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Abstract The size of the giant component in the configuration model, measured by the
asymptotic fraction of vertices in the component, is given by a well-known expression
involving the generating function of the degree distribution. In this note, we argue that the
distribution over small degrees is more important for the size of the giant component than
the precise distribution over very large degrees. In particular, the tail behavior of the degree
distribution does not play the same crucial role for the size of the giant as it does for many
other properties of the graph. Upper and lower bounds for the component size are derived
for an arbitrary given distribution over small degrees d ≤ L and given expected degree, and
numerical implementations show that these bounds are close already for small values of L .
On the other hand, examples illustrate that, for a fixed degree tail, the component size can
vary substantially depending on the distribution over small degrees.
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1 Introduction and Results

The configuration model is one of the simplest and most well-known models for generating
a random graph with a prescribed degree distribution. It takes a probability distribution with
support on the non-negative integers as input and gives a graph with this degree distribution
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The Tail does not Determine the Size of the Giant 737

as output. The model is very well studied and there are precise answers to many questions
concerning properties of the model such as the threshold for the occurrence of a giant com-
ponent [4,6], the asymptotic fraction of vertices in the largest component [4,7], diameter and
distances in the supercritical regime [10–12], criteria for the graph to be simple [3] etc; see
[8, Chap. 7] and [9, Chaps. 4–5] for detailed overviews. Empirical networks often exhibit
power law distributions, that is, the number of vertices with degree d decays as an inverse
power of d for large degrees. For this reason, there has been a lot of attention on properties
of the configuration model with this type of degree distribution. Here we focus on the size
of the largest component in the supercritical regime—specifically, the asymptotic fraction of
vertices in the giant component—as a functional of the degree distribution. Our main mes-
sage is that the distribution over small degrees is more important for the size of the largest
component than the tail behavior of the degree distribution. While this is not surprising, in
view of the general focus on degree tails in the literature, we think it deserves to be pointed
out and elaborated on.

1.1 The Model and Its Phase Transition

To define the model, fix the number n of vertices in the graph and let F = {pd}d≥0 be a
probability distribution with support on the non-negative integers. Assign a random number
Di of half-edges independently to each vertex i = 1, . . . , n, with Di ∼ F . If the total number
of half-edges is odd, one extra half-edge is added to a uniformly chosen vertex. Then pair
half-edges uniformly at random to create edges, that is, first pick two half-edges uniformly
at random and join them into an edge, then pick two half-edges from the set of remaining
half-edges and create another edge, and so on until all half-edges have been paired. The
construction allows for self-loops and multiple edges between the same pair of vertices.
However, if the degree distribution has finite mean, such edges can be removed without
changing the asymptotic degree distribution, and if the second moment is finite, there is a
strictly positive probability that the graph is simple; see e.g. [2,3].

Writeμ = E[D] and ν = E[D(D−1)]/μ, and assume throughout that p2 �= 1. It is well-
known that the threshold for the occurrence of a giant component in the configuration model
is given by ν = 1: if ν > 1, then there is with high probability a unique giant component
occupying a positive fraction ξ of the vertices as n → ∞, while if ν < 1, then the largest
component grows sublinearly in n; see [4,6]. To see this, consider an exploration of the graph
starting from a uniformly chosen vertex and then proceeding via nearest neighbors. For large
n, such an exploration can be approximated by a branching process, where the offspring
(=degree) of the first vertex has distribution F . For vertices in later generations, their degrees
are distributed according to a size biased version of F . Indeed, by construction of the graph,
the vertices constitute the end-points of uniformly chosen half-edges, and the probability of
encountering a vertex with degree d is therefore proportional to d . Since we arrive at a vertex
from one neighbor, the remaining number of neighbors—corresponding to the offspring of
the vertex—has a down-shifted size biased distribution F̃ = { p̃d}d≥0, defined by

p̃d = (d + 1)pd+1

μ
. (1)

Infinite survival in the approximating branching process corresponds to a giant component
in the graph, and the critical parameter ν is easily identified as the mean of the distribution
(1). Let ξ denote the asymptotic fraction of vertices in the largest component, throughout
referred to as the size of the largest component. The asymptotic size ξ is given by the survival
probability in the two-stage branching process (this can fail when p2 �= 1, see Remark 2.7
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738 M. Deijfen et al.

in [4]). Write g(s) for the probability generating function for the degree distribution F and
note that the probability generating function for F̃ is given by g′(s)/μ. Let z̃ denote the
probability that a branching process with offspring distribution F̃ goes extinct. Then z̃ is the
smallest non-negative solution to the equation s = g′(s)/μ, and

ξ = 1 − g(z̃). (2)

A comprehensive description of the above exploration process can be found e.g. in [9, Chap.
4]. As for notation, when we want to emphasize the role of a given distribution F for the
above quantities, we write ξF and z̃F etc. Furthermore, we always equip quantities related to
down-shifted size biased distributions with a wiggle-hat.

1.2 Basic Examples

We will be interested in how the size ξ of the giant component depends on properties of
the degree distribution F . Despite the large interest in the configuration model in the con-
text of network modeling, there has been surprisingly little work on this issue. One recent
example however is [5], where component sizes are compared when degree distributions are
ordered according to various concepts of stochastic domination. We also mention [1], where
a distribution is identified that maximizes the size of the largest component in a percolated
configuration graph for a given mean degree: this is achieved by putting all mass at 0 and
two consecutive integers. Here, we will throughout restrict to the class of distributions with
p0 = 0, that is, to graphs without isolated vertices. We hence require that all vertices have
a chance of being included in a giant component (if such a component exists), and do not
investigate cases where the component size can be tuned by removing some fraction of the
vertices.

First note that, when the meanμ is fixed, the critical parameter ν increases as the variance
of the distribution increases, making it easier to form a giant component. This might lead one
to suspect that the size of the giant component is also increasing in ν. This however is not true,
in fact it is typically the other way around, as elaborated on in [5]. To understand this, note that
fixing themean and increasing the variance implies that there will bemore vertices with small
degree in the graph. Vertices with small degree are those that may not be included in the giant
component, which then becomes smaller. Consider a very simple example with D ∈ {1, 2, 3}
where the probability p1 of degree 1 is varied and the probabilities p2 and p3 are tuned so that
the mean is kept fixed. As p1 increases, also the probability p3 increases, implying a larger
variance. Figure 1a shows a plot of the component size and the critical parameter against
p1 when μ = 2.1, and we see that the giant component shrinks from occupying all vertices
to a fraction 0.85 of them, while the critical parameter increases linearly. Figure 1b shows
a similar plot (with only the component size) when D ∈ {1, 2, 10} and again μ = 2.1, and
we see that the component size decreases from 1 to less than 0.65. Note that these examples
also illustrate that the mean in itself does not determine the component size, since the mean
is constant in both pictures.

In the example we see that the component size ξ decreases as the fraction of degree 1
vertices increases. This is natural since degree 1 vertices serve as dead ends in the component.
If P(D ≥ 2) = 1 (and p2 �= 1), then the extinction probability z̃ equals 0, implying that
ξ = 1. The size of the giant is hence determined by the balance between degree 1 vertices and
vertices of larger degree. Increasing the variance in a distribution with a fixed mean typically
implies an increase in the number of low degree vertices, and our main message is that the
distribution over small degrees is in fact more important for the size of the giant component
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Fig. 1 Asymptotic size ξ of the giant plotted against p1 with mean fixed at μ = 2.1 for a D ∈ {1, 2, 3} and b
D ∈ {1, 2, 10}. In a also a plot of the critical parameter ν is included (while in b the critical parameter grows
too large to fit in the plot). The probability p1 does not run all the way to 1 since the mean cannot be preserved
for large values of p1

than the precise distribution over very large degrees. In particular, the tail behavior of the
degree distribution does not play the same crucial role for the size of the giant as it does
for certain other quantities such as e.g. the scaling of the distances in the giant component
[10,11].

That the distribution over small degrees can play a significant role is illustrated in Fig. 2,
where the degrees have a fixed tail distribution and the remaining probability is allocated at
small degrees in different mean-preserving ways. In Fig. 2a, the degree distribution is fixed
for d ≥ 4 (we consider a Poisson(2) distribution and a power-law with exponent -3) and the
remaining probability is allocated at the degrees 1, 2 and 3. Specifically, the probability p1
is varied and p2 and p3 are then adjusted so that the mean is kept fixed at μ = 2.2. Figure
2a shows plots of the component size against p1 and we see that, although the tails remain
the same, the component size changes with p1 in both cases. Figure 2b shows a similar plot
when the tail is fixed for d ≥ 11 (Poisson and power-law) and the mean is equal to 3.5.

1.3 Bounds for a Given Distribution over Small Degrees

We also argue that, conversely, fixing the distribution over small degrees typically leaves little
roomfor controlling the component size by tuning the tail. Specifically, the difference between
the maximal and the minimal achievable component size when the first L probabilities and
the mean are fixed tend to be small already for small values of L . This requires bounds for
the component size for a given distribution over small degrees. To formulate our results here,
let pL = {p1, . . . , pL} denote a fixed set of probabilities associated with degrees 1, . . . , L
for some L ≥ 1, and write F(pL) for the set of all distributions having those specific initial
probabilities. Also write F(μ,pL) for the set of all distributions in F(pL) with a given mean
μ. It turns out that a crude lower bound for the component size for distributions inF(μ,pL) is
obtained by placing all remaining mass p>L = 1−∑L

i=1 pi at the point L+1. Fixing also the
meanμ, under a mild technical condition, this bound can be modified into one that is optimal
for distributions in F(μ,pL), that is, any larger bound is violated by some distribution in
F(μ,pL). Under a similar technical condition, an optimal upper bound for distributions in
F(μ,pL) is obtained by placing all remaining mass at two specific consecutive integers.
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Fig. 2 Asymptotic size ξ of the giant plotted against p1 with a pd fixed for d ≥ 4 and mean μ = 2.2 and
b pd fixed for d ≥ 11 and mean μ = 3.5. The constants in the power-law distributions are included to make
the probabilities allocated in the tail roughly the same as for the Poisson distributions (approximately 0.1 in
both cases). a Blue: pd = P(Po(2) = d), red: pd = 2d−3. b Blue: pd = P(Po(7) = d), red: pd = 5d−2.5

(Color figure online)

For a fixed pL , consider a distribution G = G(pL) with pL+1 = p>L (and pi = 0 for
i ≥ L + 2), write gG(s) for its probability generating function and ξG for the size of the giant
component in a configuration graph with this degree distribution.

Proposition 1.1 For each fixed pL , we have that ξF ≥ ξG for all F ∈ F(pL).

Proposition 1.1 is proved in the next section. To formulate (optimal) bounds for distribu-
tions in F(μ,pL), where also the mean μ is fixed, denote

κ = 1

p>L

(

μ −
L∑

d=1

dpd

)

,

and note that, for any F ∈ F(μ,pL), we have for D ∼ F that E[D|D > L] = κ . Next, let
H = H(μ,pL) be a distribution where all remaining mass is placed at the two integers 
κ�
and �κ
 (or one integer if κ is an integer) in such a way that the mean is preserved, that is,

p(H)

d =
⎧
⎨

⎩

pd for d = 0, . . . , L;
(
κ� + 1 − κ)p>L for d = 
κ�;
(κ − 
κ�)p>L for d = 
κ� + 1.

Write gH for the associated generating function and ξH for the component size in the cor-
responding configuration graph. Finally, let z̃G and z̃H denote the extinction probabilities in
branching processes with offspring distributions given by down-shifted size biased versions
of the above distributions. Our bounds on the component size with fixed initial probabilities
pL and fixed mean μ are as follows.

Theorem 1.1 Fix pL and μ.

(a) If pL is such that z̃G ≤ e− 1
L+1 , then

ξF ≥ 1 − gG

(
z̃(μ)
G

)
for all F ∈ F(μ,pL),

where z̃(μ)
G is the smallest non-negative solution to the equation s = g′

G(s)/μ.
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The Tail does not Determine the Size of the Giant 741

Table 1 Bounds for the size of the giant component from Proposition 1.1 and Theorem 1.1

pL = (p1, . . . , pL ) μ L p>L Lower bound Lower bound Upper bound
Proposition 1.1 Theorem 1.1(a) Theorem 1.1(b)

(0.31, 0.31, 0.21) 3 3 0.17 0.9140 0.9504 0.9508

(0.43, 0.32) 3 2 0.25 0.5896 0.9019 0.9103

(0.7, 0, 0) 2 3 0.3 0.7023 0.7247 0.7318

(0.7, 0, 0) 3 3 0.3 0.7023 0.8319 0.8366

(0.5, 0.25, 0.125) 2 3 0.125 0.7047 0.7553 0.7680

(0.5, 0.25, 0.125) 3 3 0.125 0.7047 0.8836 0.8851

The first two examples are Poisson probabilities with mean 2 and 1.5, respectively, conditional on the degree
being strictly positive. All distributions satisfy the technical conditions in Theorem 1.1(a) and (b)

(b) If pL and μ are such that z̃H ≤ e− 2
L+1 , then

ξF ≤ ξH for all F ∈ F(μ,pL).

The bounds are optimal under the given conditions, that is, in (a) we have that
infF∈F(μ,pL ) ξF = 1 − gG(z̃(μ)

G ) and in (b) that supF∈F(μ,pL ) ξF = ξH .

Remark 1 The restrictions on pL and μ are imposed for technical reasons. They imply that,
if the extinction probabilities z̃G and z̃H are close to 1, then L has to be large, that is, a
sufficiently large part of the distribution has to be fixed. We believe that this serves to avoid
e.g. situations where F(μ,pL) contains both subcritical and supercritical distributions. For
most distributions, the conditions are mild, in the sense that they are satisfied already for
moderate values of L (in relation to μ); see Table 1 for examples. Note however that, for
L = 1, when only the probability of degree 1 is fixed, the condition in (a) is not satisfied: in
this case the distribution G has mass only at 1 and 2 implying that z̃G = 1.

Remark 2 The distribution G can be thought of as the limiting case of a distribution Gm

where most of the remaining mass p>L is placed at L + 1 and a vanishing amount on another
integer m → ∞; see the proof of Theorem 1.1(b). The mean in this distribution Gm is
kept fixed at μ, and the bound in (b) differs from the component size ξG obtained for the
distribution G in that the correct mean μ is used instead of the mean of G in the equation
defining z̃(μ)

G (explaining the notation). Note that the spread in the distribution of the remaining
mass is maximized in the distribution Gm . In the distribution H , on the other hand, the mass
is concentrated as much as possible (while still keeping the mean fixed).

1.4 Numerical Implementations

Table 1 contains numerical values of the bounds in Proposition 1.1 and Theorem 1.1 for a
few different distributions pL over small degrees (that all fulfill the technical conditions). As
explained above, we only analyze distributions with p0 = 0. We note that, in all cases, the
upper and lower bound on the size of the giant are very close, supporting the claim that, if the
distribution over low degrees is fixed, then the size of the giant is not affected much by the
tail of the distribution. However, we would like to argue that this is the case for all choices of
pL and μ (satisfying the technical conditions) and for this we need to investigate the bounds
more systematically.

If a large part of the distribution is fixed, it is not surprising that the component size cannot
be tunedmuch, and we hence focus on small values of L , say L ≤ 5. For each L ∈ {2, 3, 4, 5}
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742 M. Deijfen et al.

Table 2 Maximal difference between the bounds in Theorem 1.1(a) and (b) for different values of L

L Maxdiff pL = (p1, . . . , pL ) μ Lower bound Theorem 1.1(a) Upper bound Theorem 1.1(b)

2 0.055 (0.6, 0.1) 2.0 0.7059 0.7616

3 0.041 (0.55, 0.35, 0) 1.8 0.5664 0.6078

4 0.029 (0.75, 0.1, 0.1 0) 1.6 0.4203 0.4494

5 0.024 (0.75, 0.2, 0, 0, 0) 1.6 0.4188 0.4423

We also give the probabilities pL and mean μ that gives rise to the maximal difference and the corresponding
values of the bounds

Fig. 3 Maximal difference
between the bounds in Theorem
1.1(a) and (b) plotted against μ.
The maximum is taken over
L ∈ {2, 3, 4, 5} and distributions
pL
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we havemade a grid search (with step length 0.05) of all possible distributions pL for different
values of μ ∈ [1, 5] (with step length 0.2). Table 2 shows the maximal difference between
the upper and lower bound for distributions fulfilling the technical conditions and also for
which distribution pL and mean μ that this maximal difference is observed. We note that,
for L = 2, the maximal difference is 0.055 and it then decreases with L to 0.024 for L = 5.
Throughout, the worst cases occur for small values of μ. This is confirmed by Fig. 3, where
the maximal difference (over L ∈ {2, 3, 4, 5} and pL) is plotted against μ. We remark that,
in all cases, the maximal difference was observed for L = 2. In summary, this indicates
that, if the first L = 5 probabilities are fixed (and the technical conditions satisfied), then the
component size cannot vary more than approximately 0.024.

It would of course be desirable to estimate the difference between the bounds analytically,
but it seems complicated to obtain good estimates for small values of L , which is what we
are after.

In the next section we prove Proposition 1.1 and Theorem 1.1.

2 Proof of Theorem 1.1

Assume throughout this section that pL is fixed.

Proof of Proposition 1.1 Fix a distribution F ∈ F(pL). Since the component size ξ is given
by (2), and ξG by the analogous expression for the distribution G, we need to show that
g(z̃) ≤ gG(z̃G). It is clear that g(s) ≤ gG(s) for any s ∈ [0, 1], and hence, since generating
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The Tail does not Determine the Size of the Giant 743

functions are increasing, it follows that g(z̃) ≤ gG(z̃G) if we show that z̃ ≤ z̃G . Let { p̃(G)

d }Ld=0
denote the probabilities defining the down-shifted size biased version G̃ of G and recall that
{ p̃d}, defined in (1), denote the corresponding probabilities for F . It is not hard to see that
p̃d ≤ p̃(G)

d for all i = 0, . . . , L (and p̃(G)

i = 0 for i ≥ L + 1). Hence G̃ is stochastically
smaller than F̃ , implying that z̃ ≤ z̃G , as desired. ��

For the remainder of the section, we fix also the mean μ.

Proof of Theorem 1.1(a) We begin by defining a sequence of distributions {Gm}m≥κ where
a vanishing (as m → ∞) fraction of the remaining mass is placed at m and the rest at L + 1,
in such a way that the mean of the distribution is fixed at μ. Let

rm = κ − (L + 1)

m − (L + 1)
.

Then Gm = {p(m)

d }d≥1 is defined by

p(m)

d =
⎧
⎨

⎩

pd for d = 0, . . . , L;
(1 − rm)p>L for d = L + 1;
rm p>L for d = m.

Note that Gm ∈ F(μ,pL). Write z̃m for the extinction probability of a branching process
with offspring distribution given by a down-shifted size biased version G̃m of Gm . Also,
let z̃(μ)

G denote the smallest solution of the equation s = g′
G(s)/μ. We will show that (i)

1− ξF = gF (z̃F ) ≤ gG(z̃(μ)

G ) for all F ∈ F(μ,pL) and then, in order to show that the bound
is sharp, that (ii) z̃m is increasing for large m and converges to z̃(μ)

G .
To establish (i), first fix a distribution F ∈ F(μ,pL), that is, in addition to pL we also

fix pd for d ≥ L + 1 such that the mean is μ. Since gF(s) ≤ gG(s) for all s and generating
functions are increasing, the desired conclusion follows if z̃F ≤ z̃(μ)

G , which in turn follows
if g′

F(z̃F) ≤ g′
G(z̃F), since the smallest solution z̃(μ)

G of s = g′
G(s)/μ must then be larger

than z̃F = g′
F(z̃F)/μ. The assumption z̃G ≤ e− 1

L+1 ensures that functions of the form
f (d) = dsd−1, with s ≤ z̃G , are strictly decreasing for d ≥ L + 1. Since z̃F ≤ z̃G (as shown
in Proposition 1.1), this means that

∞∑

d=L+1

dz̃d−1
F pd ≤ (L + 1)z̃ LF

∞∑

d=L+1

pd = (L + 1)z̃ LF p>L ,

which implies that g′
F(z̃F) ≤ g′

G(z̃F), as desired.
As for (ii), note that it follows from the proof of Proposition 1.1 that z̃m ≤ z̃G , and the

assumption z̃G ≤ e− 2
L+1 ensures that z̃G < 1 so that z̃m < 1. The extinction probability z̃m

solves the equation s = g′
m(s)/μ and hence it follows that z̃m is increasing for large m if

g′
m(z̃m) ≤ g′

m+1(z̃m)whenm is large—indeed, the smallest solution z̃m+1 of s = g′
m+1(s)/μ

must then be larger than z̃m . Noting that g′
m(s) = ∑

dp(m)
d sd−1, we obtain that

g′
m+1(z̃m) − g′

m(z̃m)

= p>L [(L + 1)(rm − rm+1)(z̃m)L + (m + 1)rm+1(z̃m)m − mrm(z̃m)m−1]
> p>L(z̃m)L [(L + 1)(rm − rm+1) − mrm(z̃m)m−L−1],

which is positive for large m since rm − rm+1 is positive and of order m−2 while
mrm(z̃m)m−L−1 is exponentially decreasing in m (recall, z̃m ≤ z̃G < 1 for all m ≥ κ).
Since z̃m is increasing for large m and bounded from above by z̃G < 1, it converges to some
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limit z̃∞ that is strictly smaller than 1. Furthermore, since rm → 0 and z̃m ≤ z̃G < 1, we
obtain that

z̃m = g′
m(z̃m)/μ = ∑L

k=1 kpk(z̃m)k−1 + p>L(L + 1)(1 − rm)(z̃m)L + p>Lmrm(z̃m)m−1

→ ∑L
k=1 kpk(z̃∞)k−1 + p>L(L + 1)z̃L∞ + 0 = g′

G(z̃∞)/μ

as m → ∞. Therefore, z̃∞ is the unique solution of the equation s = g′
G(s)/μ in (0, 1),

which is also the definition of z̃(μ)

G .
Finally, we obtain that the derived bound, 1− ξF = gF (z̃F ) ≤ gG(z̃(μ)

G ), is optimal: Since
gm(z̃m) ↗ gG(z̃(μ)

G ), for any ξ > 1 − gG(z̃(μ)

G ) there exist an m such that ξGm < ξ . ��
The following simple lemmawill be used in the proof of Theorem 1.1(b). It will be applied

to N
d= D|D > L—that is, a random variable distributed as D conditional on being strictly

larger than L—and the mean is therefore denoted by κ .

Lemma 2.1 Let N be an integer valued random variable with mean κ . There exist integer
valued random variables N1 and N2 with E[N1] = 
κ� and E[N2] = 
κ� + 1 such that,
with Z ∼ Be(
κ� + 1 − κ) independent of N1 and N2, we have that

N
d= ZN1 + (1 − Z)N2.

Proof of Theorem 1.1(a) Let Nlow
d= N |N ≤ 
κ� and Nhi

d= N |N > 
κ� be independent
and write κlow and κhi for the respective means. Furthermore, let X and Y be Bernoulli
variables independent of Nlow and Nhi with parameter κhi−
κ�

κhi−κlow
and κhi−
κ�−1

κhi−κlow
, respectively.

Then set

N1 = XNlow + (1 − X)Nhi N2 = Y Nlow + (1 − Y )Nhi.

It is straightforward to confirm that P(ZN1 + (1 − Z)N2 = i) = P(N = i) for all i . ��
Proof of Theorem 1.1(b). We need to show that gF(z̃F) ≥ gH (z̃H ) for all F ∈ F(μ,pL). To
this end, we begin by showing that

gF(s) ≥ gH (s) for all s ∈ [0, 1] and all F ∈ F(μ,pL). (3)

Pick F ∈ F(μ,pL) and let D ∼ F . The probability generating functionGF(s) can be written
as

gF(s) = E

[
sD

]
= E

[
sD|D ≤ L

]
(1 − p>L) + E

[
sD|D > L

]
p>L .

Applying Lemma 2.1 with N
d= D|D > L , we can write

E

[
sD|D > L

]
= E

[
sN1

]
P(Z = 1) + E

[
sN2

]
P(Z = 0),

where E[N1] = 
κ�, E[N2] = 
κ� + 1 and Z ∼ Be(
κ� + 1 − κ). Jensen’s inequality then
yields that

E

[
sD|D > L

]
≥ s
κ�

P(Z = 1) + s
κ�+1
P(Z = 0).

The probability generating function gH (s) can be written as

gH (s) = E

[
sD|D ≤ L

]
(1 − p>L) +

(
s
κ�

P(Z = 1) + s
κ�+1
P(Z = 0)

)
p>L ,
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and hence (3) follows. Since generating functions are increasing, the desired bound now

follows if z̃F ≥ z̃H , which in turn follows if g′
F(z̃H ) ≥ g′

H (z̃H ). The assumption z̃H ≤ e− 2
L+1

ensures that this is the case: Let Dκ ∼ H . Note that, since the two distributions F and H
agree up to L , the desired inequality follows if E[Dz̃DH |D > L] ≥ E[Dκ z̃

Dκ
H |Dκ > L]. We

have that

E

[
Dκ z̃

Dκ
H |Dκ > L

]
= 
κ�z̃
κ�

H (
κ� + 1 − κ) + (
κ� + 1)z̃
κ�+1
H (κ − 
κ�).

By Lemma 2.1, with N
d= D|D > L , we can write

E

[
Dz̃DH |D > L

]
= E

[
N1 z̃

N1
H

]
(
κ� + 1 − κ) + E

[
N2 z̃

N2
H

]
(κ − 
κ�),

where N1, N2 > L ,E[N1] = 
κ� andE[N2] = 
κ�+1. The assumption z̃H ≤ e− 2
L+1 implies

that f (d) = dz̃dH is convex for d ≥ L + 1. It follows from a straightforward modification of
Jensen’s inequality (specifically, a restriction to [L + 1,∞)) that

E

[
N1 z̃

N1
H

]
≥ 
κ�z̃
κ�

H , E

[
N2 z̃

N2
H

]
≥ (
κ� + 1)z̃
κ�+1

H

and the bound follows. That the bound is optimal follows by noting that Fκ ∈ F(μ,pL), that
is, the distribution defining the bound is included in the class. ��
Acknowledgements MD and PT are grateful to the Swedish Research Council (projects 2014-4948 and
2016-04566, respectively) for financial support.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Britton, T., Trapman, P.: Maximizing the size of the giant. J. Appl. Probab. 49, 1156–1165 (2012)
2. Britton, T., Deijfen, M., Martin-Löf, A.: Generating simple random graphs with prescribed degree distri-

bution. J. Stat. Phys. 124, 1377–1397 (2006)
3. Janson, S.: The probability that a random multigraph is simple. Comb. Probab. Comput. 18, 205–225

(2009)
4. Janson, S., Luczak, M.: A new approach to the giant component problem. Rand. Struct. Algebr. 34,

197–216 (2009)
5. Leskelä, L., Ngo, H.: The impact of degree variability on connectivity properties of large networks.

Internet Math. 13, 1–24 (2017)
6. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Rand. Struct.

Algebr. 6, 161–179 (1995)
7. Molloy, M., Reed, B.: The size of the giant component of a random graphs with a given degree sequence.

Comb. Probab. Comput. 7, 295–305 (1998)
8. van der Hofstad, R.: Random Graphs and Complex Networks, vol. I. Cambridge Univeristy Press, New

York (2017)
9. van der Hofstad, R.: Random Graphs and Complex Networks, vol. II. Preprint (2015). http://www.win.

tue.nl/~rhofstad
10. van der Hofstad, R., Hooghiemstra, G., van Mieghem, P.: Distances in random graphs with finite variance

degrees. Rand. Struct. Algebr. 26, 76–123 (2005)
11. van der Hofstad, R., Hooghiemstra, G., Znamenski, D.: Distances in random graphs with finite mean and

infinite variance degrees. Electron. J. Probab. 12, 703–766 (2007)
12. van der Hofstad, R., Hooghiemstra, G., Znamenski, D.: A phase transition for the diameter of the config-

uration model. Internet Math. 4, 113–128 (2009)

123

http://creativecommons.org/licenses/by/4.0/
http://www.win.tue.nl/~rhofstad
http://www.win.tue.nl/~rhofstad

	The Tail does not Determine the Size of the Giant
	Abstract
	1 Introduction and Results
	1.1 The Model and Its Phase Transition
	1.2 Basic Examples
	1.3 Bounds for a Given Distribution over Small Degrees
	1.4 Numerical Implementations

	2 Proof of Theorem 1.1
	Acknowledgements
	References




