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Abstract An important aspect of constructing discrete velocity models (DVMs) for the
Boltzmann equation is to obtain the right number of collision invariants. Unlike for the
Boltzmann equation, for DVMs there can appear extra collision invariants, so called spuri-
ous collision invariants, in plus to the physical ones. A DVM with only physical collision
invariants, and hence, without spurious ones, is called normal. The construction of such
normal DVMs has been studied a lot in the literature for single species, but also for binary
mixtures and recently extensively for multicomponent mixtures. In this paper, we address
ways of constructing normal DVMs for polyatomic molecules (here represented by that each
molecule has an internal energy, to account for non-translational energies, which can change
during collisions), under the assumption that the set of allowed internal energies are finite.We
present general algorithms for constructing such models, but we also give concrete examples
of such constructions. This approach can also be combined with similar constructions of
multicomponent mixtures to obtain multicomponent mixtures with polyatomic molecules,
which is also briefly outlined. Then also, chemical reactions can be added.

Keywords Boltzmann equation · Discrete velocity models · Collision invariants ·
Polyatomic molecules
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1 Introduction

We consider the Boltzmann equation for polyatomic molecules [19,25,29], here represented
by that each molecule has an internal energy that can change during collisions. In particular,
we study discrete velocity models (DVMs), i.e., we assume that the velocity variable only
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can take a finite number of different given (vector) values. The Boltzmann equation can be
approximated by DVMs up to any order [17,20,26,32], and these discrete approximations
can be used for numerical methods, e.g., see [20,31] and references therein. However, in
the construction of DVMs there is a classical question of having the correct number of
collision invariants [27]. Unlike in the continuous case, there can be additional collision
invariants to the physical ones; mass momentum, and energy, for DVMs. DVMs, without
additional collision invariants, for which the collision invariants are linearly independent,
are called normal. The construction of normal DVMs for single species as well as for binary
mixtures has been well studied, see for example [15,16,18,23,24,35–37], and recently also
for multicomponent mixtures [10]. We like to point out, that in [16] main ideas of a general
approach to the construction of normal discrete kinetic models, including a brief discussion
on the application toDVMs for inelastic collisions, is presented. Still in particular cases, more
detailed studies are needed. We consider here the problem of constructing DVMs for single
species of polyatomic molecules with the right number of collision invariants and outline the
extension to DVMs for mixtures of polyatomic molecules (cf. [7]). We like to stress that we
thereby also can handle the important case of mixtures of several monatomic and polyatomic
gases that, e.g., is of importance during the reentry of space shuttles in the upper atmosphere
[1].

Unlike for single species, each polyatomic molecule has an internal energy, to account
for non-translational energies. We assume that the set of allowed internal energies is finite
and add to each internal energy a finite set of allowed velocities. In this way we obtain
pairs of allowed velocities and internal energies, cf. [21], where two pairs can have the same
velocity, but different internal energies, or vice versa. In correspondence with the cases of
binary mixtures [16] and multicomponent mixtures [10] we introduce the concepts of semi-
supernormal and supernormal DVMs for polyatomic molecules. We present algorithms for
constructing such DVMs and give some concrete examples of such constructions. We also
prove that for any given (finite number of) multiples of an internal “basic” energy we can
construct a supernormal DVM. Our constructed DVMs can always be extended to larger
DVMs by the method of one-extensions [14,15,35]. A one-extension is obtained in the
followingway: if three out of four velocities, involved in a possible (i.e., such that the physical
quantities are conserved) collision, already are in an existing normal DVM, one adds also the
fourth velocity to the DVM; in this way a new normal DVM, with one more velocity, a one-
extension, is obtained. We like to stress that it is always possible to extend our constructed
DVMs to DVMs symmetric with respect to the axes by the method of one-extensions.

Another important issue is the one of approximating the full Boltzmann equation by
DVMs, which have been addressed for single species of polyatomic molecules in e.g., [21]
and for mixtures with polyatomic molecules in e.g., [28]. For simulations, it is important to
have the right number of collision invariants. Our results concerning the correct number of
collision invariants are independent of the modeling of the collision coefficients as long as
the collision coefficients for a maximal set of linearly independent collisions (i.e., collisions
that cannot be obtained by combining the other collisions, including corresponding inverse
collisions, in the set) are nonzero, which will be implicitly assumed below. In [21] it is
proven, that for both of the (families of) models considered there, the collision invariants
are the physical ones, and only those. However, our results are more general and can be
applied to a much larger family of DVMs, including those in [21]. We want to stress that our
intention is not at all to discuss different implementations, but instead to make a more careful
investigation of normality for DVMs in the case of polyatomic molecules.

The construction of the DVMs is made such that for half-space problems [3], as the
linearized Milne and Kramers problems [2], but also nonlinear ones [34], one obtains similar
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structures as for the classical discrete Boltzmann equation for one species [4,5,8,13], and can
extend corresponding results, cf. [10] for multicomponent mixtures. The same is also true
for the analytically difficult problem of existence of shock profiles [22,30], where one also
obtains a similar structure as for the classical discrete Boltzmann equation for one species
[9] and can extend corresponding results, see [7].

The remaining part of the paper is organized as follows. Section 2 concerns DVMs for
polyatomic molecules; the concepts of semi-supernormal and supernormal DVMs, respec-
tively, for polyatomic molecules are introduced in Sect. 2.1, and algorithms for constructing
such models is presented in Sect. 2.2. Section 3 concerns concrete examples of such DVMs.
It is also proven that for any given (finite number of) multiples of an internal “basic” energy
we can construct a supernormal DVM in Sect. 3. In Sect. 4 we outline the extension to
multicomponent mixtures with polyatomic molecules and state some corresponding results.

2 DVMs for Polyatomic Molecules

We consider a single species with polyatomic molecules, in the sense that each particle
has an associated internal energy [12,19,29]. The total number of possible internal energies
is assumed to be finite, i.e., there are s different internal energies E1, . . . , Es that can be
associated with the particles, which either can be considered as that there only is a finite
number of different (internal) energy states or that one (in some way) have modelled a
continuous internal energy variable by discretizing it, cf. [21]. We model the Boltzmann
equation by discretizing the continuous velocity variable, i.e., we assume that the velocity
only can take a finite number of different vector values. In order to do the discretization, we
fix a set of velocity vectors Vi = {ξ i1, . . . , ξ ini } ⊂ R

d (in applications d = 2, 3) for each of
the internal energies Ei . Now there are n = n1 + · · · + ns different pairs, being composed
of a velocity vector and an internal energy, contained in the set

V = {(
ξ11 , E1) , . . . ,

(
ξ1n1 , E1) , . . . ,

(
ξ s1 , Es) , . . . ,

(
ξ sns , Es)}

= {(v1, E1) , . . . , (vn, En)} , n = n1 + · · · + ns .

Note that the same velocity can appear many times in the set, while the pairs are unique. An
important question is how to choose the sets of velocities, in such a way that there will be no
extra, so called spurious, collision invariants, in plus to the physical ones. Our main concern
is how the velocity sets can be constructed, such that the resulting DVM will be normal,
i.e., without spurious collision invariants. Explicit implementations will not be considered
here, but we refer to e.g., [21,28] for some interesting examples. It would also be of interest
to see if the results in [20] could be extended to include also (mixtures and/or) polyatomic
molecules.

The generalDVM,or the discreteBoltzmann equation, for a single specieswith polyatomic
molecules reads

∂ fi
∂t

+ vi · ∇x fi = Qi ( f, f ), i = 1, . . . , n, (1)

where fi = fi (x, t) = f (x, t, vi , Ei ) for i = 1, . . . , n, and f = f (x, t, ξ, E) represents
the microscopic density of particles with internal energy E and velocity ξ at time t ∈ R+
and position x ∈ R

d .
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For a function h = h(ξ, E) (possibly depending on more variables than ξ and E), we
identify h with its restrictions to the pairs (vi , Ei ) ∈ V , i.e.,

h = (h1, . . . , hn) , hi = h (vi , Ei ) , i = 1, . . . , n.

Then f = ( f1, . . . , fn) in Eq. (1).
The collision operators Qi ( f, f ) in (1) are given by

Qi ( f, f ) =
n∑

j,k,l=1

�kl
i j

(
fk fl − fi f j

)
, i = 1, . . . , n, (2)

where we assume that the collision coefficients satisfy the symmetry relations

�kl
i j = �kl

j i = �
i j
kl ≥ 0 (3)

with equality unless we have conservation of momentum and total energy

vi + v j = vk + vl ,

m|vi |2
2

+ m|v j |2
2

+ Ei + E j = m|vk |2
2

+ m|vl |2
2

+ Ek + El . (4)

Furthermore, we assume that �kl
i j = 0 if

vi = v j or vk = vl . (5)

This assumption was not considered in [7,8]. However, even if particles with the same
velocity, by obvious reasons, will never collide in reality (neither we assume molecules to
clog together during a collision), such reactions can still appear as combinations of collisions
involving other velocities (belonging to the considered velocity sets, or not). Moreover,
they can also be chosen as a represent for collisions of molecules with velocities close to that
“same” velocity (however, they might still be rare enough to neglect). Therefore, in principle,
it would be possible to allow also these collisions as in [7,8], even if we do not choose to
do it here. Anyway, these reactions might still appear implicitly as combinations of allowed
collisions.

To obtain the symmetry relations (3) we may need to scale the distribution functions first
(cf. [19])

f ′
r = fr

gi
if Er = Ei , r = 1, . . . , n, for some numbers g1, . . . , gs . (6)

After a possible scaling (6) of the distribution functions, the symmetry relations (3) are a
natural assumption, assuming a convenient reciprocity relation, see, e.g., [25, p. 9]. We like
to point out that the symmetry relations (3) are fulfilled for the proposed models in [21] (with
g j
1 = (E j

1 )δ/2−1, where δ is the number of internal degrees of freedom).
A collision is obtained by the exchange of velocities and internal energies

{
(vi , Ei ) ,

(
v j , E j

)}
� {(vk, Ek) , (vl , El)} (7)

and can occur if and only if �kl
i j �= 0. Geometrically, the collision obtained by (7) is, as

in the case of single species, represented by a rectangle in R
d , if {Ei , E j } = {Ek, El},

with the corners in {vi , v j , vk, vl}, where vi and v j (and therefore, also vk and vl ) are
diagonal corners. In general, the collision obtained by (7) is geometrically represented by a
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parallelogram inRd [16], with the corners in {vi , v j , vk, vl},where vi and v j (and therefore,
also vk and vl ) are diagonal corners, such that

m
(
vk · vl − vi · v j

) = Ek + El − Ei − E j .

Note that the parallelogram is allowed to be degenerate, in the sense that it has no hight (or
area), i.e., all corners of the parallelogram lie on the same line.

A function φ = φ(v), is a (global) collision invariant if and only if

φi + φ j = φk + φl

for all indices such that �kl
i j �= 0.We note that in general a collision invariant can also depend

on time and position. However, that dependence is of no importance for our studies here
and therefore, we will below assume that all collision invariants are global, i.e., that they are
independent of time and position. The vector space of collision invariants contains the trivial
collision invariants (or physical collision invariants)

1, mv1, . . . ,mvd , m|v|2 + 2E, (8)

where vi = (vi1, . . . , v
i
n) (here we denote v j = (v1j , . . . , v

d
j )), |v|2 = (|v1|2, . . . , |vn |2), and

E = E(v) = (E1, . . . , En).

In the continuous case, these are the only collision invariants. However, for DVMs there
can also be extra, so called spurious, collision invariants. DVMs without spurious collision
invariants are called normal, if the d + 2 collision invariants (8) are linearly independent. A
DVM such that the collision invariants (8) are linearly dependent are called degenerate, and
otherwise non-degenerate. Methods of construction of normal DVMs for monatomic single
species and mixtures can be found in e.g., [10,15,16]. We again stress that the collision
invariants include, and for normal models are restricted to

φ = (φ1, . . . , φn) , φi = a + mb · vi + c
(
m |vi |2 + 2Ei

)
(9)

for some constant a, c ∈ R, b ∈ R
d . Our main interest in this work is the construction of

such normal models.
The stationary points are Maxwellian distributions (or just Maxwellians) of the form

M = eφ, (10)

where (for normal models) φ is given by Eq. (9).
Note also that under the assumptions above we will have an H -theorem as usual, cf. [8].

2.1 Supernormal DVMs for Polyatomic Molecules

ForDVMs for polyatomicmolecules, one can, as in the case ofDVMs formixtures cf. [10,16]
have different kinds of normality. Similarly as in the case of mixtures in [10], we introduce
different kinds or levels of normality. We start with the usual definition of normality.

Definition 1 A DVM
{{
V1, E1} , . . . ,

{
Vs, Es}} , (11)

with internal energies {E1, . . . , Es}, is called normal if it is non-degenerate and has exactly
d + 2 linearly independent collision invariants.
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Note that for normal DVMs, the d + 2 linearly independent collision invariants in Defi-
nition 1 will be linear combinations of the d + 2 trivial collision invariants (8).

A drawback with Definition 1 is that if we look separately on the restriction to a spe-
cific energy level, the reduced model does not have to be normal. Therefore, we extend the
definition above.

Definition 2 ADVM (11), with internal energies {E1, . . . , Es}, is called semi-supernormal
if it is normal and the restriction to each velocity set Vi , 1 ≤ i ≤ s, is a normal DVM.

However, still if we consider subsets of energy levels, the restrictions to those energy
levels do not have to be normal. Therefore, we make a further extension.

Definition 3 ADVM (11), with internal energies {E1, . . . , Es}, is called supernormal if the
restriction to each collection

{{
Vr1 , Er1

}
, . . . ,

{
Vri , Eri

}} ⊆ {{
V1, E1} , . . . ,

{
Vs, Es}} , 1 ≤ i ≤ s,

is a normal DVM.

Depending on what we are interested to study we can be satisfied with different levels of
normality, where normal is the lowest level and supernormal the highest one (including the
other ones).

As we construct semi-supernormal DVMs we can be helped by the following theorem.

Theorem 1 A DVM (11), with internal energies {E1, . . . , Es}, is semi-supernormal if, for
each 2 ≤ j ≤ s there exists 1 ≤ i < j ≤ s, such that the restriction to the pair
{{Vi , Ei }, {V j , E j }} is a supernormal DVM.

Proof The restriction to each velocity set Vi = {ξ i1, . . . , ξ ini }, 1 ≤ i ≤ s, is normal by the
supernormality of {{Vi , Ei }, {V j , E j }}. Hence, the collision invariants will be of the form
φ = (φ1, . . . , φs), where φi

j = ai + mbi · ξ ij + ci (m|ξ ij |2 + 2Ei ) for 1 ≤ j ≤ ni and
1 ≤ i ≤ s.

Denote a1 = a, b1= b, and c1 = c. Assume that a j−1 = a j−2 = · · · = a1 = a,
b j−1= b j−2= · · · = b1= b, and c j−1 = c j−2 = · · · = c1 = c for some 2 ≤ j ≤ s. Then
there exists 1 ≤ i ≤ j−1, such that the restriction to the pair {{Vi , Ei }, {V j , E j }} is normal
and therefore a j = ai = a, b j= bi= b, and c j = ci = c. Hence, the collision invariants
will be of the form φ = (φ1, . . . , φss ), where φi

j = a + mb · ξ ij + c(m|ξ ij |2 + 2Ei ) for
1 ≤ j ≤ ni and 1 ≤ i ≤ s. 
�

For constructing supernormal DVMs (or checking if existing DVMs are supernormal),
the following theorem can be useful.

Theorem 2 A DVM (11), with internal energies {E1, . . . , Es}, is supernormal if and only if
the restriction to each pair

{{
Vi , Ei

}
,
{
V j , E j

}}
, 1 ≤ i < j ≤ s,

of velocity sets is a supernormal DVM.

Proof The theorem follows directly from the definition of supernormal DVMs and Theo-
rem 1. 
�
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2.2 Algorithms for Construction of Semi-supernormal and Supernormal DVMs
for Polyatomic Molecules

We will below use the concept of “linearly independent” collisions [10]. Intuitively, a set of
collisions is linearly dependent if one of them can be obtained by a combination of (some
of) the other collisions (including corresponding reverse collisions), and correspondingly
linearly independent if this is not the case. More formally, each collision can be represented
by an n-dimensional vector with 0, −1, and 1 as the only coordinates, see, e.g., [16,18], in
the way that collision (7) is represented by a vector (with non-zero elements at the positions
i, j, k, and l)

⎛

⎝0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0, −1︸︷︷︸
k

, 0, . . . , 0, −1︸︷︷︸
l

, 0, . . . , 0

⎞

⎠ ∈ Z
n .

(12)

We then say that a set of collisions is linearly independent if and only if the set of the
correspondingvectors is linearly independent. Furthermore, all vectors for possible collisions,
i.e., collisions such that the collision coefficient�kl

i j (3) is nonzero,�
kl
i j �= 0, can be put as rows

in a matrix of collisions � (in fact, it is enough that the vectors for all linearly independent
collisions are included) [16,18]. Then the kernel of � will be equal to the vector space of
collisions invariants [16,18], and hence, the number of collision invariants is given by

dim(ker(�)) = n − rank(�).

Therefore, for a normal DVM we need to have [16,18]

rank(�) = n − (d + 2).

Note that by the conditions on the collision coefficient �kl
i j (3), we will always have the trivial

collision invariants (8), and hence,

rank(�) ≤ n − (d + 2). (13)

We will now present a possible strategy for constructing (semi-)supernormal DVMs for
polyatomic molecules.

Algorithm for construction of semi-supernormal DVMs for polyatomic molecules

(1) Choose a set of velocities V1 such that it corresponds to a normal DVM for a monatomic
species. Here, and in all the steps below, the set should be chosen in such a way, that we
can obtain normal models for any mass ratio and/or energy levels we intend to consider;
otherwise we might also be able to extend the set(s) later, as we realize that it is needed.

(2) Iteration step. For j = 2, . . . , s:

Choose a set of velocities V j [in a similar way as in step (1)] such that, there is 1 ≤ i < j,
such that

{{
Vi , Ei

}
,
{
V j , E j

}}

is a normal DVM.
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Remark 1 If we do not allow any collisions between the two levels of internal energies, we
will have exactly 2d + 4 linearly independent collision invariants, since, if ni and n j are the
number of velocities in Vi and V j , respectively, the rank of the matrix of collisions � will
be

rank(�) = ni − (d + 2) + n j − (d + 2) = ni j − (2d + 4), ni j = ni + n j .

By Definition 1, we would like to have d + 2 linearly independent collision invariants.
Hence, we need to have d + 2 linearly independent collisions between the two levels of
internal energies. Hence, if, as in the case of all the (explicitly and implicitly) constructed
DVMs in Sect. 3 (but, also for many others), there are d + 1 linearly independent elastic
collisions, we will only need to find one “basal” inelastic collision, if we have a maximal
number of linearly independent elastic collisions. In fact, then by inequality (13) there will be
at most one linearly independent inelastic collision with respect to the elastic collisions. This
will not at all mean that we do not have more inelastic collisions, since a certain number of
other inelastic collisions can be obtained by combining the basal one with elastic collisions
(collisions represented by linear combinations of the vectors of collisions of the basal inelastic
collision and elastic collisions). However, the obtained inelastic collisions will be linearly
dependent with the elastic collisions and the basal inelastic one.

Note that in the spirit of Remark 1 we will have satisfactorily many inelastic collisions as
long as we have satisfactorily many elastic collisions.

Algorithm for construction of supernormal DVMs for polyatomic molecules

(1) Choose a set of velocities V1 such that it corresponds to a normal DVM for a monatomic
species. As above, here, and in all the steps below, the set should be chosen in such a
way, that we can obtain normal models for any mass ratio and/or energy levels we intend
to consider; otherwise we might also be able to extend the set(s) later, as we realize that
it is needed.

(2) Iteration step. For j = 2, . . . , s:

Choose a set of velocities V j [in a similar way as in step (1)] such that
{{

Vi , Ei
}

,
{
V j , E j

}}

is a normal DVM for each 1 ≤ i < j. Also here, Remark 1 is applicable, in all cases.

3 Construction of a Family of Supernormal DVMs with Internal Energies

This section concerns an approach of the construction of supernormal DVMs with internal
energies. We will use an odd-integer grid as our basic universe, instead of the usual integer
grid, since in some applications (e.g., boundary layers [4–6,8,13]) it is preferable that the
first component of the velocity is non-zero. However, the integer grid and the odd-integer
grid are the same up to a shift and a scaling, and, of course, the odd-integer grid is also
contained in the integer grid. Hence, if we would like to, we could also use the integer grid
as our basic universe. If desirable, it is also possible to find “larger” normal (and symmetric)
DVMs that contains the velocity sets for all different energy levels and hence, can be used
as a common velocity set for all energy levels. We are concerned with finding d + 2 linearly
independent (also with respect to the collisions inside the energy levels) collisions between
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each energy levels. These collisions are not the only ones between each two energy levels,
but all collisions between each two energy levels can be obtained by combining (one or more
of) those linearly independent collisions (including corresponding reverse collisions) with
the collisions inside energy levels, cf. Remark 1 above.

We now give a concrete example of the construction of normal DVMs with internal
energies Er = r E, r = 1, . . . , s, for some positive number E . We start with a set of
velocities V, which includes the six velocities

{(±1, ±1), (3, ±1)} (14)

for d = 2 or the ten velocities

{(±1, ±1, ±1), (3, ±1, 1)} (15)

for d = 3. The minimal models (only containing these velocities) are normal, but can easily
be extended to larger normal models (of any finite size) by so-called one-extensions [14–
16,35]. The smallest “symmetric” normal models containing the minimal models are the
12-velocity model

(±1, ±1), (±3, ±1), (±1, ±3)

for d = 2, and for d = 3 the 32-velocity model

(±1, ±1, ±1), (±3, ±1, ±1), (±1, ±3, ±1), (±1, ±1, ±3).

We let

Vi =
√
E

2
√
m
V, i = 1, . . . , s, (16)

wherem denotes themass.More generally, we can use different setsV (as long as they contain
the necessary velocities) for different internal energies. As noted above, the minimal models
are normal DVMs. A drawback of the minimal models is that the maximal total change of
energies under a collision is E, i.e., except the elastic collisions, only collisions such that

Ei + E j − Ek − El = ±E

[cf. Eq. (4)] are possible. However, by enlarging these models we can get more possibilities.

Lemma 1 Let d = 2 or 3. For any two given internal energies r E and qE, where r and q
are positive integers, such that r < q, there is a supernormal DVM

{{Vr , r E} ,
{
Vq , qE

}}
.

Proof For d = 2, let V be a normal DVM, such that

{(±1, ±1), (3, ±1), (2(q − r) − 1, 1), (2(q − r) + 1, 1)} ⊆ V.

Such normal DVMs can be obtained from the normal DVM (14) by the method of one-
extensions. Here we remind that a one-extension is obtained by adding a new velocity, chosen
in such a way that there is a possible (i.e., such that the physical quantities are conserved)
collision involving the new velocity and already existing velocities, to a normal DVM; and
hence, obtain a new normal DVM with one more velocity. Furthermore, let

Vr = Vq =
√
E

2
√
m
V,
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wherem denotes the mass.Without any collisions between the different species we will have,
since the DVMs are normal, the collision invariants

φ = (
φr , φq) , φα

j = aα + mbα · ξα
j + cα

(
m

∣∣∣ξα
j

∣∣∣
2 + 2αE

)
, 1 ≤ j ≤ nα,

with aα, cα ∈ R, bα = (bα
1 , bα

2 ) ∈ R
2, and α ∈ {r, q}. The collisions obtained by

{( √
E

2
√
m

(1, 1), r E

)

,

( √
E

2
√
m

(−1, 1), qE

)}

�
{( √

E

2
√
m

(−1, 1), r E

)

,

( √
E

2
√
m

(1, 1), qE

)}

, (17)

{( √
E

2
√
m

(1, 1), r E

)

,

( √
E

2
√
m

(1, −1), qE

)}

�
{( √

E

2
√
m

(1, −1), r E

)

,

( √
E

2
√
m

(1, 1), qE

)}

, (18)

and
{( √

E

2
√
m

(1, 1), r E

)

,

{ √
E

2
√
m

(1, 3), qE

}}

�
{( √

E

2
√
m

(1, 3), r E

)

,

( √
E

2
√
m

(1, 1), qE

)}

, (19)

respectively, will imply that br1 = bq1 , b
r
2 = bq2 , and cr = cq , respectively. Furthermore, the

collisions obtained by
{{ √

E

2
√
m

(2(q − r) + 1, 1), r E

}

,

{ √
E

2
√
m

(−1, −1), r E

}}

�
{{ √

E

2
√
m

(2(q − r) − 1, 1), r E

}

,

{ √
E

2
√
m

(1, −1), qE

}}

(20)

will imply that ar = aq .
For d = 3, let V be a normal DVM, such that

{(±1, ±1, ±1), (3, ±1, 1), (2(q − r) − 1, 1), (2(q − r) + 1, 1)} ⊆ V.

Such normal DVMs can be obtained from the normal DVM (15) by the method of one-
extensions. As for the case d = 2, let

Vr = Vq =
√
E

2
√
m
V.

Without any collisions between the different specieswewill have, since theDVMsare normal,
the collision invariants

φ = (
φr , φq) , where φα

j = aα + mbα · ξα
j + cα

(
m

∣∣∣ξα
j

∣∣∣
2 + 2αE

)
for 1 ≤ j ≤ nα,
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with aα, cα ∈ R, bα = (bα
1 , bα

2 , bα
3 ) ∈ R

3, and α ∈ {r, q}. The collisions obtained by
{( √

E

2
√
m

(1, 1, 1), r E

)

,

( √
E

2
√
m

(−1, 1, 1), qE

)}

�
{( √

E

2
√
m

(−1, 1, 1), r E

)

,

( √
E

2
√
m

(1, 1, 1), qE

)}

,

{( √
E

2
√
m

(1, 1, 1), r E

)

,

( √
E

2
√
m

(1, −1, 1), qE

)}

�
{( √

E

2
√
m

(1, −1, 1), r E

)

,

( √
E

2
√
m

(1, 1, 1), qE

)}

,

{( √
E

2
√
m

(1, 1, 1), r E

)

,

( √
E

2
√
m

(1, 1, −1), qE

)}

�
{( √

E

2
√
m

(1, 1, −1), r E

)

,

( √
E

2
√
m

(1, 1, 1), qE

)}

,

and
{( √

E

2
√
m

(1, 1, 1), r E

)

,

( √
E

2
√
m

(1, 3, 1), qE

)}

�
{( √

E

2
√
m

(1, 3, 1), r E

)

,

( √
E

2
√
m

(1, 1, 1),

)}

,

respectively, will imply that br1 = bq1 , br2 = bq2 , br3 = bq3 , and cr = cq , respectively.
Furthermore, the collisions obtained by

{( √
E

2
√
m

(2(q − r) + 1, 1, 1), r E

)

,

( √
E

2
√
m

(−1, −1, 1), r E

)}

�
{( √

E

2
√
m

(2(q − r) − 1, 1, 1), r E

)

,

( √
E

2
√
m

(1, −1, 1), qE

)}

will imply that ar = aq . 
�
Note that the sets of velocities used in the proofs of Lemma 1, in no way are unique.

Furthermore, there can be sets of velocities that do not contain the velocities assumed in the
proof, but still are supernormal for the given internal energies. We have just proven that there
exist such sets of velocities for any given two internal energies r E and qE, where r and q
are positive integers.

Example 1 Assume that d = 2, s = 2, r = 1, and q = 2, with internal energies E and 2E,

and let

V = {(±1, ±1), (3, ±1)},
which is a normal DVM, in Eq. (16). Then the collisions (17)–(19) are represented by the
blue/dotted (· · · · · · ) rectangles in Fig. 1, while the red/broken ( ) triangle repre-
sents the collision (20). The green/solid line squares represent a full set of linearly independent
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Fig. 1 12-Velocity supernormal
model with internal energies E
and 2E

collisions for the DVMs of each internal energy level. All inelastic collisions, such that
{Ei , E j } �= {Ek, El}, are given by the 16 collisions (all reversions included):

{( √
E

2
√
m

(−1, ±1), E

)

,

( √
E

2
√
m

(3, ∓1), E

)}

�
{( √

E

2
√
m

(1, −1), E/2E

)

,

( √
E

2
√
m

(1, 1), 2E/E

)}

,

{( √
E

2
√
m

(−1, ±1), E/2E

)

,

( √
E

2
√
m

(3, ∓1), 2E/E

)}

�
{( √

E

2
√
m

(1, −1), 2E

)

,

( √
E

2
√
m

(1, 1), 2E

)}

.

Example 2 We now consider the case d = 2 and s = 3, with internal energies E, 2E, and
4E . If we let

V = {(±1, ±1), (3, ±1), (1, ±3), (3, 3)},
in Eq. (16), then we obtain a semi-supernormal DVM (see Fig. 2). On the other hand, if we
let

V = {(±1, ±1), (±1, −3), (3, ±1), (1, 3), (3, 3)},
in Eq. (16), then we obtain a supernormal DVM (see Fig. 3). Instead of using the same V for
all levels of internal energy, we can use different sets for different levels of internal energy.
In Fig. 4, the DVM is still supernormal, even if we have reduced some of the used sets. In
Fig. 2 the collisions (17)–(19) are represented by the blue/dotted (· · · · · · ) rectangles and
the collision (20) (for {r, q} = {1, 2} and {r, q} = {2, 4}) by the red/broken ( )

triangles. However, the collision (20) is missing for {r, q} = {1, 4}, and so the DVM fails to
be supernormal. However, in Figs. 3 and 4 the collision (20) for {r, q} = {1, 4} is represented
by the brown/chain lines ( ), and so the DVMs are supernormal. Again, the
green/solid line squares represent a full set of linearly independent collisions for the DVMs
of each internal energy level.

Theorem 3 Let d = 2 or d = 3. For any given set of internal energies {r1E, . . . , rs E},
where r1, . . . , rs are positive integers, there is a supernormal DVM

{{
Vr1 , r1E

}
, . . . ,

{
Vrs , rs E

}}
.

Proof This is an immediate consequence of Theorem 2 and Lemma 1. 
�
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Fig. 2 27-Velocity
semi-supernormal model with
internal energies E, 2E, and 4E

Fig. 3 30-Velocity supernormal
model with internal energies E,
2E, and 4E

Fig. 4 25-Velocity supernormal
model with internal energies E,
2E, and 4E

Remark 2 Lemma 1 and Theorem 3 can in an obvious way also be proved to be valid for
any d ≥ 4.

4 DVMs for Mixtures with Polyatomic Molecules

We can combine the approach for DVMs for single species with polyatomic molecules with
the approach for DVMs for multicomponent mixtures [10] in an obvious way to obtain
models for mixtures of polyatomic molecules [7]. We note that some (or even all) of the
species actually can be monatomic. For that purpose assume that we have s, s ≥ 1, different
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species, labelledwithα1, . . . , αs ,with themassesmα1 , . . . ,mαs , and that we for each species
αi have ri , ri ≥ 1, different internal energies E1

i , . . . , E
ri
i . Note that s = r1 = 1 will give

us the case of single species of monatomic molecules, s > 1 with r1 = · · · = rs = 1 will
generate mixtures of monatomic molecules [10], while s = 1 will give us the case of single
species of polyatomic molecules discussed above.

For each species αi and internal energy E j
i we fix a set of velocity vectors V j

i =
{ξ i j1 , . . . , ξ

i j
ni j } ⊂ R

d and assign the label αi and the internal energy E j
i to each velocity

vector in V j
i . There will be n = ∑s

i=1
∑ri

j=1 ni j different triples, composed of a velocity
vector, a label, and an internal energy, in the set

V =
{(

ξ
1,1
1 , α1, E1

1

)
, . . . ,

(
ξ1,1n1,1 , α1, E1

1

)
, . . . ,

(
ξ
srs
1 , αs, Ers

s

)
, . . . ,

(
ξ srsnsrs

, αs, Ers
s

)}

= {(v1, α(1), E1) , . . . , (vn, α(n), En)}.
Note that the same velocity can be repeated many times, but only for different species and/or
internal energies, since the triples are unique. Again we may need to scale the distribu-
tion functions, cf. Eq. (6), to be able to obtain the symmetry relations (3) for the collision
coefficients (assuming a convenient reciprocity relation [25, p. 9])

f ′
r = fr

g j
i

if Er = E j
i , r = 1, . . . , n, for some numbers g j

i , 1 ≤ i ≤ s, 1 ≤ j ≤ ri .

(21)

Now fi = fi (x, t) = f (x, t, vi , α(i), Ei ) represents the microscopic density of par-
ticles [of species α(i) and with internal energy Ei ] with velocity vi at time t ∈ R+ and
position x ∈ R

d in Eq. (1). Note that, if we have made the scaling (21) then the left-hand
side in Eq. (1) will be multiplied with the different scaling factors g j

i . However, since here
the scaling factors will have no significant effect on the structure of the results, we will for
brevity leave them out [as in Eq. (1)].

The collision coefficients (3) in Eqs. (1)–(2) are now equal to zero unless we have conser-
vation of mass for each species, momentum, and total energy:

{α(i), α( j)} = {α(k), α(l)},
mα(i)vi + mα( j)v j = mα(k)vk + mα(l)vl ,

mα(i)|vi |2
2

+ mα( j)|v j |
2

2

+ Ei + E j = mα(k)|vk |2
2

+ mα(l)|vl |2
2

+ Ek + El .

A collision is obtained by the exchange of velocities and/or internal energies
{
(vi , α(i), Ei ) , (v j , α( j), E j )

}
� {(vk, α(k), Ek) , (vl , α(l), El)} (22)

and can occur if and only if�kl
i j �= 0.Geometrically, a collision obtained by (22) is represented

by an isosceles trapezoid in R
d , if {Ei , E j } = {Ek, El} [a rectangle if additionally α(i) =

α( j), or more generally if and only if mα(i) = mα( j)], with the corners in {vi , v j , vk, vl},
where vi and v j (and hence, also vk and vl ) are diagonal corners, and

mα(i) |vi − vk | = mα( j)
∣∣v j − vl

∣∣ (23)

ifα(i) = α(k);with k and l interchanged in (23) otherwise, i.e., ifα(i) = α(l). In general, the
collision obtained by (22) is geometrically represented by a trapezoid inRd [a parallelogram
if additionally α(i) = α( j), or more generally if and only ifmα(i) = mα( j)], with the corners
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in {vi , v j , vk, vl},where vi and v j (and therefore, also vk and vl ) are diagonal corners, such
that Eq. (23) and

mα(i) (vk − vi ) · (
vl − vi + v j − vk

) = 2
(
Ek + El − Ei − E j

)
(24)

are fulfilled, if α(i) = α(k); with k and l interchanged in Eqs. (23) and (24) otherwise, i.e.,
if α(i) = α(l).

The trivial collision invariants (or physical collision invariants) are now

1α1 , . . . , 1αs , mv1, . . . ,mvd , m|v|2 + 2E (25)

(including all possible linear combinations), where m = m(v) = (mα(1), . . . ,mα(n)),

vi = (vi1, . . . , v
i
n) [with v j = (v1j , . . . , v

d
j )], |v|2 = (|v1|2, . . . , |vn |2), E = E(v) =

(E1, . . . , En), and

1α j =
((
1α j

)
1
, . . . ,

(
1α j

)
n

)
,

(
1α j

)
i
= δα jα(i) =

{
1 if α(i) = α j ,

0 if α(i) �= α j .

Normal DVMs are DVMs such that the set of the s+d +1 collision invariants (25) is a basis
for the vector space of all collision invariants, i.e., all collision invariants are of the form

φ = (φ1, . . . , φn) , φi = aα(i) + mα(i)b · vi + c
(
mα(i) |vi |2 + 2Ei

)
(26)

for some constant aα1 , . . . , aαs , c ∈ R and b ∈ R
d , and the stationary points or the

Maxwellians are of the form (10), where for normal DVMs φ is now given by Eq. (26).

4.1 Normal DVMs for Mixtures with Polyatomic Molecules

In correspondence with the definitions in Sect. 2.1 we can introduce the following definitions.

Definition 4 A DVM

V = {{
V1
1, α1, E1

1

}
, . . . ,

{
Vr1
1 , α1, Er1

1

}
, . . . ,

{
V1
s , αs, E1

s

}
, . . . ,

{
Vrs
s , αs, Ers

s

}}
,

(27)

with internal energies {E j
i : 1 ≤ i ≤ s, 1 ≤ j ≤ ri }, is called normal if it is non-degenerate

and has exactly s+d+1 linearly independent collision invariants [which by our assumptions
will be of the form (26)].

Definition 5 A DVM (27) is called semi-supernormal if it is normal and the restriction to
each velocity set V j

i , 1 ≤ i ≤ s, 1 ≤ j ≤ ri , is a normal DVM.

Definition 6 A DVM (27) is called supernormal if the restriction to each non-empty subset
of V constitutes a normal DVM.

In a naturalwaywe can extendTheorem2 [7] (see also corresponding theorem formixtures
in [10]).

Theorem 4 A DVM (27) is supernormal if and only if the restriction to each pair of sets in
V constitutes a supernormal DVM.

Moreover, by combining the arguments in the proofs of the corresponding result for the
particular cases of single species with polyatomic molecules (with s = 1) in Theorem 3 and
mixtures of monatomic molecules (with r1 = · · · = rs = 1) in [10]
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Theorem 5 For any given number s of species with given rational masses mα1 , . . . ,mαs ,

and with ri given internal energies {ri1E, . . . , riri E} for a fixed E ∈ R+ and rational
numbers ri1, . . . , riri , i = 1, . . . , s, there is a supernormalDVMfor themixture of polyatomic
molecules.

4.2 Algorithm for Construction of Supernormal DVMs

This section concerns an algorithm for for construction of supernormal DVMs for mixtures
with polyatomic molecules.

Algorithm for construction of supernormal DVMs

(1) (a) Choose a set of velocities V1
1 such that it corresponds to a normal DVM for a

monatomic single species. Here, and in all the steps below, the set should be chosen
in such a way, that we can obtain normal models for any mass ratio and/or energy
levels we intend to consider; otherwise we might also be able to extend the set(s)
later, as we realize that it is needed.

(b) For j = 2, . . . , r1: choose a set of velocities V
j
1 corresponding to a normal DVM

such that {{Vk
1, Ek

1}, {V j
1, E j

1 }} is a normal DVM for each 1 ≤ k < j.
(2) For i = 2, . . . , s:

(a) Choose a normal set of velocities V1
i such that it, together with each of

V1
1, . . . ,V

r1
1 , . . . ,V1

i−1, . . . ,V
ri−1
i−1 , corresponds to a supernormal DVM for binary

mixtures.
(b) For j = 2, . . . , ri : choose a set of velocities V

j
i such that

(i) V1
i together with each of V1

1, . . . ,V
r1
1 , . . . ,V1

i−1, . . . ,V
ri−1
i−1 corresponds to a

supernormal DVM for binary mixtures;
(ii) {{Vk

i , Ek
i }, {V j

i , E j
i }} is a normal DVM for each 1 ≤ k < j.

Weremind, seeSect. 2.2, thatwe call a set of collisions for linearly dependent if one of them
can be obtained by a combination of (some of) the other collisions (including corresponding
inverse collisions), and correspondingly linearly independent otherwise.

Remark 3 In each case, if we do not allow any collisions between the two species/levels of
internal energies, we will have 2d+4 linearly independent collision invariants, but we would
like to have d + 3/d + 2 linearly independent collision invariants for mixtures/polyatomic
molecules respectively. Hence, cf. [16], we need to have d + 1/d + 2 linearly independent
(also with respect to the collisions inside the two species/energy levels) collisions between
the two species/energy levels, cf. Remark 1.

In the case of explicit constructions we could, as in Sect. 3, use an odd-integer grid as our
basic universe, instead of the usual integer grid (by the same arguments as in Sect. 3) and use
the same base models as in Sect. 3. Here we are concerned by finding d + 1/d + 2 linearly
independent (alsowith respect to the collisions inside the two species/energy levels) collisions
between each two species/energy levels. Again, we stress that those collisions are not the only
ones between each two species/energy levels, but all collisions between each species/energy
levels can be obtained by combining (one or more of) those linearly independent collisions
(including corresponding reverse collisions) with the collisions inside the species/energy
levels.

Here we could let

V j
i =

√
E

2mαi

V, i = 1, . . . , s.
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Fig. 5 40-Velocity supernormal model for a binary mixture with mass ratio 3 of polyatomic molecules with
two internal energy levels E and 2E

Again, instead of using the same set V for all species, we can also use different subsets of V
for different species or vice versa extend the velocity set to be the same for all species and
internal energies. Some explicit examples of such constructions can be found in [7], but we
will also give some examples below.

Example 3 We consider, for brevity, the case d = 2, and assume that s = 2 and r1 = r2 = 2,
with the masses m and 3m, and the internal energies E and 2E . We denote

V = {(±1, ±1), (3, ±1), (1, 3), (3, 3), (5, 1), (5, 3)},
which constitutes a normal DVM. Then

V1
1 = V2

1 = 3
√
E

2m
V; V1

2 = V2
2 =

√
E

2m
V,

constitutes a supernormal DVM, see Fig. 5. Instead of using the same V for different species
and internal energy levels, we can use different velocity sets. In Fig. 6, the DVM is still
supernormal, even if we have reduced the velocity set V to

{(±1, ±1), (3, ±1))}
for the light species, and

{(±1, 1), (1, −1), (3, ±1), (1, 3), (3, 3), (5, 1), } (28)

for the heavy species at the higher internal energy level. However, the same velocity sets
could also be used for a binary mixture with mass ratio 3 of polyatomic molecules with
two internal energy levels E and 2E (heavy species), and E and 4E/3 (light species), if the
(brown/chained) “basal” inelastic collision is changed, see Fig. 7 [where also the velocity set
V for the heavy species at the lower internal energy level is reduced to (28)].

4.3 Bimolecular Chemical Reactions

We can also add bimolecular reactive collisions [11] (by changing corresponding collision
coefficients to be nonzero) to DVMs for mixtures of polyatomic molecules and by that extend
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Fig. 6 30-Velocity supernormal model for a binary mixture with mass ratio 3 of polyatomic molecules with
two internal energy levels E and 2E

Fig. 7 28-Velocity supernormal model for a binary mixture with mass ratio 3 of polyatomic molecules with
two internal energy levels E and 2E (heavy species), and E and 4E/3 (light species)

toDVMs for bimolecular chemical reactions. For each linearly independent (alsowith respect
to all other collisions) reactive collision, we obtain one new relation on the masses. Note
that the maximal number of linearly independent bimolecular reactive collisions are d − 1,
since the total number of particles will still be conserved. In [8] an example (cf. [29,33]) is
considered. However, our method is not limited to that case, but can be used also in more
general cases.
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