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Abstract In the supermarket model, there are n queues, each with a single server. Customers
arrive in a Poisson process with arrival rate λn, where λ = λ(n) ∈ (0, 1). Upon arrival, a
customer selects d = d(n) servers uniformly at random, and joins the queue of a least-loaded
server amongst those chosen. Service times are independent exponentially distributed random
variables with mean 1. In this paper, we analyse the behaviour of the supermarket model in
the regime where λ(n) = 1 − n−α and d(n) = �nβ�, where α and β are fixed numbers
in (0, 1]. For suitable pairs (α, β), our results imply that, in equilibrium, with probability
tending to 1 as n → ∞, the proportion of queues with length equal to k = �α/β� is at least
1−2n−α+(k−1)β , and there are no longer queues. We further show that the process is rapidly
mixing when started in a good state, and give bounds on the speed of mixing for more general
initial conditions.
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1 Introduction

The supermarket model is a well-studied Markov chain model for a dynamic load-balancing
process. There are n servers, and customers arrive according to a Poisson process with rate
λ = λ(n) < 1. On arrival, a customer inspects d = d(n) queues, chosen uniformly at random
with replacement, and joins a shortest queue among those inspected (in case of a tie, the first
shortest queue in the list is joined). Each server serves one customer at a time, and service
times are iid random variables, with an exponential distribution of mean 1.

A number of authors [5–9,11–13,17,18,21,23] have studied the supermarket model, as
well as various extensions, e.g., to the setting of a Jackson network [15] and to a version with
one queue saved in memory [14,20]. There are related ideas in other queueing models, for
instance one where one server inspects d queues and serves the longest [1].

Early papers on the supermarket model concentrated on the case where λ and d are held
fixed as n tends to infinity. As with other related models (see, e.g. [10,19]), there is a dramatic
change when d is increased from 1 to 2: if d = 1, the maximum queue length in equilibrium
is of order log n, while if d is a constant at least 2, then the maximum queue length in
equilibrium is of order log log n/ log d .

Luczak and McDiarmid [11] prove that, for fixed λ and d , the sequence of Markov chains
indexed by n is rapidly mixing: as n → ∞, the time for the system to converge to equilibrium
is of order log n, provided the initial state has not toomany customers and no very long queue.
Also, they show that, for d ≥ 2, with probability tending to 1 as n → ∞, in the equilibrium
distribution the maximum queue length takes one of at most 2 values, and that these values
are log log n/ log d + O(1).

More recently, there has been interest in regimes where the parameters of the model may
vary as n tends to infinity. Fairthorne [6] and Mukherjee et al [21] treat the case where λ < 1
is fixed and d = d(n) tends to infinity with n. Eschenfeldt and Gamarnik [5] consider the
“heavy traffic regime”, where λ = λ(n) tends to 1 from below as n → ∞, and d is held
fixed.

In this paper, we study a different regime.We focus on the case where λ = λ(n) = 1−n−α

and d = d(n) = �nβ�, where α and β are fixed constants in (0, 1] with k − 1 < α/β < k
for some positive integer k. We also require that 2α < 1 + β(k − 1), for reasons that we
shall explain after the statement of Theorem 1.1 (see Remark (4)). Our results imply that,
in equilibrium, with high probability (i.e., with probability tending to 1 as n → ∞), the
proportion of queues of length exactly equal to k is at least 1 − 2n−α+(k−1)β , and there are
no longer queues. Our methods actually cover a much broader range of parameter values,
but we focus on this case for ease of exposition.

We offer two reasons why such a regime might be of interest: for one, this is a range of
parameter values where near-perfect load balancing is achieved, with bounded maximum
queue length, even when the system is running at nearly full capacity, and the values of d
we obtain thus represent a sufficient amount of resource (in terms of inspection of queue-
lengths) required to achieve this load-balancing. From a more theoretical viewpoint, we see
our regimes, for the different values of �α/β�, as possessing a scaling limit as n → ∞,
and varying the parameters so that α/β passes through an integer is an example of a phase
transition.

Tomotivate our results, we first give heuristics to indicatewhat behaviourwemight expect.
Consider the infinite system of differential equations

dv j (t)

dt
= λ(v j−1(t)

d − v j (t)
d) − (v j (t) − v j+1(t)), j ≥ 1, (1.1)
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where v0(t) = 1 for all t . For an initial condition v(0) such that 1 ≥ v1(0) ≥ v2(0) ≥ · · · ≥ 0
and v j (0) → 0 as j → ∞, there is a unique solution v(t) (t ≥ 0), with v(t) = (v j (t)) j≥1,
which is such that 1 ≥ v1(t) ≥ v2(t) ≥ · · · ≥ 0 and v j (t) → 0 as j → ∞, for each
t ≥ 0. It follows from earlier work [7,8,12,13,23] that, with high probability, for each j , the
proportion of queues of length at least j at time t stays “close to” v j (t) over a bounded time
interval (or an interval whose length tends to infinity at most polynomially with n), assuming
this is the case at time 0.

The system (1.1) has a unique, attractive, fixed point π = (π j ) j≥1, such that π j → 0 as
j → ∞, given by

π j = λ1+···+d j−1
, j ≥ 1. (1.2)

If λ and d are fixed constants, then, in equilibrium, with high probability, the proportion of
queues of length at least j is close to π j for each j ≥ 1; see [7,8,11,12].

For λ and d functions of n, there is no single limiting differential equation (1.1), but rather
a sequence of approximating differential equations, each with their own solutions and fixed
points. In this paper, we do not address the question of whether such approximations to the
evolution of the process are valid in generality, focussing solely on equilibrium behaviour
and the time to reach equilibrium. If λ = 1 − n−α and d = �nβ�, and k is an integer with
k − 1 < α/β < k, then

πk = λ1+···+dk−1 ≥ (1 − n−α)(1+o(1))dk−1 ≥ 1 − (1 + o(1))n−α+(k−1)β

= 1 − o(1),

πk+1 = λ1+···+dk ≤ exp(−dkn−α) ≤ exp(−1

2
nkβ−α) = o(1/n).

Wewill indeed show that, in equilibrium, with high probability, there are no queues of length
greater than k, while the proportion of queues with length exactly k tends to 1 as n → ∞.
Moreover we show that, for 0 ≤ j < k, the number of queues of length exactly j is very
close to n(π j − π j+1) � n1−α+ jβ .

We also prove results on mixing time to equilibrium. We show that, if we start in a “good”
initial state (one without any very long queue, and without too many customers in the system
in total), then the mixing time is of order n1+(k−1)β log n, which is best possible up to the
logarithmic term. We also prove general bounds on the mixing time, in terms of the initial
number of customers and the initial maximum queue length, and show that these bounds are
also roughly best possible.

We will shortly state our main results precisely, but first we describe the supermarket
model more carefully. In fact, we describe a natural discrete-time version of the process,
which we shall work with throughout; as is standard, one may convert results about the
discrete time version to the continuous model, with the understanding that one unit of time
in the continuous model corresponds to about (1 + λ)n steps of the discrete model.

A queue-lengths vector is an n-tuple (x(1), . . . , x(n)) whose entries are non-negative
integers. If x( j) = i , we say that queue j has length i , or that there are i customers in
queue j ; we think of these customers as in positions 1, . . . , i in the queue. We use similar
terminology throughout; for instance, to say that a customer arrives and joins queue j means
that x( j) increases by 1, and to say that a customer in queue j departs or is servedmeans that
x( j) decreases by 1. Given a queue-lengths vector x , we write ‖x‖1 = ∑n

j=1 x( j) to denote
the total number of customers in state x , and ‖x‖∞ = max x( j) to denote the maximum
queue length in state x .

For each i ≥ 0, and each x ∈ Z
n+, we define ui (x) to be the proportion of queues in

x with length at least i . So u0(x) = 1 for all x , and, for each fixed x , the ui (x) form a

123



1152 G. Brightwell et al.

non-increasing sequence of multiples of 1/n, such that ui (x) = 0 eventually. The sequence
(ui (x))i≥0 captures the “profile” of a queue-lengths vector x , and we shall describe various
sets of queue-lengths vectors, and functions of the queue-lengths vector, in terms of the ui (x).

For positive integers n and d , and λ ∈ (0, 1), we now define the (n, d, λ)-supermarket
process. This process is a discrete-time Markov chain (Xt ), whose state space is the set Zn+
of queue-lengths vectors, and where transitions occur at non-negative integer times. Each
transition is either a customer arrival, with probability λ/(1 + λ), or a potential departure,
with probability 1/(1 + λ). If there is a potential departure, then a queue K is selected
uniformly at random from {1, . . . , n}: if there is a customer in queue K , then they are served
and depart the system. If there is an arrival, then d queues are selected uniformly at random,
with replacement, from {1, . . . , n}, and the arriving customer joins a shortest queue among
those selected. To be precise, a d-tuple (K1, . . . , Kd) is selected, and the customer joins queue
k = K j , where j is the least index such that x(K j ) is minimal among {x(K1), . . . , x(Kd)}.

For x ∈ Z
n+, (Xx

t ) denotes a copy of the (n, d, λ)-supermarket process (Xt )where X0 = x
a.s. Throughout, we let (Yt ) denote a copy of the process in equilibrium. The processes depend
on the parameters (n, d, λ), but we suppress this dependence in the notation. Throughout, we
use (Ft ) to denote the natural filtration of the process (Xt ). We use the notation P(·) freely
to denote probability in whatever space we work in.

We now state ourmain results. First, we describe sets of queue-lengths vectorsN (n, α, β):
our aim is to prove that, for suitable values of α and β, with d = �nβ�, λ = 1 − n−α and n
sufficiently large, an equilibrium copy of the (n, d, λ)-supermarket process is concentrated
in the set N (n, α, β).

For α, β ∈ (0, 1], let k = �α/β�, and letN (n, α, β) be the set of all queue-lengths vectors
x such that: uk+1(x) = 0 and, for 1 ≤ j ≤ k,

(
1 − 1

log n

)
n−α+( j−1)β ≤ 1 − u j (x) ≤ (

1 + 1

log n

)
n−α+( j−1)β .

So, for x ∈ N (n, α, β), we have the following.

(a) There are no queues of length k + 1 or greater.
(b) For 1 ≤ j ≤ k, the number of queues of length less than j is n(1 − u j (x)), which lies

between (1 ± 1
log n )n1−α+( j−1)β .

(c) In particular, the number of queues of length less than k is atmost (1+ 1
log n )n1−α+(k−1)β =

o(n), and so the proportion of queues of length exactly k tends to 1 as n → ∞.
(d) For 1 ≤ j ≤ k − 1, the number of queues of length exactly j is n(u j (x) − u j+1(x)),

which lies between (1 ± 2
log n )n1−α+ jβ .

Theorem 1.1 Suppose that α, β ∈ (0, 1] are constants with k − 1 < α/β < k for some
natural number k, and that 2α < 1+ β(k − 1). Suppose also that λ = λ(n) = 1− n−α and
d = d(n) = �nβ�. Then, for n sufficiently large, a copy (Yt ) of the (n, d, λ)-supermarket
process in equilibrium satisfies

P (Yt /∈ N (n, α, β)) ≤ e− 1
4 log2 n .

Remarks (1) In fact, our proofs go through essentially unchanged if we demand only that
1 − λ(n) = n−α+δ1(n) and d(n) = nβ+δ2(n), where δ1(n) and δ2(n) tend to zero as
n → ∞, and we replace instances of n−α+( j−1)β in the definition of N (n, α, β) by
(1 − λ)d j−1. For ease of exposition, we prefer to stick to definite values of λ and d;
however, from now on we allow ourselves to write simply d = nβ , even though this
need not be an integer.
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(2) The conclusion of the theorem implies that it is rare for there to be queues of length
greater than k in equilibrium, and so in particular it is rare for the last arriving customer
to have joined a queue containing k other customers. Theorem 1.1 can thus be used to
make statements about the performance of the system in equilibrium in terms of the total
waiting time for each customer; we leave the details to the interested reader.

(3) In the case where α ≤ β, Theorem 1.1 tells us that, in equilibrium, the maximum queue-
length is 1with high probability, and therefore that itwill be extremely rare for an arriving
customer to join a non-empty queue. In this case, some of the complexity of our proof
can be avoided. This range is also covered by Fairthorne [6], with essentially the same
proof and some sharper results, e.g. giving conditions for the maximum queue-length
remaining equal to 1 for a time period nK for fixed K .

(4) We now indicate why the condition 2α < 1 + β(k − 1) in Theorem 1.1 is necessary.
For a state in N (n, α, β), the total number of customers in the system is at least kn −
2n1−α+(k−1)β . If we consider the next n2α steps, the number of arrivals minus the
number of potential departures is asymptotically a normal random variable with mean
and standard deviation both of order nα . So the probability that the number of arrivals
minus the number of departures is at least 3nα is bounded away from zero as n → ∞.
If α ≥ 1−α + (k − 1)β, then this many excess arrivals would drive the total number of
customers in the system over kn, which certainly implies that some queue of length k+1
would be created.

(5) If α ≥ 1 and β is arbitrary, a similar argument shows that, in equilibrium, for each k, the
probability that there is a queue of length at least k is bounded away from zero. Indeed,
starting from any state, for any k ∈ N, there is a positive probability that, over the next
n2 transitions, the number of arrivals exceeds the number of departures by at least kn.

(6) For λ < λ′, there is a coupling of the (n, d, λ)- and (n, d, λ′)-supermarket processes, so
that at each time, each queue in the (n, d, λ)-supermarket process is no longer than in
the (n, d, λ′)-supermarket process, provided this is true at time 0. So, for instance, if at a
given time there are at leastm queues with length k in the (n, d, λ)-supermarket process,
then there are also at least m queues with length at least k in the (n, d, λ′)-supermarket
process. If α/β is equal to a positive integer k, and α < k/(k + 1) (so that the condition
2α < 1+ (k − 1)β is satisfied), then we can couple with the process for slightly lower,
and slightly higher, values of α, to see that the maximum queue length in equilibrium
is, with high probability, either k or k + 1, and that most queues have length either k or
k + 1. Similarly, for d < d ′, there is a coupling of the (n, d ′, λ)-supermarket process
and the (n, d, λ)-supermarket process such that, for all times t ≥ 0, and for each j , the
number of customers in position at least j in their queue is no higher in the first process
than the second (see [7,22]).
Combining these arguments actually gives an essentially complete picture of the max-
imum queue length in equilibrium for any parameters α ∈ (0, 1), β > 0. The regions
of the (α, β)-plane not covered by Theorem 1.1 are of the form Ek = {(α, β) : α <

1, α
k ≤ β ≤ 2α−1

k−1 }. For a model with parameters in Ek , coupling in d shows that, with
high probability, the maximum queue length in equilibrium is at most k + 1; coupling
in λ shows that, with high probability, the maximum queue length in equilibrium is at
least k. Moreover, the argument in Remark (4) shows that the value k + 1 occurs with
probability bounded way from zero as n → ∞.

(7) We define the model so that d queues are chosen with replacement, so it makes sense to
ask what happens if β > 1. In this case, most arriving customers inspect every queue,
and the situation is essentially the same as when β = 1 (when most arriving customers
inspect at least half of the queues), or as when every arriving customer inspects every
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queue (the “join the shortest queue” protocol). Our result in this case says that, for
α < 1/2, the maximum queue length is 1 with high probability in equilibrium. For
α ≥ 1/2, we are in the region E1 defined in the previous remark: the maximum queue
length is either 1 or 2 with high probability in equilibrium, and the value 2 occurs
with probability bounded away from 0. For the join the shortest queue protocol and
λ = 1 − cn−1/2, this situation is explored in detail by Eschenfeldt and Gamarnik [4].

(8) The case α = 1/2 has been studied in queueing theory under the name of the Halfin-
Whitt heavy traffic regime. In this case, Theorem 1.1 applies whenever β < 1/2 and
1/2β is not an integer, and the result implies that, in equilibrium, the proportion of
queues of length �1/2β� tends to 1 as n → ∞, and with high probability there are no
longer queues. For β > 1/2, the maximum queue length in equilibrium is either 1 or 2
with high probability, and the value 2 occurs with probability bounded away from 0, as
in Remark (4).

This is an explicit example of a model where we have a type of scaling limit: as we
increase n with λ = 1− n−α and d = nβ , we retain the property that almost all queues have
length k = �α/β� in equilibrium, with high probability, and the number of shorter queues
is of order n1−α+�α/β�β = o(n). As we adjust the parameters so that α/β passes through an
integer value, we have a phase transition to a different equilibrium regime.

As mentioned earlier, and explained in more detail in Sect. 2, our results are in line with
a more general hypothesis: for a very wide range of parameter values, the maximum queue
length of the (n, d, λ)-supermarket model in equilibrium is within 1 of the largest k such that

πk = λ1+d+···+dk−1
>

1

n
.

(Recall that πk is the “predicted” proportion of queues of length at least k; see (1.2).) This
general hypothesis holds when λ and d are constants: see [11]. It is also valid for the range
where λ is fixed and d → ∞: see [6], and at least approximately when λ → 1 and d is fixed:
see [5].

We now state our results concerning “rapidmixing”, i.e., rapid convergence to equilibrium.
For x ∈ Z

n+, let L(Xx
t ) denote the law at time t of the (n, d, λ)-supermarket process (Xx

t )

started in state x . Also let � denote the stationary distribution of the (n, d, λ)-supermarket
process.

Theorem 1.2 Suppose that λ(n) = 1 − n−α and d(n) = nβ , where α, β and k = �α/β�
satisfy the conditions of Theorem 1.1. Let x be a queue-lengths vector in N (n, α, β). Then,
for all sufficiently large n and for all t ≥ 0,

dT V (L(Xx
t ),�) ≤ n

(

2e− 1
4 log2 n + 4 exp

(

− t

1600kn1+(k−1)β

))

.

In other words, for a copy of the process started in a state inN (n, α, β), the mixing time is
at most of order n1+(k−1)β log n = o(n1+α) = o(n2). In fact, this upper bound on the mixing
time is best possible up to the logarithmic factor: we show that mixing, starting from states
in N (n, α, β), requires order at least n1+(k−1)β steps.

Theorem 1.3 Suppose that λ(n) = 1−n−α and d(n) = nβ , where α, β and k = �α/β� sat-
isfy the conditions of Theorem 1.1. For all sufficiently large n, there is a state z ∈ N (n, α, β)

such that, for t ≤ 1
8n

1+(k−1)β ,

dT V (L(Xz
t ),�) ≥ 1 − 2e− 1

4 log2 n .
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From states not in N (n, α, β), we cannot expect to have rapid mixing in general. For
instance, suppose we start from a state x with number of customers ‖x‖1 ≥ kn. The expected
decrease in the number of customers at each step of the chain is at most 1−λ

1+λ
, so mixing takes

at least of order (‖x‖1 − kn)(1 − λ)−1 = (‖x‖1 − kn)nα steps. Similarly, if we start with
one long queue, of length ‖x‖∞ > k, then mixing takes at least of order (‖x‖∞ − k)n steps,
to allow time for enough departures from the long queue. This shows that, for instance, if
either ‖x‖1 ≥ 2kn or ‖x‖∞ > 2k, and

t ≤ 1

10
max

(‖x1‖nα, ‖x‖∞n
)
, (1.3)

then the total variation distance dTV (L(Xx
t ,�) is near to 1. The next result gives an upper

bound on the mixing time for (Xx
t ) in terms of ‖x‖1 and ‖x‖∞, and shows that (1.3) is best

possible up to the constant factor.

Theorem 1.4 Suppose that α and β satisfy the hypotheses of Theorem 1.1, and let x be any

queue-lengths vector with ‖x‖∞ ≤ e
1
4 log2 n. Then for n sufficiently large and

t ≥ 7200
(
kn1+α + ‖x‖1nα + ‖x‖∞n

)
,

we have dTV (L(Xx
t ),�) ≤ 2e− 1

5 log2 n.

In the case where the dominant term in the expression above is kn1+α , this result is not
as sharp as that in Theorem 1.2, since α > (k − 1)β.

The supermarket model is an instance of a model whose behaviour has been comprehen-
sively analysed even though there are an unbounded number of variables that need to be
tracked – namely, the proportions ui (Xt ). While what we achieve in this paper is similar to
what is achieved by Luczak and McDiarmid in [11] for the case where λ and d are fixed as
n → ∞, only some of the techniques of that paper can be used here, as we now explain.

The proofs in [11] rely on a coupling of copies of the supermarket process where the
distance between coupled copies does not increase in time. This coupling is, in particular,
used to establish concentration of measure, over a long time period, for Lipschitz functions
of the queue-lengths vector; this result is valid for any values of (n, d, λ), and in particular
in our setting. Fast coalescence of coupled copies, and hence rapid mixing, is shown by
comparing the behaviour of the (n, d, λ)-process (d ≥ 2) with the (n, 1, λ)-process, which
is easy to analyse. This then also implies concentration of measure for Lipschitz functions in
equilibrium, and that the profile of the equilibrium process is well concentrated around the
fixed point π of the equations (1.1).

The coupling from [11] also underlies the proofs in the present paper. However, in our
regime, comparisons with the (n, 1, λ)-process are too crude. Thus we cannot show that
the coupled copies coalesce quickly enough, until we know something about the profiles
of the copies, in particular that their maximum queue lengths are small. Our approach is to
investigate the equilibrium distribution first, as well as the time for a copy of the process
from a fairly general starting state to reach a “good” set of states in which the equilibrium
copy spends most of its time. Having done this, we then prove rapid mixing in a very similar
way to the proof in [11].

To show anything about the equilibrium distribution, we would like to examine the tra-
jectory of the vector u(Xt ), whose components are the ui (Xt ) for i ≥ 1. This seems difficult
to do directly, but we perform a change of variables and analyse instead a collection of just k
functions Q1(Xt ), . . . , Qk(Xt ). These are linear functions of u1(Xt ), . . . , uk(Xt ), with the
property that the drift of each Q j (Xt ) can be written, approximately, in terms of Q j (Xt )
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and Q j+1(Xt ) only. Exceptionally, the drift of Qk(Xt ) is written in terms of Qk(Xt ) and
uk+1(Xt ) (which in fact is usually zero in equilibrium). The particular forms of the Q j are
chosen by considering the Perron–Frobenius eigenvalues of certainmatricesMk derived from
the drifts of the u j (x). Making this change of variables allows us to consider one function
Q j (Xt ) at a time, and show that each in turn drifts towards its equilibrium mean (which is
derived from the fixed point π of (1.1)), and we are thus able to prove enough about the
trajectory of the Q j (Xt ) to show that, starting from any reasonable state, with high proba-
bility the chain soon enters a good set of states where, in particular, uk+1(Xt ) = 0, and so
the maximum queue length is at most k. We also show that, with high probability, the chain
remains in this good set of states for a long time, which implies that the equilibrium copy
spends the vast majority of its time in this set. The argument from [11] about coalescence
of coupled copies can be used to show rapid mixing from this good set of states. The drift
of the function Qk to its equilibrium is slower than that of any other Q j , and its drift rate is
approximately n−1−(k−1)β , which is close to the spectral gap of the Markov chain (Xt ), and
hence determines the speed of mixing in Theorem 1.2.

The structure of the paper is as follows. In Sect. 2, we expand on the discussion above,
and motivate the definitions of the functions Q j : Zn+ → R, which are fundamental to the
proof. In Sect. 3, we give a number of results about the long-term behaviour of randomwalks
with drifts, including several variants on results from [11]. In Sect. 4, we describe the key
coupling from [11], and use it to prove some results about the maximum queue length and
number of customers. In Sect. 5, we discuss in detail the drifts of the functions Q j . The
proof of Theorem 1.1 starts in Sect. 6, where we show how to derive a slightly stronger result
from a sequence of lemmas. These lemmas are proved in Sects. 7–9. We prove our results
on mixing times in Sect. 10.

Note this paper is heavily based on a manuscript [3] by the first and third named authors,
placed on the arXiv in 2012, but not published in any other outlet. The present paper also
incorporates results from the second author’s PhD thesis [6]. The results proved in the present
paper are in some sense weaker than those in [3] and [6], as, purely for the sake of exposition,
we only treat the case where 1 − λ(n) and d(n) are powers of n, and state our results only
in asymptotic form. In a more important sense, our results here are stronger, as they cover
essentially best possible ranges of exponents; the key improvement in our methodology
compared to [3] is that here we state and use Lemma 3.2 in a form where we get a stronger
bound when a function on the state space stays the same with high probability at any step,
allowing us to take proper account of the fact that the Q j for j < k rarely change value. Our
intention is to update [3] to incorporate these improvements in our more general setting.

2 Heuristics

In this section, we set out the intuition behind our results and proofs. As before, let (Yt ) be
an equilibrium copy of the (n, d, λ)-supermarket process. Guided by the results in [6,11],
we start by supposing that, for each i ≥ 1, ui (Yt ) is well-concentrated around its expectation
ui , and seeing what that implies about the ui . For a function F defined on the state space,
and a state x , we define the drift of F at x to be �F(x) = E[F(Xt+1) − F(Xt ) | Xt = x],
which is independent of t . We have

�ui (Yt ) = E
[
ui (Yt+1) − ui (Yt ) | Yt

]

= 1

n(1 + λ)

[
λui−1(Yt )

d − λui (Yt )
d − ui (Yt ) + ui+1(Yt )

]
. (2.1)
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To see this, observe that, for i ≥ 1, conditioned on Yt , the probability that the event
at time t + 1 is an arrival to a queue of length exactly i − 1, increasing ui by 1/n, is

λ
1+λ

(
ui−1(Yt )d − ui (Yt )d

)
, while the probability that the event is a departure from a queue

of length exactly i , decreasing ui by 1/n, is 1
1+λ

(ui (Yt ) − ui+1(Yt )). Note that u0 is identi-
cally equal to 1.

Taking expectations on both sides, and setting them to 0, we see that, since (Yt ) is in
equilibrium,

0 = E
[
ui (Yt+1) − ui (Yt )

] � 1

n(1 + λ)

[
λudi−1 − λudi − ui + ui+1

]
, (2.2)

where the approximations E ui (Yt )d � udi and E ui−1(Yt )d � udi−1 are justified because of
our assumption that ui (Yt ) and ui−1(Yt ) are well-concentrated around their respective means
ui and ui−1.

The system of equations

0 = λπd
i−1 − λπd

i − πi + πi+1 (i = 1, 2, . . . ), (2.3)

with π0 = 1, has a unique solution with πi → 0 as i → ∞, namely:

πi = λ1+···+di−1
(i = 0, 1, . . . ),

as in (1.2). See [11] and the references therein for details.
By analogy with [11], and motivated by (2.2), if the ui (Yt ) are well concentrated, we

expect that ui ≈ πi , for each i , and moreover that the values of ui (Yt ) will be close to the
corresponding πi with high probability. In the regime of Theorem 1.1,

logπi = log(1 − (1 − λ))(1 + · · · + di−1) � −n−α+(i−1)β ,

for each i ≥ 1. As we are assuming that (k − 1)β < α < kβ, this means that πi is close
to 1 for i ≤ k, and very close to 0 for i > k. In particular, πk+1 (which we expect to be
the approximate proportion of queues of length greater than k) is much smaller than 1/n,
suggesting that, in equilibrium, the probability that there is a queue of length greater than k
is very small.

On the other hand, the fact that πk is close to 1 suggests that, in equilibrium, most queues
have length exactly k. Moreover, πd

i = 1 − o(1) for i < k, so that 1 − πd
i ≈ d(1 − πi ),

whereas πd
k = o(1). We then obtain the following linear approximation to the equations

(2.3), written in terms of variables 1 − ũ1, . . . , 1 − ũk :

0 = λd(1 − ũ1) + (1 − ũ1) − (1 − ũ2),

0 = −λd(1 − ũi−1) + λd(1 − ũi ) + (1 − ũi ) − (1 − ũi+1)

(2 ≤ i ≤ k − 1),

0 = −λd(1 − ũk−1) + (1 − ũk) − (1 − λ).

These linear equations have solution ũ given by

1 − ũi = (1 − λ)(1 + (λd) + · · · + (λd)i−1) (i = 1, . . . , k).

We then have the further approximation

1 − ũi ≈ (1 − λ)(λd)i−1, (i = 1, . . . , k),

and we aim to show that indeed each ui (x) is close to the corresponding ũi with high
probability in equilibrium.

123



1158 G. Brightwell et al.

Ideally, we would seek a single “Lyapunov” function of the ui (x), which is small when
ui (x) ≈ ũi for each i , and larger otherwise, and which has a downward drift outside of a
small neighbourhood of ũ: we could then analyse the trajectory of this function to show that
(u1(x), . . . , uk(x)) stays close to ũ for a long period. We have been unable to find such a
function, and indeed analysing the evolution of the ui (Xt ) directly appears to be challenging.
Instead, we work with a sequence of functions Q j (x), j = 1, . . . , k, each of the form

Q j (x) = n
∑ j

i=1 γ j,i (1−ui (x)), where the γ j,i are positive real coefficients. This sequence
of functions has the property that the drift of each Q j (x) can be written (approximately) in
terms of Q j (x) itself and Q j+1(x).

Let us see how these coefficients should be chosen, starting with the special case j = k,
where we write γi for γk,i . Consider a function of the form Qk(x) = n

∑k
i=1 γi (1− ui (x)).

As in the argument leading to (2.1), we have that the drift of this function satisfies

(1 + λ)�Qk(x) = −(1 + λ)n
k∑

i=1

γi�ui (x)

= −
k∑

i=1

γi [λui−1(x)
d − λui (x)

d − ui (x) + ui+1(x)]

=
k∑

i=1

γi [λ(1 − ui−1(x)
d) − λ(1 − ui (x)

d)

−(1 − ui (x)) + (1 − ui+1(x))].

Making the approximations uk(x)d � 0, and 1−ui (x)d � d(1−ui (x)) for i = 1, . . . , k−1,
and rearranging, we arrive at

(1 + λ)�Qk(x) � γk(1 − λ − uk+1(x)) + (γk−1 − γk)(1 − uk(x))

+
k−1∑

i=1

[λd(γi+1 − γi ) − γi + γi−1](1 − ui (x)). (2.4)

We set γ0 = 0 for convenience of writing the above expression. This calculation is done
carefully, with precise inequalities, in Lemma 5.1 below. We would like to choose the γi so
that the vector

(
λd(γ2 − γ1) − γ1 + γ0, . . . , λd(γk − γk−1) − γk−1 + γk−2, γk−1 − γk

)
(2.5)

of coefficients of the (1− ui ) in (2.4) is equal to some multiple −μ
(
γ1, . . . , γk−1, γk

)
of the

vector with components γi , with μ > 0. This would entail

(1 + λ)�Qk(x) � γk(1 − λ − uk+1(x)) − μQk(x)

n
,

which in turn would mean that Qk drifts towards a value of γk(1− λ − uk+1(x))n/μ. If also
uk+1(x) is (nearly) equal to 0, we should obtain that Qk(x) approaches γk(1 − λ)n/μ – if
Qk is above this value then it drifts down, whereas if Qk is below then it drifts up. What we
need in order for the vector (2.5) to be a multiple of

(
γ1, . . . , γk

)
is for

(
γ1, . . . , γk

)
to be a

left eigenvector of the k × k matrix
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Mk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λd − 1 1 0 · · · 0 0 0
λd −λd − 1 1 · · · 0 0 0
0 λd −λd − 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −λd − 1 1 0
0 0 0 · · · λd −λd − 1 1
0 0 0 · · · 0 λd −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with eigenvalue −μ, or, equivalently, of the matrix

M ′
k = Mk + (λd + 1)Ik =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0 0 0
λd 0 1 · · · 0 0 0
0 λd 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · λd 0 1
0 0 0 · · · 0 λd λd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The non-negative matrix M ′
k has a unique largest “Perron–Frobenius” eigenvalue, with a

positive left eigenvector. By inspection, we see that, for k ≥ 2, this left eigenvector is close
to the all-1 vector, with an eigenvalue close to λd + 1, so that Mk has largest eigenvalue
very close to 0. Recursion shows that a better approximation to the Perron–Frobenius left
eigenvector of M ′

k is
(
γ1, . . . , γk

)
, where

γi = 1 − 1

(λd)i
− (i − 1)

(λd)k
,

for i = 1, . . . , k, and the largest eigenvalue μ of Mk is very close to −1/(λd)k−1. We shall
see in Lemma 5.1 that this approximation is close enough for our purposes, enabling us to
show that, with these choices of the γi ,

(1 + λ)�Qk(x) � (1 − λ) − Qk(x)

n(λd)k−1 ,

and thus Qk(x) drifts towards a value close to (1 − λ)n(λd)k−1. A further consequence is
that, in order for Qk(x) to move from (1±2ε)(1−λ)n(λd)k−1 to (1±ε)(1−λ)n(λd)k−1, it
has to travel a distance of ε(1− λ)n(λd)k−1 while drifting at rate no greater than 2ε(1− λ),
and so time of order n(λd)k−1 is required. This is then a lower bound on themixing time from
a “good” state to equilibrium, nearly matching that in Theorem 1.2. We make this argument
precise at the very end of the paper.

For 1 ≤ j < k, if Q j (x) = n
∑ j

i=1 γ j,i (1 − ui ), then a similar analysis reveals that

(1 + λ)�Q j (x) �
j∑

i=1

(1 − ui (x))
[
γ j,i−1 + λdγ j,i+1 − (λd + 1)γ j,i

]+ (1 − u j+1(x)).

(See the proof of Lemma 5.2.) We think of 1 − u j+1(x) as an “external” term (which in
practice will be very close to Q j+1(x)/n), which will determine the value towards which
Q j drifts. We would like the rest of the expression to be a negative multiple of Q j (x). For
this we need

(
γ j,1, . . . , γ j, j

)
to be a left eigenvector of the j × j matrix
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Mj =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λd − 1 1 0 · · · 0 0 0
λd −λd − 1 1 · · · 0 0 0
0 λd −λd − 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −λd − 1 1 0
0 0 0 · · · λd −λd − 1 1
0 0 0 · · · 0 λd −λd − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with eigenvalue −μ < 0 or, equivalently, of the matrix

M ′
j = Mj + (λd + 1)I j =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 λd 0 · · · 0 0 0
1 0 λd · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 λd 0
0 0 0 · · · 1 0 λd
0 0 0 · · · 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with eigenvalue λd + 1 − μ. These matrices are tridiagonal Toeplitz matrices, and there
is an exact formula for the eigenvalues and eigenvectors. (See, for instance, Example 7.2.5

in [16].) The Perron–Frobenius eigenvalue of M ′
j is 2

√
λd cos

(
π
j+1

)
, with left eigenvector

(
γ j,1, . . . , γ j, j

)
given by

γ j,i = (λd)( j−i)/2
sin

(
iπ
j+1

)

sin
(

jπ
j+1

) .

This means that the largest eigenvalue of Mj is −λd + O(
√

λd), so that we obtain

(1 + λ)�Q j (x) � −λd
Q j (x)

n
+ Q j+1(x)

n
(1 ≤ j < k),

meaning that Q j (x) will drift to a value close to Q j+1(x)/λd . The choices of coefficients
ensure that, if the u j (x) are all near to ũ j � 1 − (1 − λ)(λd) j−1, then

Q j (x) = n
j∑

i=1

γ j,i (1 − ui (x)) � n(1 − λ)

j∑

i=1

sin
(

iπ
j+1

)

sin
(

jπ
j+1

) (λd)i−1+( j−i)/2,

and the top term i = j dominates the rest of the sum, provided λd is large, so Q j (x) �
(1−u j (x)): this is also true for j = k. Thus the relationship Q j � Q j+1/λd is as we would
expect.

This means that, if Q j+1(Xt ) remains in an interval around Q̃ j+1 := n(1 − λ)(λd) j for
a long time, then Q j (Xt ) will enter some interval around Q̃ j within a short time, and stay
there for a long time. We can then conduct the analysis for each Q j in turn, starting with
j = k, to show that indeed all the Q j (Xt ) quickly become close to Q̃ j , and stay close to Q̃ j

for a long time. This will then imply that the u j (Xt ) all become and remain close to ũ j .
A subsidiary application of this same technique forms another important step in the proofs

(see the proof of Lemma 6.5(1)). If we do not assume that uk+1(x) is zero, but instead build
this term into our calculations, we obtain the approximation
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(1 + λ)�Qk(x) � (1 − λ − uk+1(x)) − Qk(x)

(λd)k−1n
.

If uk+1(Xt ) remains above ε(1− λ), for some ε > 0, for a long time, this drift equation tells
us that Qk drifts down into an interval whose upper end is below the value Q̃k , and then each
of the Q j in turn drift down into intervals whose upper ends are below the corresponding
Q̃ j , and remain there. For j = 1, this means that the number of empty queues is at most
(1 − δ)(1 − λ)n, for some positive δ, for a long period of time; this results in a persistent
drift down in the total number of customers (since the departure rate is bounded below by
n − (1− δ)(1− λ)n = λn + δ(1− λ)n while the arrival rate is λn), and this is not possible.

3 RandomWalks with Drifts

In this section, we state some general results about the long-term behaviour of real-valued
functions of a Markov chain with bounds on the drift. These are variants of results of Luczak
and McDiarmid [11] and Brightwell and Luczak [2], and we do not give the proofs in full
detail.

We start with a lemma concerning random walks with a drift, adapted from a result of
Luczak and McDiarmid [11]. We have a sequence (Rt ) of real-valued random variables; on
some “good” event, the jumps Zt = Rt − Rt−1 have magnitude at most 1, and expectation
at most −v < 0. The lemma shows that, on the good event, with high probability, such a
random walk, started at some value r0, hits a lower value r1 after not too many more than
(r0 − r1)/v steps.

Lemma 3.1 Let ϕ0 ⊆ ϕ1 ⊆ · · · ⊆ ϕm be a filtration, and let Z1, . . . , Zm be random
variables taking values in [−1, 1] such that each Zi is ϕi -measurable. Let E0, E1, . . . , Em−1

be events where Ei ∈ ϕi for each i , and let E = ⋂m−1
i=0 Ei . Fix v ∈ (0, 1), and let r0, r1 ∈ R

be such that r0 > r1 and vm ≥ 2(r0 − r1). Set R0 = r0 and, for each integer t > 0, let
Rt = R0 +∑t

i=1 Zi .
Suppose that, for each i = 1, . . . ,m,

E(Zi | ϕi−1) ≤ −v on Ei−1 ∩ {Ri−1 > r1}.
Then

P(E ∩ {Rt > r1 ∀t ∈ {1, . . . ,m}}) ≤ exp
(

− v2m

8

)
.

We omit the proof, which is similar to one in [11].
For a discrete-time Markov process (Xt ) with state space X , a real-valued function F

defined on X , and an element x of X , we define

�F(x) := E[F(Xt+1) − F(Xt ) | Xt = x],
and call this the drift of F (at x). Similarly, we shall also use the notation �F(Xt ) to denote
the random variable E[F(Xt+1) − F(Xt ) | Xt ].

The next lemma says that, if the function F has a negative drift of magnitude at least v > 0
on a good set U , and makes jumps of size at most 1, then it is unlikely to increase by a large
positive value before leaving U .

Lemma 3.2 Let a, v and p be positive real numbers, with v ≤ p ≤ 1. Let (Xt )t≥0 be a
discrete-timeMarkov process with state-spaceX , adapted to the filtration (ϕt )t≥0. Let F be a
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real-valued function onX such that, |F(y)− F(x)| ≤ 1 whenever P(Xi+1 = y | Xi = x) >

0. Let U be a subset of X such that, for x ∈ U , �F(x) ≤ −v and P(F(Xi+1) = F(Xi ) |
Xi = x) ≥ 1 − p. Let TU = inf{t : Xt /∈ U}, and let T = inf{t : F(Xt ) − F(X0) ≥ a}
Then

P(T ≤ TU ) ≤ 100

v2
e−va/4p.

Proof (Sketch) We use Theorem 2.5 of [2], applied to the function F . Translated into our
setting, that result says that, for all t ≥ 0, and all ω > 0,

P({TU ≥ t} ∩ {F(Xt ) − F(X0) + vt > max(
√

ωpt, ω)} | ϕ0) ≤ 2e−ω/4.

For each t ,we chooseω(t) = v
2p (2a+|vt−a|). It is easy to verify thatmax(

√
ω(t)pt, ω(t)) <

vt + a for each t (note that the hypotheses imply that v ≤ p). Therefore

P(T < TU | ϕ0) ≤ 2
∞∑

t=0

e−ω(t)/4 ≤ 4e−va/4p
∞∑

i=0

e−v2i/8p ≤ 100

v2
e−va/4p,

as desired. ��
We now use the two lemmas above to prove a result about real-valued functions of a

Markov chain which we shall use repeatedly in our proofs.

Lemma 3.3 Let h, v, c, ρ ≥ 2, m, p ≤ 1 and s be positive real numbers with vm ≥ 2(c−h).
Let (Xt )t≥0 be a discrete-time Markov process with state-space X , adapted to the filtration
(ϕt )t≥0. Let S be a subset of X , and let F be a real-valued function on X such that, for all
x ∈ S with F(x) ≥ h,

�F(x) ≤ −v, and P(F(Xt+1) �= F(Xt ) | Xt = x) ≤ p,

and for all t ≥ 0, |F(Xt+1) − F(Xt )| ≤ 1 a.s. Let T ∗ be any stopping time, and suppose
that F(XT ∗) ≤ c a.s.

Let

T0 = inf{t ≥ T ∗ : Xt /∈ S},
T1 = inf{t ≥ T ∗ : F(Xt ) ≤ h},
T2 = inf{t > T1 : F(Xt ) ≥ h + ρ}.

Then

(i) P(T1 ∧ T0 > T ∗ + m) ≤ exp(−v2m/8);

(ii) P(T2 ≤ s ∧ T0) ≤ 100s

v2
exp(−ρv/8p).

When we use the lemma, m will be much smaller than s, with high probability T ∗ will be
much smaller than s, and also P(T0 ≤ s) will be small. In these circumstances, the lemma
allows us to conclude that P(T1 > T ∗ + m) and P(T2 ≤ s) are small. This means that, with
high probability, F(Xt ) decreases from its value at T ∗ (at most c) to below h in at most a
further m steps, and does not increase back above h + ρ before time s. We shall sometimes
use the conclusion of (ii) in the weaker form P(T2 ≤ s < T0) ≤ 100s

v2
exp(−ρv/8p). For

most uses of part (ii), we shall simply set p = 1, but on occasion we need to use the stronger
result in cases where the function F rarely changes value.
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Proof We start by proving the lemma in the special case where the stopping time T ∗ is equal
to 0.

For (i), we apply Lemma 3.1. The filtration ϕ0 ⊆ ϕ1 ⊆ · · · ⊆ ϕm will be the initial
segment of the filtration (ϕt )t≥0. For t ≥ 1, we set Zt = F(Xt ) − F(Xt−1), so that Rt :=
R0 +∑t

i=1 Zi = F(Xt ). For t ≥ 0, we set Et to be the event that T0 > t (i.e., Xi ∈ S for
all i with 0 ≤ i ≤ t), so E = ⋂m−1

i=0 Ei is the event that T0 ≥ m. We set r0 = F(X0) ≤ c,
and r1 = h. We may assume that r0 > r1; otherwise T1 = 0 and there is nothing to prove.

On the event Ei−1 ∩ {Ri−1 > r1}, we have Xi−1 ∈ S and F(Xi−1) > r1 = h, so
E(Zi | ϕi−1) = �F(Xi−1) ≤ −v. Thus, noting that vm ≥ 2(r0 − r1) by our assumption
on m, we see that the conditions of Lemma 3.1 are satisfied. The event that Rt > r1 for all
t = 1, . . . ,m is the event that T1 > m, so

P(T1 ∧ T0 > m) ≤ P({T1 > m} ∩ {T0 ≥ m}) ≤ e−v2m/8,

as required for (i).
We move on to (ii). For each time r ∈ {0, . . . , s − 1}, set

T (r) = min{t ≥ 0 : F(Xr+t ) /∈ [h, h + ρ)}.
We say that r is a departure point if: T1 ≤ r , F(Xr ) ∈ [h, h + 1), F(Xr+T (r)) ≥ h + ρ, and
r + T (r) ≤ s ∧ T0. To say that T2 ≤ s ∧ T0 means that F(Xt ) crosses from its value, at most
h, at time T1, up to a value at least h + ρ, taking steps of size at most 1, by time s ∧ T0. This
is equivalent to saying that there is at least one departure point r ∈ [0, s). Therefore

P(T2 ≤ s ∧ T0) ≤
s−1∑

r=0

P

(
{T1 ≤ r} ∩ {F(Xr ) ∈ [h, h + 1)}

∩{F(Xr+T (r)) ≥ h + ρ} ∩ {r + T (r) ≤ s ∧ T0}
)

=
s−1∑

r=0

E

[
1{T1≤r}1{F(Xr )∈[h,h+1)} E

[
1{F(Xr+T (r))≥h+ρ}1{r+T (r)≤s∧T0} | ϕr

]]
.

Fix any r ∈ [0, s). We claim that, for any h0 ∈ [h, h + 1), on the ϕr -measurable event
that F(Xr ) = h0, the conditional expectation

E
[
1{F(Xr+T (r))≥h+ρ}1{r+T (r)≤s∧T0} | ϕr

]

is at most 100
v2

e−ρv/8p . This will imply that each term of the sum above is at most 100
v2

e−ρv/8p ,

and so that P(T2 ≤ s ∧ T0) ≤ 100s
v2

exp(−ρv/8p), as required.
Toprove the claim,weuseLemma3.2.Weconsider the re-indexed process (X ′

t ) = (Xr+t );
by theMarkov property, this is a Markov chain with the same transition probabilities as (Xt ),
and initial state X ′

0 = Xr with F(X ′
0) = h0. We set ϕ′

i = ϕr+i for each i , so that (X ′
i )

is adapted to the filtration (ϕ′
i ). We set a = h + ρ − h0 ≥ ρ − 1 ≥ ρ/2. We also set

U = S ∩ {x : F(x) ≥ h}, TU = inf{i : X ′
i /∈ U}, and T = inf{i : F(Xr+i ) ≥ a}. Therefore,

if r + T (r) ≤ T0 and F(Xr+T (r)) ≥ h + ρ, then T = T (r) ≤ TU .
For i ≤ TU , we have X ′

i−1 = Xr+i−1 ∈ S and F(X ′
i−1) ≥ h, and therefore �F(X ′

i−1) ≤
−v, and also P(F(X ′

i ) = F(X ′
i−1) | ϕi−1) ≥ 1 − p. From Lemma 3.2, we now conclude

that, on the event F(Xr ) = h0,

P

(
{F(Xr+T (r)) ≥ h + ρ} ∩ {r + T (r) ≤ s ≤ T0}

∣
∣
∣ϕr

)

≤ P

(
T ≤ TU

)
≤ 100

v2
e−va/4p ≤ 100

v2
e−ρv/8p,
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as required. This completes the proof in the special case where T ∗ = 0.
We now proceed to the general case. Suppose then that the hypotheses of the lemma are

satisfied, with stopping time T ∗. We apply the result we have just proved to the process
(X ′

t ) = (XT ∗+t ). By the strong Markov property, (X ′
t ) is also a Markov process, adapted

to the filtration (ϕ′
t )t≥0 = (ϕT ∗+t )t≥0. The condition that F(XT ∗) ≤ c is equivalent to

F(X ′
0) ≤ c. Set:

T ′
0 = inf{t ≥ 0 : X ′

t /∈ S} = inf{t ≥ 0 : XT ∗+t /∈ S} = T0 − T ∗

T ′
1 = inf{t ≥ 0 : F(X ′

t ) ≤ h} = inf{t ≥ 0 : F(XT ∗+t ) ≤ h} = T1 − T ∗

T ′
2 = inf{t > T ′

1 : F(X ′
t ) ≥ h + ρ} = inf{t > T ′

1 : F(XT ∗+t ) ≥ h + ρ} = T2 − T ∗,

and note that these are all stopping times with respect to the filtration (ϕ′
t ). The special case

of the result (with T ∗ = 0) now tells us that:

(i) P(T1 ∧ T0 > T ∗ + m) = P((T ∗ + T ′
1) ∧ (T ∗ + T ′

0) > T ∗ + m)

= P(T ′
1 ∧ T ′

0 > m)

≤ exp(−v2m/8);
(ii) P(T2 ≤ s ∧ T0) = P(T ∗ + T ′

2 ≤ s ∧ (T ∗ + T ′
0))

≤ P(T ∗ + T ′
2 ≤ (T ∗ + s) ∧ (T ∗ + T ′

0))

= P(T ′
2 ≤ s ∧ T ′

0)

≤ 100p

v2
exp(−ρv/8p).

In both cases, these are the desired results. ��

We also use a “reversed” version of Lemma 3.3 where �F(x) ≥ v for all x in some
“good” set S with F(x) ≤ h. The result and proof are practically identical to Lemma 3.3,
changing the directions of inequalities where necessary, and using “reversed” versions of
Lemmas 3.1 and 3.2.

The next lemma is a more precise version of Lemma 2.2 in [11]. We omit the proof,
which is exactly as in [11], except that we track more carefully the values of the various
constants appearing in that proof, and separate out the effects of the two occurrences of δ in
that theorem. We will use this result in our proof of Lemma 10.1, showing rapid mixing.

Lemma 3.4 Let (ϕt )t≥0 be a filtration. Let Z1, Z2, . . . be {0,±1}-valued random variables,
where each Zi is ϕi -measurable. Let S0 ≥ 0 a.s., and for each positive integer j let S j =
S0 +∑ j

i=1 Zi . Let A0, A1, . . . be events, where each Ai is ϕi -measurable.
Suppose that there is a positive integer k0 and a constant δ with 0 < δ < 1/2 such that

P(Zi = −1 | ϕi−1) ≥ δ on Ai−1 ∩ {Si−1 ∈ {1, . . . , k0 − 1}} and P(Zi = −1 | ϕi−1) ≥ 3/4
on Ai−1 ∩ {Si−1 ≥ k0}. Then, for each positive integer m

P

( m⋂

i=1

{Si �= 0} ∩
m−1⋂

i=0

Ai

)
≤ P(S0 > �m/16�) + 3 exp

(

− δk0−1

200k0
m

)

.

Several times we shall use the fact that, if Z is a binomial or Poisson random variable
with mean μ, then for each 0 ≤ ε ≤ 1 we have

P(Z − μ ≤ −εμ) ≤ e−(1/2)ε2μ. (3.1)
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The Supermarket Model with Bounded Queue Lengths in Equilibrium 1165

4 Coupling

We now introduce a natural coupling of copies of the (n, d, λ)-supermarket process (Xx
t )

with different initial states x . The coupling is a natural adaptation to discrete time of that
in [11]. In this section, we make no assumptions about the values of the parameters n, λ and
d .

We describe the coupling in terms of three independent sequences of random variables.
There is an iid sequence V = (V1, V2, . . .) of 0–1 random variables where each Vi takes
value 1 with probability λ/(1 + λ); Vi = 1 if and only if time i is an arrival. Corresponding
to every time i there is also an ordered list Di of d queue indices, each chosen uniformly at
random with replacement. LetD = (D1, D2, . . .). Furthermore, corresponding to every time
i there is a uniformly chosen queue index D̃i . Let D̃ = (D̃1, D̃2, . . .). At time i , Di will be
used if Zi = 1, and there will be an arrival to the first shortest queue in Di ; otherwise, there
will be a departure from the queue with index D̃i , if that queue is currently non-empty.

Suppose that we are given a realisation (v,d, d̃) of (V,D, D̃). For each possible initial
queue-lengths vector x ∈ Z

n+, this realisation yields a deterministic process (xt )with x0 = x :
let us write xt = st (x; v,d, d̃). Then, for each x ∈ Z

n+, the process st (x;V,D, D̃) has the
distribution of the (n, d, λ)-supermarket process Xx

t with initial state x . In this way, we
construct copies (Xx

t ) of the (n, d, λ)-supermarket process for each possible starting state
x on a single probability space. When we treat more than one such copy at the same time,
we always work in this probability space, and we let P(·) denote the corresponding coupling
measure.

We shall use the following lemma, which is a discrete-time analogue of Lemma 2.3 in [11]
and is proved in exactly the same way.

Lemma 4.1 Fix any triple z,d, d̃ as above, and for each queue-lengths vector x, write st (x)
for st (x; z,d, d̃). Then, for each x, y ∈ Z

n+, both ‖st (x)− st (y)‖1 and ‖st (x)− st (y)‖∞ are
nonincreasing; and further, if 0 ≤ t < t ′ and st (x) ≤ st (y), then st ′(x) ≤ st ′(y).

Given positive real numbers � and b, we set

A0(�, b) = {x : ‖x‖∞ ≤ � and ‖x‖1 ≤ bn};
A1(�, b) = {x : ‖x‖∞ ≤ 3� and ‖x‖1 ≤ 3bn}.

We also set

�∗ = (1 − λ)−1 log2 n, b∗ = 2(1 − λ)−1, A0 = A0(�
∗, b∗), A1 = A1(�

∗, b∗).

Thus a state x is in A0 if there are at most 2n(1− λ)−1 customers in total, and no more than
(1 − λ)−1 log2 n in any queue. These requirements are relaxed by a factor of 3 in A1.

The next result tells us that the (n, d, λ)-supermarket process (Yt ), in equilibrium, is very
unlikely to be outside the set A0, for any d . This is accomplished by proving the result for
d = 1, when the process is easy to analyse explicitly, and then using coupling in d to deduce
the result for all d . Of course, the result is actually extremely weak for all d > 1, and later
we shall show a much stronger result whenever the various parameters of the model satisfy
the conditions of Theorem 1.1; the importance of the lemma below is that it gets us started
and enables us to say something about where the equilibrium of the process lives.

Lemma 4.2 Let (Yt ) be a copy of the (n, d, λ)-supermarket process in equilibrium. Then
P(Yt /∈ A0) ≤ 2ne− log2 n.
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1166 G. Brightwell et al.

Proof Let Ỹ denote a stationary copy of the (n, 1, λ)-supermarket process, in which each
arriving customer joins a uniform random queue. Then the queue lengths Ỹt ( j) are indepen-
dent geometric random variables with mean λ/(1 − λ), where P(Ỹt ( j) = r) = (1 − λ)λr

for r = 0, 1, 2, . . .. Therefore, P(‖Ỹt‖∞ ≥ r) ≤ nλr , and also it can easily be checked that

P

(
‖Ỹt‖1 ≥ 2n(1 − λ)−1

)
≤ e−n/4.

As mentioned in the remarks after Theorem 1.1, there is a coupling between supermarket
processes with different values of d , which can be used to show that the equilibrium copy (Yt )
of the (n, d, λ)-supermarket process, for any d , also satisfies P

(‖Yt‖1 ≥ 2n(1 − λ)−1
) ≤

e−n/4 and P(‖Yt‖∞ ≥ log2 n(1 − λ)−1) ≤ nλlog
2 n(1−λ)−1 ≤ ne− log2 n , as required. ��

Next we prove a very crude concentration of measure result: if the process (Yt ) in equi-
librium is concentrated inside some set A0(�, b), and we start a copy (Xx

t ) of the process at
a state x ∈ A0(�, b), then the process (Xx

t ) is unlikely to leave the larger set A1(�, b) over a
long period of time.

Lemma 4.3 Let � and b be natural numbers and x a queue-lengths vector in A0(�, b). Let
(Yt ) be a copy of the (n, d, λ)-supermarket process in equilibrium, and let (Xx

t ) be a copy
started in state x. Then for any natural number s,

P(∃t ∈ [0, s], Xx
t /∈ A1(�, b)) ≤ P(∃t ∈ [0, s], Yt /∈ A0(�, b)).

Proof By Lemma 4.1, we can couple (Xx
t ) and (Yt ) in such a way that ‖Xx

t − Yt‖1 and
‖Xx

t − Yt‖∞ are both non-increasing, and hence that, for each t ≥ 0,

‖Xx
t ‖1 ≤ ‖Xx

t − Yt‖1 + ‖Yt‖1 ≤ ‖x − Y0‖1 + ‖Yt‖1
≤ ‖x‖1 + ‖Y0‖1 + ‖Yt‖1 ≤ bn + ‖Y0‖1 + ‖Yt‖1,

and similarly

‖Xx
t ‖∞ ≤ � + ‖Y0‖∞ + ‖Yt‖∞.

We deduce that, for each t ≥ 0,

{Xx
t /∈ A1(�, b)} = {‖Xx

t ‖1 > 3bn} ∪ {‖Xx
t ‖∞ > 3�}

⊆ {‖Y0‖1 > bn} ∪ {‖Yt‖1 > bn} ∪ {‖Y0‖∞ > �} ∪ {‖Yt‖∞ > �}
= {Y0 /∈ A0(�, b)} ∪ {Yt /∈ A0(�, b)}.

The result now follows immediately. ��
We shall use Lemma 4.3 later for general values of � and b, but for now we note the

following immediate consequence of the previous two lemmas. Let T †
A = T †

A(x) = inf{t :
Xx
t /∈ A1}: this will be an instance of a more general notation we introduce later: when we

have a pair of sets S0 ⊆ S1, we will use TS to denote the first time we enter the inner set,
and T †

S to denote the first time after TS that we leave the outer one.

Lemma 4.4 Let x be any queue-lengths vector in A0. Then, for n sufficiently large,

P

(
T †
A(x) ≤ e

1
3 log2 n

)
≤ e− 1

2 log2 n .

Proof The probability in question is P(∃t ∈ [0, e 1
3 log2 n], Xx

t /∈ A1) which, by Lemma 4.3
and Lemma 4.2, is at most

P(∃t ∈ [0, e 1
3 log2 n], Yt /∈ A0) ≤ (e

1
3 log2 n + 1)P(Yt /∈ A∗

0) ≤ 3ne− 2
3 log2 n,

which, for n sufficiently large, is at most e− 1
2 log2 n , as required. ��
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5 Functions and Drifts

We now start the detailed proofs of our main results.
As explained in Sect. 2, we will consider a sequence of functions Qk , Qk−1, …, Q1

defined on the set Zn+ of queue-lengths vectors. We now give precise definitions of these
functions, along with another function Pk−1, and derive some of their properties.

The results in this section will be used in the course of the proof of Theorem 1.1, and we
could assume that we are in the regime covered by our theorem; however, for this section
all that is necessary is that λd ≥ 16. In the special case k = 1, we need only consider the
function Qk = Q1 and its drift; otherwise we assume that k ≥ 2.

As in Sect. 2, let Qk be the function defined on the set Zn+ of all queue-lengths vectors by

Qk(x) = n
k∑

i=1

γi (1 − ui (x)),

where, for i = 1, . . . , k,

γi = 1 − 1

(λd)i
− i − 1

(λd)k
.

It is also convenient to set γ0 = 0. Evidently γi < 1 for each i , an inequality we shall use
freely in future. We also note that, provided λd > 2,

γi+1 − γi = 1

(λd)i
− 1

(λd)i+1 − 1

(λd)k
, (5.1)

for i = 0, . . . , k − 1. Therefore γi is increasing in i ; also γk = 1 − k(λd)−k .
If k ≥ 2, we set Pk−1(x) = n

∑k−1
i=1 (1 − ui (x)). Also, for j = 1, . . . , k − 1, we let

Q j (x) = n
∑ j

i=1 γ j,i (1 − ui (x)), where the coefficients γ j,i are given by

γ j,i = (λd)( j−i)/2
sin

(
iπ
j+1

)

sin
(

jπ
j+1

) .

Consistent with the expression above, we also define γ j,0 = γ j, j+1 = 0. It can easily be
checked that, for each i = 1, . . . , j − 1, and for each j = 1, . . . , k − 1,

λdγ j,i+1 + γ j,i−1 = 2
√

λd cos
( π

j + 1

)
γ j,i .

This is equivalent to saying that the γ j,i form eigenvectors of the tridiagonal Toeplitz matrices

Mj given in Sect. 2, with eigenvalue −λd − 1 + 2
√

λd cos
(

π
j+1

)
.

We will need some bounds on the sizes of the Q j (x), for j < k. Observe that γ j, j = 1
for each j , while generally we have

1 ≤ sin(iπ/( j + 1))

sin( jπ/( j + 1))
= sin(iπ/( j + 1))

sin(π/( j + 1))
≤ i, (5.2)

since the sine function is concave on [0, π ]. Thus (λd)( j−i)/2 ≤ γ j,i ≤ i(λd)( j−i)/2 and
therefore

Q j (x) ≤ n
j∑

i=1

i(λd)( j−i)/2 ≤ n

(1 − 1/
√

λd)2
≤ 2n(λd)( j−1)/2, (5.3)
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1168 G. Brightwell et al.

provided λd ≥ 16. We also note at this point that changing one component x(�) of x by ±1
changes Q j (x) by at most γ j,1 = (λd)( j−1)/2.

It can readily be checked that, for j ≥ 1, the function

f (i) = sin

(
iπ

j + 2

)
/
sin

(
iπ

j + 1

)

is increasing over the range [1, j], and so we have, for 1 ≤ i ≤ j ≤ k − 2:

γ j+1,i

γ j,i
= √

λd
sin(iπ/( j + 2)) sin(π/( j + 1))

sin(iπ/( j + 1)) sin(π/( j + 2))

≤ √
λd

sin( jπ/( j + 2)) sin(π/( j + 1))

sin( jπ/( j + 1)) sin(π/( j + 2))

= √
λd

sin(2π/( j + 2))

sin(π/( j + 2))
≤ 2

√
λd,

using (5.2) for the final inequality. A consequence is that, for j = 1, . . . , k − 2, and any
x ∈ Z

n+,

Q j+1(x)

n
= (1 − u j+1(x)) +

j∑

i=1

γ j+1,i (1 − ui (x))

≤ (1 − u j+1(x)) +
j∑

i=1

2
√

λdγ j,i (1 − ui (x))

≤ (1 − u j+1(x)) + 2
√

λd
Q j (x)

n
. (5.4)

For j = k − 1, we have the stronger inequality that, for any x ∈ Z
n+,

Qk(x)

n
≤

k∑

i=1

(1 − ui (x)) ≤ (1 − uk(x)) + Qk−1(x)

n
. (5.5)

We now prove that the drift of the function Qk(x) is approximately equal to
1

1 + λ

(

1 − λ − uk+1(x) − 1

(λd)k−1

Qk(x)

n

)

.

Lemma 5.1 If k ≥ 2, then, for any state x ∈ Z
n+,

(1 + λ)�Qk(x) ≤ γk
(
(1 − λ) − uk+1(x) + λ exp(−dQk(x)/kn)

)

− 1

(λd)k−1

Qk(x)

n

(

1 − 2

λd

)

,

(1 + λ)�Qk(x) ≥ γk
(
(1 − λ) − uk+1(x)

)− 1

(λd)k−1

Qk(x)

n

−
(
Qk−1(x)

n

)2 1

(λd)k−3 .

For k = 1, we have

(1 + λ)�Q1(x) ≤ γ1
(
(1 − λ) − u2(x) + λ exp(−dQ1(x)/n)

)− Q1(x)

n
,

(1 + λ)�Q1(x) ≥ γ1
(
(1 − λ) − u2(x)

)− Q1(x)

n
.
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Proof As in (2.1), we have that, for i = 1, . . . , k,

�ui (x) = 1

n(1 + λ)

(
λui−1(x)

d − λui (x)
d − ui (x) + ui+1(x)

)
.

and that u0 is identically equal to 1. We deduce that

�Qk(x) = −n
k∑

i=1

γi�ui (x)

= 1

1 + λ

k∑

i=1

γi

(
− λui−1(x)

d + λui (x)
d + ui (x) − ui+1(x)

)
.

We rearrange the formula above as follows:

(1 + λ)�Qk(x) = γk

(
(1 − λ) + λuk(x)

d − uk+1(x) + λ(1 − uk−1(x)
d) − (1 − uk(x))

)

+
k−1∑

i=1

γi

(
λ(1 − ui−1(x)

d) − λ(1 − ui (x)
d)

−(1 − ui (x)) + (1 − ui+1(x))
)

= γk

(
(1 − λ) + λuk(x)

d − uk+1(x)
)

+λ

k−1∑

i=1

(γi+1 − γi )(1 − ui (x)
d) −

k∑

i=1

(γi − γi−1)(1 − ui (x)).

Here we have used the facts that γ0 = 0 and 1 − u0(x) = 0.
Now, for 1 ≤ i ≤ k, we have 1 − ui (x) ≤ 1 − uk(x) for all x , and γi ≤ 1. Therefore

Qk(x) ≤ nk(1 − uk(x)), and hence

0 ≤ uk(x)
d ≤

(

1 − Qk(x)

kn

)d

≤ exp(−dQk(x)/kn).

For k ≥ 2, in order to estimate the terms constituting the two sums, we note the inequalities
d(1 − u) − (d

2

)
(1 − u)2 ≤ 1 − ud ≤ d(1 − u). To obtain our upper bound on �Qk(x), we

apply the inequality 1− ui (x)d ≤ d(1− ui (x)) for each i = 1, . . . , k − 1. Using also (5.1),
we have

λ

k−1∑

i=1

(γi+1 − γi )(1 − ui (x)
d) −

k∑

i=1

(γi − γi−1)(1 − ui (x))

≤ λd
k−1∑

i=1

(γi+1 − γi )(1 − ui (x)) −
k∑

i=1

(γi − γi−1)(1 − ui (x))

= −
[

1

(λd)k−1 − 2

(λd)k

]

(1 − uk(x))

+
k−1∑

i=1

[
λd

(λd)i
− λd

(λd)i+1 − λd

(λd)k
− 1

(λd)i−1 + 1

(λd)i
+ 1

(λd)k

]

(1 − ui (x))
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= − 1

(λd)k−1

[(

1 − 2

λd

)

(1 − uk(x)) +
k−1∑

i=1

(

1 − 1

λd

)

(1 − ui (x))

]

≤ − 1

(λd)k−1

Qk(x)

n

(

1 − 2

λd

)

.

This establishes the required upper bound on (1+λ)�Qk(x). The calculation works because
the γi are the entries of a good approximation to the Perron–Frobenius eigenvector of the
matrix Mk defined in Sect. 2.

For the lower bound, the previous calculation, and the bound 1 − ui (x)d ≥ d(1 − u) −(d
2

)
(1 − u)2, lead us to

λ

k−1∑

i=1

(γi+1 − γi )(1 − ui (x)
d) −

k∑

i=1

(γi − γi−1)(1 − ui (x))

≥ −λ

(
d

2

) k−1∑

i=1

(γi+1 − γi )(1 − ui (x))
2

− 1

(λd)k−1

[(

1 − 2

λd

)

(1 − uk(x)) +
k−1∑

i=1

(

1 − 1

λd

)

(1 − ui (x))

]

≥ −λ

(
d

2

) k−1∑

i=1

(γi+1 − γi )(1 − ui (x))
2 − 1

(λd)k−1

Qk(x)

n
.

Here we used the fact that 1 − 1/(λd) ≤ γi for each i .
It remains to show that

λ

(
d

2

) k−1∑

i=1

(γi+1 − γi )(1 − ui (x))
2 ≤

(
Qk−1(x)

n

)2 1

(λd)k−3 .

We observe that

(
Qk−1(x)

n

)2

=
⎛

⎝
k−1∑

i=1

(λd)(k−1−i)/2
sin

(
iπ
k

)

sin
(

(k−1)π
k

) (1 − ui (x))

⎞

⎠

2

≥
k−1∑

i=1

(λd)k−1−i (1 − ui (x))
2

≥ (λd)k−1
k−1∑

i=1

(γi+1 − γi )(1 − ui (x))
2,

which implies the required inequality.
In the special case k = 1, the equation for the drift reduces to

(1 + λ)�Q1(x) = γ1(1 − λ − u2(x)) − Q1(x)

n
+ γ1λu1(x)

d ,

and both the required bounds follow immediately. ��
We prove a similar result for the functions Q j (x), 1 ≤ j ≤ k−1. Ideally, the drift bounds

would be expressed in terms of Q j (x) itself and Q j+1(x): however, there is a complication.
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In the upper bound, there appears a term which can be bounded above by λ
(d
2

)∑ j
i=1 γ j,i (1−

ui (x))2, and we would like to show that this is small compared with λd
∑ j

i=1 γ j,i (1−ui (x)).
This is true if 1 − u j (x) � 1/d , but in general we cannot assume this. We bound this term
above, very crudely, by

λ

(
d

2

)(k−1∑

i=1

(1 − ui (x))

)⎛

⎝
j∑

i=1

γ j,i (1 − ui (x))

⎞

⎠ = λ

(
d

2

)
Pk−1(x)Q j (x)

n2
;

we use the function Pk−1 here because its drifts are relatively easy to handle.

Lemma 5.2 Fix j with 1 ≤ j ≤ k − 1. For any state x ∈ Z
n+, we have

(1 + λ)�Q j (x) ≤ −λd
Q j (x)

n

(

1 − 2√
λd

− dPk−1(x)

n

)

+ Q j+1(x)

n
,

(1 + λ)�Q j (x) ≥ −λd
Q j (x)

n

(

1 + 2√
λd

)

+ Q j+1(x)

n
.

Proof We begin by calculating

(1 + λ)�Q j (x) =
j∑

i=1

γ j,i

(
− λui−1(x)

d + λui (x)
d + ui (x) − ui+1(x)

)

=
j∑

i=1

γ j,i

(
λ(1 − ui−1(x)

d) − λ(1 − ui (x)
d)
)

+
j∑

i=1

γ j,i

(
− (1 − ui (x))

+(1 − ui+1(x))
)
.

Rearranging now gives

(1 + λ)�Q j (x) =
j∑

i=1

(γ j,i−1 − γ j,i )(1 − ui (x))

−λ

j∑

i=1

(γ j,i − γ j,i+1)(1 − ui (x)
d) + γ j, j (1 − u j+1(x)).

Recall that γ j,0 = γ j, j+1 = 0, and note that γ j,1 > γ j,2 > · · · > γ j, j = 1.
As before, we proceed by approximating 1 − ui (x)d by d(1 − ui (x)), for i ≤ j . Using

first that 1 − ui (x)d ≤ d(1 − ui (x)) for each i , we have

(1 + λ)�Q j (x) ≥
j∑

i=1

(γ j,i−1 − γ j,i )(1 − ui (x)) − λd
j∑

i=1

(γ j,i − γ j,i+1)(1 − ui (x))

+(1 − u j+1(x))

=
j∑

i=1

(1 − ui (x))
[
γ j,i−1 + λdγ j,i+1 − (λd + 1)γ j,i

]+ (1 − u j+1(x))

= −
j∑

i=1

(1 − ui (x))γ j,i

[

λd + 1 − 2
√

λd cos

(
π

j + 1

)]

+ (1 − u j+1(x))
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= −
[

λd + 1 − 2
√

λd cos

(
π

j + 1

)]
Q j (x)

n
+ (1 − u j+1(x))

≥ −λd
Q j (x)

n
+ Q j+1(x)

n
− 2

√
λd

Q j (x)

n
,

as claimed. In the last line above, we used (5.4), as well as the inequality 2
√

λd cos(π/( j +
1)) ≥ √

2λd ≥ 1, valid since λd ≥ 16.
For the upper bound, we use the facts that 1 − u j+1(x) ≤ Q j+1(x)

n and 1 − ui (x)d ≥
d(1 − ui (x)) − (d

2

)
(1 − ui (x))2, to obtain

(1 + λ)�Q j (x) ≤ −
[

λd + 1 − 2
√

λd cos

(
π

j + 1

)]
Q j (x)

n
+ (1 − u j+1(x))

+λ

(
d

2

) j∑

i=1

(γ j,i − γ j,i+1)(1 − ui (x))
2

≤ −λd
Q j (x)

n

(

1 − 2√
λd

)

+ Q j+1(x)

n

+ Pk−1(x)

n
λ

(
d

2

) j∑

i=1

γ j,i (1 − ui (x)).

This is the result we require, since
∑ j

i=1 γ j,i (1 − ui (x)) = Q j (x)/n. ��

We have a similar result for the function Pk−1. For this function, we need only a fairly
crude upper bound on the drift, and we omit the simple proof.

Lemma 5.3 For any state x ∈ Z
n+, we have

(1 + λ)�Pk−1(x) ≤ −λdPk−1(x)

(k − 1)n
+ Qk(x)

n
.

6 Hitting Times and Exit Times

At this point, we begin the proof of Theorem 1.1. Accordingly, from now on we fix values of
α, β ∈ (0, 1), and a natural number k, satisfying (k−1)β < α < kβ and 2α < 1+ (k−1)β.
Throughout the proof, we consider the (n, d, λ)-supermarket model with λ = 1 − n−α and
d = nβ . (As mentioned in the Introduction, our proofs go through essentially unchanged if
we assume only that 1−λ = n−α+δ1(n) and d = nβ+δ2(n), where δ1(n) and δ2(n) tend to zero
as n → ∞, where we replace the expression n−α+( j−1)β in the definition of N ε(n, α, β)

below by (1 − λ)d j−1.)
We shall actually prove a result stronger than Theorem 1.1, in that we replace the “toler-

ance” 1/ log n in that result by a general function ε = ε(n). We assume that ε(n) ≤ 1/100,
with 1/ε(n) = o(nδ) for every δ > 0, though in fact the proof goes through even if ε(n)

tends to zero as n−δ for δ sufficiently small (in terms of α and β).
Accordingly, given α, β ∈ (0, 1), and ε = ε(n) as above, set k = �α/β� as usual, and let

N ε(n, α, β) be the set of queue-lengths vectors x such that uk+1(x) = 0 and, for 1 ≤ j ≤ k,

(1 − 6ε)n−α+( j−1)β ≤ 1 − u j (x) ≤ (1 + 6ε)n−α+( j−1)β .
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Theorem 6.1 Suppose that α, β ∈ (0, 1] are constants with k − 1 < α/β < k for some
natural number k, and that 2α < 1 + β(k − 1). Suppose also that λ = λ(n) = 1 − n−α

and d = d(n) = nβ . Let ε = ε(n) ≤ 1/100 be any function such that ε(n)−1 = o(nδ) for
every δ > 0. Then, for n sufficiently large, a copy (Yt ) of the (n, d, λ)-supermarket process
in equilibrium satisfies

P
(
Yt /∈ N ε(n, α, β)

) ≤ e− 1
4 log2 n .

Moreover, if X0 ∈ N ε/6(n, α, β), then

P

(
Xt /∈ N ε(n, α, β) for some t ∈ [0, e 1

3 log2 n]
)

≤ e− 1
4 log2 n .

Theorem 1.1 is the case of Theorem 6.1 with ε = 1/6 log n.
The assumptions ofTheorem6.1 assure us that functions ofn such as ε−1n−α+(k−1)β log2 n

tend to zero, as the dominant term is the strictly negative power of n. We shall use such facts
freely throughout the proof, and we shall (sometimes tacitly) assume that n is sufficiently
large.

We define a sequence of pairs of subsets of Zn+. Each pair consists of a set S0 in which
some inequality holds, and a set S1 in which a looser version of the inequality holds: we also
demand that S0 and S1 be subsets of the previous set R1 in the sequence. Associated with
each pair (S0,S1) in the sequence is a hitting time

TS = inf{t ≥ TR : Xt ∈ S0},
where (R0,R1) is the previous pair in the sequence, and an exit time

T †
S = inf{t ≥ TS : Xt /∈ S1}.

Our aim in each case is to prove that, with high probability, unless the previous exit time T †
R

occurs early, TS is unlikely to be larger than some quantity mS whose order is polynomial
in n. To be precise, if we start in a state in A0(�, b), then the sum of all the mS is of order at
most the maximum of bn1+α and �n, so if � and b are bounded by a polynomial in n, then
so are all the mS .

Throughout the proof, we set

s0 = e
1
3 log2 n .

We shall also prove that, again with high probability, each exit time T †
S is at least s0, which

is larger than the sum of all the termsmS . For convenience, we shall not be too precise about
our error probabilities, and simply declare them all to be at most 1/s0 = e− 1

3 log2 n , or some
small multiple of 1/s0. We will thus prove that, with high probability, we enter each of the
sets S0 in turn, while remaining inside all the earlier sets S1.

We fix, for the moment, a pair of positive real numbers � and b with � ≥ b ≥ k. We set

q(�, b) = (22k + 72b)ε−1n1+α + 8�n,

and we make the (mild) assumption that � ≤ e
1
4 log2 n , so that q(�, b) ≤ s0/2.

The first pair of sets in our sequence will be as defined earlier:

A0 = A0(�, b) = {x : ‖x‖∞ ≤ � and ‖x‖1 ≤ bn},
A1 = A1(�, b) = {x : ‖x‖∞ ≤ 3� and ‖x‖1 ≤ 3bn},

and we adopt the hypothesis that X0 = x0 almost surely, where x0 is a fixed state in A0 =
A0(�, b), so that TA := min{t ≥ 0 : Xt ∈ A0} = 0.
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For � = �∗ = nα log2 n and b = b∗ = 2nα , Lemma 4.4 tells us that indeed the exit time
T †
A = inf{t > 0 : Xt /∈ A1} is unlikely to be less than s0. For smaller values of � and b, we

do not know this a priori.
The sets we define are dependent on the chosen values of n, α, β and ε, as well as on �

and b. For the most part, we drop reference to this dependence from the notation. When we
need to vary ε while keeping all other parameters fixed, we shall use the notation (e.g.) Bε

0
to emphasise the dependence. We define:

B0 = {x : Qk(x) ≤ (1 + ε)n(1 − λ)(λd)k−1} ∩ A1,

B1 = {x : Qk(x) ≤ (1 + 2ε)n(1 − λ)(λd)k−1} ∩ A1,

C0 = {x : Pk−1(x) ≤ 2kn(1 − λ)(λd)k−2} ∩ B1,

C1 = {x : Pk−1(x) ≤ 3kn(1 − λ)(λd)k−2} ∩ B1,

D0 = {x : Qk−1(x) ≤ (1 + 4ε)n(1 − λ)(λd)k−2} ∩ C1,
D1 = {x : Qk−1(x) ≤ (1 + 5ε)n(1 − λ)(λd)k−2} ∩ C1,
E0 = {x : uk+1(x) ≤ ε(1 − λ) and Qk(x) ≥ (1 − 3ε)n(1 − λ)(λd)k−1} ∩ D1,

E1 = {x : uk+1(x) ≤ ε(1 − λ) and Qk(x) ≥ (1 − 4ε)n(1 − λ)(λd)k−1} ∩ D1.

Next we have a sequence of pairs of sets, indexed by j = k − 1, . . . , 1:

G j
0 =

{
x :

[
1 −

(
4 + k − j − 1/2

k

)
ε
]
n(1 − λ)(λd) j−1 ≤ Q j (x)

≤
[
1 +

(
4 + k − j − 1/2

k

)
ε
]
n(1 − λ)(λd) j−1

}
∩ G j+1

1 ,

G j
1 =

{
x :

[
1 −

(
4 + k − j

k

)
ε
]
n(1 − λ)(λd) j−1 ≤ Q j (x)

≤
[
1 +

(
4 + k − j

k

)
ε
]
n(1 − λ)(λd) j−1

}
∩ G j+1

1 .

where we declare Gk
1 to be equal to E1. Finally, departing slightly from our pattern, we define

H = H0 = H1 = {x : uk+1(x) = 0} ∩ G1
1 .

In the special case k = 1, only the pairs (B0,B1), (E0, E1) and H are defined.
The hitting times and exit times are all defined in accordance with the pattern given. For

instance TB = inf{t : Xt ∈ B0}, T †
B = inf{t > TB : Xt /∈ B1}, and TC = inf{t ≥ TB : Xt ∈

C0}. We also set TGk = TE and T †
Gk = T †

E , in accordance with the notion that the set pair

(Gk−1
0 ,Gk−1

1 ) follows (E0, E1) in the sequence.
Initially, the sets above all depend on the values of � and b defining the initial pair of sets

(A0,A1), since all the sets are intersected withA1. However, since states inH have no queue
of length k + 1 or greater, we haveH ⊆ A0(k, k) ⊆ A1(�, b) for all �, b ≥ k, and so the set
H does not depend on � and b, provided these parameters are each at least k.

We claim that Hε ⊆ N ε = N ε(n, α, β). Indeed, if x ∈ Hε, then

x ∈ B1 ∩ D1 ∩ E1 ∩ Gk−1
1 ∩ · · · ∩ G1

1 ∩ {x : uk+1(x) = 0}.
This implies that indeed uk+1(x) = 0, and also that all the Q j (x) are within a factor 1±5ε of
the values n(1−λ)(λd) j−1. It now follows from (5.4) and (5.5) that, for each j = 1, . . . , k,

∣
∣
∣
∣
Q j (x)

n
− (1 − u j (x))

∣
∣
∣
∣ ≤ 2(1 − λ)(λd)

1
2+ j−2 ≤ ε(1 − λ)(λd) j−1,
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and so 1 − u j (x) is within a factor 1 ± 11
2 ε of n(1 − λ)(λd) j−1, so that indeed x ∈ N ε.

We now state a sequence of lemmas. Throughout, we assume that X0 = x0 a.s., where x0
is an arbitrary state in A0 = A0(�, b).

Lemma 6.2 Let mB = 8kε−1n(1 − λ)−1.

(1) P(TB ∧ T †
A ≥ mB) ≤ 1/s0.

(2) P(T †
B ≤ s0 < T †

A) ≤ 1/s0.

Lemma 6.3 For k ≥ 2, let mC = 8kn(1 − λ)−1(λd)1−k .

(1) P(TC ∧ T †
B ≥ TB + mC) ≤ 1/s0.

(2) P(T †
C ≤ s0 < T †

B) ≤ 1/s0.

Lemma 6.4 For k ≥ 2, let mD = 8ε−1n(1 − λ)−1(λd)−k/2.

(1) P(TD ∧ T †
C ≥ TC + mD) ≤ 1/s0.

(2) P(T †
D ≤ s0 < T †

C ) ≤ 1/s0.

Lemma 6.5 Let mE = mE (b) = (13k + 72b)ε−1n(1 − λ)−1.

(1) P(TE ∧ T †
D ≥ TD + mE ) ≤ 1/s0.

(2) P(T †
E ≤ s0 < T †

D) ≤ 1/s0.

Lemma 6.6 For k ≥ 2, let mG = 32kε−1n(1−λ)−1(λd)−1. For j = k−1, . . . , 1, we have:

(1) For j = k − 1, . . . , 1, P(TG j ∧ T †
G j+1 ≥ TG j+1 + mG) ≤ 1/s0;

(2) For j = k − 1, . . . , 1, P(T †
G j ≤ s0 < T †

G j+1) ≤ 1/s0.

Lemma 6.7 Let mH = mH(�) = n(8� + 32 log2 n).

(1) P(TH ∧ T †
G1 ≥ TG1 + mH) ≤ 1/s0.

(2) P(T †
H ≤ s0 < T †

G1) ≤ 1/s0.

We shall postpone the proofs of these lemmas to later sections. For the remainder of this
section, we show how the lemmas imply Theorem 6.1. To start with, combining the lemmas
gives the following result.

Proposition 6.8 For any x0 ∈ A0 = A0(�, b), and a copy (Xt ) of the process with X0 = x0
a.s., we have

P(Xt ∈ H for all t ∈ [q(�, b), s0]) ≥ 1 − 2k + 8

s0
− P(T †

A ≤ s0).

Proof The idea is that, with high probability, either the chain (Xt ) exitsA1(�, b) before time
s0, or the chain enters each of the sets B0, …, H0 in turn, within time q(�, b), and does not
exit any of the sets A1, …, H1 before time s0, which is what we need.

We assume that k ≥ 2: if k = 1, the proof is very similar and shorter. Consider the
following list of events concerning the various stopping times we have defined:

E1 = {T †
A > s0}, E2 = {TB ≤ mB}, E3 = {T †

B > s0},
E4 = {TC ≤ mB + mC}, E5 = {T †

C > s0}, E6 = {TD ≤ mB + mC + mD},
E7 = {T †

D > s0}, E8 = {TE ≤ mB + · · · + mE }, E9 = {T †
E > s0},
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E10 = {TGk−1 ≤ mB + · · · + mE + mG}, E11 = {T †
Gk−1 > s0}, . . . ,

E2k+6 = {TG1 ≤ mB + · · · + (k − 1)mG}, E2k+7 = {T †
G1 > s0},

E2k+8 = {TH ≤ mB + · · · + (k − 1)mG + mH}, E2k+9 = {T †
H > s0}.

If E2k+8 holds, then

TH ≤ mB + mC + mD + mE + (k − 1)mG + mH
= 8kε−1n(1 − λ)−1 + 8kn(1 − λ)−1(λd)1−k

+ 8ε−1n(1 − λ)−1(λd)−k/2 + (13k + 72b)ε−1n(1 − λ)−1

+ 32(k − 1)kε−1n(1 − λ)−1(λd)−1 + n(8� + 32 log2 n)

≤ kε−1n(1 − λ)−1(8 + 8ε

λd
+ 8

λd
+ 13 + 32(k − 1)

λd
+ 32ε log2 n(1 − λ)

)+ 72bε−1n(1 − λ)−1 + 8�n

≤ ε−1n(1 − λ)−1(22k + 72b) + 8�n

= q(�, b),

for sufficiently large n. Therefore, if E = ⋂2k+9
j=1 E j holds, then in particular E2k+8 and

E2k+9 hold, which implies that Xt ∈ H for q(�, b) ≤ t ≤ s0. Thus E is contained in the
event {Xt ∈ H for all t ∈ [q(�, b), s0]}, and it suffices to show that P(E) ≤ 2k+8

s0
+ P(E1).

We write

P(E) = P(E1) +
2k+9∑

j=2

P

⎛

⎝E j ∩
j−1⋂

i=1

Ei

⎞

⎠ ,

and now we see that it suffices to prove that each of the terms P
(
E j ∩⋂ j−1

i=1 Ei

)
is at most

1/s0.
We show how to derive the first few of these inequalities from Lemmas 6.2–6.7; first we

have

P(E2 ∩ E1) = P(T †
A > s0, TB > mB) ≤ P(TB ∧ T †

A ≥ mB) ≤ 1/s0

by Lemma 6.2(1). Then we have

P(E3 ∩ E1 ∩ E2) ≤ P(E3 ∩ E1) = P(T †
B ≤ s0 < T †

A) ≤ 1/s0

by Lemma 6.2(2). Next we have, using the fact that mB + mC ≤ s0,

P(E4 ∩ E1 ∩ E2 ∩ E3) ≤ P(E4 ∩ E2 ∩ E3)

= P(T †
B > s0, TB ≤ mB, TC > mB + mC)

≤ P(TC ∧ T †
B > mB + mC, TB ≤ mB)

≤ P(TC ∧ T †
B > TB + mC)

≤ 1/s0,

by Lemma 6.3(1). For j = 5, . . . , 2k + 9, the upper bound on P

(
E j ∩⋂ j−1

i=1 Ei

)
follows

either as for j = 3 or as for j = 4: it is important here that mB + mC + mD + mE + (k −
1)mG + mH ≤ q(�, b) ≤ s0. ��
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We now have the following consequence for an equilibrium copy (Yt ) of the (n, d, λ)-
supermarket process.

Corollary 6.9 P(Yt ∈ H for all t ∈ [0, s0]) ≥ 1 − (4k + 20)/s0 ≥ 1 − e− 1
4 log2 n, for n

sufficiently large.

Proof Recall the definitions of �∗ and b∗ in Sect. 4. Set also q∗ = q(�∗, b∗), and note that
q∗ ≤ s0/2, with plenty to spare. From Lemma 4.2, we have that P(Y0 /∈ A0) ≤ ne− log2 n ≤
e− 1

3 log2 n = 1/s0, since n ≥ 5. Also, from Lemma 4.4, for a copy (Xx
t ) of the process starting

in a state x ∈ A0, we have that P(T †
A < s0) ≤ 1/s0. We now have

P(Yt /∈ H for some t ∈ [0, s0/2]) = P(Yt /∈ H for some t ∈ [q∗, q∗ + s0/2])
≤ P(Yt /∈ H for some t ∈ [q∗, q∗ + s0/2] | Y0 ∈ A0)

+P(Y0 /∈ A0)

≤ P(Yt /∈ H for some t ∈ [q∗, s0] | Y0 ∈ A0)

+P(Y0 /∈ A0)

≤ sup
x∈A∗

0

P(Xx
t /∈ H for some t ∈ [q∗, s0]) + 1

s0

≤ 2k + 8

s0
+ 1

s0
+ 1

s0
= 2k + 10

s0
,

by Proposition 6.8. Hence P(Yt /∈ H for some t ∈ [0, s0]) ≤ (4k + 20)/s0. ��

The first part of Theorem 6.1 now follows, since we have already noted that Hε ⊆ N ε.
We can also use Corollary 6.9 to prove the following more explicit version of Proposi-

tion 6.8.

Theorem 6.10 Suppose that � and b are at least k, and that q(�, b) ≤ s0/2. Let x0 be
any queue-lengths vector in A0(�, b), and suppose that X0 = x0 a.s. Then we have, for n
sufficiently large,

P(Xt ∈ H for all t ∈ [q(�, b), s0]) ≥ 1 − 6k + 28

s0
≥ 1 − e− 1

4 log2 n .

Proof We apply, successively, Proposition 6.8, Lemma 4.3 and Corollary 6.9 to obtain that

P(Xt ∈ H for all t ∈ [q(�, b), s0]) ≥ 1 − 2k + 8

s0
− P(T †

A ≤ s0)

= 1 − 2k + 8

s0
− P(∃t ∈ [0, s0], Xt /∈ A1(�, b))

≥ 1 − 2k + 8

s0
− P(∃t ∈ [0, s0], Yt /∈ A0(�, b))

≥ 1 − 2k + 8

s0
− P(∃t ∈ [0, s0], Yt /∈ H)

≥ 1 − 2k + 8

s0
− 4k + 20

s0
,

as required. ��

123



1178 G. Brightwell et al.

To see the final assertion of Theorem 6.1, suppose that X0 = x0 a.s., where x0 is in the
set

I = A0 ∩ B0 ∩ C0 ∩ D0 ∩ E0 ∩
k−1⋂

j=1

G j
0 ∩ H0.

Then all the hitting times TB, TC , TD , TE , T
j
G and TH are equal to 0. In the notation of the

proof of Proposition 6.8, this implies that the events E j for j even occur with probability 1.
Also, by Lemma 4.4, P(E1) ≤ 1/s0. So following the proof of Proposition 6.8 yields that,
for X0 = x0 ∈ I,

P(Xt ∈ H for all t ∈ [0, s0]) ≥ 1 − (k + 5)/s0 ≥ 1 − e− 1
4 log2 n . (6.1)

It can easily be seen thatN ε/6 ⊆ Iε, and hence this result completes the proof of Theorem6.1.

7 Proofs of Lemmas 6.2, 6.3 and 6.4

In this section, we prove the first three of the sequence of lemmas stated in the previous
section, and also derive tighter inequalities on the drifts of the functions Q j (x) for x ∈ D1.
The proofs of the three lemmas are all straightforward applications of Lemma 3.3, and all
similar to one another.

Proof of Lemma 6.2

Proof We apply Lemma 3.3. We set (ϕt ) = (Ft ), the natural filtration of the process, and
also: F = Qk , S = A1, p = 1,

h = (1 + ε)(1 − λ)n(λd)k−1, ρ = ε(1 − λ)n(λd)k−1,

m = mB = 8kε−1n(1 − λ)−1, s = s0 = e
1
3 log2 n and T ∗ = 0. It is clear that ρ ≥ 2 and that

Qk(x) ≤ c := kn for any x ∈ Z
n+. We note also that Qk takes jumps of size at most 1.

Suppose now that Qk(x) ≥ h. Then

exp

(

−dQk(Xt )

kn

)

≤ exp

(

− (1 − λ)(λd)k

k

)

≤ ε(1 − λ)

4
.

The final inequality above is true comfortably, as (1−λ)dk = n−α+kβ = nδ for some δ > 0.
Hence, by Lemma 5.1, for x with Qk(x) ≥ h, we have

(1 + λ)�Qk(x) ≤ βk
(
(1 − λ) − uk+1(x) + λ exp(−dQk(x)/kn)

)

− 1

(λd)k−1

Qk(x)

n

(

1 − 2

λd

)

,

≤ βk

(

(1 − λ) + λ
ε(1 − λ)

4

)

− (1 + ε)(1 − λ)(1 − ε/5)

≤ (1 − λ)
[
1 + ε

4
− (1 + 3ε/4)

]
= −(1 − λ)

ε

2
.

So �Qk(x) ≤ −(1 − λ)ε/4 := −v. Note that mBv = 2c.
We have now verified that the conditions of Lemma 3.3 are satisfied, for the given values

of the parameters. As in the lemma, we have T0 = T †
A, T1 = inf{t : Qk(Xt ) ≤ h} and

T2 = inf{t > T1 : Qk(Xt ) ≥ h + ρ}.
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It need not be the case that T1 = TB, since XT1 need not be in A1. However, we do have
T1 ∧ T †

A = TB ∧ T †
A and thus

P(TB ∧ T †
A > mB) = P(T1 ∧ T †

A > mB)

≤ exp(−v2mB/8)

= exp(−εkn(1 − λ)/16) ≤ 1/s0.

Also the events T2 ≤ s0 < T †
A and T †

B ≤ s0 < T †
A coincide, so we have

P(T †
B ≤ s0 < T †

A) ≤ P(T2 ≤ s0 < T †
A)

≤ 100s

v2
exp(−ρv/8)

= 100s0
v2

exp(−ε2(1 − λ)2n(λd)k−1/32)

= 100s0
v2

exp(−ε2λk−1n1−2α+(k−1)β/32)

≤ 1/s0,

as required. Here we used that 1 − 2α + (k − 1)β > 0. ��

Proof of Lemma 6.3

Proof Again we apply Lemma 3.3 to the Markov process (Xt ) with its natural filtration. Set
F = Pk−1, S = B1, p = 1,

h = 2kn(1 − λ)(λd)k−2, ρ = kn(1 − λ)(λd)k−2,

m = mC = 8kn(1 − λ)−1(λd)1−k , and s = s0. Set T ∗ = TB. It is again clear that ρ ≥ 2,
that Pk−1 takes jumps of size at most 1, and that Pk−1(x) ≤ c := kn for all x ∈ Z

n+. Here
T0 = T †

B, T1 = inf{t ≥ TB : Pk−1(Xt ) ≤ h}, and T2 = inf{t > T1 : Pk−1(Xt ) ≥ h + ρ}.
For x ∈ B1 with Pk−1(x) ≥ h, we have Qk(x) ≤ (1 + 2ε)n(1 − λ)(λd)k−1 and so, by

Lemma 5.3,

(1 + λ)�Pk−1(x) ≤ −λdPk−1(x)

(k − 1)n
+ Qk(x)

n

≤ −2λd(1 − λ)(λd)k−2 + (1 + 2ε)(1 − λ)(λd)k−1

≤ −1

2
(1 − λ)(λd)k−1.

We conclude that, for such x , �Pk−1(x) ≤ − 1
4 (1− λ)(λd)k−1 := −v. Note that mCv = 2c.

As in the previous lemma, it need not be the case that T1 = TC , since XT1 need not be in
B1, so we may have TC > T1. However, we do have T1 ∧ T †

B = TC ∧ T †
B. From Lemma 3.3,

we obtain that

P(TC ∧ T †
B > TB + mC) = P(T1 ∧ T0 > TB + mC)

≤ exp(−v2mC/8)

= exp(−kn(1 − λ)(λd)k−1/16) ≤ 1/s0.

Similarly, the events T2 ≤ s0 < T †
B and T †

C ≤ s0 < T †
B coincide, and so, for k ≥ 2,
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P(T †
C ≤ s0 < T †

B) = P(T2 ≤ s0 < T0)

≤ 100s0
v2

exp(−ρv/8)

= 100s0
v2

exp(−kn(1 − λ)2(λd)2k−3/32)

≤ 100s0
v2

exp
(
−kλ2k−3n1−2α+(k−1)β+(k−2)β/32

)

≤ 1/s0,

as required. ��
Sketch of Proof of Lemma 6.4

Proof The basic plan for this proof is the same as for the previous two lemmas, but here
we have to take account of the fact that Qk−1 can take jumps of size up to (λd)(k−2)/2,
and accordingly we apply Lemma 3.3 to the “scaled” function F(x) = Q′

k−1(x) =
Qk−1(x)/(λd)(k−2)/2.

Apart from this, the proof is identical in structure to that of Lemma 6.3, and we give only
the key calculation. For x ∈ C1 with Q′

k−1(x) ≥ h = (1 + 4ε)n(1 − λ)(λd)(k−2)/2, we
have Qk(x) ≤ (1 + 2ε)n(1 − λ)(λd)k−1, Pk−1(x) ≤ 3kn(1 − λ)(λd)k−2 and Qk−1(x) ≥
(1 + 4ε)n(1 − λ)(λd)k−2. Thus, by Lemma 5.2 with j = k − 1, we have

(1 + λ)�Qk−1(x) ≤ −λd
Qk−1(x)

n

(

1 − 2√
λd

− dPk−1(x)

n

)

+ Qk(x)

n
,

≤ −λd(1 + 4ε)(1 − λ)(λd)k−2
(

1 − 2√
λd

− 3kd(1 − λ)(λd)k−2
)

+(1 + 2ε)(1 − λ)(λd)k−1

≤ −ε(1 − λ)(λd)k−1.

Thus, for such x , the drift in the scaled chain satisfies �Q′
k−1(x) ≤ − 1

2ε(1 − λ)(λd)k/2 :=
−v. Now Q′

k−1(x) ≤ c := 2n for all x by (5.3), and mDv = 2c.
It is now straightforward to derive the result. ��
A queue-lengths vector x ∈ D1 satisfies the three inequalities:

Qk(x) ≤ (1 + 2ε)n(1 − λ)(λd)k−1, (7.1)

Pk−1(x) ≤ 3kn(1 − λ)(λd)k−2,

Qk−1(x) ≤ (1 + 5ε)n(1 − λ)(λd)k−2; (7.2)

in fact the second of these is redundant, as Pk−1(x) ≤ Qk−1(x) ≤ 2n(1− λ)(λd)k−2 for all
x ∈ Z

n+. Substituting these bounds into the bounds of Lemmas 5.1 and 5.2, we obtain the
following.

Lemma 7.1 For x ∈ D1, we have

(1 + λ)�Qk(x) ≤ βk(1 − λ − uk+1(x)) − Qk(x)

n(λd)k−1

+ exp(−dQk(x)/kn) + ε

6
(1 − λ),

(1 + λ)�Qk(x) ≥ βk(1 − λ − uk+1(x)) − Qk(x)

n(λd)k−1 − ε

6
(1 − λ),
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and, for 1 ≤ j ≤ k − 1,

(1 + λ)�Q j (x) ≤ −λd
Q j (x)

n

(
1 − ε

25k

)
+ Q j+1(x)

n
,

(1 + λ)�Q j (x) ≥ −λd
Q j (x)

n

(
1 + ε

50k

)
+ Q j+1(x)

n
.

8 Proof of Lemma 6.5

This section is devoted to the rather more complex proof of Lemma 6.5. First, we prove a
statement stronger than part (1) of the lemma. We set

K =
{
x : uk+1(x) ≤ ε(1 − λ) and Qk(x) ≥ n

(
1 − ε

3

)
(1 − λ)(λd)k−1

}
∩ D1;

WK = inf{t ≥ TD : Xt ∈ K}.
Note that K ⊆ E0, so to prove Lemma 6.5(1) it suffices to prove that

P(WK ∧ T †
D ≥ TD + mE ) ≤ 1/s0.

We prove this result on the assumption that TD = 0 (i.e., that x0 ∈ A0 ∩ B0 ∩ C0 ∩ D0).
The general case follows immediately by applying the result for TD = 0 to the shifted
process (X ′

t ) = (XTD+t ), using the strong Markov property. So our task is to show that
P(WK ∧ T †

D ≥ mE ) ≤ 1/s0, where WK = inf{t ≥ 0 : Xt ∈ K}, whenever X0 = x0 a.s., for
any x0 ∈ A0 ∩ B0 ∩ C0 ∩ D0.

We define the following further sets, hitting times and exit times. We set

Lk+1
1 = D1 \ K

=
{
x : uk+1(x) > ε(1 − λ) or Qk(x) < n

(
1 − ε

3

)
(1 − λ)(λd)k−1

}
∩ D1,

WLk+1 = 0 and W †
Lk+1 = inf{t ≥ 0 : Xt /∈ Lk+1

1 } = WK ∧ T †
D . Also, for j = k, . . . , 1, let

L j
0 =

{

x : Q j (x) ≤ n(1 − λ)(λd) j−1(1 − ε

6
− jε

6k
)

}

∩ L j+1
1 ;

L j
1 =

{

x : Q j (x) ≤ n(1 − λ)(λd) j−1(1 − ε

6
− jε

6k
+ ε

24k

)
}

∩ L j+1
1 ;

WL j = inf{t ≥ WL j+1 : Xt ∈ L j
0};

W †
L j = inf{t ≥ WL j : Xt /∈ L j

1)}.
Our goal is to show that P(W †

Lk+1 < mE ) ≥ 1 − 1/s0. If x0 ∈ K, then W †
Lk+1 = 0 and

we are done, so we may assume that x0 /∈ K, and hence that x0 ∈ Lk+1
1 . Thus Lemma 6.5(1)

follows from the proposition below.

Proposition 8.1 Let x0 be any queue-lengths vector inLk+1
1 . For a copy (Xt ) of the (n, d, λ)-

supermarket process with X0 = x0 a.s., we have

P(W †
Lk+1 ≥ mE ) ≤ 1/s0.

For the proof of Proposition 8.1, we fix a state x0 ∈ Lk+1
1 , and work with a copy (Xt ) of

the (n, d, λ)-supermarket process where X0 = x0 a.s.
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Our general plan for proving Proposition 8.1 is as follows. We suppose that the process
(Xt ) stays inside Lk+1

1 = D1 \ K over the interval [0,mE ), with the aim of showing that
this event has low probability. Observe that, if x ∈ Lk+1

1 \Lk
0, then uk+1(x) > ε(1− λ) and

Qk(x) > n(1 − ε
3 )(1 − λ)(λd)k−1. This “excess” in uk+1 would result in a downward drift

in Qk(Xt ), so if the process does not exit Lk+1
1 quickly, then it enters Lk

0 quickly, and stays in

Lk
1 throughout the interval [0,mE ): i.e.,WLk is small andW †

Lk is large, with high probability.

This means that Qk(Xt ) maintains a “deficit” compared to Q̃k := n(1 − λ)(λd)k−1 until
time mE . A deficit in Qk(Xt ) would lead to a deficit in each Q j (Xt ) in turn, compared
to Q̃ j := n(1 − λ)(λd) j−1, for j = k − 1, k − 2, . . . , 1: each WL j is small, and W †

L j is

large, with high probability. Finally, a deficit in Q1(Xt ) compared to Q̃1 = n(1 − λ) is
unsustainable, as this would lead to a drift down in the total number of customers over a long
enough time interval to empty the entire system of customers. This would entail exiting the
set B1 ⊇ Lk+1

1 , a contradiction.

Lemma 8.2 (1) P(WLk ∧ W †
Lk+1 ≥ 12kε−1n(1 − λ)−1) ≤ 1/6s0.

(2) P(W †
Lk < mE ≤ W †

Lk+1) ≤ 1/12s0.

Proof We apply Lemma 3.3 to the process (Xt ), with its natural filtration, and the function
F = Qk . We set h = (1 − ε

3 )n(1 − λ)(λd)k−1 and ρ = ε
24k n(1 − λ)(λd)k−1 ≥ 2. We

also set S = Lk+1
1 and T ∗ = 0. We note that Qk(x) ≤ c := kn for every x , and we take

m = 12kε−1n(1 − λ)−1, and s = mE − 1. Then T0 = W †
Lk+1 , T1 = inf{t : Qk(Xt ) ≤ h}

and T2 = inf{t > T1 : Qk(Xt ) ≥ h + ρ}, as in the lemma.
For x ∈ Lk+1

1 with Qk(x) > h, we have uk+1(x) > ε(1− λ) and x ∈ D1. So Lemma 7.1
applies, and we have

(1 + λ)�Qk(x) ≤ βk(1 − λ − uk+1(Xt )) − Qk(x)

n(λd)k−1 + exp(−dQk(x)/kn) + ε

6
(1 − λ)

≤ (1 − λ)(1 − ε) − (1 − λ)
(
1 − ε

3

)+ ε

6
(1 − λ) + ε

6
(1 − λ)

= −1

3
ε(1 − λ).

So �Qk(x) ≤ − 1
6ε(1 − λ) := −v for such x . Note that mv = 2c. Hence we may apply

Lemma 3.3.
As in earlier lemmas, we have T1 ∧ W †

Lk+1 = WLk ∧ W †
Lk+1 , so we obtain

P(WLk ∧ W †
Lk+1 > m) = P(T1 ∧ T0 > m)

≤ exp(−v2m/8)

= exp(−εkn(1 − λ)/24) < 1/6s0.

Also the events W †
Lk < mE ≤ W †

Lk+1 and T2 < mE ≤ W †
Lk+1 coincide, and the second is

equivalent to T2 ≤ s < W †
Lk+1 (since s = mE − 1). So

P(W †
Lk < mE ≤ W †

Lk+1) = P(T2 ≤ s < T0)

≤ 100s

v2
exp(−ρv/8)
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= 100s

v2
exp(−ε2n(1 − λ)2(λd)k−1/1152k)

< 1/12s0,

as required. ��
The next lemma states that, if the process stays in some set L j+1

1 for a long time, then it

quickly enters the “next” set L j
0, and stays in L j

1 for a long time.

Lemma 8.3 For each j = k − 1, . . . , 1,

(1) P(W †
L j+1 ∧ WL j > WL j+1 + ε−1n(1 − λ)−1) ≤ 1/3ks0.

(2) P(W †
L j < mE ≤ W †

L j+1) ≤ 1/3ks0.

Proof (Sketch) This proof is very similar to that of earlier lemmas, and we mention only
a few points. As in Lemma 6.4, we apply Lemma 3.3 to the scaled process Q′

j (x) =
Q j (x)/(λd)( j−1)/2. The key step is to show that, for x ∈ L j+1

1 with Q′
j ≥ h =

n(1 − λ)(λd)( j−1)/2(1 − ε
6 − jε

6k ), we have �Q′
j (x) ≤ − ε

24k (1 − λ)(λd)( j+1)/2 := −v.
The proof now proceeds as earlier ones.

For part (2) of the lemma, we set ρ = ε
24k n(1 − λ)(λd)( j−1)/2. We make use of the fact

that the value of Q′
j only changes if either (i) the event is an arrival, and some queue of length

at most j−1 is inspected, or (ii) the event is a departure from some queue of length at most j .
Fromany state x ∈ L j

1, the probability of (i) is atmostd(1−u j (x)) ≤ dQ j (x)/n ≤ (1−λ)d j ,
and the probability of (ii) is at most (1 − u j+1(x)) ≤ Q j+1(x)/n ≤ (1 − λ)d j . Hence we
may apply Lemma 3.3(ii), with p = 2(1 − λ)d j .

P(W †
L j < mE ≤ W †

L j+1) ≤ 100mE
v2

exp(−ρv/8p)

= 100mE
v2

exp

(

− ε2λ j

4608k2
n(1 − λ)

)

≤ 1/3ks0.

Wenow prove a hitting time lemma for ‖Xt‖1, the total number of customers in the system
at time t . Let WM = min{t ≥ WL1 : ‖Xt‖1 = 0}.
Lemma 8.4

P(W †
L1 ∧ WM > WL1 + 72bε−1n(1 − λ)−1) ≤ 1/12s0.

Proof We apply Lemma 3.3(i) to the chain (Xt ), with the filtration (Ft ), and the function
F(x) = ‖x‖1, which takes jumps of size at most 1. Since A1(�, b) ⊇ L1

1, we have ‖X0‖1 ≤
c := 3bn. We also set S = L1

1, T
∗ = WL1 , h = 0 and m = 72bε−1n(1 − λ)−1.

Note that ‖Xt+1‖1−‖Xt‖1 is equal to+1 if the event at time t is an arrival, with probability
λ/(1+λ), and equal to−1 if the event is a potential departure from a non-empty queue, with
probability u1(Xt )/(1 + λ), so the drift �‖x‖1 is equal to 1

1+λ
(λ − u1(x)). For x ∈ L1

1, we
have

1 − u1(x) = Q1(x)

n
≤ (1 − λ)

(
1 − ε

6
− ε

6k
+ ε

24k

)
≤ (1 − λ)

(
1 − ε

6

)
.

Hence, for x ∈ L1
1, (1+ λ)�‖x‖1 = (1− u1(x)) − (1− λ) ≤ − ε

6 (1− λ), and so �‖x‖1 ≤
− ε

12 (1 − λ) := −v. Note that vm = 2c.
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Hence we may apply Lemma 3.3(i). With T0 and T1 as in that lemma, we have T0 = W †
L1

and T1 = WM, so we conclude that

P(W †
L1 ∧ WM ≥ WL1 + m) ≤ exp(−v2m/8)

= exp(−εbn(1 − λ)/16) ≤ 1/12s0,

as required. ��
We now combine Lemmas 8.2, 8.3 and 8.4 to prove Proposition 8.1.
Observe that, for a copy (Xt ) of the (n, d, λ)-supermarket process starting in a state

x0 ∈ Lk+1
1 , exactly one of the following occurs:

(a) W †
Lk+1 < mE ,

(b) not (a), and one of W †
Lk , W

†
Lk−1 , …, W †

L1 is less than mE ,
(c) neither of the above, and WLk > 12kε−1n(1 − λ)−1,
(d) none of the above, and WL j > WL j+1 + ε−1n(1 − λ)−1 for some j = k − 1, . . . , 1,
(e) none of the above, and WM > WL1 + 72bε−1n(1 − λ)−1,
(f) none of the above, and WM < mE ≤ W †

Lk+1 .

Indeed, if none of (a)–(e) occurs, then W †
Lk+1 ≥ mE since (a) fails, and also

WM = WLk +
k−1∑

j=1

(WL j − WL j+1) + (WM − WL1)

≤ 12kε−1n(1 − λ)−1 + (k − 1)ε−1n(1 − λ)−1 + 72bε−1n(1 − λ)−1

< (13k + 72b)ε−1n(1 − λ)−1 = mE .

We now show that the probability of each of (b)–(f) is small. For (b), Lemmas 8.2(2) and
8.3(2) give that

P(W †
Lk ∧ W †

Lk−1 ∧ · · · ∧ W †
L1 < mE ≤ W †

Lk+1)

≤ P(W †
Lk < mE ≤ W †

Lk+1) +
k−1∑

j=1

P(W †
L j < mE ≤ W †

L j+1)

≤ 1

6s0
+ (k − 1)

1

3ks0
≤ 1

2s0
,

i.e., the probability of (b) is at most 1/2s0. The probability of (c) is at most 1/12s0 by
Lemma 8.2(1). The probability of (d) is at most (k − 1) 1

3ks ≤ 1/3s0 by Lemma 8.3(1). The
probability of (e) is at most 1/12s0 by Lemma 8.4. Finally, (f) is not possible, since at time
WM there are no customers in the system, so Qk(XWM) > n, and thus WM ≥ T †

B, but also
T †
B ≥ W †

Lk+1 since Lk+1
1 ⊆ D1 ⊆ B1 by definition.

Thus the probability of (a), for a copy of the process starting in a state in Lk+1
1 , is at least

1 − 1
2s0

− 1
12s0

− 1
3s0

− 1
12s0

= 1 − 1
s0
, which is what we need to prove Proposition 8.1, and

thus also Lemma 6.5(1).
Now we move to the proof of Lemma 6.5(2), stating that the exit time T †

E is large with
high probability. There are two things to prove here. The first is that, if Xt ∈ E1, then it is
very unlikely that, at time t + 1, a customer arrives and creates a queue of length k + 1. The
second is that, once Qk(Xt ) has reached (1−3ε)n(1−λ)(λd)k−1, while uk+1(Xt ) is at most
ε(1 − λ), Qk is unlikely to “cross down against the drift” to (1 − 4ε)n(1 − λ)(λd)k−1.
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For t ≥ 0, let Lt denote the event that, at time t , a customer arrives and joins a queue
of length at least k (equivalently, the probability that the event is an arrival and that all the
selected queues have length at least k). So Lt is the event that u j (Xt ) > u j (Xt−1) for some
j ≥ k + 1.

Lemma 8.5 On the event that Xt ∈ E1, we have P(Lt+1 | Ft ) < e− log2 n.

Proof From the definition of Lt , we have P(Lt+1 | Ft ) = λ
1+λ

uk(Xt )
d ≤ uk(Xt )

d . For

x ∈ E1, we have Qk(x) ≥ (1 − 4ε)n(1 − λ)(λd)k−1 and Qk−1(x) ≤ (1 + 5ε)n(1 −
λ)(λd)k−2 ≤ 1

3εn(1 − λ)(λd)k−1. Therefore, by (5.5), we have

1 − uk(x) ≥ Qk(x)

n
− Qk−1(x)

n
≥
(

1 − 13

3
ε

)

(1 − λ)(λd)k−1 ≥ 1

2
(1 − λ)dk−1.

Hence, on the event that Xt ∈ E1,

uk(Xt )
d ≤

(

1 − 1

2
(1 − λ)dk−1

)d

≤ exp

(

−1

2
(1 − λ)dk

)

≤ exp(− log2 n),

as required. ��

Let U † = inf{t > TE : uk+1(Xt ) > ε(1 − λ)} and V † = inf{t > TE : Qk(Xt ) <

(1 − 4ε)n(1 − λ)(λd)k−1}, and note that T †
E = T †

D ∧U † ∧ V †. We thus have

P(T †
E ≤ s0 < T †

D) ≤ P(U † ≤ s0 ∧ T †
D ∧ V †) + P(V † ≤ s0 ∧ T †

D ∧U †).

We claim that each of these last two probabilities is at most 1/2s0. For the first, we may
apply Lemma 8.5. Observe that, if U † = t + 1, then the event Lt+1 occurs. We now have:

P(U † ≤ s0 ∧ T †
D ∧ V †) =

s0−1∑

t=0

P(U † = t + 1 ≤ T †
D ∧ V †)

=
s0−1∑

t=0

P(U † = t + 1 and Xt ∈ E1) =
s0−1∑

t=0

E[1{Xt∈E1} E(1{U†=t+1} | Ft )]

≤
s0−1∑

t=0

E[1{Xt∈E1} E(1Lt+1 | Ft )].

By Lemma 8.5, each term is at most e− log2 n , and so we have

P(U † ≤ s0 ∧ T †
D ∧ V †) ≤ s0e

− log2 n < 1/2s0,

as claimed.
To obtain the other required inequality, we apply the reversed version of Lemma 3.3(ii).

We consider the process (Xt ), with its natural filtration, the function F = Qk , and the
set S = {x : uk+1(x) ≤ ε(1 − λ)} ∩ D1. We set h = (1 − 3ε)n(1 − λ)(λd)k−1 and
ρ = εn(1 − λ)(λd)k−1 ≥ 2. We also set s = s0 and T ∗ = TE . We have T0 = inf{t ≥ TE :
Xt /∈ D1 or uk+1(Xt ) > ε(1−λ)}, so thatT0 ≥ T †

D∧U † (strict inequality occurs ifT †
D < TE ).

Also T1 = inf{t ≥ TE : Qk(Xt ) ≥ h} = TE , and T2 = inf{t > TE : Qk(Xt ) ≤ h−ρ} = V †.
Take x ∈ S with Qk(x) ≤ h. As x ∈ D1, we apply Lemma 7.1 to obtain
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(1 + λ)�Qk(x) ≥ βk(1 − λ − uk+1(x)) − Qk(x)

n(λd)k−1 − ε

6
(1 − λ)

≥ βk(1 − λ)(1 − ε) − (1 − λ)(1 − 3ε) − ε

6
(1 − λ)

≥ (1 − λ)
[(

1 − ε

2

)
(1 − ε) − 1 + 3ε − ε

6

]

≥ ε(1 − λ).

This yields �Qk(x) ≥ 1
2ε(1 − λ) := v, for such x .

The reversed version of Lemma 3.3(ii) gives that

P(V † ≤ s0 ∧ T †
D ∧U †) ≤ P(T2 ≤ s0 ∧ T0)

≤ 100s0
v2

exp(−ρv/8)

= 100s0
v2

exp(−ε2n(1 − λ)2(λd)k−1/16)

≤ 1/2s0,

as required. This completes the proof of Lemma 6.5.

9 Proofs of Lemmas 6.6 and 6.7

In this section, we prove the final two of our sequence of lemmas.

Proof of Lemma 6.6

Proof Fix j with 1 ≤ j ≤ k − 1, and consider the state of the process at the hitting time
TG j+1 . The hitting time TG j is the first time t ≥ TG j+1 that Q j (Xt ) lies in the interval between[
1− (4+ k− j−1/2

k )ε
]
n(1− λ)(λd) j−1 and

[
1+ (4+ k− j−1/2

k )ε
]
n(1− λ)(λd) j−1. Let Bh

be the event that Q j (XTG j+1 ) >
[
1+ (4+ k− j−1/2

k )ε
]
n(1−λ)(λd) j−1, and B� be the event

that Q j (XTG j+1 ) <
[
1 − (4 + k− j−1/2

k )ε
]
n(1 − λ)(λd) j−1.

For part (1) of the lemma, we have to show that, on the event Bh , with high probability
Q j (Xt ) enters the interval from above within time mG , and also that, on the event B�, with
high probability Q j (Xt ) enters the interval from below within time mG . These two results
are essentially the same, and we give details only for the first. Of course, we have nothing to
prove on the event that Q j (XTG j+1 ) is already in the interval.

We apply Lemma 3.3(i) to (Xt ), with its natural filtration, and the scaled function F(x) =
Q′

j (x) = Q j (x)/(λd)( j−1)/2. We take S = G j+1
1 and T ∗ = TG j+1 . We set

h =
[
1 + (4 + k − j − 1/2

k
)ε
]
n(1 − λ)(λd)( j−1)/2,

and m = mG = 32kε−1n(1 − λ)−1(λd)−1. From (5.3), we have that Q′
j (x) ≤ c := 2n for

all x . Also T0 = T †
G j+1 and T1 = inf{t ≥ TG j+1 : Q′

j (Xt ) ≤ h}.
For x ∈ G j+1

1 , we have

Q j+1(x) ≤
[

1 + (4 + k − j − 1

k
)ε

]

n(1 − λ)(λd) j .
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(This follows from the specification of G j+1
1 for j < k − 1, and since Gk

1 = E1 ⊆ B1 for
j = k − 1.) If also Q′

j (x) ≥ h, we have

Q j (x) ≥
[

1 +
(

4 + k − j − 1/2

k

)

ε

]

n(1 − λ)(λd) j−1.

Lemma 7.1 applies since x ∈ D1, so

(1 + λ)�Q j (x) ≤ −λd
Q j (x)

n

(
1 − ε

25k

)
+ Q j+1(x)

n

≤ −
[

1 +
(

4 + k − j − 1/2

k

)

ε

]

(1 − λ)(λd) j
(
1 − ε

25k

)

+
[

1 +
(

4 + k − j − 1

k

)

ε

]

(1 − λ)(λd) j

≤ − 1

4k
ε(1 − λ)(λd) j ,

and so �Q′
j (x) ≤ − 1

8k ε(1 − λ)(λd)( j+1)/2 := −v. Note that vmG ≥ 2c.
Lemma 3.3(i) now gives

P(T1 ∧ T0 > TG j+1 + mG) ≤ exp(−v2mG/8)

= exp(−εn(1 − λ)(λd)( j+1)/2/16k)

≤ 1/2s0.

On the TG j -measurable event Bh , the stopping times T1 ∧ T0 and TG j ∧ T0 coincide, so we
have

P(Bh ∩ {TG j ∧ T †
G j+1 > TG j+1 + mG}) ≤ 1/2s0.

Essentially exactly the same calculation gives

P(B� ∩ {TG j ∧ T †
G j+1 > TG j+1 + mG}) ≤ 1/2s0,

and part (1) of the lemma now follows, for this value of j .
To prove part (2) of the lemma, we need to show that, once Xt has reached G j

0 , and

while it remains in G j+1
1 , the process is unlikely to leave the set G j

1 quickly. There are two

separate things to prove: that Q j (Xt ) is unlikely to cross against the drift from
[
1 + (4 +

k− j−1/2
k )ε

]
n(1 − λ)(λd) j−1 to

[
1 + (4 + k− j

k )ε
]
n(1 − λ)(λd) j−1 before time s0, and also

that Q j (Xt ) is unlikely to cross against the drift from
[
1− (4+ k− j−1/2

k )ε
]
n(1−λ)(λd) j−1

to
[
1 − (4 + k− j

k )ε
]
n(1 − λ)(λd) j−1 before time s0. Again, the two calculations required

here are essentially identical, and we shall concentrate on the first.
We apply Lemma 3.3(ii), again for the process (Xt ) with its natural filtration, and the

scaled function F(x) = Q j (x)/(λd)( j−1)/2. We take the same values of parameters as
above, and additionally set ρ = ε

2k n(1 − λ)(λd)( j−1)/2 and s = s0. As before, we may take
p = 2(1 − λ)d j . Here T2 = inf{t > T1 : Q′

j (Xt ) ≥ h + ρ}.

123
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P(T2 ≤ s0 < T †
G j+1) ≤ 100s0

v2
exp(−ρv/8p)

= 100s0
v2

exp(−ε2n(1 − λ)λ j/256k)

≤ 1/2s0.

SettingU2 = inf{t > T1 : Q j (Xt ) ≤
[
1−(4+ k− j

k )ε
]
n(1−λ)(λd) j−1}, we have, similarly,

P(U2 ≤ s0 < T †
G j+1) ≤ 1/2s0.

The events T2 ∧U2 ≤ s0 < T †
G j+1 and T †

G j ≤ s0 < T †
G j+1 coincide, so

P(T †
G j ≤ s0 < T †

G j+1) ≤ P(T2 ≤ s < T0) + P(U2 ≤ s < T0)

≤ 1

2s0
+ 1

2s0
= 1

s0
,

as required for part (2) for this value of j . ��
Proof of Lemma 6.7

Proof We first prove part (1). For i = 1, . . . , n, let Ni be the number of potential departures
from queue i over the time period between TG1 and TG1 + mH, so Ni is a binomial random
variable with parameters (mH, 1/n(1 + λ)). Recall that Lt is the event that, at time t , a
customer arrives and joins a queue of length k or longer, and observe that

P(TH ∧ T †
G1 ≥ TG1 + mH) ≤ P

⎛

⎝

TG1+mH⋃

t=TG1+1

(Lt ∩ {Xt−1 ∈ G1
1})
⎞

⎠+ P (∃i, Ni < 3�) .

Indeed, at time TG1 , the process is in A1(�, g), and so there is no queue with more than 3�
customers in it at that time. If there are at least 3� potential departures from each queue over

the time interval, and
⋃TG1+mH

t=TG1+1 Lt does not occur, then by time TG1 + mH, every queue is

reduced to length at most k, and no new queue of length k + 1 is created before TG1 + mH.
Now let (X ′

t ) = (XTG1+t ), (F ′
t ) = (FTG1+t ) and L ′

t = LTG1+t . We have:

P

⎛

⎝

TG1+mH⋃

t=TG1+1

(Lt ∩ {Xt−1 ∈ G1
1})
⎞

⎠ = P

(mH⋃

t=1

(L ′
t ∩ {X ′

t−1 ∈ G1
1})
)

≤
mH∑

t=1

P(L ′
t ∩ {X ′

t−1 ∈ G1
1})

=
mH∑

t=1

E
[
1{X ′

t−1∈G1
1 } E[1L ′

t
| F ′

t−1]
]

≤ mHe− log2 n ≤ 1/2s0,

where we used the strong Markov property, and Lemma 8.5.
Recall that mH = n(8� + 32 log2 n), so that the mean μ of each Ni is mH/n(1 + λ) ≥

4� + 16 log2 n. By (3.1), with ε = 1/4, we have

P(Ni ≤ 3�) ≤ P(Ni ≤ 3

4
μ) ≤ e−μ/32 ≤ e− 1

2 log2 n
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for each i . Thus the probability that there are fewer than 3� departures from any queue over

the interval from TG1 to TG1 + mH is at most ne− 1
2 log2 n < 1/2s0, and part (1) follows.

For part (2), as above we have

P

⎛

⎝

TG1+s0⋃

t=TG1+1

(Lt ∩ {Xt−1 ∈ G1
1})
⎞

⎠ ≤ s0e
− log2 n ≤ 1/s0.

Thus P(T †
H ≤ s0 < T †

G1
) is at most the probability that Xt exits the set H1 before time

T †
G1

∧ s0, necessarily by the creation of a new queue of length k + 1, is at most 1/s0, as
required. ��

10 Rapid Mixing

In this section, we prove our results about rapid mixing of the (n, d, λ)-supermarket process.
We continue to assume that the functions λ = λ(n) = 1−n−α , d = d(n) = nβ and ε = ε(n)

of the model satisfy the conditions of Theorem 6.1. We also assume throughout this section

that b ≤ � ≤ e
1
4 log2 n , so that q(�, b) = (22k + 72b)ε−1n1+α + 8�n ≤ s0/2.

We say that two queue-lengths vectors are adjacent if they differ by one customer in one
queue, and we first consider two copies of the process starting in adjacent states inA0(�, b),
coupled according to the coupling referred to in Lemma 4.1. The proof partly follows along
the lines of the proof of Lemma 2.6 in [11].

Lemma 10.1 Let x, y be a pair of adjacent states in A0(�, b), with x( j0) = y( j0) − 1 for
some queue j0, and x( j) = y( j) for j �= j0. Consider coupled copies (Xx

t ) and (X y
t ) of the

(n, d, λ)-supermarket process, where Xx
0 = x and X y

0 = y. For n sufficiently large, and all
times t ≥ 2q(�, b), we have

E ‖Xx
t − X y

t ‖1 = P(Xx
t �= X y

t ) ≤ 2e− 1
4 log2 n .

Proof By Lemma 4.1, Xx
t and X y

t are always neighbours or equal, always Xx
t ≤ X y

t , and
if for some time s we have Xx

s = X y
s , then Xx

t = X y
t for all t ≥ s. Thus in particular

E ‖Xx
t − X y

t ‖1 = P(Xx
t �= X y

t ). The probability of coalescence is increasing with t , so we
may assume that t = 2q(�, b).

Initially, the queue j0 is unbalanced, i.e., Xx
0 ( j0) �= X y

0 ( j0), and all other queues are
balanced. Observe that the index of the unbalanced queue in the coupled pair of processes
may change over time. Let Wt denote the longer of the unbalanced queue lengths at time t ,
if there is such a queue, and let Wt = 0 otherwise. The time for the two coupled processes
to coalesce is the time T until Wt hits 0.

We first run (Xx
t ) and (X y

t ) together using the coupling. Let T
x
H and T y

H denote the times
TH, as defined in Sect. 6, for the two copies of the process, and set T ∗

H = T x
H ∨ T y

H. By
Theorem 6.10, T ∗

H ≤ q(�, b) with probability at least

1 − 2(6k + 28)

s0
≥ 1 − 1

3
e− 1

4 log2 n .

We now track the performance of the coupling after time T ∗
H. If the processes have coa-

lesced by time T ∗
H (i.e., if T ≤ T ∗

H), then we are done. Otherwise, Xx
T ∗
H

and X y
T ∗
H

are still

adjacent, and there is some random index J0 such that the queue J0 is unbalanced, i.e.,
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Xx
T ∗
H

(J0) �= X y
T ∗
H

(J0), and all other queues are balanced. Moreover, since uk+1(x) = 0 for

all x ∈ H, we have WT ∗
H ≤ k.

We shall use Lemma 3.4 to give a suitable upper bound on P(Wt > 0). The idea is that,
since, with high probability, both copies of the process remain in H for a long time, the
unbalanced queue length Wt will often drop below k, and then there is a chance of going all
the way down to 0 before returning to k.

For each t ≥ 0, let Bt be the event that X
y
s , Xx

s ∈ H for all s with T ∗
H ≤ s ≤ t − 1. It

follows from Theorem 6.10 that P(Bt ) ≤ (12k + 56)/s0 ≤ 1
3e

− 1
4 log2 n , provided t ≤ s0.

Let Nr be the number of jumps of the longer unbalanced queue length in the first r steps
after T ∗

H. Also set N = NT , the total number of these jumps, with NT = 0 if T ≤ T ∗
H.

For j = 1, 2, . . ., let Tj be the time of the j th jump after T ∗
H if N ≥ j , and otherwise set

Tj = T ∗
H ∨ T . Thus, if T ∗

H < T , we have T ∗
H < T1 < · · · < T = TN = TN+1 = · · · . If

T ∗
H ≥ T , then all of the Tj are equal to T ∗

H.
Let S0 = y(J0)1{T ∗

H<T } = WT ∗
H1{T ∗

H<T }, the longer unbalanced queue length at time
t = T ∗

H if coalescence has not occurred. For each positive integer j , if N ≥ j , let S j = WTj ,
which is either 0 or the longer of the unbalanced queue lengths at time Tj , immediately after
the j th arrival or departure at the unbalanced queue. Also, if N ≥ j , let Z j be the ±1-valued
random variable S j − S j−1. For each non-negative integer j , let ϕ j be the σ -field FTj+1−1 of
all events before time Tj+1. Let also A j be the ϕ j -measurable event BTj+1 , that is the event
that X y

s , Xx
s ∈ H for each s with T ∗

H ≤ s ≤ Tj+1 − 1.
We shall use Lemma 3.4. We take the sequences (ϕ j ) j≥0, (Z j ) j≥0, (S j ) j≥0 and (A j ) j≥0

as defined above, and we set k0 = k and δ = 1/(λd + 1). Note first that, at any time t < T ,
the probability, conditioned on Ft , of an arrival to the longer of the unbalanced queues is
at most dλ/n(1 + λ), while the conditional probability of a departure from that queue is
1/n(1 + λ). Therefore, on the event that N ≥ j , the probability, conditioned on ϕ j−1, that
the event at time Tj is a departure from the longer unbalanced queue is at least

1/n(1 + λ)

1/n(1 + λ) + dλ/n(1 + λ)
= 1

1 + dλ
= δ.

In other words, on the event N ≥ j we have P(Z j = −1 | ϕ j−1) ≥ δ.
We now show that, on the event {N ≥ j} ∩ A j−1 ∩ {S j−1 ≥ k}, we have

P(Z j = −1 | ϕ j−1) ≥ 3

4
.

To see this, consider a time t ≥ T ∗
H. On the event Bt , we have Xt ∈ H ⊆ E1, and so,

by Lemma 8.5, the conditional probability P(Lt+1 | Ft ) that the event at time t + 1 is
an arrival to a queue of length k or greater is at most e− log2 n . In particular, on the event
Bt ∩ {Wt−1 ≥ k}, the conditional probability that the event at time t + 1 is an arrival joining
the longer unbalanced queue is at most e− log2 n , while the conditional probability that the
event at time t +1 is a departure from the longer unbalanced queue is 1/n(1+λ). Therefore,
on the event {N ≥ j} ∩ A j−1 ∩ {S j−1 ≥ k}, we have

P(Z j = −1 | ϕ j−1) ≥ 1/n(λ + 1)

1/n(λ + 1) + e− log2 n
≥ 3

4
.

We have now shown that Sm − S0 can be written as a sum
∑m

i=1 Zi for {0,±1}-valued
randomvariables Zi that satisfy the conditions ofLemma3.4,with k0 = k and δ = 1/(λd+1).
(The argument above establishes this for m ≤ N : for m > N , we have set Zm = Sm = 0,
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which alsomeets the requirements of the lemma.) Note that δ−(k−1) = (λd+1)k−1 ≤ 2dk−1.
Hence, for m ≥ 16k,

P

(
m⋂

i=1

{Si �= 0} ∩
m−1⋂

i=0

Ai

)

≤ P(S0 > �m/16�) + 3 exp

(

− δk−1

200k
m

)

≤ 0 + 3 exp
(
− m

400kdk−1

)
.

Here P(·) refers to the coupling measure in the probability space of Sect. 4, with coupled
copies of the process for each possible starting state.

Let q = q(�, b) and m = �q/4n� ≥ nα . Since, at each time after T ∗
H and before T , a

jump in the longer unbalanced queue occurs with probability at least 1/2n while the queue
is nonempty, we have, by inequality (3.1), P({T > T ∗

H + q} ∩ {Nq < m}) ≤ e−q/16n . Also,

P

(

{Nr ≥ m} ∩
m−1⋃

i=0

Ai ∩ {T ∗
H ≤ q}

)

≤ P(B2q) ≤ P(Bs0) ≤ 1

3
e− 1

4 log2 n .

Now we have that

P(T > 2q) ≤ P(T ∗
H > q) + P({T > T ∗

H + q} ∩ {T ∗
H ≤ q})

≤ P(T ∗
H > q) + P({T > T ∗

H + q} ∩ {Nq < m})

+P

(
{Nq ≥ m} ∩

m−1⋃

i=0

Ai ∩ {T ∗
H ≤ q}

)

+P

(

{Nq ≥ m} ∩
m−1⋂

i=0

Ai ∩
m⋂

i=1

{Si �= 0}
)

.

To see this, note that {Nq ≥ m} ∩⋃m
i=1{Si = 0} ⊆ {T ≤ T ∗

H + q}. Now we have

P(T > 2q) ≤ 1

3
e− 1

4 log2 n + e−q/16n + 1

3
e− 1

4 log2 n

+3 exp
(
− q

1600kdk−1n

)

≤ 2

3
e− 1

4 log2 n + 4 exp

(

−nα−(k−1)β

1600k

)

≤ e− 1
4 log2 n,

as required. ��

Theorem 10.2 Let (Xx
t ) and (X y

t ) be two copies of the (n, d, λ)-supermarket process, start-
ing in states x and y in A0(�, b). Then, for n sufficiently large and t ≥ 2q(�, b), we have

E ‖Xx
t − X y

t ‖1 ≤ 2bne− 1
4 log2 n ≤ e− 1

5 log2 n .

Proof Given two distinct states x and y in A0(�, b), we can choose a path x =
z0, z1, . . . , zm = y of adjacent states in A0(�, b) from x down to the empty queue-lengths
vector and back up to y, where m = ‖x‖1 + ‖y‖1 ≤ 2bn. By Lemma 10.1, for t ≥ 2q(�, b),
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E ‖Xx
t − X y

t ‖1 ≤
m−1∑

i=0

E ‖Xzi
t − Xzi+1

t ‖1 ≤ 2bne− 1
4 log2 n,

as required. ��

Wesaw inCorollary 6.9 thatYt ∈ A0(�, b)with probability at least 1−e− 1
4 log2 n , whenever

�, b ≥ k, where (Yt ) is a copy of the (n, d, λ)-supermarket process in equilibrium. Thus we
have the following corollary.

Corollary 10.3 Take any �, b ≥ k, and let (Xx
t ) be a copy of the (n, d, λ)-supermarket

process starting in a state x ∈ A0(�, b). Also let (Yt ) be a copy in equilibrium. Then, for n
sufficiently large and t ≥ 2q(�, b), we have

dTV (L(Xx
t ),L(Yt )) ≤ 2e− 1

5 log2 n .

This now implies Theorem 1.4. We choose ε(n) = 1/100. The hypothesis that � =
‖x‖∞ ≤ e

1
4 log2 n , together with b = ‖x‖1/n ≤ �, ensures that q(�, b) ≤ 1

2 s0, and the setting
of ε ensures that q(�, b) ≤ 7200

(
kn1+α + bn1+α + �n

)
.

We now show that mixing actually takes place faster if we start from a “good” state, i.e.,
a state in N = N ε .

Lemma 10.4 Let x, y be a pair of adjacent states in N ε, with x( j0) = y( j0) − 1 for some
queue j0, and x( j) = y( j) for j �= j0. Consider coupled copies (Xx

t ) and (X y
t ) of the

(n, d, λ)-supermarket process. For n sufficiently large and all times t ≥ 0, we have

E ‖Xx
t − X y

t ‖1 ≤ e− 1
4 log2 n + 4 exp

(

− t

1600kdk−1n

)

.

Proof The proof is nearly identical to that of Lemma 10.1. Instead of starting by running the
two copies of the process together until some time T ∗, we use the final part of Theorem 6.1,

which tells us that, with probability at most 1 − e− 1
4 log2 n , both Xx

t and X y
t remain within

N 6ε throughout the interval 0 ≤ t ≤ s0. We may thus repeat the proof of Lemma 10.1 with
T ∗ and q = q(�, b) replaced by 0, and running the second phase for any number t of steps
instead of q , and we obtain the result. ��

As before, we can use this result to deduce an upper bound on the mixing time, starting
from a good state.

Theorem 10.5 Let (Xx
t ) and (X y

t ) be two copies of the (n, d, λ)-supermarket process with
starting states x and y in N ε. Then, for n sufficiently large and t ≥ 0, we have

E ‖Xx
t − X y

t ‖1 ≤ n

(

e− 1
4 log2 n + 4 exp

(

− t

1600kdk−1n

))

.

Proof (Sketch) Take any two queue-lengths vectors x and y in N ε. It is straightforward
to show that there is a path between x = z0z1 · · · zm = y in N ε of length m ≤ 4n(1 −
λ)(λd)k−1 ≤ n between x and y. The result now follows as in the proof of Theorem 10.2. ��

Asbefore, sinceY0 lies inHε ⊆ N ε with probability at least 1−e− 1
4 log2 n , byCorollary 6.9,

we may now deduce that the total variation distance dTV (L(Xx
t ),L(Yt )) is at most
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e− 1
4 log2 n + n

(

e− 1
4 log2 n + 4 exp

(

− t

1600kdk−1n

))

≤ n

(

2e− 1
4 log2 n + 4 exp

(

− t

1600kn1+(k−1)β

))

whenever x ∈ N ε. This result is exactly the statement of Theorem 1.2 (where we take
ε = 1/ log n: the result would hold if our initial state were in N ε for ε a suitably small
constant).

Theorem1.2 shows that, from states x ∈ N , we havemixing to equilibrium in time of order
n1+(k−1)β log n. We finish by proving Theorem 1.3, showing that this bound is approximately
best possible.

Note that there is a state z in Iε ⊆ Hε ⊆ N ε with Qk(z) ≤ (1 − 3ε)n(1 − λ)(λd)k−1.
However, we know from Corollary 6.9 that P(Yt ∈ Hε/5) ≥ 1 − e− 1

4 log2 n , so in order for
dTV (L(Xz

t ),�) to be small, we need that Qk(X
z
t ) ≥ (1 − ε)n(1 − λ)(λd)k−1 with high

probability. Set t = 1
6n(λd)k−1.

For x ∈ Hε, we obtain fromLemma7.1,with a calculation almost exactly as inLemma8.2,
that

(1 + λ)�Qk(x) ≤ (1 − λ)(1 + ε/6) − Qk(x)

n(λd)k−1 + exp (−dQk(x)/kn)

≤ (1 − λ)(1 + ε/3 − (1 − 4ε)) ≤ 5ε(1 − λ),

so�Qk(x) ≤ 5ε(1−λ) also.We know from (6.1) that, with probability at least 1−e− 1
4 log2 n ,

Xz
s ∈ Hε for all s = 0, . . . , t − 1, and we also have that Qk(x) ≤ kn for every state x . It

follows that

E Qk(X
z
t ) = Qk(z) +

t−1∑

s=0

E
(
E(�Qk(X

z
s ) | Fs)

)

≤ (1 − 3ε)n(1 − λ)(λd)k−1 + 5εt (1 − λ) + kne− 1
4 log2 n

≤ (1 − 2ε)n(1 − λ)(λd)k−1.

A result from [11] (adapted for discrete time) states that, for some absolute constant c, for
any 1-Lipschitz function f , any starting state z, any t > 0 and any u ≥ 0,

P(| f (Xz
t ) − E f (Xz

t )| ≥ u) ≤ ne−cu2/(t+u).

Applying this with f = Qk , t = 1
6n(λd)k−1 and u = εt (1 − λ), we find that

P(Qk(X
z
t ) > (1 − ε)n(1 − λ)(λd)k−1) ≤ P(Qk(X

z
t ) − E Qk(X

z
t ) > εn(1 − λ)(λd)k−1)

≤ ne−cε2n(1−λ)2(λd)k−1/2 ≤ 1/s0.

This completes the proof of Theorem 1.3.
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