in eigenspaces of L. We already observed that saying that (A, L) is an exact solution
to (27) implies that the linear space spanned by the measures {vz, ¥ € V} is stable by L, and
is therefore a direct sum of eigenspaces of L, so that these measures provide filters which are
frequency localized. Hence the error in the intertwining relation is a measure of frequency
localization: the smaller the intertwining error, the better the frequency localization. And
through Theorem 14 we can control such frequency localization.

Concerning space localization, we then want small squeezing on A. Notice further that
our A in (39) is just the restriction of the Green’s kernel K,/ which is very sensitive to
localization by tuning the parameter ¢’. In fact:

e when g’ goesto 0, forany X € V, Ky (x,y) goes to j(y) so that (27) is trivially satisfied.
Since p is the left-eigenvector of L corresponding to the eigenvalue 0, the K/ (X, y) are
well localized in frequency. However, the vectors {K,/(x, ) | X € V} become linearly
dependent and very badly localized in space.

e On the other extreme, when ¢’ goes to 0o, K ¢/ (X, -) goes to 8z. Hence, the space local-
ization is perfect. However, the frequency localization is lost, and the error in (27) tends
to grow.

A compromise has to be made for the choice of ¢’. Since in our method there is also the
parameter g controlling the fraction of downsampled points, we will need a suitable joint
tuning of the pair (¢, ¢’) to optimize localization properties. As explained in Sect. 6.4, our
tuning choice is indeed guided by Theorem 14 but also on stability results of the proposed
method which we state in Sect. 6.3 below. For a detail discussion on the actual choice of the
parameters, we refer to [5, Section 6].

6.2.2 Approximation, Detail and the Full Forest-Multiresolution

Let us summarize our proposed forest-multiresolution-scheme and present the corresponding
basis construction. For arbitrary real-functions f, g on V, we will denote by

(f 8) = @) (47)
xey
the scalar product w.r.t. ;.>
Intertwining Wavelets
Given an irreducible and reversible network G = (V, w) on n vertices and a signal

f:V—->R

a. Forest-downsampling: Choose a fix ¢ > 0, let G = G(g) = (V, w) be the randomized
coarse-grained (irreducible and reversible) network given by the algorithm in Sect. 5.3.1
with V = V(g) asin (42), and set ¥V = V' \ V.

b. Forest-filtering: Fix ¢" > O and let A = Ay be as in (39). Define the approximation
component of f as the function f defined on V by

f@E =Af@) =Ky f(), VEeV, (48)

and the detail component of f as the function f defined on V by

f@) = (Ky —1dyp) f(F), VXeV. (49)

2 Note that the scalar product in (29) (for which we used the same notation) is dual to this product in the sense
that can be seen as the scalar product in (47) acting on the functions v; /i, i = 1, 2, i.e. the densities of v;
w.r.t. L.
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Theorem 15 (Basis and wavelets) Fix a parameter q' > 0. Foreach¥ € V C V and ¥ € V,
respectively, define on V the densities functions of the measures A(X, -) w.r.t. u:
Alx,)  Kg(x, )

() = = s 50
9:0) m() () G0

and the functions

(K = Idy) (. )
n() ’

and abbreviate {€} ey = {(¢z, ¥3) | ¥ € V, ¥ € 1)} Then the family {&,}xey is a basis of

Lo (V, ). In particular, for any X € V, (¥g, I)M =0.

V() = (5D

The statement above corresponds to [5, Lemma 9]. As in classical multiresolution analysis,
the functions {y;, X € V} represent our wavelets. The basis functions given by {&,},cy are
not pairwise orthogonal w.r.t. (-, -),, but, by considering the corresponding dual basis in

£>(V, u), that is, the family {éx}xgv defined through
<§X7 gy>ﬂ = 3xyv X,y €V,

for any f € £2(V, ), we get the following representation
f=Y (& D= e b+ (W £ & (52)
xey eV Fev

identifying our “splitinto low and high frequency” components. We notice that the last remark
in the above theorem, which is a direct consequence of (51), is saying that constant functions
have no details or zero high frequencies components. We call analysis operator U = U,/
the operator

U: 20V, u) — RY =RY x RY (53)
f = (& ey =16, s Wi Hudzepsep = L, £

assigning to f € €>(V, u) its coefficients in the expansion in (52). As explained in the
following theorem, the reconstruction of f from the knowledge of its coefficients U (f) can
be made operative:

Theorem 16 (Reconstruction formula) Fix g > 0. Forany f € £ (V, ), consider | €
Lo(V, 1) and f € £2(V, ) respectively given by

f@ =K, f@ =U(HF), ¥eV,
f&) = (Ky —1dp) f(X) =U())F), ¥eV.

Then,
f:Rq’f+Iéq’f7
where B
_ Idy — 5L L
Ry = L ] EZ L1, = approximation operator, (54)
and |
o Lly[—L]:
Ry = LLIvt , ]V _1 | = detail operator . (55)
_Idf; —q [_L]{;
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This last statement correspond to [5, Prop. 10] and fully describes our multiresolution
scheme. In fact, in view of the properties of G, we can simply iterate the procedure with
W, L, i) in place of (V, L, ) resulting into a pyramidal algorithm as described in Eq. (46).

Still, we have not enough motivated the choice of the filter bank given in (48) and (49)
for our “high and low frequencies” components in relation to regularity properties of signals.
To clarify this point, let us first emphasize that in any reasonable wavelets construction, as
mentioned in Sect. 6.2.1, good space and frequency localization properties are necessary
ingredients. And in our approach, this issue is partially addressed via Theorem 14. Notice in
particular that space localization is achieved using the determinantality of V, and the fact that
V is well spread on V. Since ¥ = V\ V is also a determinantal process, with kernel Id — K, P
this suggested the detail definition (49) (the sign convention for the vy is chosen to have
a self-adjoint analysis operator U : f — [f, f ]in £2(V, w)). On the other hand, another
fundamental ingredient is that if the signal f is “regular enough”, then the corresponding
detail component f should be small. For instance, if the original function is constant it should
not contain any high frequency component, that is, the corresponding f being identically
zero. As the last remark in Theorem 15 states, this is in fact the case in our intertwining
wavelets. However, more generally, a way to capture and guarantee that the size of the details
is small for non-constant but regular functions is desirable. In the next section we give bounds
on the involved operators as a function of ¢’ and we make sense of this latter regularity issue
through the norm of Lf in Theorems 19 and 21.

6.3 Quality and Stability of Intertwining Wavelets

We collect here our results to guarantee numerical stability when using the forest-
multiresolution-scheme and to guide in the choice of the parameters. We stress that the
scheme presented in the previous section can be implemented when the downsample V C V
is chosen according to any (even deterministic) rule. For this reason, the following statements
controlling norms and sizes of the main involved objects are stated for arbitrary ¥ C V and
will not depend on g. We start by the control on the approximation and detail operators in (54)
and (55), respectively, corresponding to [5, Prop. 14] and [5, Prop. 11].

Theorem 17 (Bound on the norm of the approximation operator) Fix q' > 0. Let V be any
subset of V, ¥V =V \ 'V, and let Ry be the operator defined in (54). For any p > 1, for any
Fet,V, uyp),

5 Wmax P Wmax /p “n1/p -
[Re Sl = | (142707 ) + =5 P ILI, 5 (56)

With wmax as in (4), Wmax defined analogously w.r.t. the generator L, and B as in (44).

Theorem_1 8 (Boungl on the norm of the detail operator) Fix ¢’ > 0. Let V be any subset of V,
V = V\V, and let Ry be the operator defined in (55). Forall p > 1, forall f € £,(V, uy,),

_— b/ p* c]/ » 1/p y
vf[(,e) *(”y” kI, 6

where p* is the conjugate exponent of p, B as in (44), and

l = max Ey [TV] . (58)
14 ey
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We refer to [5, Sections 6.1, 6.2 and 6.3] for estimates on y (defined in in (58), 8 and
Wmax. We now move to the regularity issue mentioned above, that is, for “regular” signal we
wish small details. By measuring the modulus of continuity of the original function through
ILf1, v, we get the following statement corresponding to [5, Prop. 15]:

Theorem 19 (Control on the size of details) For any p > 1 and any f € £,(V, ),

maXyey Kq’(xs D)l/p
q'n)\/p

7] 5=k 11,5 < ILf N -

The next result gives a control on the size of the coefficients at arbitrary scale i < N when
V = R(®y), implementing the multiresolution scheme with N > 1 successive reductions.
To this end, let us introduce suitable abbreviations for the objects at the different scales
i =1,..., N. We have a given sequence of N (non-empty) nested vertex sets

Vo2 V1 2 -2 Vy, starting fromVy =V,

with associated parameters {qi’ |i=0,---N—1}.
Foreachi =0,..., N — 1 set:
o Vi =Vi\ Vi1,
e Lo =L, and L;; the Schur complement of [L,-]\;I_ in L;,
e the kernels K; = ¢/(g/Idy, — L)~
e w;, B; and y; as in (4), (44) and (58), respectively, w.r.t. L;.
e fo = f, and the successive approximation and detail components f;+; = K; f; and
gi+1 = (K; — Idf,i) fi asin (48) and (49), respectively, so that

fi = Rifis1 + Rigi+1,

5[ — 3L o (MLily, L
;= o and R; = , 1 .
[—Lilj, [Lily,y, gilLily," — 1dy,

i+1

with

We can now extend the analysis operator in (53) to arbitrary scale N > 1 by setting

Un = £p(V) = £,(Vn, ptvy) X (Ot iy ) X - x £, (Vo, i)
S = [fn.gns8gn—1,---, 81]

where the space £,(Vy, iyy) X Z,,(f}Nfl, MDN—I) XXy (f/o, /,L‘“)O) is endowed with the
norm
N 1/p
— P V). P
1. v gn—t.--. &1lll, = (u(vm 1N vy + ;um_l) lgi ”p,le-_1> :
i=

Here is the control on the vectors identified by Uy we derived in [5, Prop. 17].

Theorem 20 (Bound on the norm of the analysis operator) Let p > 1 and p* be its conjugate
exponent. Forany N > 1 and f € £,(V, ),

IUNHI, <27 A+ NP Y11, (59)

@ Springer



1018 L. Avena et al.

50 Intertwinning nultiresolution coefficients, 2 steps

40

20 |-

10 -

450
q=(2,1,9185) qprime=(5,1022,7,2549)

100 classical wavelets coefficients, 2 steps

60 -

40

512 256 256

Fig.9 Two steps of the multiresolution for the intertwining wavelets (upper plot) and Daubechies-12 wavelets
(lower plot). The three parts of each plot give respectively g1, g2 and f>. Notice e.g. that the size of g5 is half
the size of g1 only for Daubechies-12 wavelets, reason being that the subsampled nodes are random (given by
the roots) in our method

Our last result is a form of so-called Jackson’s inequality. This result is in general cru-
cial for numerical stability in approximation theory and multiresolution analysis (and in
particular it plays an important role in our approach to tune the involved parameters, see [5,
Section 6]). It guarantees small error for “smooth” functions, when reconstructing an approx-
imating function of the original one after setting the details g;’s to zero at all scales. This is
clearly relevant if e.g. the aim of the multiresolution is to compress a signal. To formulate
it, notice that by performing N reduction steps in our multiresolution, from the coefficients
[fn, &N, 8&N—1,--.,81] we can reconstruct f = fj as follows:

f=fo=Rofi + Rog
= RoR1 /> + RoRig2 + Rog
N—1
=RoRi--Ry_1fv+ Y (Ro- Rj_)R;gj1.
=0

The compression of f associated to scale N is thus the function on V:
F(N)=RoRy--- Ry-1 /v, (60)

and we have the following Jackson’s inequality measuring its quality.
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50 T T T T T

30 1

20 T

20 L 1 L 1 L

0 200 400 600 800 1000 1200

Fig. 10 Original signal for analysis on the one dimensional torus

Theorem 21 (Jackson’s inequality: quality of the compression of a signal) For any p > 1
andany f € £,(V, ), let f(N) be the compression associated to scale N > 1 in (60). Then

|7 =faw|
PV
N=1j] CoNp oAUp N AR
< [(1+2w”{‘> +ﬁ] (&) s+ E i ILFl
j=0 i=0 q; Bi :Bj Vi q;
N—1j-1 » 1/p »/p* PP -1 1/p*
Wit w; wj q; 1 , <wk>
+ 1+2— + -2 +(1+ -2 — Y 2q; [ — 61
{, , 0[( q; ) ﬂi] [(ﬂj) ( Vj) ] q,,;o N\ B 171, (61)

For the proof of this statement see [5, Prop. 18]. It is worth stressing that the second

summand involving || f| Y is due to the propagation of the error in the intertwining relation,
it would vanish if the generators at all scales were perfectly intertwined.

6.4 Choosing the Downsampling and Concentration Parameters

Intertwining error and localization property have to be our guidelines to choose our down-
sampling parameter g and our concentration parameter ¢’. Beyond squeezing measurement,
another way to look at localization properties is to focus on the reconstruction operator norm:
spread out wavelets ¢y and scaling functions 13 will lead to bad reconstruction properties,
i.e., to a large operator norm. These norms are controlled by Egs. (56) and (57). Since the R
operators only are composed together in the reconstruction scheme, Eq. (56) is the crucial
inequality and we look at it for p = 4o00. As far as the intertwining error is concerned we
look at Eq. (43), for p = 400 too. These inequalities say that we want ¢’/8 and Wmax /g’ as
small as possible. This implies that we want wmax /B as small as possible. Note that this is a
random function of g. It does not depend on ¢’, but it is very costly to estimate it by direct
Monte-Carlo methods.
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Approximation size 15; Classical wavelets 16
0.4 T T T T T T T T T

our method; steps=20
classical wavelets

Compression relative error

4 I L !

0 0,05 0.1 0,15 0.2 0,25 0.3 0,35 0.4 0.45 0.5

percentage of kept details coefficients

Fig. 11 Relative compression error of signal in Fig. 10 in terms of the percentage of kept normalized detail
coefficients. In red, the error using intertwining wavelets. In blue, error using Daubechies-12 wavelets (Color
figure online)

Now the same kind of algebra we used to prove that the mean hitting time of the root set
does not depend on the starting point, offers a workaround. We can estimate wpax With

1 _
p=F| — —L(x,x
v R(Py)] ie%q) (0
and 1/8 with
1 1
=B —— P(%, 2) Eo[Tr(®)]
F; IR(D,)] ie%);v e

It turns out that these expected values are respectively equal to

w:q]E[IV\R(%)I]
I+ |R(Dy)|

and

1 E[W\R@qn]_

E - Wmax |R(q)q)|
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percentage of kept coefficients=0,1

50 T T T T T
original signal
compressed signal with our method
40 " -
‘f
f
| ‘\.\
\
30 - ‘\ -
\
ol \ )
| \
/ //\\ \
\ |
\
10 \ -
0 \ .
-10 - / \ j A
J \ \
; \_\v/‘/ / o A i
20 | 1 1 | T
0 200 400 600 800 1000 1200

Fig. 12 Original signal (blue line) and compression (red line) with intertwining wavelets keeping 10% of
normalized detail coefficients (Color figure online)

Fig. 13 A compressed white rectangle with Haar wavelets on the first line, for which the percentage of kept
detail coefficients is reported in each picture. The same rectangle is compressed with intertwining wavelets
on the second line, with the same number of kept coefficients

These expected values are easy to estimate by Monte-Carlo simulations for ¢ between two
bounds of order wma,x—such a restriction is natural if we expect [V| to be a fraction of |V|—
since we have a practical algorithm to sample all the ®, together. We can then choose g by
optimization between the two bounds. We refer to [5, Section 6] for more details.

It remains to choose ¢’ once we have chosen ¢ and sampled ®,. It turns out that the
previous estimations on Wmax and 1/ suggest that the norm of the composed R could be
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Haar, fraction of details coefficients: 0.1

100 120 100 120

Fig. 14 Compression with Haar wavelets on the left, with intertwining wavelets on the right. In both case the
last picture is the original signal
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Haar i ion with 256 with 205

10 20 30 40 50 60 10 20 30 40 50 60

Fig. 15 Approximation components for Haar and intertwining wavelets, with 256 and 205 coefficients, respec-
tively

Haar approximation with 256 coefficients

pproximation with 246

20 40 60 80 100 120

Fig. 16 Approximation components for Haar and intertwining wavelets, with 256 and 246 coefficient, respec-
tively

bounded by |V| by choosing wmax/q" and ¢’/B of the same order. This is actually ensured
by setting

IR(®g)]
VA R(@I

CI/ = 2Wmax

While ensuring numerical stability of the algorithm, this, in turn, essentially amounts to
make intertwining error and localization property of the same importance. We refer once
again to [5, Section 6] for details and we conclude this survey with giving some numerical
experiments based on these results.

6.5 Experiments, Intertwining Wavelets in Action

We collect here some numerical experiments on well-known benchmarks in signal processing
illustrating the performances of our method. Intertwining wavelets have been thought and are
naturally suited to signals on irregular graphs, yet, our experiments show that they perform
well also on classical euclidian spaces. To see that, we present a few examples of different
nature and a comparison of the error with some of the most common methods used in the
corresponding setup. We start from classical one-dimensional and two-dimensional signals
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(a) (c)
Original signal: number of vertices=500 detail finest scale: coefficients number=188
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Fig. 17 Two steps of the intertwining wavelets multiresolution upsampled to the original graph: a fp; b
RoR1 f2;¢ Rog1;d RyR1 g2. a Original signal. b Approximation. Size of f: 206. ¢ Detail at scale 1. Size of

g1: 188. d Detail at scale 2. Size of g,: 106 (Color figure online)

in Sect. 6.5.1 and then move to a non-regular network setup in Sect. 6.5.2. Unless specified,
in all experiments we always include the sparsification procedure mentioned in Sect. 5.3.2.

6.5.1 Comparison with Classical Wavelet Algorithms on the Torus

In Fig. 9, we show two steps of the multiresolution analysis for intertwining wavelets and
Daubechies-12 wavelets [13] applied to the commonly used benchmark signal shown in
Fig. 10. Figure 11 shows the compared relative compression errors in terms of the percentage
of kept detail coefficients while compressing the above benchmark on the 1d-torus, we see in
particular than even on regular networks intertwining wavelets are a valuable tool. We refer
to [5] for a detailed account on the compression algorithm associated with our multiresolution
scheme. In Fig. 12, we compare the original signal with the compressed one we obtained

with our wavelets by keeping 10% of the detail coefficients.

We next move on signals on a 2d-torus. In Figs. 13 and 14, we show the compressions
(obtained by setting to zero a fraction of the smallest detail coefficients) of two different
images (a rectangle and a cameramen) obtained with Interwining and Haar [13] wavelets.

Figures 15 and 16 show the related approximation components.
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compression relative error

compression relative error

our method: 6 levels, 50 approximation coefficients
pyranid: 3 levels, 68 approximation coefficients,

—our method: 6 levels, 58 approximation coefficients
—puranid: 3 levels, 63 approximation coefficients,

number of kept coefficients

Without sparsification

number of kept coefficients

With sparsification

Fig. 18 Relative compression errors of signal in Fig. 17a, in terms of the number of kept coefficients. In red,
the error using intertwining wavelets. In blue, error using the spectral graph wavelets pyramidal algorithm.
Experiments without (left plot) and with (right plot) sparsification (Color figure online)

6.5.2 A Signal on a Non-regular Graph

We took from [37] and the GSP toolbox [31] the sensor graph and the signal represented
in Fig. 17 together with two steps of the multiscale analysis. In Fig. 18 we compare the
results of the intertwining compression algorithm with those of the spectral graph wavelet
pyramidal algorithm [37]. In this last figure we added the result of the algorithm also without
sparsification. It is worth noting that, in this example at least, sparsification helps significantly,
not only for algorithmic complexity.
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