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Abstract Preferential attachment networks with power law exponent τ > 3 are known to
exhibit a phase transition. There is a value ρc > 0 such that, for small edge densities ρ ≤ ρc
every component of the graph comprises an asymptotically vanishing proportion of vertices,
while for large edge densities ρ > ρc there is a unique giant component comprising an
asymptotically positive proportion of vertices. In this paper we study the decay in the size of
the giant component as the critical edge density is approached from above. We show that the
size decays very rapidly, like exp(−c/√ρ − ρc) for an explicit constant c > 0 depending
on the model implementation. This result is in contrast to the behaviour of the class of
rank-one models of scale-free networks, including the configuration model, where the decay
is polynomial. Our proofs rely on the local neighbourhood approximations of Dereich and
Mörters (Ann Probab 41(1):329–384, 2013) and recent progress in the theory of branching
random walks (Gantert et al. in Ann Inst Henri Poincaré Probab Stat 47(1):111–129, 2011).
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1 Introduction and Main Results

1.1 Introduction

Sparse random graph models typically undergo a phase transition in their connectivity
behaviour depending on the mean number of edges per vertex. A typical case are the Erdős–
Rényi graphswith n vertices andm = m(n) edges and asymptotic edge density ρ = lim m(n)

n .
There exists a critical density ρc = 1 such that if the edge density satisfies ρ ≤ ρc the largest
component in the graph comprises a vanishing proportion of vertices, whereas for ρ > ρc
this proportion θ(ρ) is strictly positive. The behaviour of θ(ρ) as ρ ↓ ρc is characterised by
an exponent β defined by

θ(ρ) ∼ (ρ − ρc)
β, as ρ ↓ ρc,

which is β = 1 in the Erdős–Rényi case. A natural extension of the Erdős–Rényi model is the
configuration model, which allows to construct random graphs with n vertices and a given
degree sequence m1, . . . ,mn . Of particular interest is the case when the degree sequence is
heavy-tailed,

1

n
#{1 ≤ j ≤ n : m j = k} n→∞−→ μ(k) = k−τ+o(1), as k →∞,

where the parameter τ > 2 is the power-law exponent. The connectivity behaviour of the
Erdős–Rényi model persists with β = 1 for the configuration model with τ > 4, and with
β = 1/(τ − 3) if 3 < τ < 4, see Cohen et al. [5]. The paper by Cohen is based on an
informal approximation of local neighbourhoods in the graph by Galton–Watson trees and
thereby extends to a wide range of scale-free network models, where similar approximations
hold.

Cohen et al. [5] claim their result for scale-free networks in general without specifying
a model. This reflects the belief that the behaviour observed in the configuration model
extends to all natural scale-free networkmodels including the class of preferential attachment
networks. In the present paper however we show for the first time that preferential attachment
networks have a qualitatively completely different behaviour than predicted in [5]. In fact,
for all τ > 3 the size of the giant component is decaying exponentially as one approaches the
critical edge density. More precisely, we show that the relative size of the giant component
in preferential attachment networks is

θ(ρ) = exp
(−c + o(1)√

ρ − ρc

)
, as ρ ↓ ρc,

where c is an explicit constant depending on the way in which the edge density is controlled.
This demonstrates once again that preferential attachment networks belong to a different uni-
versality class than the configuration model and other models based on rank-one connection
probabilities.

The underlying phenomenon of the ‘small giant component’ or ‘slow emergence of the
giant’ has first been discovered and discussed by Oliver Riordan in the seminal paper [17],
and in collaboration with Bollobás and Janson in [3,4]. Riordan [17] finds that for the original
Barabási–Albert model subject to Bernoulli percolation with retention parameter p, one has

θ(p) = exp
(
− cm + o(1)

p

)
as p ↓ 0, for cm = 1

2
log
(m + 1

m − 1

)
, (1.1)
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where m ≥ 2 is the outdegree of all vertices. As this model corresponds to the critical case
τ = 3 this is not at odds with the results of Cohen et al. [5]. The merit of our work is to
extend the phenomenon of slow emergence to a regime where it is most surprising because
it defies the predictions in [5].
In his proof, Riordan exploits the fact that there are local approximations of the network
by multitype branching processes whose survival probability can be studied analytically by
looking at the associated Laplace operators. These branching processes are more complex
than those used in [5].

In the present paper local approximation is by a branching random walk with killing.
Instead of the analytical techniques used by Riordan, which we could not apply effectively
in our case due to the higher complexity of the approximating process, we use geometric
properties of killed branching random walks. Studying their survival probabilities requires
sophisticated techniques from the theory of branching randomwalks, which became available
only in the past few years, see [1,9]. Our results are based on the techniques developed in
[9] and are therefore pleasingly probabilistic and highly timely.

1.2 Statement of Results

We start by describing the preferential attachment network introduced in [6], which gives
scale-free networks with arbitrary power law exponent τ > 2 by variation of a parameter.

A concave function f : N0 → (0,∞) is called an attachment rule if f (0) ≤ 1 and

	 f (k) := f (k + 1)− f (k) < 1 for all k ∈ N0.

The maximal increment is denoted by γ+ := sup{	 f (k) : k ∈ N0}. By concavity, f is
non-decreasing, γ+ = f (1) − f (0) and the limit γ := limk→∞ f (k)/k exists and equals
γ = inf{	 f (k) : k ∈ N0}. Given an attachment rule f , we define a growing sequence
(Gn : n ∈ N) of random graphs as follows

• Start with the graph G1 given by one vertex labelled 1 and no edges;
• Given the graph Gn , we construct Gn+1 from Gn by adding a new vertex labelled n + 1

and, for eachm ≤ n independently, inserting the directed edge (n+1,m)with probability

f (indegree of m at time n)

n
.

Formally, we are dealing with a sequence of directed graphs but all edges point from
the younger to the older vertex. Hence, directions can be recreated from the undirected,
labelled graph. For all structural questions, particularly regarding connectivity and the length
of shortest paths, we regard (Gn : n ∈ N) as an undirected network. It is shown in [6] that
when γ > 0 the networks have a degree distribution which is a power law with exponent
τ = 1+ 1/γ. We are also interested in the percolated version of the network (Gn : n ∈ N).
For p ∈ [0, 1], we write Gn(p) for the graph obtained from Gn by deleting each edge with
probability 1− p independent of all other edges.

Let (Gn : n ∈ N) be a sequence of (random or deterministic) graphs, where Gn has n
vertices. For n ∈ N, we denote by |Cn | the size of the largest component inGn . The network
(Gn : n ∈ N) has a giant component if there exists a constant θ > 0 such that

|Cn |
n
→ θ as n →∞,

where the convergence holds in probability. The limit θ is called the size of the giant com-
ponent.
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666 M. Eckhoff et al.

Dereich and Mörters showed in [7, Theorem 1.6] that when γ ≥ 1
2 , or equivalently

2 < τ ≤ 3, then (Gn(p) : n ∈ N) has a giant component for all p ∈ (0, 1]. When γ < 1
2 ,

or equivalently τ > 3, then there exists a critical percolation parameter pc > 0 such that
(Gn(p) : n ∈ N) has giant component if and only if p > pc. We denote the relative size of
the giant component in (Gn(p) : n ∈ N) by θ(p, f ) and omit p or f from the notation when
the percolation parameter or the attachment rule are fixed.

We are interested in the decay in the size of the giant component as we approach pc from
above in the case pc > 0, or equivalently γ < 1

2 . It was shown in Lemma 3.3 of [7] that the
critical retention probability for the network (Gn : n ∈ N) is given by

pc = ρ(α∗)−1,

where ρ(·) is the spectral radius of the score operator, a function on a nonempty open interval,
which we describe explicitly in Sect. 2, and α∗ is the minimizer of ρ.

Our first result shows the exponential decay of the size of the giant component of the
percolated network, when the retention parameter approaches the critical value.

Theorem 1.1 Let f be an attachment rule with γ < 1
2 and θ(1, f ) > 0. Then

lim
p↓pc

√
p − pc log θ(p, f ) = −

√
π2ρ′′(α∗)

2
α∗ pc.

An alternative way of reducing the edge density and thereby destroying the giant compo-
nent is to alter the attachment rule instead of percolating the network. For a linear attachment
rule f (k) = γ k + β with γ < 1

2 , Dereich and Mörters [7] show that there exists a giant
component if and only if

β >
( 12 − γ )2

1− γ
=: βc(γ ) = βc.

Therefore, one could fix γ and decrease β to βc. Another idea would be, for a given β, to
decrease γ untilβ = βc(γ ). To analyse the behaviour of the size of the giant component under
this procedure, let ( ft )t≥0 be a sequence of attachment rules with γt := inf{	 ft (k) : k ∈
N0} < 1

2 for all t ≥ 0. We denote by ρt and α∗t the spectral radius and its minimizer
corresponding to the score operator for the unpercolated branching random walk derived
from attachment rule ft .

Theorem 1.2 Let ( ft )t≥0 be a pointwise decreasing sequence of attachment rules with γt <
1
2 for all t ≥ 0 and pointwise limit f . Suppose that θ(1, ft ) > 0 for all t and θ(1, f ) = 0.
Then

lim
t→∞

√
log ρt (α

∗
t ) log θ(1, ft ) = −

√
π2ρ′′(α∗)

2
α∗,

where α∗ and ρ′′(α∗) are derived from f .

The existence of ρ and α∗ corresponding to f is proved in Proposition 2.3. There we
will also see that limt→∞ ρt (α

∗
t ) = 1. The following corollary exemplifies Theorem 1.2 for

linear attachment rules, see also Fig. 1. We denote

βc(γ ) = ( 12 − γ )2

1− γ
and γc(β) = 1

2

(
1− β −

√
β2 + 2β

)
.
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Fig. 1 Simulation of level lines
of the function
(β, γ ) → θ(1, γ · +β). The
phase boundary is the leftmost
line. Theorem 1.2 describes the
asymptotics of this function as
the phase boundary is approached
from the right (1.2), from
above (1.3), and from any angle
in between
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Corollary 1.3 (Linear attachment rule) Let γ ∈ [0, 1
2 ), β ∈ (0, 1]. Then

lim
β↓βc(γ )

√
β − βc(γ ) log θ(1, γ · +β) = − π

2
√
1− γ

. (1.2)

If β ∈ (0, 1/4], then
lim

γ↓γc(β)

√
γ − γc(β) log θ(1, γ · +β) = − π

2(β2 + 2β)1/4
. (1.3)

Remark 1.4 Two cases in our phase diagram are covered in the work of Riordan [17]. The
first of these cases corresponds to an approximation from the right of the point β = 0, γ = 1

2
which is equivalent to the original Barabási–Albert, or LCD, model.1 Note that our results
refer to the subcritical case γ < 1

2 and the critical case γ = 1
2 is not included. The second is

the case β = 1
4 , γ = 0, the Dubins model, in which there is no preferential attachment and

our results are consistent with those of Riordan [17].
Corollary 1.3 allows a quantitative comparison of the decay of the giant component for

different models. The smaller γ (or the larger τ ), the slower is the decay. The LCD model,
or equivalent models with γ = 1

2 , have faster decay of the size of the giant component than
preferential attachment networks with attachment rules satisfying γ < 1

2 .

Throughout, we will use the following notation: For every integer k ∈ N, we write
[k] = {1, . . . , k}, R+ := [0,∞), N0 := N ∪ {0}.

The remaining paper is structured as follows: We prove Theorems 1.1 and 1.2 simultane-
ously. In Sect. 2 we collect several auxiliary results that we need later on. In particular, in
Sect. 2.1 we recall the relevant results from [7] who relate the size of the giant component to
the survival probability of a multitype branching random walk with killing. In Sect. 2.2 we
derive the main tool to analyse these branching random walks, a version of the well-known

1 There is a difference in the set-up of the LCD model and our model, as the former uses a fixed number of
connections for every new vertex. This technical difference does not affect the results beyond the form of the
constants involved.
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many-to-one lemma. In Sect. 2.3 we collect various moment estimates, while in Sect. 2.4
we state a large deviation result originally due to Mogulskii in a suitable adaptation to our
setting.

The actual proofs of Theorems 1.1 and 1.2 are split into an upper bound carried out in
Sect. 3 and a lower bound in Sect. 4. Our proof shows that the survival probability of the
branching random walk is well approximated by the probability that the branching random
walk follows a carefully chosen strategy up to a large generation N . Here, the choice of N
and the particular strategy depend on how close to criticality themodel is.With the help of the
many-to-one lemma, these events for the branching randomwalk can be translated into events
expressed in terms of a Markov chain. Then, the latter can be analysed using large deviation
techniques. The upper bound uses this strategy together with a first moment method, while
the lower bound is slightly more involved: we use a coarse graining strategy, whereby we
first identify a suitable subset of the multitype branching random walk by grouping together
particles across every N generations following a particular strategy. Then, we treat each of
these groups as one generation of a standard Galton–Watson process and analyse its survival
probability by estimating the probability that one generation survives.

In Sect. 5 we show how to derive Corollary 1.3 from Theorem 1.2. Finally, in Appendix
we prove the large deviation result, Theorem 2.10.

As mentioned above our proof follows a similar strategy as in [9]. However, we are
considering a very differentmechanism: first of all we are dealingwith amulti-type branching
randomwalk that additionally has infinitely many offspring in each step. Furthermore, in our
case we do not shift the killing boundary, but we allow the parameters of the model to vary
such that the models approaches criticality which requires very different moment estimates.

2 Proofs: General Preparations

2.1 The Approximating Branching Process

We introduce a pure jump Markov process with generator

Lg(k) := f (k)
(
g(k + 1)− g(k)

)
.

This defines an increasing, integer-valued process, which jumps from k to k + 1 after an
exponential waiting time with mean 1/ f (k), independently of the previous jumps. Under
the probability P we denote by (Zt : t ≥ 0) the process started in zero, by (Ẑt : t ≥ 0) the
process started in one, and by (Z (τ )

t : t ≥ 0) the process started in zero conditioned to have a
point at τ ≥ 0.

This process is used to define a multitype branching random walk with type space T :=
[0,∞) ∪ {	}, where 	 is a non-numerical symbol for ‘left’. A particle in location x ∈ R and
of type τ ∈ T , produces offspring to its left whose displacements have the same distribution
as the points of the Poisson point process with intensity measure

et E[ f (Z−t )]1(−∞,0](t) dt.

The type of an offspring on the left equals the distance to its parent.
The distribution of the offspring to the right depends on the type of the particle. When

the particle is of type 	, then the relative positions of its right offspring follow the same
distribution as the jump times of (Zt : t ≥ 0). When the particle is of type τ ≥ 0, then the
displacements follow the same distribution as the jump times of (Z (τ )

t − 1[τ,∞)(t) : t ≥ 0).
All offspring on the right are of type 	.

123



Near Critical Preferential Attachment... 669

The offspring to the right do not form a Poisson point process. Themore particles are born,
the higher the rate of new particles arriving. Moreover, the total number of particles produced
is infinite without accumulation point. The expected distance between a particle and its kth
offspring on the right equals

∑k−1
j=0 1

f ( j) =
∑k−1

j=0 1
f ( j)/j

1
j . Since lim j→∞ f ( j)

j = γ , this

distance behaves asymptotically like γ−1 log(k) when γ �= 0 and like k when γ = 0.
We call the described process idealized branching random walk (IBRW) in accordance

with [7]. Dereich and Mörters [7] show that the genealogical tree of the IBRW is related
to the local neighbourhood of a vertex in Gn . To obtain a branching process approximation
to (Gn(p) : n ∈ N), we define the percolated IBRW by associating to every offspring in
the IBRW an independent Bernoulli(p) random variable. If the random variable is zero, we
delete the offspring together with its descendants. Otherwise, the offspring is retained in the
percolated IBRW. When the percolated IBRW is started with one particle in location x and
type τ , then we write P p

(x,τ ) for its distribution and E p
(x,τ ) for the corresponding integral

operator; P(x,τ ) := P1
(x,τ ), E(x,τ ) := E1

(x,τ ).
The percolated IBRW can be interpreted as a labelled tree
 where every node represents a

particle and is connected to its children and (apart from the root) to its parent. The vertices are
identified as finite sequences of natural numbers x = j1 . . . jk , including the empty sequence
∅ which denotes the root. We concatenate sequences x = i1 . . . ik and y = j1 . . . jm to
form the sequence xy = i1 . . . ik j1 . . . jm . When, for j ∈ N, x j is a vertex in 
, then
x, x1, . . . , x( j−1) are also vertices in the tree and x =: p(x j) is the parent of x j . The length
|x | = k is the generation of x . For |x | ≥ k, we abbreviate pk(x) for the k-fold composition
of p(·). The ancestor of x in generation k is denoted by xk , i.e. xk := pn−k(x) when |x | = n.
In particular, x0 always denotes the root. To every vertex we associate two functions, S and
τ . Here S(x) is the location of the particle on the real line and τ(x) denotes its type.

To obtain a branching process approximation to the local neighbourhood of a vertex in
(Gn(p) : n ∈ N), we consider the percolated IBRWwith a killing barrier at zero. That is, every
particle with location on the nonnegative half-line is deleted together with its descendants.
Dereich and Mörters prove the following identification.

Theorem 2.1 (Dereich and Mörters [7]) For all p ∈ [0, 1] and attachment rules f , θ(p, f )
equals the survival probability of the percolated IBRW with a killing barrier at zero, started
with one particle of type 	 whose location is given by−E, where E is an exponential random
variable with mean one.

Next we collect some spectral properties that will be used in the analysis of the IBRW.
Denote by C(T ) the Banach space of bounded, continuous functions on T equipped with

the supremum norm ‖ · ‖. For α ∈ (0, 1), we consider the score operator

Ap
αg(τ0) = E p

(0,τ0)

⎡
⎣∑
|x |=1

g(τ (x))e−αS(x)

⎤
⎦ , τ0 ∈ T , (2.1)

on C(T ), Aα := A1
α . The spectral radius of A

p
α is denoted by ρ p(α). The dependence of Ap

α

on the attachment rule f is suppressed in notation but it will always be clear from the context
which f is considered. Since by definition,

Ap
αg(τ0) = E p

(0,τ0)

⎡
⎣∑
|x |=1

g(τ (x))e−αS(x)

⎤
⎦ = pE(0,τ0)

⎡
⎣∑
|x |=1

g(τ (x))e−αS(x)

⎤
⎦ = pAαg(τ0),

(2.2)
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670 M. Eckhoff et al.

it suffices to analyse Aα . We write 1 for the constant function with value 1 and let I :=
(γ, 1− γ ) for γ < 1

2 and I = ∅ for γ ≥ 1
2 .

Lemma 2.2 Let p ∈ (0, 1]. If γ ≥ 1
2 , then Ap

α1(0) = ∞. If γ < 1
2 , then the following holds:

(i) ρ p(α) is finite for all α ∈ I, ρ p(α) = pρ(α) and ρ(α) →∞ for α → ∂I.
(ii) There exists a unique positive eigenfunction vα of Ap

α corresponding to ρ p(α) with
‖vα‖ = 1. Moreover, vα does not depend on the retention probability p and
minτ∈T vα(τ) > 0.

(iii) The function ρ is twice differentiable on I with

ρ(i)(α) = E(0,τ0)

⎡
⎣∑
|x |=1

vα(τ(x))

vα(τ0)
e−αS(x)(−S(x))i

⎤
⎦ for all τ0 ∈ T , i ∈ {1, 2}.

(2.3)

(iv) The function ρ is strictly convex on I and there exists a unique minimizer α∗ ∈ I.
(v) For any τ ∈ [0,∞)

vα(	) ≤ vα(τ) ≤ vα(0).

Proof By (2.2), it suffices to prove Lemma 2.2 in the case p = 1. For that case, it was shown
in [7, Lemma 3.1] that Aα1(0) < ∞ is equivalent to Aα being a strongly positive, compact
operator with Aαg ∈ C(T ) for all g ∈ C(T ). Moreover, it is proved that for all g ∈ C(T ),
g ≥ 0, we have Aαg ≤ Aαg ≤ Aαg, where

Aα =
(
a(α) a(1− α)

a(α) a(1− α)

)
, Aα =

(
a(α) a(1− α)

c(α) a(1− α)

)
,

and

a(α) =
∫ ∞

0
e−αt E[ f (Zt )] dt, c(α) =

∫ ∞

0
e−αt E[ f (Ẑt )] dt.

Here, for example, Aαg means that for all τ ≥ 0,

Aαg(τ ) =
∫ ∞

0
g(	)e−αt E[ f (Ẑt )] dt +

∫ ∞

0
g(t)e−(1−α)t E[ f (Zt )] dt.

We have, ρ(α) ≥ ρ(Aα) = a(α) + a(1 − α). The values of a and c are identified as (cf.
proof of Proposition 1.10 in [7])

a(α) =
∞∑
k=0

k∏
j=0

f ( j)

f ( j)+ α
, c(α) =

∞∑
k=0

k∏
j=0

f ( j + 1)

f ( j + 1)+ α
. (2.4)

We analyse the convergence properties of a(α). Using log(1 + x) ≤ x for x ≥ 0 and
f ( j) =∑ j−1

i=0 	 f (i)+ f (0) ≥ jγ , we estimate

k∏
j=0

f ( j)

f ( j)+ α
= exp

⎛
⎝−

k∑
j=0

log

(
1+ α

f ( j)

)⎞
⎠ ≥ exp

⎛
⎝−

k∑
j=0

α

f ( j)

⎞
⎠

≥ exp

⎛
⎝−

k∑
j=1

α

jγ
− α

f (0)

⎞
⎠ = exp

(
−α

γ
log k − C − δk

)
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for some C > 0 and a null sequence (δk)k∈N. In particular, there exists a C ′ > 0 such that
for all k ∈ N

k∏
j=0

f ( j)

f ( j)+ α
≥ C ′

(
1

k

)α/γ

.

Hence, a(α) = ∞ for all α ≤ γ . On the other hand, by Cauchy’s condensation test, a(α) <

∞ for all α > γ . Hence, Aα1(0) <∞ if and only if α ∈ (γ, 1− γ ) =: I. From now on we
assume that I �= ∅, i.e. γ < 1

2 . Forα ∈ I, ρ(α) is finite and sinceρ(α) ≥ a(α)+a(1−α), we
see that ρ(α) →∞ for α → ∂I. The existence and uniqueness of eigenfunction vα : T →
(0,∞) follows from the Krein–Rutman theorem (see Theorem 3.1.3 in [16]). The fact that
Aα is a strictly positive operator, implies minτ∈T vα(τ) > 0. Since ρ(α) is an isolated
eigenvalue with one-dimensional eigenspace, one can argue along the lines of Chapter II §3
(in particular Remark 2.4) and Theorem II.§5.5.4 of [12] that ρ is twice differentiable and
the derivative can be represented as in (2.3). In particular, ρ′′(α) > 0 for all α ∈ I, hence, ρ
is strictly convex on I and there exists a unique minimizer α∗ ∈ I.

To prove (v), consider τ ≥ 0. Let Ẑ (τ )

t = Z (τ ) − 1[τ,∞) for any τ ∈ [0,∞). Then, by the
definition of the eigenfunction,

ρ(α)vα(τ ) = Aαvα(τ ) = E(0,τ )

⎡
⎣∑
|x |=1

vα(τ(x))e−αS(x)

⎤
⎦

= E(0,τ )

⎡
⎣∑
|x |=1

vα(−S(x))e−αS(x)1{S(x)≤0}

⎤
⎦+ vα(	)E

[∫ ∞

0
e−αt d Ẑ (τ )

t

]

≥ E(0,	)

⎡
⎣∑
|x |=1

vα(−S(x))e−αS(x)1{S(x)≤0}

⎤
⎦+ vα(	)E

[∫ ∞

0
e−αt d Z̃t

]

= Aαvα(	) = ρ(α)vα(	),

where we used in the inequality that the distribution of the positions to the left of the origin
do not depend on the initial type and for the second expectation we used the monotonicity
in types proved in [7]. The upper bound holds by a similar argument. ��

The next proposition collects some of the consequences for the spectral radius if we
consider converging attachment rules.

Proposition 2.3 Let ( ft )t≥0 be pointwise decreasing attachment rules with γt = infk≥0 ft (k)
k

< 1/2. Define

f (k) := lim
t→∞ ft (k).

Then, f is concave, f (0) ≤ 1 and f (k + 1)− f (k) ≤ 1 for all k ∈ N0. Let γ = infk≥0 f (k)
k

and let ρ(α) be the spectral radius of the operator associated to the branching process with
attachment rule f , α∗ be its unique minimizers and let vα be the corresponding eigenfunction
with ‖vα‖ = 1. Define the same quantities with index t when referring to the branching
process associated to ft , where we set ρt (α) = ∞ if t /∈ (γt , 1− γt ).

(i)

ρ(α) = lim
t→∞ ρt (α) for all t ∈ (γ, 1− γ ).
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(ii) Suppose that limt→∞ ρt (α
∗
t ) = 1, then α∗t → α∗ as t →∞ and ρ(α∗) = 1;

(iii) The quotient

vt,α∗t (0)

vt,α∗t (	)

is uniformly bounded in t away from zero and infinity.
(iv) Moreover, as t →∞,

ρ′′t (α∗t )→ ρ′′(α∗).

Proof Since ( ft )t≥0 is a pointwise decreasing sequence of positive functions

f (k) := lim
t→∞ ft (k), for all k ∈ N0,

exists. As an infimum of concave functions, f : N0 → [0,∞) is concave. The property
f (0) ≤ 1 is inherited from ft . The incrementsmight in general only satisfy f (k+1)− f (k) ≤
1, but the strict inequality is not needed for the analysis of the branching process and the
corresponding operators.

The assumption ρt (α
∗
t ) > 1 implies that there exists a giant component for all t ≥ 0.

Hence,

a ft (1/2)+
√
a ft (1/2)c ft (1/2) > 1 ∀t ≥ 0,

by Proposition 1.10 in [7]. Here a ft and c ft are the functions given in (2.4). By monotone
convergence, a f (1/2) +

√
a f (1/2)c f (1/2) ≥ 1 and, in particular, f (0) > 0. Hence, f is

an attachment rule. From now on we add a subscript t to all quantities corresponding to ft
and no subscript for quantities corresponding to f .

The assumption γt < 1
2 is needed to make the operator At,α exist for some α. We have

for all t ≤ s

γ := lim
k→∞

f (k)

k
≤ lim

k→∞
fs(k)

k
≤ lim

k→∞
ft (k)

k
= γt <

1

2
.

In particular, (γt )t≥0 is a non-increasing sequence. Let I = (γ, 1− γ ) and It = (γt , 1− γt )

for t ≥ 0. Then It ⊆ I for all t ≥ 0 and we write ρt (α) = ∞ whenever α /∈ It .
Let α ∈ I. We use the monotonicity of the branching process in the attachment rule to

derive

ρ(α) = inf
n∈N ‖A

n
α1‖

1
n = inf

n∈N inf
t≥0 ‖A

n
t,α1‖

1
n = inf

t≥0 infn∈N ‖A
n
t,α1‖

1
n

= inf
t≥0 ρt (α) = lim

t→∞ ρt (α).

In particular, for every α ∈ I there exists t ≥ 0 such that ρt (α) < ∞. Hence,
⋃

t≥0 It = I.
Sinceρ(α) →∞ forα → ∂I, there exists an ε > 0 such thatα∗, α∗t ∈ [γ+ε, 1−γ−ε] =: Î
for all t ≥ 0.

Convergence γt → γ implies the existence of a t0 > 0 such that Î ⊆ It for all t ≥ t0. In
particular, we can consider the family ρ, (ρt )t≥t0 of uniformly continuous functions on Î.

In the next step we argue that α∗t
t→∞−→ α∗. Notice that by assumption ρ(α) =

limt→∞ ρt (α) ≥ limt→∞ ρt (α
∗
t ) ≥ 1 and

ρ(α∗) ≤ ρ(α∗t ) ≤ ρt (α
∗
t )→ 1.
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Hence, ρ(α∗) = 1. Suppose that α∗t
t→∞−→ α∗ does not hold. Then there exists a δ > 0 and a

subsequence tn ↑ ∞ such that |α∗tn − α∗| ≥ δ for all n ∈ N. Since ρ is strictly convex with
unique minimizer α∗, we have

δ′ := min{ρ(α∗ − δ), ρ(α∗ + δ)} − 1 > 0

and ρ(α) ≥ 1+ δ′ for all α /∈ [α∗ − δ, α∗ + δ]. In particular,

ρtn (α
∗) ≥ ρtn (α

∗
tn ) ≥ ρ(α∗tn ) ≥ 1+ δ′.

Since the term on the left-hand side converges to 1, this is a contradiction and the convergence

α∗t
t→∞−→ α∗ is established.
The fact that α∗t converges to α∗ and ft converges to f implies that At,α∗t converges to

Aα∗ because of the uniform continuity of the operator in α ∈ Î. Since the eigenspaces of
ρ(α∗) and ρt (α

∗
t ) are one dimensional, one can argue along the lines of Note 3 on Chapter

II in [12, pp. 568–569] to see that vt,α∗t converges to vα∗ . Since the functions are bounded,

vt,α∗t (0)

vt,α∗t (	)

is uniformly bounded in t from zero and infinity. With the observed convergences and this
uniform bound (2.3) now implies that also

ρ′′t (α∗t ) → ρ′′(α∗),

as required. ��
2.2 The Many-to-One Lemma

We first continue the analysis of the IBRW. The following lemma is based on a spine con-
struction which is known as Lyons’ change of measure [14]. Recall the Ulam–Harris notation
from Sect. 2.1.

Lemma 2.4 ( Many-to-one) For all α ∈ I there exists a probability measure Pα on some
measurable space, and a Markov process ((Sn, τn) : n ∈ N0;Pα) with state space R × T ,
such that for all n ∈ N, (s0, τ0) ∈ R× T and F : (R× T )n → R+ measurable

E p
(s0,τ0)

[ ∑
|x |=n

e−α(S(xn)−S(x0))ρ p(α)−n vα(τ(xn))

vα(τ (x0))
F(S(x1), τ (x1), . . . , S(xn), τ (xn))

]

= E
α
(s0,τ0)

[F(S1, τ1, . . . , Sn, τn)].
(2.5)

Moreover, σ((Si , τi ) : i ∈ [n]) = σ(Si : i ∈ [n]).
Note that it is easy to check that the distribution of ((Sn, τn) : n ∈ N0;Pα) does not

depend on the percolation parameter p.

Proof Given a labelled tree (
, L), with L(x) = (S(x), τ (x)), we can distinguish an ancestral
line ξ = (ξ1, ξ2, . . .) which we call spine. In the space of labelled trees, we denote by Fn the
σ -field generated by the first n generations, Fn = σ((x, L(x)) : |x | ≤ n). The analogue in
the space of trees with spines is denoted by F∗n .

For every (s0, τ0) ∈ R × T , the distribution of the IBRW started in (s0, τ0) can be
interpreted as a distribution P p

(s0,τ0)
on the set of labelled trees. We extend this measure to
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the space of labelled trees with spines. Since (s0, τ0) and p will remain fixed throughout the
proof, we omit it from the notation and write P = P p

(s0,τ0)
for brevity.

Note that every F∗n -measurable function g can be written as

g(
, L , ξ) =
∑
|x |=n

gx (
, L)1ξn=x ,

forFn-measurable functions gx (see page 24 in [18]).Wedefine P∗n to be the (non-probability)
measure on F∗n such that for all nonnegative F∗n -measurable functions g,

∫
g(
, L , ξ) dP∗n =

∫ ∑
|x |=n

gx (
, L) dP|Fn .

We now construct a new branching random walk under a new probability measure Pα . The
root has again label L(∅) = (S(∅), τ (∅)) = (s0, τ0). A particle ξn on the spine in generation
n with label (S(ξn), τ (ξn)) produces new offspring with distribution

dL̂τ(ξn)

dLτ(ξn)

(μ) = 1

ρ p(α)

∫
e−α(S(x)−S(ξn))

vα(τ (x))

vα(τ (ξn))
μ(dx)

for all atomic measures μ onR×T . Here Lσ denotes the offspring distribution for a particle
of type σ ∈ T in the original process. The new spine particle ξn+1 in generation n + 1 is
chosen from the offspring of ξn by choosing an offspring x with probability proportional to

e−α(S(x)−S(ξn))vα(τ (x)).

Off the spine the new branching random walk behaves exactly as the original one. Then

dPα|F∗n
d P∗n

(
, L , ξ) = dPα|F∗n−1
dP∗n−1

(
, L , ξ) ρ p(α)−1
∑

x : p(x)=ξn−1
e−α(S(x)−S(ξn−1)) vα(τ (x))

vα(τ (ξn−1))

e−α(S(ξn)−S(ξn−1))vα(τ (ξn))∑
x : p(x)=ξn−1 e

−α(S(x)−S(ξn−1))vα(τ (x))

= dPα|F∗n−1
dP∗n−1

(
, L , ξ)ρ p(α)−1e−α(S(ξn)−S(ξn−1)) vα(τ (ξn))

vα(τ (ξn−1))

=
n∏

k=1

(
ρ p(α)−1e−α(S(ξk )−S(ξk−1)) vα(τ (ξk))

vα(τ (ξk−1))

)

= ρ p(α)−ne−α(S(ξn)−S(ξ0))
vα(τ (ξn))

vα(τ (ξ0))
.

In particular, for all F : (R× T )n → [0,∞) measurable

E
α
[
F(S(ξ1), τ (ξ1), . . . , S(ξn), τ (ξn))

]

= E∗n
[
F(S(ξ1), τ (ξ1), . . . , S(ξn), τ (ξn))ρ(α)−ne−α(S(ξn)−S(ξ0))

vα(τ (ξn))

vα(τ (ξ0))

]

= E
[ ∑
|x |=n

F(S(x1), τ (x1), . . . , S(xn), τ (xn))ρ(α)−ne−α(S(xn)−S(x0)) vα(τ (xn))

vα(τ (x0))

]
.

We define (Sn, τn) := (S(ξn), τ (ξn)) and P
α
(s0,τ0)

= P
α . The Markov property follows

from the definition of the process. Since the offspring distribution of the spine is absolutely
continuous with respect to the offspring distribution of the original process and the type of
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the original process is a function of the locations of its ancestors and the particle itself, the
proof is complete. ��

Next we also need a higher-dimensional version of the many-to-one lemma that includes
the number of offspring of the particles on the spine. For any x = (x0, . . . , xn) in the
branching process, define the point measure on R

νx =
∑

y : |y|=n+1,yn=x
δS(y)−S(x),

with δs a Dirac mass in s, which describes the positions of offspring of x relative to the
position of x . Denote by Mp(R) the point measures on R.

Lemma 2.5 For all α ∈ I, (s0, τ0) ∈ R × T there exists a probability measure Pα
(s0,τ0)

=
P

α,p
(s0,τ0)

and aMarkov process ((Si , τi , νi−1)i=0,...,n, : n ∈ N0;Pα
(s0,τ0)

) started in (s0, τ0, δs0)
with state space R× T × Mp(R) such that for all measurable F

E p
(s0,τ0)

⎡
⎣∑
|x |=n

e−α(S(xn)−S(x0))ρ(α)−n vα(τ (xn))

vα(τ (x0))
F(S(x1), τ (x1), νx0 , . . . , S(xn), τ (xn), νxn−1 )

⎤
⎦

= E
α
(s0,τ0)

[F(S1, τ1, ν0, . . . , Sn, τn, νn−1)].
Moreover, for any measurable A ⊂ R and any measurable F,

E[F(Sn − Sn−1, νn−1(A)) | σ(Si , τi , νi−1, i ≤ n − 1)]

= E(0,τ )

⎡
⎣∑
|x |=1

e−αS(x)ρ(α)−1 vα(τ(x))

vα(τ )
F(S(x), {y | |y| = 1, S(y) ∈ A})

⎤
⎦
∣∣∣∣∣∣
τ=τn−1

.

Note that unlike in Lemma 2.4 the distribution of (Sk, τk, νk−1)k∈N0 does depend on p,
since we are considering a non-linear function of the point process describing the position
of the offspring.

Proof Consider the IBRW with spine ξ under the measure P
α as constructed in the proof

of Lemma 2.4. Then, define (Sn, τn, νn−1) := (S(ξn), τ (ξn), νξn−1) and the first statement
follows since we know the explicit Radon–Nikodym density of Pα with respect to P∗n . The
second statement is a consequence of theMarkov property of the IBRWwith spine combined
with a suitable choice of test function F . ��
Lemma 2.6 (Moments) Let α ∈ I and ((Sn, τn) : n ∈ N0) be the Markov process from
Lemma 2.4. For all τ0 ∈ T

E
α
(0,τ0)[S1] = −

ρ′(α)

ρ(α)
E

α
(0,τ0)

[
S21
] = ρ′′(α)

ρ(α)
.

Proof Follows immediately from (2.5) and (2.3). ��
2.3 Asymptotic Moment Estimates

In the proofs of Theorems 1.1 and 1.2 we will need estimates for moments of the Markov
chains defined inLemmas 2.4 and 2.5. Suppose that ftn is a sequence of decreasing attachment
rules such that ftn ↓ f pointwise for an attachment rule f . Further, suppose that γn :=
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limk→∞ ftn (k)/k < 1
2 for all n ∈ N, so that by Proposition 2.3 also γ = limk→∞ f (k)

k < 1
2 .

Let α∗n , resp. α∗ be the unique minimizer of the spectral radius ρn , resp. ρ, of the operator
corresponding to the attachment rule fn , resp. f . In the setting of Theorem 1.1 take ftn = f
and write ρn = ρ pn = pnρ(·).

The Markov chain from Lemma 2.4 corresponding to attachment rule ftn is denoted by

((S(n)

i , τ
(n)

i ) : i ∈ N;P = P
α∗n
(s0,	)

).

Lemma 2.7 There exists η > 0 such that

sup
n∈N,τ∈T

E
α∗n
0,τ

[
eη|S(n)

1 |] <∞.

Proof We first consider the case S(n)

1 ≥ 0. Note that

E
αn
[
eηS(n)

1

]
≤ 1+ E(0,τ )

⎡
⎣∑
|x |=1

e(η−α�
n)S

(n)(x) vαn (τ (x))

vαn (τ )
ρn(αn)

−11{S(n)(x)≥0}

⎤
⎦

≤ 1+ sup
k∈N

vαk (0)

vαk (	)
E(0,τ )

⎡
⎣∑
|x |=1

e(η−α�
n)S

(n)(x)1{S(n)(x)≥0}

⎤
⎦

where we used that ρn(αn) > 1, the monotonicity in types for vαn by Lemma 2.2 and the

uniform boundedness of the quotient vαn (0)
vαn (	)

in n by Proposition 2.3. Hence, it suffices to show
that for the right choice of η the expectation on the right hand side remains bounded in n.

Now, by Lemma 2.2, we have that η := 1
4 (α

∗ − γ ) > 0. By Proposition 2.3, we have that
γn ↓ γ and α∗n → α∗. Then, we can choose n0 sufficiently large such that for all n ≥ n0 we
have γn < γ + η and α�

n ≥ α∗ − η.
Furthermore, we denote by Z̃ (n0) the jump process that jumps from k to k + 1 with rate

ftn0 (k) started in 1. Then by comparison with a Yule process with constant branching rate,
we can find a constant C(n0) > 0 such that

sup
t≥0

E[Z̃ (n0)

t ]e−(γ+η)t ≤ C(n0). (2.6)

Finally, we obtain from the construction of IBRW and using (2.6) that for n ≥ n0

E(0,τ )

⎡
⎣∑
|x |=1

e(η−α�
n)S

(n)(x)1{S(n)(x)≥0}

⎤
⎦

≤
∑
k∈N0

e−(α∗−2η)k E(0,τ )

⎡
⎣∑
|x |=1

1{S(x)∈[k,k+1]}

⎤
⎦

≤
∑
k∈N0

e−(α∗−2η)k E[Z̃ (n0)

k+1] ≤ C(n0)
∑
k∈N0

e−(α∗−3η−γ )k+γ+η,

which is finite by choice of η.
The fact that the supremum over all n is finite follows from the same argument if we

redefine η as 1
4 min{α∗ − γ, α∗k − γk, k ≤ n0}.
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For the case that S(n)

1 ≤ 0, it suffices to prove in a second step, that there exists η > 0 such
that

E(0,τ )

⎡
⎣∑
|x |=1

e−(α∗n+η)S(n)(x)1{S(n)(x)≤0}

⎤
⎦ < ∞.

Since the children to the left of a particle in the IBRW form a Poisson process and their
distribution is not depending on the type of their ancestor we have by construction

E(0,τ )

⎡
⎣∑
|x |=1

e−(α∗n+η)S(n)(x)1{S(n)(x)≤0}

⎤
⎦ =

∫ ∞

0
e(α∗n+η)t e−t E[ ftn (X ( ftn )

t )] dt,

where X ( f ) is the pure birth process with jump rates given by f .
Let εn = 1

8 (1 − γn − α∗n) and let ε = 1
4 (1 − γ − α∗), where γ = infk≥1 f (k)

k . By
Lemma 2.2, εn, ε > 0.

Using that ftk (k) ≤ k + 1 and a comparison to a Yule process, we have that there exists
Cn > 0 such that

E[ ftn (X ( ftn )

t )] ≤ E[X ( ftn )

t ] + 1 ≤ Cn e
(γn+εn)t for all t ≥ 0.

By Proposition 2.3, we can find n0 such that for all n ≥ n0,

|αn − α∗| < ε, and γ ≤ γn ≤ γ + ε.

Define η := min{ 38ε, εn, n ≤ n0}. Then, we have for n ≤ n0,

∫ ∞

0
e(α∗n+η)t e−t E[ ftn (X ( ftn ))] dt ≤ Cn

∫ ∞

0
e(α∗n+η−1+γn+εn)t dt ≤ Cn

∫ ∞

0
e−6ηt dt <∞.

Furthermore, for n ≥ n0, we can use the monotonicity of ftn to deduce that

∫ ∞

0
e(α∗n+η)t e−t E[ ftn (X ( ftn ))] dt ≤

∫ ∞

0
e(α∗n+η)t e−t E[ ftn0 (X

( ftn0
)
)] dt

≤ Cn0

∫ ∞

0
e(α∗n+η−1+γn0+εn0 )t dt

≤ Cn0

∫ ∞

0
e(α∗+η−1+γ+2ε+ 1

8 (1−γ−α∗+ε))t dt

≤ Cn0

∫ ∞

0
e−εt dt,

which completes the second step and thus the proof of the lemma. ��

Lemma 2.8 Let (S(n)

k , τ
(n)

k , ν
(n)

k−1) be theMarkov chain defined in Lemma 2.5 either for attach-

ment rule ftn and percolation parameter 1 or for fixed attachment rule f (with γ < 1
2 ) and

percolation parameter pn, where pn ↓ ρ(α∗)−1. For any sequence (Mn)n∈N such that
Mn →∞, there exist constants C > 0 and γ̂ > 0 such that, for all n,

sup
τ∈T

E
α∗n
(0,τ )

[
ν

(n)

0 ((−∞, Mn))1{S(n)
1 ≤Mn}

]
≤ Ceγ̂ Mn .
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Proof To unify notation define pn = 1 in the varying f case and ftn = f in the percolation
case. By the extended many-to-one formula, Lemma 2.5, we have that

E
α∗n
(0,τ )

[
ν

(n)

0 ((−∞, Mn))1{S(n)
1 ≤Mn}

]

= E pn
(0,τ )

⎡
⎣
⎛
⎝∑
|x |=1

e−α∗n S(n)(x)ρn(α
∗
n)
−1 vα∗n (τ (x))

vα∗n (τ )
(1{S(n)(x)≤Mn}

⎞
⎠
⎛
⎝∑
|x |=1

1{S(n)(x)≤Mn}

⎞
⎠
⎤
⎦ .

We can use that ρn(α
∗
n) > 1, the monotonicity in types and in pn , Lemma 2.2, and that

C := supn∈N
vαn (0)
vαn (	)

<∞ by Proposition 2.3, in order to bound the above by

E1
(0,τ )

⎡
⎣
⎛
⎝∑
|x |=1

e−α∗n S(n)(x) vαn (0)

vαn (	)
(1{S(n)(x)≤Mn}

⎞
⎠
⎛
⎝∑
|x |=1

1{S(n)(x)≤Mn}

⎞
⎠
⎤
⎦

≤ C E1
(0,τ )

⎡
⎢⎣
⎛
⎝∑
|x |=1

1{0≤S(n)(x)≤Mn}

⎞
⎠

2
⎤
⎥⎦

+ 2C E1
(0,τ )

⎡
⎣
⎛
⎝∑
|x |=1

e−α∗n S(n)(x)1{S(n)(x)≤0}

⎞
⎠
⎤
⎦ E1

(0,τ )

⎡
⎣
⎛
⎝∑
|x |=1

1{0≤S(n)(x)≤Mn}

⎞
⎠
⎤
⎦

+ C E1
(0,τ )

⎡
⎣
⎛
⎝∑
|x |=1

e−α∗n S(n)(x)1{S(n)(x)≤0}

⎞
⎠
⎛
⎝∑
|x |=1

1{S(n)(x)≤0}

⎞
⎠
⎤
⎦ .

(2.7)

For the first term in (2.7), we note that f (k) ≤ ftn (k) ≤ ft1(k) ≤ γ+1 k + ft1(0) (for
γ+1 = sup{� ft1(k), k ∈ N0}. Therefore, if we let (Ẑ ft1 )t≥0 be the jump process jumping
from k to k+ 1 at rate ft1(k) started in 1, we can conclude that by construction of the IBRW

E1
(0,τ )

⎡
⎢⎣
⎛
⎝∑
|x |=1

1{0≤S(n)(x)≤Mn}

⎞
⎠

2
⎤
⎥⎦ ≤ E

[(
Ẑ

ft1
Mn

)2] ≤ C̃( ft1)e
γ̂ Mn ,

for some constants C( ft1) and γ̂ > 0, where the latter bound follows by comparison with a
Yule process, whose second moments grow at most exponentially.

For the second term on the right hand side in (2.7), the first expectation is bounded
uniformly in n by (the second part of) Lemma 2.7 and the second expectation can be bounded
by the second moment, so that the first part of the argument applies.

For the final term in (2.7), we use that the particles to the left form a Poisson process, so
that we can use a standard identity for Poisson processes, see e.g. [13, Eq. (4.26)], to deduce
that

E(0,τ )

⎡
⎣
⎛
⎝∑
|x |=1

e−α∗n S(n)(x)1{S(n)(x)≤0}

⎞
⎠
⎛
⎝∑
|x |=1

1{S(n)(x)≤0}

⎞
⎠
⎤
⎦

=
∫ ∞

0
eα∗n t e−t E[ ftn (X ( ftn ))] dt

(
1+

∫ ∞

0
e−t E[ ftn (X ( ftn ))] dt

)
.

However, as in the proof of Lemma 2.7 the right hand side is bounded uniformly in n. ��
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Corollary 2.9 In the setting of Lemma 2.8, we have for any sequence Nn → ∞ and with

Rn = eN
1/4
n , Mn = N 1/5

n that there exist C̃, γ̃ > 0 such that

inf
τ∈T P

α∗n
(0,τ )(ν̄

(n)

0 ≤ Rn, S
(n)

1 ≤ Mn) ≥ 1− C̃e−γ̃ N1/5
n .

Proof By Lemma 2.7, there exists η > 0 such that C := supn∈N0,τ
E

α∗n
(0,τ )[eηS(n)

1 ] < ∞.
Moreover, by Lemma 2.8, there exist C ′ > 0, γ ′ > 0 such that supτ E

α
(0,τ )[ν̄0, S1 ≤ Mn] ≤

C ′eγ ′Mn . Hence, we can estimate by Chebyshev’s inequality

sup
τ∈T

P
α∗n
(0,τ )

(
(ν̄0 ≤ Rn, S1 ≤ Mn)

c)

≤ P
α
(0,τk−1)(S1 ≥ Mn)+ P

α
(0,τk−1)(ν̄0 ≥ Rn, S1 ≤ Mn)

≤ e−ηMn + 1

Rn
C ′eγ ′Mn = e−ηN1/5

n + C ′eγ ′N1/5
n −N1/4

n ,

by our choice of Mn and Rn . Therefore, the statement of the corollary follows by choosing
γ̃ and C̃ appropriately. ��
2.4 Mogulskii’s Theorem

The main technical tool in the proof of our main result is the following large deviation result
due to Mogulskii in its original form. We state it here in a version adapted to Markov chains
as a generalisation of the version for random walks found in [9].

Theorem 2.10 ([9,15]) Let T be a nonempty set. We assume the following:

(i) For each n ∈ N, ((S(n)

i , τ
(n)

i ) : i ∈ N) is a Markov chain with values in R× T .
(ii) (an)n∈N and ((kn)n∈N) are positive sequences with an, kn → ∞ and a2n/kn → 0 as

n →∞.
(iii) For all c1, c2, c3, c4 ∈ R, A > 0 and for rn := �Aa2n�,

P(0,τ )

(
c1 ≤ S(n)

i

an
≤ c2 ∀ i ∈ [rn]; c3 ≤ S(n)

rn

an
≤ c4

)

n→∞−−−→ P(c1 ≤
√

σ 2AWt ≤ c2 ∀ t ∈ [0, 1]; c3 ≤
√

σ 2AW1 ≤ c4)

(2.8)

uniformly in τ ∈ T , where σ 2 > 0 is a constant independent of A and (Wt : t ≥ 0; P)

is a standard Brownian motion.

Let g1 < g2 be two continuous functions on [0, 1] with g1(0) ≤ 0 ≤ g2(0) and denote

En :=
{
g1

(
i

kn

)
≤ S(n)

i

an
≤ g2

(
i

kn

)
∀ i ∈ [kn]

}
.

Then, for all τ0 ∈ T ,

lim
n→∞

a2n
kn

log P(0,τ0)(En) = −π2σ 2

2

∫ 1

0

1

[g2(t)− g1(t)]2 dt.

Moreover, for any b > 0, τ0 ∈ T ,

lim
n→∞

a2n
kn

log P(0,τ0)(En, S
(n)

kn
≥ (g2(1)− b)an) = −π2σ 2

2

∫ 1

0

1

[g2(t)− g1(t)]2 dt.
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The proof of Theorem 2.10 is postponed to Appendix.
We will now show that we can apply Mogulskii’s results to the Markov chains from

Lemmas 2.4 and 2.5. We will treat both the setting of Theorems 1.1 and 1.2 at the same time
and so continue using the notation introduced at the beginning of Sect. 2.3.

To this end, we first recall Donsker’s theorem for martingale difference arrays (see for
example Theorem 7.7.3 in [8] or Theorem 18.2 in [2]). The theorem is usually stated for
rn = n, but it is straightforward to generalize the statement to the following:

Proposition 2.11 Let (rn)n∈N ∈ N
N be a sequencewith rn ↑ ∞ as n →∞. For every n ∈ N,

let (ξni : 1 ≤ i ≤ rn) be a family of random variables and denote Fn
i = σ(ξn1 , . . . , ξni ) for

all i ≤ rn. Assume that

(i) E[ξni |Fn
i−1] = 0 for all i ≤ rn, n ∈ N.

(ii) For all t ∈ [0, 1],∑i≤�trn� E[(ξni )2|Fn
i−1] → t in probability as n →∞.

(iii) For all ε > 0,
∑

i≤rn E[(ξni )21|ξni |>ε |Fn
i−1] → 0 in probability as n →∞.

Then the linear interpolation of (
∑

i≤m ξni : m ≤ rn) converges weakly to a standard Brow-
nian motion on [0, 1].

We use Donsker’s theorem as follows.

Lemma 2.12 Let A > 0, (an)n∈N be a positive sequence with limn→∞ an = ∞ and write
rn = �Aa2n� for each n ∈ N. Moreover, let (S(n)

i , τ
(n)

i )i∈N0 be the Markov chain introduced in
Lemma 2.4 for attachment rule ftn . For all c1, c2, c3, c4 ∈ R,

P
α∗n
(0,τ )

(
c1 ≤ S(n)

i

an
≤ c2 ∀ i ∈ [rn]; c3 ≤ S(n)

rn

an
≤ c4

)

→ P(c1 ≤
√

σ 2AWt ≤ c2 ∀ t ∈ [0, 1]; c3 ≤
√

σ 2AW1 ≤ c4)

as n →∞, uniformly in τ ∈ T , where (Wt : t ≥ 0; P) is a standard Brownian motion.

Proof The first step is to show that the conditions of Proposition 2.11 are satisfied by the
random variables

ξni :=
S(n)

i − S(n)

i−1√
rnσ 2

, i = 1, . . . , rn . (2.9)

Let Fn
i = σ(S(n)

1 , . . . , S(n)

i ). For all i ∈ [rn],

E
α∗n [ξni |Fn

i−1] =
1√
rnσ 2

E
α∗n
(S(n)

i−1,τ
(n)
i−1)
[S(n)

1 − S(n)

0 ] =
1√
rnσ 2

E
α∗n
(0,τ (n)

i−1)
[S(n)

1 ] = 0

by Lemma 2.6 and ρ′n(α∗n) = 0 as α∗n minimizes ρn . Moreover, as n →∞,

∑
i≤�trn�

E
α∗n [(ξni )2|Fn

i−1] =
∑

i≤�trn�

1

rnσ 2E
α∗n
(S(n)

i−1,τ
(n)
i−1)

[
(S(n)

1 − S(n)

0 )2
]

= �trn�
rnσ 2

ρ′′n (α∗n)
ρn(α∗n)

→ t

σ 2 σ 2 = t,
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since rn → ∞ and ρn(α
∗
n)/ρ

′′
n (α∗n) → σ 2 by definition. Thus, Condition (ii) of Proposi-

tion 2.11 is satisfied. Finally, let η be as in Lemma 2.7, then

∑
i≤rn

E
α∗n
[
(ξni )21|ξni |>ε |Fn

i−1
] = 1

rnσ 2

∑
i≤rn

E
α∗n
(0,τ (n)

i−1)

[
(S(n)

1 )21
{|S(n)

1 | > ε
√
rnσ 2

}]

≤ σ−2 sup
τ∈T

E
α∗n
(0,τ )

[
(S(n)

1 )21
{|S(n)

1 | > ε
√
rnσ 2

}]

≤ Cσ−2 1

ε
√
rnσ 2

sup
τ∈T

E
α∗n
(0,τ )

[
eη|(S(n)

1 )|],

where C is a constant such that x2 ≤ Ceη|x | for all x ∈ R. Then, by Lemma 2.7 the
exponential moment is bounded uniformly in n, so that the right hand side converges to zero
as required.

To apply Theorem 2.10 we have to check that the convergence of the distribution functions
is uniform in the start type. This is guaranteed by the monotonicity of the IBRW in the start
type (which was proven in [7, Remark 2.6]) which entails a monotonicity of (S(n)

i ) by the
many-to-one lemma, and by the fact that the limit is independent of the start type. ��

Lemma 2.13 Let Nn be a positive sequence with limn→∞ Nn = ∞ and set an =
N 1/3
n , Mn = N 1/5

n , Rn = eN
1/4
n . Consider the Markov chain (S̃(n)

k , τ̃
(n)

k , ν̃
(n)

k−1)k∈N0 with filtra-

tion (F (n)

k )k∈N0 and transitions given for any measurable F by

E
α∗n [F(S̃(n)

k − S̃(n)

k−1, τ̃
(n)

τk
, ν̃

(n)

k−1) |F (n)

k−1]
= E

αn
(0,τk−1)[F(S(n)

1 , τ
(n)

1 , ν
(n)

0 ) | ν(n)

0 ((−∞, Mn)) ≤ Rn, S
(n)

1 ≤ Mn].

where (S(n)

1 , τ
(n)

1 , ν
(n)

0 ) is the first step of the Markov chain defined in Lemma 2.5 associated
either to the IBRW with attachment rule ftn and p = 1 or with attachment rule f and
percolation parameter pn. Let A > 0, write rn = �Aa2n�. For all c1, c2, c3, c4 ∈ R,

P
α∗n
(0,τ )

(
c1 ≤ S̃(n)

i

an
≤ c2 ∀ i ∈ [rn]; c3 ≤ S̃(n)

rn

an
≤ c4

)

→ P(c1 ≤
√

σ 2AWt ≤ c2 ∀ t ∈ [0, 1]; c3 ≤
√

σ 2AW1 ≤ c4)

(2.10)

as n →∞, uniformly in τ ∈ T , where (Wt : t ≥ 0; P) is a standard Brownian motion.

Proof We show that we can replace S̃(n)

i by S(n)

i in the above probability up to an error that
converges to 0 uniformly in τ and then invoke Lemma 2.12. Define the event

En := {ν̄(n)

0 ≤ Rn, S
(n)

1 − S(n)

0 ≤ Mn}.

and note that by Corollary 2.9, there exist constants C̃, γ̃ > 0 such that

inf
τ∈T P

α∗n
(0,τ )(En) ≥ 1− C̃e−γ̃ N1/5

n . (2.11)
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We estimate for any ci1, c
i
2 ∈ R

P
α∗n
(0,τ )

(
ci1 ≤

S̃(n)

i

an
≤ ci2 ∀i ∈ [rn]

)

≤ E
α∗n
(0,τ )

⎡
⎢⎣1
{
ci1 ≤

S̃(n)

i

an
≤ ci2 ∀i ∈ [rn − 1]

}
P

α∗n
(S̃rn−1,τ̃rn−1)

(crn1 ≤ S(n)

1 ≤ crn2 )

P
α∗n
(0,τ̃rn−1)

(En)

⎤
⎥⎦

≤ E
α∗n
(0,τ )

[
1

{
ci1 ≤

S̃(n)

i

an
≤ ci2 ∀i ∈ [rn − 1]

}
P

α∗n
(S̃rn−1,τ̃rn−1)

(
crn1 ≤ S(n)

1 ≤ crn2
)
]

(1+ 2C̃e−γ̃ N1/5
n ),

where we assume that n is sufficiently large and we used (2.11) together with 1
1−x ≤ 1+ 2x

for x ∈ [0, 1
2 ]. Iterating this estimate yields

P
α∗n
(0,τ )

(
ci1 ≤

S̃(n)

i

an
≤ ci2 ∀i ∈ [rn]

)
≤ P

α∗n
(0,τ )

(
ci1 ≤

S(n)

i

an
≤ ci2 ∀ i ∈ [rn]

)
(1+ 2C̃e−γ̃ N1/5

n )rn .

(2.12)

and we note that by the choice of rn the error converges to 0.
For a lower bound, we estimate

P
α∗n
(0,τ )

(
ci1 ≤

S̃(n)

i

an
≤ ci2 ∀i ∈ [rn]

)

≥ E
α∗n
(0,τ )

[
1

{
ci1 ≤

S̃(n)

i

an
≤ ci2 ∀i ∈ [rn − 1]

}
P

α∗n
(S̃rn−1,τ̃rn−1)

(crn1 ≤ S(n)

1 ≤ crn2 , En)

]

≥ E
α∗n
(0,τ )

[
1

{
ci1 ≤

S̃(n)

i

an
≤ ci2 ∀i ∈ [rn − 1]

}
P

α∗n
(S̃rn−1,τ̃rn−1)

(crn1 ≤ S(n)

1 ≤ crn2 )

]

− sup
τ

P
α∗n
(0,τ )(En)

Iterating and using the bound (2.11) gives

P
α∗n
(0,τ )

(
ci1 ≤

S̃(n)

i

an
≤ ci2∀i ∈ [rn]

)
≥ P

α∗n
(0,τ )

(
ci1 ≤

S̃(n)

i

an
≤ ci2∀i ∈ [rn]

)
− C̃ rn e

−γ̃ N1/5
n ,

(2.13)

where the error converges to 0 by choice of rn . Then, combining (2.12) and (2.13) together
with Lemma 2.12 we can deduce the statement of the lemma. ��

3 Proofs: Upper Bound

In this section, we fix the start type 	 of the IBRW. Recall that in the killed IBRW every
particle x with S(x) > 0 is deleted together with its descendants. We denote its survival
probability by ζ , that is, for s0 ≤ 0,

ζs0(p, f ) = P p
(s0,	)

(killed IBRW survives).
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Lemma 3.1 For all α ∈ I, s0 ≤ 0, n ∈ N and b1, . . . , bn ≥ 0,

ζs0(p, f ) ≤ e−αs0ρ p(α)n I (n)+
n−1∑
j=0

e−α(b j+1+s0)ρ p(α) j+1 I ( j),

where I ( j) = P
α
(s0,	)

(−bi ≤ Si ≤ 0 ∀ i ∈ [ j]) for j = 0, . . . , n, where ((Si , τi )i≥0,P(s0,	))

is the Markov chain from Lemma 2.4 started in (s0, 	).

Proof By definition,

ζs0(p, f ) ≤ P p
(s0,	)

(∃|x | = n : S(xi ) ≤ 0 ∀ i ∈ [n])
≤ P p

(s0,	)
(∃|x | = n : − bi ≤ S(xi ) ≤ 0 ∀ i ∈ [n])

+
n∑
j=1

P p
(s0,	)

(∃|x | = n : − bi ≤ S(xi ) ≤ 0 ∀ i ∈ [ j − 1], S(x j ) < −b j ).

(3.1)

For the first summand we use the Markov inequality and Lemma 2.4 to derive

P p
(s0,	)

(∃|x | = n : − bi ≤ S(xi ) ≤ 0 ∀ i ∈ [n])

= P p
(s0,	)

⎛
⎝∑
|x |=n

1{−bi ≤ S(xi ) ≤ 0 ∀ i ∈ [n]} ≥ 1

⎞
⎠

≤ E p
(s0,	)

⎡
⎣∑
|x |=n

1{−bi ≤ S(xi ) ≤ 0 ∀ i ∈ [n]}
⎤
⎦

= ρ p(α)nEα
(s0,	)

[
eα(Sn−S0)1{−bi ≤ Si ≤ 0 ∀ i ∈ [n]}vα(τ0)

vα(τn)

]

≤ vα(	)

infτ∈T vα(τ)
ρ p(α)ne−αs0 I (n) = ρ p(α)ne−αs0 I (n), (3.2)

where we used in the last step that by Lemma 2.2 infτ∈T v
p
α (τ ) = vα(	). Similarly,

P p
(s0,	)

(∃|x | = n : − bi ≤ S(xi ) ≤ 0 ∀ i ∈ [ j − 1], S(x j ) < −b j )

≤ P p
(s0,	)

(∃|x | = j : − bi ≤ S(xi ) ≤ 0 ∀ i ∈ [ j − 1], S(x j ) < −b j )

= P p
(s0,	)

⎛
⎝∑
|x |= j

1
{− bi ≤ S(xi ) ≤ 0 ∀ i ∈ [ j − 1], S(x j ) < −b j

} ≥ 1

⎞
⎠

≤ E p
(s0,	)

⎡
⎣∑
|x |= j

1
{− bi ≤ S(xi ) ≤ 0 ∀ i ∈ [ j − 1], S(x j ) < −b j

}
⎤
⎦

= ρ p(α) jEα
(s0,	)

[
eα(S j−S0)1

{− bi ≤ Si ≤ 0 ∀ i ∈ [ j − 1], S j < −b j
} vα(τ0)

vα(τ j )

]

≤ ρ p(α) j eα(−b j−s0) I ( j − 1). (3.3)

Combining (3.1)–(3.3), now concludes the proof. ��
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Lemma 3.2 For all α ∈ I with ρ(α) ≥ 1 and for all s0 ≤ 0, k, N ∈ N and (b j : j ∈ [kN ])
nonnegative and decreasing,

ζs0(p, f ) ≤ e−αs0ρ(α)kN I (kN )+ k
N−1∑
l=0

e−α(b(l+1)k+s0)ρ(α)(l+1)k I (lk).

Proof Using Lemma 3.1, that j → I ( j) is decreasing, ρ(α) ≥ 1 and that j → e−αb j is
increasing to obtain

ζ(p, f )− e−αs0ρ(α)kN I (kN ) ≤
kN−1∑
j=0

e−α(b j+1+s0)ρ(α) j+1 I ( j)

=
N−1∑
l=0

(l+1)k−1∑
j=lk

e−α(b j+1+s0)ρ(α) j+1 I ( j)

≤ k
N−1∑
l=0

e−α(b(l+1)k+s0)ρ(α)(l+1)k I (lk).

��
For the proof of Theorem 1.1, let (pn)n∈N be a sequence of retention probabilities with

pn ↓ pc. For Theorem 1.2, let (tn)n∈N be a sequence of parameters with tn ↑ ∞. We write,

ρn(·) =
{

ρ pn (·) = pnρ(·) for Theorem 1.1

ρtn (·) for Theorem 1.2
and α∗n :=

{
α∗ for Theorem 1.1

α∗tn for Theorem 1.2.

Moreover, we denote by vn the eigenfunction for ρn(α∗n) from Lemma 2.2. TheMarkov chain
from Lemma 2.4 corresponding to α = α∗n and retention parameter pn or attachment rule ftn
is denoted by ((S(n)

i , τ
(n)

i ) : i ∈ N;P), i.e. P = P
α∗n
(s0,	)

. One easily checks that in the setup of
Theorem 1.1 the distribution of the Markov chain does not depend on n.

Finally, we introduce for all n ∈ N,

εn := log ρn(α
∗
n) and σ 2 := lim

n→∞
ρ′′n (α∗n)
ρn(α∗n)

.

Notice, that in the situation of Theorem 1.1, σ 2 = ρ′′(α∗)pc. The choice α = α∗n guarantees
that for both theorems, εn ↓ 0 as n →∞.

Lemma 3.3 Let N ∈ N, s0 ≤ 0 and a, b > 0. Let kn = �(a/εn)
3
2 N−1� and bni (s0) =

a−1/2b(Nkn − i)1/3 − s0, i ∈ [Nkn]. Then, for all C > 0, l ∈ [N ],

lim sup
n→∞

ε
1
2
n log

(
sup

−C/
√

εn≤s0≤0
I s0n (lkn)

)
≤ −π2σ 2

2

l

N

a3/2

(b + C)2
.

where I sn ( j) = P(s,	)(−bni (s) ≤ S(n)

i ≤ 0 ∀ i ∈ [ j]).
Notice that the specific choice of parameters implies that

I s0n (lkn) = P
α∗n
(0,	)

(
−a−1/2b

(
N

l
− i

lkn

) 1
3 ≤ S(n)

i

(lkn)1/3
≤ − s0

(lkn)1/3
∀ i ∈ [lkn]

)
.

(3.4)
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Proof Denote g1(t) = −a−1/2b( Nl − t)
1
3 and let δ > 0. For n sufficiently large, (3.4) yields

sup
−C/

√
εn≤s0≤0

I s0n (lkn) ≤ P
α∗n
(0,	)

(
g1

(
i

lkn

)
≤ S(n)

i

(lkn)1/3
≤
(

l

N

)1/3

a−1/2(C + δ) ∀ i ∈ [lkn]
)

.

By Lemma 2.12 we can apply Theorem 2.10 with an = (lkn)1/3, n = lkn and g2(t) =
a−1/2(C + δ) l

N , and then take δ ↘ 0 to derive

lim sup
n→∞

1

(lkn)
1
3

log sup
−C/

√
εn≤s0≤0

I s0n (lkn)

≤ −π2σ 2

2

∫ 1

0

1

(a−1/2b( Nl − t)
1
3 + C(N/	)1/3a−1/2)2

dt

≤ −π2σ 2

2

( l

N

)2/3 a

(b + C)2
.

Moreover, as n →∞,

ε
1
2
n (lkn)

1
3 = l

1
3

(
ε

3
2
n �(a/εn)

3
2 N−1�

) 1
3 → l

1
3
a

1
2

N
1
3

. ��

Proof of the upper bounds in Theorems 1.1 and 1.2 Since θ(p, f ) is non-decreasing in reten-
tion probability p and attachment rule f , it suffices to consider the asymptotic behaviour along
a discrete subsequence. As before, for Theorem 1.1we take any discrete sequence of retention
probabilities pn ↓ pc and for Theorem 1.2 we take any discrete sequence tn ↑ ∞. We make
use of the notation introduced in and before Lemma 3.3. In particular, we fix N ∈ N, a > 0

and b > 0 and let kn := �(a/εn)
3
2 N−1� and bi = bi (s0) = bni = a−1/2b(Nkn − i)

1
3 − s0.

Write

ζ n
s0 =

{
ζ(s0,	)(pn, f ) for Theorem 1.1,

ζ(s0,	)(1, ftn ) for Theorem 1.2.

Applying Lemma 3.2 with α = α∗n , we obtain for every N ∈ N, a > 0, b > 0, C > 0

log

(
sup

−C/
√

εn≤s0≤0
ζ n
s0

)
− log(N + 1)

≤ max
l∈[N−1]

{
α∗nCε

−1/2
n + knN log ρn(α

∗
n)+ log sup

−C/
√

εn≤s0≤0
I s0n (knN ),

log kn − α∗n(bnkn + s0)+ kn log ρn(α
∗
n),

log kn − α∗n(bn(l+1)kn + s0)+ (l + 1)kn log ρn(α
∗
n)+ log sup

−C/
√

εn≤s0≤0
I s0n (lkn)

}

= max
l∈[N−1]

{
α∗nCε

−1/2
n + knNεn + log sup

−C/
√

εn≤s0≤0
I s0n (knN ),

123



686 M. Eckhoff et al.

log kn − α∗na−1/2b(Nkn − kn)
1
3 + knεn,

log kn − α∗na−1/2b(Nkn − (l + 1)kn)
1
3 + (l + 1)knεn + log sup

−C/
√

εn≤s0≤0
I s0n (lkn)

}
.

Recall that the choice of parameters implies that

ε
3
2
n kn → a

3
2

N
, and

√
εn log kn → 0 as n →∞.

Hence, by Lemma 3.3,

lim sup
n→∞

ε
1
2
n log

(
sup

−C/
√

εn≤s0≤0
ζ n
s0

)

≤ max
l∈[N−1]

{
Cα∗ + a

3
2 − a

3
2

π2σ 2

2(b + C)2
, 0− α∗b 1

N
1
3

(N − 1)
1
3 + a

3
2

N
,

0− α∗b 1

N
1
3

(
N − (l + 1)

) 1
3 + (l + 1)

a
3
2

N
− a

3
2
π2σ 2

2

1

(b + C)2

( l

N

)
.

Taking N to infinity, we deduce

lim sup
n→∞

ε
1
2
n log

(
sup

−C/
√

εn≤s≤0
ζ n
s

)

≤ max

{
Cα∗ + a

3
2

(
1− π2σ 2

2

1

(b + C)2

)
,−α∗b,

sup
x∈(0,1]

{
−α∗b(1− x)

1
3 + a

3
2

(
1− π2σ 2

2

1

(b + C)2

)
x

}

= max

{
Cα∗ + a

3
2

(
1− π2σ 2

2

1

(b + C)2

)
,

sup
x∈[0,1]

{
−α∗b(1− x)

1
3 + a

3
2

(
1− π2σ 2

2

1

(b + C)2

)
x

}

Now, we consider any C <

√
π2σ 2

2 and we choose b such that

b <

√
π2σ 2

2
− C.

For these choices, we can take a sufficiently large to see that the first term in the above
maximisation can be ignored, while in the second one the supremum is achieved at x = 0.
This gives the bound

lim sup
n→∞

ε
1
2
n log

(
sup

−C/
√

εn≤s0≤0
ζ n
s0

)
≤ −α∗b.
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Now, we can let b ↑
√

π2σ 2

2 − C to see that for any 0 < C <

√
π2σ 2

2 ,

lim sup
n→∞

ε
1
2
n log

(
sup

−C/
√

εn≤s0≤0
ζ n
s0

)
≤ −α∗

⎛
⎝
√

π2σ 2

2
− C

⎞
⎠ . (3.5)

To complete the proof take δ = 1
2 (1 − α∗) > 0. Choose 	 = �α∗ πσ√

2δ
� and note that

	δ ≤ α∗ πσ√
2

< πσ√
2
. Then, we obtain from (3.5) using the monotonicity of s → ζ n

s ,

∫ ∞

0
e−sζ n−s ds ≤

	−1∑
k=0

∫ (k+1)/√εn

k/
√

εn

e−sζ n
s ds + e−	δ/

√
εn

≤
	−1∑
k=0

e
1/
√

εn(−δk−α∗ πσ√
2
+α∗(k+1)δ)(1+o(1)) + e−(α∗ πσ

2 α∗−δ)/
√

εn

≤ e
−1/√εn(α

∗ πσ√
2
−2δ)(1+o(1))

,

where we used that α∗ < 1. Thus, we can deduce by first taking the limit n →∞ and then
δ ↓ 0 that

lim sup
n→∞

√
εn log

∫ ∞

0
e−sζ n−s ds ≤ −α∗

√
π2σ 2

2
.

This immediately implies Theorem 1.2 since σ 2 = ρ′′(α∗). For Theorem 1.1, pc = 1/ρ(α∗)
implies

εn = log(pnρ(α∗)) = log(pn/pc) = log

(
1+ pn − pc

pc

)
= pn − pc

pc
(1+ o(1)).

so that Theorem 1.1 follows since σ 2 = ρ′′(α∗)pc. ��

4 Proofs: Lower Bound

The general strategy of the lower bound is to identify a subtree of the IBRW that has the
same distribution as a Galton–Watson tree. For this carefully chosen subtree we then lower
bound the survival probability, which in return gives the required lower bound on the survival
probability of the IBRW. In Sect. 4.1 we collect some general facts about Galton–Watson
trees, which we will then use in Sect. 4.2 to carry out the proof of the lower bound.

4.1 Galton–Watson Lemmas

In order to show the lower bound we construct a Galton–Watson tree, whose particles are a
subfamily of the killed branching random walk. To estimate the survival probability of this
Galton–Watson tree, we will use the following general lemma due to [9] and we also recall
the proof for completeness.

Lemma 4.1 Let GW be a Galton–Watson tree and denote by X the number of children in
the first generation and by q := P(|GW| < ∞) its extinction probability. Then, for all
r ≤ min{ 18 , q},

P(|GW| = ∞) ≥ P(X �= 0)− 2r−2P(1 ≤ X ≤ r−2)− 2r.
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Proof Denote by q the extinction probability of GW and by s → g(s) = E[sX ] the gener-
ating function of GW. Then, for every r ∈ [0, q],

q = g(q) = g(0)+
∫ q

0
g′(s) ds

= g(0)+
∫ q−r

0
g′(s) ds +

∫ q

q−r
g′(s) ds

≤ P(X = 0)+ g′(1− r)+ r, (4.1)

where we used that g′(s) is increasing, and g′(s) ≤ 1 for all s ∈ [0, qn,ε]. We continue by
estimating

g′(1− r) = E
[
X (1− r)X−1

] = 1

1− r
E
[
X (1− r)X

]

≤ 1

1− r
E
[
Xe−r X

]

= 1

1− r

(
E
[
Xe−r X ; X ≤ r−2

]+ E
[
Xe−r X ; X > r−2

])

≤ 1

1− r

(
r−2P(1 ≤ X ≤ r−2)+ r−2e−1/r

)
, (4.2)

where we used for the second summand that u → ue−ru is decreasing on [r−1,∞) and
[r−2,∞) ⊆ [r−1,∞). Then, for all r ∈ (0, 1

8 ],
1

1− r
≤ 2 and

1

1− r
r−2e−1/r ≤ r. (4.3)

Combining (4.2) and (4.3), we deduce

g′(1− r) ≤ 2r−2P(1 ≤ X ≤ r−2)+ r (4.4)

Rearranging (4.1) and (4.4), we conclude that for all r ≤ min{ 18 , q},
1− q ≥ P(Xn �= 0)− 2r−2P(1 ≤ Xn ≤ r−2)− 2r, (4.5)

as required. ��
Wewill also need an estimatewhich guarantees that a supercriticalGalton–Watson process

grows exponentially fast on survival with large probability.

Lemma 4.2 For all θ1 > 1 > θ2 > 0 there exists δ > 0 such that for any Galton–Watson
process (Xn : n ∈ N) with X0 = 1 where mean offspring m, offspring distribution (pk)k∈N0 ,
and extinction probability q satisfy q, p1 < δ and m > 1/δ, we have, for sufficiently large n,

P(Xn ≤ θn1 | Xn ≥ 1) ≤ θn2 .

Proof Denote by g the generating function of X1. By pruning the tree, i.e. removing all finite
subtrees, we obtain a tree which on survival of the original process equals a Galton–Watson
process (X̃n : n ∈ N) with p̃0 = 0, p̃1 = g′(q) ≤ p1 + 2q

(1−q)2
, and the same mean as the

original process. Hence δ > 0 can be chosen such that the pruned process has arbitrarily
small p̃1 and arbitrarily large mean.

We first show the statement for the pruned process. For an individual v, we denote by
X̃n(v) the number of its offspring in generation n of the pruned Galton–Watson process. Let
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v0, v1, . . . , vn be the first individuals according to the Ulam–Harris labelling in generations
0 up to n. Then, we can bound

X̃n ≥
�n/2�∑
i=1

X̃ (i)
n ,

where X̃ (i)
n is defined as follows: if vi−1 has two or more offspring we set X̃ (i)

n = X̃n(ṽi ),
where ṽi is the second offspring of vi−1 and if vi−1 has only one offspring, we set X̃ (i)

n = 0.
In particular, the X̃ (i)

n are independent and have distribution

P(X̃ (i)
n = 0) = p̃1 and P(X̃ (i)

n = k | X̃ (i)
n > 0) = P(X̃n−i = k), k ∈ N.

Then, we can calculate

P(X̃n ≤ θn1 ) ≤
�n/2�∏
i=1

P(X̃ (i)
n ≤ θn1 ) ≤

�n/2�∏
i=1

(
p̃1 + P(X̃n−i ≤ θn1 )

)

≤
(
p̃1 + P(X̃�n/2� ≤ θn1 )

)�n/2�
.

We now choose δ > 0 so small that EX̃1 > θ21 and p̃1 < θ22 /8. In particular, for sufficiently
large n we have P(X̃�n/2� ≤ θn1 ) ≤ θ22 /8. Hence, we obtain for n sufficiently large

P(X̃n ≤ θn1 ) ≤ 1

4
θn2 .

Note that if we condition Xn on extinction in distribution it is equal to a Galton–Watson
process X∗n with mean g′(q) = p̃1. Therefore, by Markov’s inequality

P(Xn ≥ 1 | extinction ) = P(X∗n ≥ 1) ≤ E[X∗n] = p̃n1 ≤
1

4
θn2 ,

by the same assumptions on δ as above for n large. We can also assume that δ is sufficiently
small, so that the extinction probability q is less than 1/2. Hence, combining the above
estimates,

P(Xn ≤ θn1 | Xn ≥ 1) ≤ 1

P(Xn ≥ 1)

{
P(Xn ≤ θn1 | survival )+ P(Xn ≥ 1 | extinction )

}

≤ 1

1− q

(
1

4
θn2 +

1

4
θn2

)
≤ θn2 ,

which completes the proof. ��
4.2 The Lower Bound

Throughout, we use the same notation as in the upper bound: For the proof of Theorem 1.1,
let (pn)n∈N be a sequence of retention probabilities with pn ↓ pc. For Theorem 1.2, let
(tn)n∈N be a sequence of parameters with tn ↑ ∞. We denote by S(n) the positions either in
the percolated IBRW or in the IBRWwith attachment rule ftn . If the context is clear, we will
omit the superscript. Also, we write,

ρn(·) =
{
pnρ(·) for Theorem 1.1

ρtn (·) for Theorem 1.2
and α∗n :=

{
α∗ for Theorem 1.1

α∗tn for Theorem 1.2.

Moreover, we denote by vn the eigenfunction for ρn(α
∗
n) from Lemma 2.2.

123



690 M. Eckhoff et al.

Finally, we introduce for all n ∈ N,

εn := log ρn(α
∗
n) and σ 2 := lim

n→∞
ρ′′n (α∗n)
ρn(α∗n)

. (4.6)

Notice, that in the situation of Theorem 1.1, σ 2 = ρ′′(α∗)pc. The choice α = α∗n guarantees
by Proposition 2.3 that for both theorems, εn ↓ 0 as n →∞.

Given any starting point s ≥ 0 and initial type τ , we will write P = P(s,τ ) = P pn
(s,τ ) in the

percolation case and P = P(s,τ ) = P1
(s,τ ) in the case of Theorem 1.2.

In view of Lemma 4.1, we will now choose a Galton–Watson tree GWn as a subtree of
the killed IBRW in the following way, where we denote by X (n) the number of children in
the first generation of GWn :

(a) P(X (n) �= 0) ≈ the survival probability of the Galton–Watson process. That is, when
there are offspring, then the process usually survives.

(b) P(X (n) �= 0) is close to the survival probability of the killed IBRW. That means that
we choose the subpopulation as a good approximation of the BRW and that the first
inequality in (4.5) is a good estimate.

(c) P(1 ≤ X (n) ≤ r−2) has to be small to beat r2.

The Galton–Watson tree is obtained by a coarse-graining procedure, which we now
describe. It involves positive parameters b, λ, θ, M which will be chosen carefully at a later
stage of the proof. We group together the first N + o(N ) generations in the IBRW to form
the first generation in GWn . It turns out that we have to choose N = Nn such that

Nn =
⌊
(b/εn)

3/2⌋ ,

and for the first N steps we only choose particles whose positions are in the interval

Ii,n =
[
− θb

N2/3
n

i − λN 1/3
n ,− θb

N2/3
n

i

]
.

To be precise, let L(N ) = N + �N 1/3� and
Cn = {x : |x | = L(Nn), S(xi )− S(x0) ∈ Ii,n, for i = 1, . . . , Nn,

S(xi )− S(xi−1) ≤ M, for i = Nn + 1, . . . , L(Nn)}.
Then we define Cn to be the particles in the first generation of GWn . We include the last
�N 1/3� generations to make sure that if we survive until time N , then we will have many
particles by time L(N ).

We iterate the procedure, i.e. the children of y ∈ Cn will be

Cn(y) = {x : |x | = 2L(Nn), y ≤ x, S(xi )− S(y) ∈ Ii,n, for i = L(Nn)+ 1, . . . , L(Nn)+ Nn,

S(xi )− S(xi−1) ≤ M, for i = L(Nn)+ Nn + 1, . . . , 2L(Nn)}.
and

⋃
y∈Cn Cn(y)will form the individuals of the second generation of GWn and we continue

in a similar way. Note that by the construction of Ii,n , we only include children in the second
generation of the original IBRW that are to the left of the position of their ancestor. In
particular, their distribution does not depend on the type of the parent. Moreover, all the
conditions on the spatial positions are relative to S(∅). Therefore, the distribution of Cn
does not depend on either the type of the root ∅ nor the initial position S(∅). Similarly, the
distribution of Cn(y) does not depend on either type nor position of y. Hence, the number of
individuals in the different generations really do form a Galton–Watson process.
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Moreover, if we assume that

M < θb, (4.7)

then we have that all particle positions satisfy S(xi )− S(x0) ≤ 0 for all i ≤ |x | and x ∈ Cn
and GWn is really a subset of the killed branching random walk.

Coupling with a Galton–Watson process

To control the contribution of the last N 1/3 steps of the branching randomwalk, we use the
following coupling: We can couple the IBRW with a modified IBRW, where in generations
kL(N )+N , . . . , kL(N )+L(N )−1, for k ∈ N0, the particles place their offspring according
to the following rules relative to their own position:

(i) to the right, the positions of the offspring follow the jump times of the birth process
Z ( f )
t started in 0, which jumps from k to k + 1 at rate f (k).

(ii) to the left, the positions of the offspring are given by a Poisson point process with
intensity

et E[ f (Z ( f )
−t )]1(−∞,0](t) dt,

where (Z ( f )
t ) is the birth process with jump rate f started in 0.

(iii) Also, in these generations types do not play a role, so we define all particles to have the
same type as S(∅) in the original process.

Now, we define the Galton–Watson GWn similarly to above in terms of the modified IBRW,
where we again denote by Cn the individuals in the first generation. Since ( ftk ) is decreasing,
we can couple the processes such that if GWn survives then GWn survives and also such that
|Cn | ≤ |Cn |.

For the lower bound on P(Cn �= ∅) it turns out that it is enough to control the probability
of the set

C(asym)

n = {x : |x | = Nn, S(xi )− S(x0) ∈ Ii,n, for i = 1, . . . , Nn}.
being non-empty. Note that for both, the original process and the modification, the set C(asym)

n

is the same, however in the modified process, the next generations N+1, . . . , L(N ) have the
distribution of a single-type branching random walk. In particular, the number of particles
in each generation form a Galton–Watson process, which we will denote by (Xk)k∈N0 =
(Xk(M))k∈N0 . Moreover, we will denote by q = q

M
its extinction probability when started

with a single particle. Note that q does not depend on n and we will use that by increasing
M we have that limM→∞ q

M
= 0 and also limM→∞ EX1(M) = ∞.

By the Markov property, the survival of the two subsets of the killed branching branching
walk are related by

P(Cn �= ∅) ≥ P(Cn �= ∅) ≥ (1− q
M

)P(C(asym)

n �= ∅). (4.8)

The next result is the key step in the overall lower bound, where we will bound the
probability that C(asym)

n is non-empty.

Proposition 4.3 For any α∗θ < 1 and any λ2 > π2σ 2

2b(1−α∗θ)
, we have for any initial position

s ≥ 0 and initial type τ ∈ T ,

lim inf
n→∞ N−1/3n log P(s,τ )

(
C(asym)

n �= ∅) ≥ −λα∗.
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Proof By construction the probability of the event C(asym)
n �= ∅ does not depend on the starting

point of the initial point nor its type, so we can assume that S(n)(∅) = 0 and τ(∅) = 0.
For the first part of the proof, we will omit the indices n, whenever the context is clear and

we are not dealing with asymptotic statements. In particular, wewill write N = Nn, S = S(n),
α = αn , etc. Also, in this proof ρ = ρ pn in the percolation case and ρ = ρtn if the attachment
rule is varying.

The first step is to carefully, select the relevant particles in C(asym)
n . For Rn = eN

1/4
and

Mn = N 1/5 and an individual x , we write

�S(xi ) = S(xi )− S(xi−1), i ≤ |x |.
Recall that

νx =
∑

y : y−=x
δ�S(y).

For any |x | = N , let

ν̄xi−1 := νxi−1
(
(−∞, Mn)

)
.

Define

Yn = #{x : |x | = N , S(xi ) ∈ Ii,n, ν̄xi−1 ≤ Rn,�S(xi ) ≤ Mn ∀i ∈ [N ]}.
The Paley–Zygmund inequality yields

P(C(asym)

n �= ∅) ≥ P(Yn ≥ 1) ≥ E[Yn]2
E[Y 2

n ]
. (4.9)

The remaining proof proceeds as follows: in the first step we find an easier upper bound on
E[Y 2

n ], which we can estimate using the many-to-one lemma in the second step. In Step 3,
we find a lower bound on E[Yn], which we will then combine with the other steps to obtain
our claim.

Step 1: Upper bound on E[Y 2
n ]. First write

E[Y 2
n ] = E

⎡
⎣ ∑
|x |=N

∑
|y|=N

1{S(xi ) ∈ Ii,n, ν̄xi−1 ≤ Rn,�S(xi ) ≤ Mn ∀i ≤ N }

×1{S(yi ) ∈ Ii,n, ν̄yi−1 ≤ Rn,�S(yi ) ≤ Mn ∀i ≤ N }
⎤
⎦

We split the sum over y according to the last time j ∈ {0, . . . , N } that the ancestors of y
agree with x to obtain

E[Y 2
n ] = E

⎡
⎣ ∑
|x |=N

1{S(xi ) ∈ Ii,n, ν̄xi−1 ≤ Rn,�S(xi ) ≤ Mn ∀i ∈ [N ]}

×
N∑
j=0

∑
|y|=N

1{yi = xi∀i ≤ j, y j+1 �= x j+1,

S(yi ) ∈ Ii,n, ν̄yi−1 ≤ Rn,�S(yi ) ≤ Mn ∀i ∈ [N ]}
]
.
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Conditioning on the j + 1 first generations and using the independence of the branching
process and the fact that on {ν̄x j ≤ Rn}, we only have to consider at most Rn relevant
siblings of x j+1, we obtain the upper bound

E[Y 2
n ] ≤ E

⎡
⎣ ∑
|x |=N

1{S(xi ) ∈ Ii,n, ν̄xi−1 ≤ Rn,�S(xi ) ≤ Mn ∀i ∈ [N ]}
⎤
⎦
⎛
⎝1+

N−1∑
j=0

Rnh j+1,n

⎞
⎠ ,

where hN ,n = 1 and for j ≤ N − 2,

h j,n := sup
s0∈I j,n ,τ0∈T

E(s0,τ0)

⎡
⎣ ∑
|y′|=N− j

1
{
S(y′i ) ∈ Ii+ j,n ∀i ≤ N − j)

}
⎤
⎦ .

In particular, we have shown that

E[Y 2
n ] ≤ E[Yn]

⎛
⎝1+

n−1∑
j=0

h j+1,n Rn

⎞
⎠ ,

leading to

P(C(asym)

n �= ∅) ≥ E[Yn]
1+∑n−1

j=0 h j+1,n Rn
. (4.10)

Step 2: Upper bound on h j,n . First, we note since the left, resp. right, end point of Ik,n are
to the left of the left, resp. right, end point of I j,n for k ≥ j , we can apply the monotonicity
in the initial types to deduce that

h j,n ≤ sup
s0∈I j,n

E(0,0)

⎡
⎣ ∑
|y′|=N− j

1
{
S(y′i )+ s0 ∈ Ii+ j,n, ∀i ≤ N − j

}
⎤
⎦

Thus, we obtain by the many-to-one Lemma 2.4

h j,n ≤ sup
s0∈I j,n

E(0,0)

⎡
⎣ ∑
|y′|=N− j

1
{
S(y′i )+ s0 ∈ Ii+ j,n ∀i ≤ N − j

}
⎤
⎦

= sup
s0∈I j,n

E
α
(0,0)

[
eαSN− j

vα(τ0)

vα(τN )
ρ(α)N− j1{Si + s0 ∈ Ii+ j,n ∀i ≤ N − j}

]

By the monotonicity in types, Lemma 2.2, we have that vα(τ0)/vα(τN ) ≤ vα(0)/vα(	) and

further by Proposition 2.3, C := supn
v

(n)
αn (0)

v
(n)
αn (	)

<∞, so that

h j,n ≤ C sup
s0∈I j,n

E
α
(0,0)

[
eαSN− j ρ(α)N− j1{Si + s0 ∈ Ii+ j,n ∀i ≤ N − j}

]

≤ C sup
u∈[−λN1/3,0]

e−αθεn(N− j)+λαN1/3
ρ(α)N− j

P
α
(0,0)

×
(
Si + u − θb

N2/3 j ∈ Ii+ j,n ∀i ≤ N − j}
)

,

(4.11)

We now would like to apply Mogulskii’s theorem to estimate the probability, but we need
a bound that works uniformly for all j (since we will be summing over j) and uniformly in u.
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We thus approximate the sum over j by a finite sum and also split up the interval [−λN 1/3, 0]
into smaller subintervals. So fix κ ∈ N and define

K := Kn := �N/κ�.
For the next estimate, suppose that j ∈ [( j ′ − 1)K , j ′K − 1] for some j ′ ∈ {1, . . . , κ − 1}
and assume u ∈ [−qλN 1/3/κ,−(q − 1)λN 1/3/κ] for some q ∈ {1, . . . , κ}. Then,
{
Si + u − θb

N2/3 j ∈ Ii+ j,n ∀i ≤ N − j}}

= {− θb
N2/3 (i + j)− λN 1/3 ≤ Si + u − θb

N2/3 j ≤ − θb
N2/3 (i + j)∀i ≤ N − j

}

⊆ {− θb
N2/3 i − λN 1/3 ≤ Si + u ≤ − θb

N2/3 i ∀i ≤ (κ − j ′)K
}

⊆
{
(q − 1)λN 1/3/κ − θb

N2/3 i − λN 1/3 ≤ Si ≤ − θb
N2/3 i + qλN 1/3/κ ∀i ≤ (κ − j ′)K

}

⊆
{
(q − 1)λ/κ − θb

N i − λ ≤ Si
N1/3 ≤ − θb

N i + qλ/κ ∀i ≤ (κ − j ′)K
}

⊆
{ (q − 1− κ)λ

κ
− θb

κ − j ′

κ

i

(κ − j ′)K
≤ Si

N 1/3 ≤ −θb
κ − j ′ − 1

κ

i

(κ − j ′)K

+ qλ

κ
∀i ≤ (κ − j ′)K

}

=: E j ′,n,

where we assumed that n is sufficiently large so that

i

N
≤ κ − j ′

κ

i

(κ − j ′)K
and

i

N
≥ κ − j ′

κ

i

(κ − j ′)K
K

K + 1
≥ κ − j ′

κ

(
1− 1

κ − j ′
) i

(κ − j ′)K
.

By Lemma 2.12 we can apply Mogulskii’s theorem, Theorem 2.10 with g1(t) =
(q−1−κ)λ

κ
− θb κ− j ′

κ
t and g2(t) = −θb κ− j ′−1

κ
t + qλ

κ
.

lim
n→∞

N 2/3
n

(κ − j ′)Kn
logPαn

(0,0)(E j ′,n) = −π2σ 2

2

∫ 1

0

1

(g2(t)− g1(t))2
dt =: −C(κ),

where σ is defined in (4.6) and we noticed that the integral does not depend on q nor j ′.
Hence, applying the display (4.11) , wherewe use the definition of εn = ρ(α), and also that

αnθ < 1 (since α∗θ < 1, for all n sufficiently large, uniformly in j ∈ [( j ′ − 1)K , j ′K − 1],
we find that

log h j,n ≤ (−αnθ + 1)εn(Nn − j)+ λαnN
1/3
n − (κ − j ′)Kn

N 2/3
n

C(κ)(1+ o(1))

≤ (−αnθ + 1)
b

(Nn + 1)2/3
(Nn − j)+ αnλN

1/3
n − (κ − j ′)Kn

N 2/3
n

C(κ)(1+ o(1))

≤ N 1/3(−α∗θb + b + α∗λ− C(κ))(1+ o(1))

+ j ′Kn(−b(1− α∗θ)+ C(κ)))(1+ o(1)).

Note that C(κ) → π2σ 2

2λ2
as κ → ∞. However, by assumption we have that π2σ 2

2λ2
< b(1 −

α∗θ), so we can assume that κ is large enough such that C(κ) < b(1 − α∗θ). In this case,
we can deduce that

log h j,n ≤ N 1/3(−α∗θb + b + α∗λ− C(κ))(1+ o(1)). (4.12)
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Moreover, if j ∈ [(κ − 1)K + 1, N ], then we can use the trivial bound

log(h j,n/C) ≤ αnλN
1/3 + (N − j)εn ≤ αnλN

1/3

+ b

N 2/3 2K ≤ N 1/3(α∗λ+ 2b/κ)(1+ o(1)). (4.13)

Consequently, if we combine (4.12) and (4.13) we obtain

lim sup
n→∞

N−1/3n log
N∑
j=1

h j,n ≤ b(1− α∗θ + 2/κ)+ α∗λ− C(κ).

Finally, letting κ →∞ gives

lim sup
n→∞

N−1/3n log
N∑
j=1

h j,n ≤ −α∗θb + b + α∗λ− π2σ 2

2λ2
.

Step 3: Lower bounding E[Yn]. Let θ1 > θ , then if we set �Si = Si − Si−1 and ν̄i =
νi ((−∞, Mn)), we have by Lemma 2.5 that

E[Yn] = E
α
(0,0)

[
eαSN ρ(α)N

vα(0)

vα(τN )
1{Si∈Ii,n ,ν̄i−1≤Rn ,�Si≤Mn∀i≤N }

]

≥ E
α
(0,0)

[
eαSN ρ(α)N1{Si∈Ii,n ,ν̄i−1≤Rn ,�Si≤Mn∀i≤N ,SN≥−θ1bN1/3}

]

≥ e−αθ1bN1/3
ρ(α)NPα

(0,0)

(
Si ∈ Ii,n, ν̄i−1≤ Rn, �Si ≤Mn∀i ≤ N , SN ≥ −θ1bN

1/3
)

,

where we also used that by the monotonicity of types, see Lemma 2.2, vα(0) ≥ vα(s) for
any s ∈ T .

Define the Markov chain (S̃k, τ̃k, ν̃k−1)k∈N with associated filtration (Fk) and transitions
given for any measurable F by

E
α[F(S̃k − S̃k−1, τ̃τk , ν̃k−1) |Fk−1]
= E

α
(0,τk−1)[F(S1, τ1, ν0) | ν0((−∞, Mn)) ≤ Rn, S1 ≤ Mn].

Then, we can continue the previous display as

E[Yn] ≥ e−αθ1bN1/3
ρ(α)NPα

(0,0)

(
S̃i ∈ Ii,n∀i ≤ N , S̃N ≥ −θ1bN

1/3)

× inf
τ∈T P

α
(0,τ )(ν̄0 ≤ Rn,�S1 ≤ Mn)

N .
(4.14)

Note that

P
α
(0,0)

(
S̃i ∈ Ii,n∀i ∈≤ N , S̃N ≥ −θ1bN

1/3)

= P
α
(0,0)

(
− θb

N
i − λ ≤ S̃i

N 1/3 ≤ −
θb

N
i ∀i ≤ N , S̃N ≥ −θ1bN

1/3
)

By Lemma 2.13 we can apply Mogulskii’s Theorem 2.10 also to (S̃k)k∈N0 with g1(t) =
−θbt − λ, g2(t) = −θbt , so that we get

lim
n→∞ N−1/3n logPαn

(0,0)

(
− θb

N
i − λ ≤ S̃(n)

i

N 1/3 ≤ −
θb

N
i ∀i ≤ N , S̃N ≥ −θ1bN

1/3
)

= −π2σ 2

2λ2
. (4.15)
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We estimate the last term in (4.14) by deducing fromCorollary 2.9 that there exist C̃, γ̃ > 0
such that

inf
τ∈T P

α
(0,τ )(ν̄0 ≤ R1,�S1 ≤ Mn)

N ≥ (1− C̃e−γ̃ N1/5
)N ,

so that in particular,

lim
N→∞ N−1/3 log

(
inf
τ∈T P

α
(0,τ )(ν̄0 ≤ Rn,�S1 ≤ Mn)

N
)
= 0. (4.16)

Combining (4.15) and (4.16), we get from (4.14) if we recall the definition of εn that

lim inf
n→∞ N−1/3n log E[Yn] ≥ −αθ1b + b − π2σ 2

2λ2
.

Step 4: Combining the estimates.
Combining the upper bound on

∑N
j=1 h j,n with the lower bound on E[Yn] as well as the

fact that Rn = eN
1/4
, we obtain from the second moment bound (4.10),

lim inf
n→∞ N−1/3n log P

(
C(asym)

n �= ∅) ≥ −αθ1b + b − π2σ 2

2λ2
+ αbθ − b − αλ+ π2σ 2

2λ2

= −αλ+ αb(θ − θ1).

Finally, we can let θ1 ↓ θ to obtain the claim of the proposition. ��
Proof of Theorems 1.1 and 1.2—lower bounds By the same argument as at the end of the
proof of the upper bound, we have completed the proofs of Theorems 1.1 and 1.2 if we can
show that if ζn is either θ(pn, f ) or θ(1, ftn ), then

lim
n→∞

√
εn log ζn ≥ −

√
π2σ 2

2
α∗. (4.17)

In our above construction, we first of all choose the constant M large enough such that
the Galton–Watson process (Xk(M))k∈N0 satisfies the assumptions of Lemma 4.2 for θ1 = 2
and θ2 = 1/2. Also, we can assume that its survival probability satisfies 1− q

M
≥ 1/2. Let

θ be such that α∗θ < 1. Then, choose b large enough such that θb > M , so that in particular
GWn is a subset of the killed IBRW, cf. (4.7). Additionally, we require that

b >
π2σ 2

1− α∗θ

(
2α∗

log 2

)2

. (4.18)

By Proposition 4.3 we obtain that for any λ >

√
π2σ 2

2b(1−α∗θ)

lim inf
n→∞ N−1/3n log P

(
C(asym)

n �= ∅) ≥ −λα∗. (4.19)

Now, by (4.18) we have that
√

π2σ 2

2b(1− α∗θ)
<

log 2

2
√
2α∗

,

so we can additionally assume that λ is small enough such that

2λα∗ < log 2.
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Then, if we define

r := 1

16
P(C(asym)

n �= ∅),
we obtain by (4.19) that

r−22−N1/3 ≤ eN
1/3(2λα∗−log 2+o(1)) → 0,

We will use the following general fact (see [9, Fact 4.2], but also [10, Lemma 5.2]):
let X1, . . . , Xk be independent non-negative random variables and suppose F : (0,∞) →
[0,∞) is non-increasing, then

E

[
k∑

i=1
F(Xi )

∣∣∣∣∣
k∑

i=1
Xi > 0

]
≤ max

1≤i≤k E[F(Xi ) | Xi > 0]. (4.20)

We will eventually apply Lemma 4.1 to GWn and thus first estimate P(1 ≤ |Cn | ≤ r−2).
We write S for the positions in the modified branching random walk used in the definition of
GWn . For all sufficiently large n, by using (4.20) in the second step, we obtain

P(1 ≤ |Cn | ≤ r−2) ≤ P(1 ≤ |Cn | ≤ 2N
1/3

)

= P

⎛
⎜⎝1 ≤

∑

x∈C(asym)
n

#{y > x : |y| = L(N ) , �S(yi ) ≤ M, i = N , . . . , L(N )} ≤ 2N
1/3

⎞
⎟⎠

≤ P(C(asym)

n �= ∅)P
(
X �N1/3� ≤ 2N

1/3 | X �N1/3� ≥ 1
)

≤ P(C(asym)

n �= ∅) 2−N1/3

= P(C(asym)

n �= ∅) r2o(1),
where we used Lemma 4.2 for the last inequality.

Finally, we can lower bound the survival probability of the killed IBRW by the survival
probability of GWn , where we recall that the distribution of GW does not depend on the
initial position and the initial type. Also, we deduce from the upper bound shown in Sect. 3
that necessarily P(|GWn | = ∞)→ 0, so that the assumption r ≤ min{ 18 , P(|GWn | <∞)}
is satisfied for large n and we can apply Lemma 4.1 to obtain

ζn ≥ P(|GWn | = ∞)

≥ P(Cn �= ∅)− 2r−2P(1 ≤ |Cn | ≤ r−2)− 2r

≥ (1− q
m
)P(C(asym)

n �= ∅)− o(1)P(C(asym)

n �= ∅)− 2
1

16
P(C(asym)

n �= ∅)

≥ 1

4
P(C(asym)

n �= ∅).
Hence, we get from (4.19) that

lim
n→∞ N−1/3n log ζn ≥ −λα∗.

Finally, letting λ ↓
√

π2σ 2

2b(1−αθ)
and noting that εn = bN−2/3(1+ o(1)), we obtain

lim
n→∞ ε

1/2
n log ζn ≥ −α∗

√
π2σ 2

2(1− α∗θ)
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Hence, (4.17) follows by letting θ ↓ 0. ��

5 Proofs in the Linear Case

In this section, we show how to deduce Corollary 1.3 from our general result, Theorem 1.2.

Proof of Corollary 1.3 In the proof of Proposition 1.3 in [7] it was shown that for linear
attachment functions, the spectral radius of Aα equals the largest eigenvalue of

(
β

α−γ
β

1−γ−α
β+γ
α−γ

β
1−γ−α

)
.

This eigenvalue is given by

ρ(α) = 1

2(1− γ − α)(α − γ )

[
β(1− 2γ )+

√
β2(1− 2γ )2 + 4βγ (1− γ − α)(α − γ )

]
.

(5.1)

In particular, α∗ = 1
2 regardless of the choice of γ ∈ [0, 1

2 ) and β ∈ (0, 1], and

ρ(α∗) = 1
1
2 − γ

[
β +

√
β2 + βγ

]
.

In order to apply Theorem 1.2, we need to determine ρ′′(α∗). To this end, we write �(α) for
the large squared bracket in (5.1) and

ϕ(α) = (1− γ − α)(α − γ ) ⇒ ϕ′(α) = 1− γ − α − α + γ = 1− 2α.

Then

ρ′(α) = −1

2

ϕ′(α)

ϕ(α)2
(β(1− 2γ )+�(α))

+ 1

2ϕ(α)

[
0+ 1

2

(
β2(1− 2γ )2 + 4βγϕ(α)

)− 1
2
(
0+ 4βγ (1− 2α)

)]

= 2α − 1

ϕ(α)
ρ(α)+ 4βγ (1− 2α)

4ϕ(α)

(
β2(1− 2γ )2 + 4βγϕ(α)

)− 1
2

= (2α − 1)
1

ϕ(α)

[
ρ(α)− βγ√

β2(1− 2γ )2 + 4βγϕ(α)

]
. (5.2)

We need the second derivative only for α = α∗ = 1
2 . Since after applying the product rule,

any term multiplied by (2α − 1) vanishes, we obtain

ρ′′( 12 ) =
2

ϕ(α)

[
ρ(α)− βγ√

β2(1− 2γ )2 + 4βγϕ(α)

] ∣∣∣∣
α= 1

2

= 2

( 12 − γ )2

[
ρ(α∗)− βγ

(1− 2γ )
√

β2 + βγ

]
.

(5.3)

The critical values βc(γ ) and γc(β) are chosen such that ρ(α∗) > 1 if and only if β > βc(γ )

or γ > γc(β). This implies

βc = βc(γ ) = ( 12 − γ )2

1− γ
and γc = γc(β) = 1

2

(
1− β −

√
β2 + 2β

)
. (5.4)
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Clearly,

√
β2
c + βcγ = 1

2
− γ − βc = 1

2

1
2 − γ

1− γ
, (5.5)

√
β2 + βγc = 1

2 − γc − β = 1

2

(√
β2 + 2β − β

)
. (5.6)

One easily checks that

( 1
2 − γc(β)

)2
1− γc(β)

= β,

i.e. βc(γc(β)) = β. We write ρ(α;β) or ρ(α; γ ) to emphasize the dependence on β or γ ,
respectively. By (5.3), (5.4) and (5.5),

∂α,αρ(α∗;βc) = 2
( 1
2 − γ

)2
[
1− βcγ

(1− 2γ )
√

β2
c + βcγ

]

= 2

( 12 − γ )2

⎡
⎣1−

( 1
2 − γ

)2
1− γ

γ

( 12 − γ )
1
2−γ

1−γ

⎤
⎦

= 2
( 1
2 − γ

)2 [1− γ ] = 2/βc.

By the continuity of ρ and its derivatives in β and γ , we obtain σ 2 = 2/βc(γ ) for the
convergence β ↓ βc(γ ) and σ 2 = 2/β for γ ↓ γc(β). Moreover, two Taylor expansions
yield for β ↓ βc

log ρ(α∗;β) = log(1+ ∂βρ(α∗;βc)(β − βc)+ o(β − βc))

= ∂βρ(α∗;βc)(β − βc)(1+ o(1)). (5.7)

The derivative is given by

∂βρ(α∗;βc) = 1
1
2 − γ

(
1+ 2βc + γ

2
√

β2
c + βcγ

)
= 1

1
2 − γ

⎛
⎝1+

1
2−γ+γ 2

1−γ

1
2−γ

1−γ

⎞
⎠

= 1
1
2 − γ

1− 2γ + γ 2

1
2 − γ

=
(
1− γ
1
2 − γ

)2

.

For the corresponding derivative with respect to γ we use (5.6) to derive

∂γ ρ(1/2; γc) = 1
1
2 − γc

ρ(1/2; γc)+ 1
1
2 − γc

β

2
√

β2 + βγc

= 1
1
2 − γc

(
1+ β√

β2 + 2β − β

)
= 2√

β2 + 2β + β

√
β2 + 2β − β + β√

β2 + 2β − β

= 2

√
β2 + 2β

β2 + 2β − β2 =
√

β2 + 2β

β
.
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Repeating the argument of (5.7) for γ instead of β, Theorem 1.2 yields

lim
β↓βc(γ )

√
β − βc log θ(γ · +β) = −

√
π2

2

√
σ 2

∂βρ(α∗;βc)
α∗

= −π

2

√√√√ 2 2
βc

1−γ
βc

1

2
= − π

2
√
1− γ

,

lim
γ↓γc(β)

√
γ − γc log θ(γ · +β) = −

√
π2

2

√
σ 2

∂γ ρ(α∗; γc)α
∗

= −π

2

√√√√√
2 2

β√
β2+2β
β

1

2
= − π

2(β2 + 2β)
1
4

. ��
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Proof of Mogulskii’s Theorem

This section is devoted to the proof of Theorem 2.10.

Proof The proof is an adaptation of the proof presented in [9]. We give a detailed proof of
the upper bound. The changes for the lower bound are similar.

Let N = � knrn � andmN = kn ,mk = krn for 0 ≤ k ≤ N −1. The Markov property implies
that

P(0,τ0)(En)

= P(0,τ0)

(
N⋂

k=1

{
g1

(
i

kn

)
≤ S(n)

i

an
≤ g2

(
i

kn

)
∀ i ∈ (mk−1,mk ] ∩ N

})

≤
N−1∏
k=2

sup
x∈
[
g1
(
mk−1
kn

)
,g2(

mk−1
kn

)
] sup

τ∈T
P(0,τ )

(
g1

(
mk−1 + i

kn

)
≤ S(n)

i

an
+ x ≤ g2

(
mk−1 + i

kn

)
∀ i ∈ [rn]

)
.

Since g1 and g2 are bounded, for every δ > 0 there exists K ∈ N such that
[g1(mk−1

kn
), g2(

mk−1
kn

)] ⊆ [−K δ, (K − 1)δ] = ⋃K−1
j=−K [ jδ, ( j + 1)δ]. Continuity of g1 and

g2 further guarantees the existence of A = A(δ) > 0 such that .

sup
0≤s,t≤1 : |s−t |≤ 2

A

|g1(t)− g1(s)| + |g2(t)− g2(s)| < δ. (A.1)

Let Jl = (
(l−1)(N−2)

A + 1, l(N−2)
A + 1] ∩ N for j ∈ [A]. We show that for sufficiently large

n, for all i ∈ [rn] and l ∈ [A]
∣∣∣∣
i + mk−1

kn
− l

A

∣∣∣∣ ≤
2

A
for all k ∈

{
(l − 1)(N − 1)

A
+ 1, . . . ,

l(N − 2)

A
+ 1

}
.
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Since kn
rn
− (N − 1) ∈ [1, 2], we have

i + mk−1
kn

≥ 1+ rn
(l−1)(N−1)

A

kn
≥ l − 2

A
for all l ∈ [A]

⇔ A ≥ kn(l − 2)− rn(l − 1)(N − 1)

= −kn + (l − 1)rn

(
kn
rn
− (N − 1)

)
for all l ∈ [A]

⇐ A ≥ −kn + (A − 1)rn2.

Since limn→∞ rn/kn = 0, this is satisfied for large n. For the other direction, we use that
rn
kn
≤ 1

N to see that

i + mk−1
kn

≤ krn
kn
≤
(
l(N − 2)

A
+ 1

)
rn
kn
≤ l + 2

A
for all l ∈ [A]

⇔ A
rn
kn
≤ l + 2− l(N − 2)

rn
kn
= l

(
1− (N − 2)

rn
kn

)
+ 2 for all l ∈ [A]

⇐ A
rn
kn
≤ 2.

The last inequality holds since rn
kn
→ 0. The small k-values are needed later for the proof of

the lower bound. For k ∈ Jl , (A.1) implies that for all x ∈ [ jδ, ( j + 1)δ]

sup
τ∈T

P(0,τ )

(
g1
(mk−1 + i

kn

)
≤ S(n)

i

an
+ x ≤ g2

(mk−1 + i

kn

)
∀i ∈ [rn]

)

≤ sup
τ∈T

P(0,τ )

(
g1
( l

A

)
− ( j + 2)δ ≤ S(n)

i

an
≤ g2

( l

A

)
− ( j − 1)δ ∀i ∈ [rn]

)
=: ql,n( j).

Since
⋃A

l=1 Jl = (1, N − 1] ∩ N, we derive

P(0,τ0)(En) ≤
A∏

l=1

[
max

j∈[−K ,K )∩Z ql,n( j)

]|Jl |
.

The assumed uniform convergence implies that for n →∞

ql,n( j) → P
(
g1
( l

A

)
− ( j + 2)δ ≤

√
σ 2AWt ≤ g2

( l

A

)
− ( j − 1)δ ∀t ∈ [0, 1]

)
.

The right-hand side can be estimated by (see for example [11, p. 31] or [9, Eq. (5.4)])

exp

(
−π2σ 2

2

(1− δ)A

[g2( l
A )− g1(

l
A )+ 3δ]2

)
.

Since there are only finitely many ( j, l) ∈ [−K , K ) ∩N× {1, . . . , A}, the convergence and
the bound hold uniformly in ( j, l). Moreover,

#Jl ≥ l(N−2)

A
− (l − 1)(N − 2)

A
− 1 = N − 2

A
− 1 ≥

kn
rn
− 1− 2

A
− 1 ≥ kn

a2n A
2 −

3

A
− 1.
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Now we collected everything needed to derive

lim sup
n→∞

a2n
kn

log P(0,τ0)(En) ≤ lim sup
n→∞

a2n
kn

A∑
l=1

#Jl log max
j∈[−K ,K )∩Z q̃l,n( j)

≤
A∑

l=1
lim sup
n→∞

a2n
kn

(
n

a2n A
2 −

3

A
− 1

)
log max

j∈[−K ,K )∩Z q̃l,n( j)

≤ 1

A2

A∑
l=1
−π2σ 2

2

(1− δ)A

[g2( l
A )− g1(

l
A )+ 3δ]2 .

Since g1 and g2 are continuous functions, taking A→∞ yields

lim sup
n→∞

a2n
kn

log P(0,τ0)(En) ≤ −π2σ 2

2

∫ 1

0

(1− δ)

[g2(x)− g1(x)+ 3δ]2 dx .

Now we can take δ → 0 to establish the claim.
Sketch of the lower bound:Choose a continuous function g : [0, 1] → R such that g1(t) <

g(t) < g2(t) for all t ∈ [0, 1]. Since it suffices to prove the lower bound for b small, we
can assume that g(1) ≥ g2(1) − b. Then, let δ > 0 be such that g(t) − g1(t) > 3δ and
g2(t)− g(t) > 9δ for all t ∈ [0, 1]. Moreover, A is chosen large enough that

sup
0≤s≤t≤1 : t−s≤ 2

A

(
|g1(t)− g1(s)| + |g(t)− g(s)| + |g2(t)− g2(s)|

)
≤ δ.

Choose N = � knrn �, mN = kn and mk = krn for 0 ≤ k ≤ N − 1. Writing yk = g(mk
kn

) for
1 ≤ k ≤ N , the Markov property implies

P0,τ0(En) ≥ p1,n(0, τ0)×
N∏

k=2
inf

y∈[yk−1,yk−1+6δ]
inf
τ∈T pk,n(y, τ ),

where for 1 ≤ k ≤ N , y ∈ R, and τ ∈ T

pk,n(y, τ ) = P(0,τ )

(
αi,k,n ≤ S(n)

i

an
+ y ≤ βi,k,n,∀i ∈ [mk − mk−1]; yk ≤ S(n)

mk−mk−1 + 6δ

)

αi,k,n := g1

(
i + mk−1

kn

)
βi,k,n := g2

(
i + mk−1

kn

)
.

Now the choice of parameters implies that for n sufficiently large

P0,τ0(En) ≥ min{p1N ,n, p
2
N ,n}

A∏
l=1

(
min{q1l,n, q2l,n}

)kn/[(Aa2n−1)A]
,

where p1N ,n is the infimum over all τ ∈ T of pN ,n(yk−1, τ ) where βi,N ,n is replaced by

βi,N ,n−3δ and the same for p2N ,n withαi,N ,n replaced byαi,N ,n−3δ andβi,N ,n byβi,N ,n−6δ.
Moreover,
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q(1)
l,n = inf

τ∈T P(0,τ )

(
g1
( l

A

)
− g

( l

A

)
+ 2δ ≤ S(n)

i

an

≤ g2
( l

A

)
− g

( l

A

)
− 5δ ∀ i ∈ [rn], δ ≤ S(n)

rn

an
≤ 2δ

)
,

q(2)
l,n = inf

τ∈T P(0,τ )

(
g1
( l

A

)
− g

( l

A

)
− δ ≤ S(n)

i

an

≤ g2
( l

A

)
− g

( l

A

)
− 8δ ∀ i ∈ [rn],−2δ ≤ S(n)

rn

an
≤ −δ

)

The claim now followswith the same arguments as in [9] because of the assumed convergence
of the probabilities. ��
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