J Stat Phys (2018) 173:1149-1194 @ CrossMark
hutps://doi.org/10.1007/510955-018-2044-7

The Supermarket Model with Bounded Queue Lengths in
Equilibrium

Graham Brightwell'! . Marianne Fairthorne! -
Malwina J. Luczak?

Received: 26 October 2017 / Accepted: 16 April 2018 / Published online: 28 April 2018
© The Author(s) 2018

Abstract In the supermarket model, there are n queues, each with a single server. Customers
arrive in a Poisson process with arrival rate An, where A = A(n) € (0, 1). Upon arrival, a
customer selects d = d(n) servers uniformly at random, and joins the queue of a least-loaded
server amongst those chosen. Service times are independent exponentially distributed random
variables with mean 1. In this paper, we analyse the behaviour of the supermarket model in
the regime where A(n) = 1 — n~% and d(n) = [nf |, where  and B are fixed numbers
in (0, 1]. For suitable pairs (o, ), our results imply that, in equilibrium, with probability
tending to 1 as n — oo, the proportion of queues with length equal to k = [«/f] is at least
1 — 20T *=DB "and there are no longer queues. We further show that the process is rapidly
mixing when started in a good state, and give bounds on the speed of mixing for more general
initial conditions.
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1 Introduction

The supermarket model is a well-studied Markov chain model for a dynamic load-balancing
process. There are n servers, and customers arrive according to a Poisson process with rate
A = A(n) < 1.Onarrival, a customer inspects d = d(n) queues, chosen uniformly at random
with replacement, and joins a shortest queue among those inspected (in case of a tie, the first
shortest queue in the list is joined). Each server serves one customer at a time, and service
times are iid random variables, with an exponential distribution of mean 1.

A number of authors [5-9,11-13,17,18,21,23] have studied the supermarket model, as
well as various extensions, e.g., to the setting of a Jackson network [15] and to a version with
one queue saved in memory [14,20]. There are related ideas in other queueing models, for
instance one where one server inspects d queues and serves the longest [1].

Early papers on the supermarket model concentrated on the case where A and d are held
fixed as n tends to infinity. As with other related models (see, e.g. [10,19]), there is a dramatic
change when d is increased from 1 to 2: if d = 1, the maximum queue length in equilibrium
is of order logn, while if d is a constant at least 2, then the maximum queue length in
equilibrium is of order loglogn/logd.

Luczak and McDiarmid [11] prove that, for fixed A and d, the sequence of Markov chains
indexed by 7 is rapidly mixing: as n — 00, the time for the system to converge to equilibrium
is of order log n, provided the initial state has not too many customers and no very long queue.
Also, they show that, for d > 2, with probability tending to 1 as n — o0, in the equilibrium
distribution the maximum queue length takes one of at most 2 values, and that these values
are loglogn/logd + O(1).

More recently, there has been interest in regimes where the parameters of the model may
vary as n tends to infinity. Fairthorne [6] and Mukherjee et al [21] treat the case where & < 1
is fixed and d = d(n) tends to infinity with n. Eschenfeldt and Gamarnik [5] consider the
“heavy traffic regime”, where A = A(n) tends to 1 from below as n — oo, and d is held
fixed.

In this paper, we study a different regime. We focus on the case where A = A(n) = 1 —n"—
andd =d(n) = Lnﬂj, where o and f are fixed constants in (0, 1] withk — 1 < «/B < k
for some positive integer k. We also require that 2o < 1 + B(k — 1), for reasons that we
shall explain after the statement of Theorem 1.1 (see Remark (4)). Our results imply that,
in equilibrium, with high probability (i.e., with probability tending to 1 as n — ©00), the
proportion of queues of length exactly equal to k is at least 1 — 20 ~¢t*=DB and there are
no longer queues. Our methods actually cover a much broader range of parameter values,
but we focus on this case for ease of exposition.

We offer two reasons why such a regime might be of interest: for one, this is a range of
parameter values where near-perfect load balancing is achieved, with bounded maximum
queue length, even when the system is running at nearly full capacity, and the values of d
we obtain thus represent a sufficient amount of resource (in terms of inspection of queue-
lengths) required to achieve this load-balancing. From a more theoretical viewpoint, we see
our regimes, for the different values of [«/f7, as possessing a scaling limit as n — o0,
and varying the parameters so that «/f passes through an integer is an example of a phase
transition.

To motivate our results, we first give heuristics to indicate what behaviour we might expect.
Consider the infinite system of differential equations

o

dvj(t)
dt

=1j—1(O) — v, — (1) — vjp1(1), =1 (1.1)
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where vg(t) = 1 for all ¢. For an initial condition v(0) such that 1 > v{(0) > v2(0) > --- >0
and v;(0) — O as j — oo, there is a unique solution v(¢) (t > 0), with v(t) = (v; (1)) j>1,
which is such that 1 > vi(#) > va(f) > --- > Oand v;(#) — 0 as j — oo, for each
t > 0. It follows from earlier work [7,8,12,13,23] that, with high probability, for each j, the
proportion of queues of length at least j at time ¢ stays “close to” v; () over a bounded time
interval (or an interval whose length tends to infinity at most polynomially with n), assuming
this is the case at time 0.
The system (1.1) has a unique, attractive, fixed point & = (1) j>1, such that 7; — 0 as
Jj — oo, given by ‘
;= Al j>1 (1.2)

If A and d are fixed constants, then, in equilibrium, with high probability, the proportion of
queues of length at least j is close to 7; for each j > 1; see [7,8,11,12].

For X and d functions of n, there is no single limiting differential equation (1.1), but rather
a sequence of approximating differential equations, each with their own solutions and fixed
points. In this paper, we do not address the question of whether such approximations to the
evolution of the process are valid in generality, focussing solely on equilibrium behaviour
and the time to reach equilibrium. If A = 1 —n~% and d = |n?], and k is an integer with
k—1<a/B <k,then

mp = Al S (e Ured T S () p(p))pmetk=DB
=1-o(l),
s 1dt

IA

1
Thtl = exp(—dkn_“) < exp(—inkﬂ_o‘) =o(1/n).

We will indeed show that, in equilibrium, with high probability, there are no queues of length
greater than k, while the proportion of queues with length exactly k tends to 1 as n — oo.
Moreover we show that, for 0 < j < k, the number of queues of length exactly j is very
close ton(wj — mj41) = n'=oHip,

We also prove results on mixing time to equilibrium. We show that, if we start in a “good”
initial state (one without any very long queue, and without too many customers in the system
in total), then the mixing time is of order n't**=D8 Jog n, which is best possible up to the
logarithmic term. We also prove general bounds on the mixing time, in terms of the initial
number of customers and the initial maximum queue length, and show that these bounds are
also roughly best possible.

We will shortly state our main results precisely, but first we describe the supermarket
model more carefully. In fact, we describe a natural discrete-time version of the process,
which we shall work with throughout; as is standard, one may convert results about the
discrete time version to the continuous model, with the understanding that one unit of time
in the continuous model corresponds to about (1 + A)n steps of the discrete model.

A queue-lengths vector is an n-tuple (x(1), ..., x(n)) whose entries are non-negative
integers. If x(j) = i, we say that queue j has length i, or that there are i customers in
queue j; we think of these customers as in positions 1, ..., i in the queue. We use similar

terminology throughout; for instance, to say that a customer arrives and joins queue j means
that x (j) increases by 1, and to say that a customer in queue j departs or is served means that
x(j) decreases by 1. Given a queue-lengths vector x, we write ||x||; = Z'}zl x(j) to denote
the total number of customers in state x, and ||x|loc = maxx(j) to denote the maximum
queue length in state x.

For each i > 0, and each x € Z'|, we define u;(x) to be the proportion of queues in
x with length at least i. So up(x) = 1 for all x, and, for each fixed x, the u;(x) form a
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non-increasing sequence of multiples of 1/n, such that u; (x) = 0 eventually. The sequence
(u; (x))i>0 captures the “profile” of a queue-lengths vector x, and we shall describe various
sets of queue-lengths vectors, and functions of the queue-lengths vector, in terms of the u; (x).

For positive integers n and d, and A € (0, 1), we now define the (n, d, 1)-supermarket
process. This process is a discrete-time Markov chain (X;), whose state space is the set Z/|
of queue-lengths vectors, and where transitions occur at non-negative integer times. Each
transition is either a customer arrival, with probability A /(1 + 1), or a potential departure,
with probability 1/(1 + A). If there is a potential departure, then a queue K is selected
uniformly at random from {1, ..., n}: if there is a customer in queue K, then they are served
and depart the system. If there is an arrival, then d queues are selected uniformly at random,
with replacement, from {1, ..., n}, and the arriving customer joins a shortest queue among
those selected. To be precise, ad-tuple (K7, .. ., Ky) is selected, and the customer joins queue
k = K, where j is the least index such that x (K ;) is minimal among {x (K1), ..., x(Kg)}.

Forx € 7'}, (X7) denotes a copy of the (n, d, A)-supermarket process (X;) where Xo = x
a.s. Throughout, we let (¥;) denote a copy of the process in equilibrium. The processes depend
on the parameters (n, d, 1), but we suppress this dependence in the notation. Throughout, we
use (F;) to denote the natural filtration of the process (X;). We use the notation P(-) freely
to denote probability in whatever space we work in.

We now state our main results. First, we describe sets of queue-lengths vectors N (n, «, B):
our aim is to prove that, for suitable values of « and 8, withd = |[nf |, A =1—n"%and n
sufficiently large, an equilibrium copy of the (n, d, A)-supermarket process is concentrated
in the set N'(n, «, B).

Fora, B € (0, 1],letk = [a/B], and let N (n, «, B) be the set of all queue-lengths vectors
x such that: ugy1(x) = 0and, for 1 < j <k,

(1-—

)n—ﬂt-‘r(j—l)ﬁ <1- uj(x) < (1 + )n—0l+(j—1)/3_
So, for x € N'(n, «, 8), we have the following.

logn logn

(a) There are no queues of length k + 1 or greater.
(b) For 1 < j < k, the number of queues of length less than j is n(1 — u(x)), which lies
between (1 + @)nlf‘”(j*l)ﬂ.

(c) Inparticular, the number of queues of length less than & is at most (1+@)n I—ot+(k=Dp —
o(n), and so the proportion of queues of length exactly & tends to 1 as n — oo.
(d) For1 < j <k — 1, the number of queues of length exactly j is n(u;(x) — uj11(x)),

which lies between (1 & loé - ynl—atip,

Theorem 1.1 Suppose that a, B € (0, 1] are constants with k — 1 < a/B < k for some
natural number k, and that 2o < 1+ B(k — 1). Suppose also that » = A(n) = 1 —n~% and
d = d(n) = |nP). Then, for n sufficiently large, a copy (Y;) of the (n,d, A)-supermarket
process in equilibrium satisfies

P, ¢ Nn,a, B)) < o 1log?n

Remarks (1) In fact, our proofs go through essentially unchanged if we demand only that
1 —A(n) = n~*1® and d(n) = nPt20 where §;(n) and 8,(n) tend to zero as
n — oo, and we replace instances of n~tU=DB in the definition of N/ (n,a, B) by
(1 — 1)d’~'. For ease of exposition, we prefer to stick to definite values of A and d;
however, from now on we allow ourselves to write simply d = nf, even though this
need not be an integer.
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(@)

3)

“

(&)

(6)

)

The conclusion of the theorem implies that it is rare for there to be queues of length
greater than k in equilibrium, and so in particular it is rare for the last arriving customer
to have joined a queue containing k other customers. Theorem 1.1 can thus be used to
make statements about the performance of the system in equilibrium in terms of the total
waiting time for each customer; we leave the details to the interested reader.

In the case where « < B, Theorem 1.1 tells us that, in equilibrium, the maximum queue-
length is 1 with high probability, and therefore that it will be extremely rare for an arriving
customer to join a non-empty queue. In this case, some of the complexity of our proof
can be avoided. This range is also covered by Fairthorne [6], with essentially the same
proof and some sharper results, e.g. giving conditions for the maximum queue-length
remaining equal to 1 for a time period nX for fixed K.

We now indicate why the condition 2o < 1 4+ S(k — 1) in Theorem 1.1 is necessary.
For a state in NV'(n, o, ), the total number of customers in the system is at least kn —
pl=e+*=DB f we consider the next n2* steps, the number of arrivals minus the
number of potential departures is asymptotically a normal random variable with mean
and standard deviation both of order n*. So the probability that the number of arrivals
minus the number of departures is at least 3n* is bounded away from zero as n — oo.
Ifa > 1 —a + (k — 1)B, then this many excess arrivals would drive the total number of
customers in the system over kn, which certainly implies that some queue of length k + 1
would be created.

If o > 1 and B is arbitrary, a similar argument shows that, in equilibrium, for each k, the
probability that there is a queue of length at least k is bounded away from zero. Indeed,
starting from any state, for any k € N, there is a positive probability that, over the next
n? transitions, the number of arrivals exceeds the number of departures by at least kn.
For A < A/, there is a coupling of the (n, d, A)- and (n, d, .")-supermarket processes, so
that at each time, each queue in the (n, d, A)-supermarket process is no longer than in
the (n, d, )")-supermarket process, provided this is true at time 0. So, for instance, if at a
given time there are at least m queues with length k in the (n, d, A)-supermarket process,
then there are also at least m queues with length at least & in the (n, d, A)-supermarket
process. If o/ B is equal to a positive integer k, and & < k/(k + 1) (so that the condition
20 < 14 (k — 1)B is satisfied), then we can couple with the process for slightly lower,
and slightly higher, values of «, to see that the maximum queue length in equilibrium
is, with high probability, either k or k + 1, and that most queues have length either k or
k + 1. Similarly, for d < d’, there is a coupling of the (n, d’, A)-supermarket process
and the (n, d, A)-supermarket process such that, for all times 7 > 0, and for each j, the
number of customers in position at least j in their queue is no higher in the first process
than the second (see [7,22]).

Combining these arguments actually gives an essentially complete picture of the max-
imum queue length in equilibrium for any parameters o € (0, 1), 8 > 0. The regions
of the (&, B)-plane not covered by Theorem 1.1 are of the form Ey = {(«, ) : o <
1, % <B< 21?:11 }. For a model with parameters in Ej, coupling in d shows that, with
high probability, the maximum queue length in equilibrium is at most k + 1; coupling
in A shows that, with high probability, the maximum queue length in equilibrium is at
least k. Moreover, the argument in Remark (4) shows that the value k + 1 occurs with
probability bounded way from zero as n — oo.

We define the model so that d queues are chosen with replacement, so it makes sense to
ask what happens if 8 > 1. In this case, most arriving customers inspect every queue,
and the situation is essentially the same as when 8 = 1 (when most arriving customers
inspect at least half of the queues), or as when every arriving customer inspects every
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queue (the “join the shortest queue” protocol). Our result in this case says that, for
a < 1/2, the maximum queue length is 1 with high probability in equilibrium. For
o > 1/2, we are in the region E; defined in the previous remark: the maximum queue
length is either 1 or 2 with high probability in equilibrium, and the value 2 occurs
with probability bounded away from 0. For the join the shortest queue protocol and
A =1 — cn~!/2, this situation is explored in detail by Eschenfeldt and Gamarnik [4].

(8) The case @ = 1/2 has been studied in queueing theory under the name of the Halfin-
Whitt heavy traffic regime. In this case, Theorem 1.1 applies whenever 8 < 1/2 and
1/2p is not an integer, and the result implies that, in equilibrium, the proportion of
queues of length [1/28] tends to 1 as n — oo, and with high probability there are no
longer queues. For 8 > 1/2, the maximum queue length in equilibrium is either 1 or 2
with high probability, and the value 2 occurs with probability bounded away from 0, as
in Remark (4).

This is an explicit example of a model where we have a type of scaling limit: as we
increase n with A = 1 —n~% and d = n®, we retain the property that almost all queues have
length k = [«/B] in equilibrium, with high probability, and the number of shorter queues
is of order n!~**1¥/BIF — 5(n). As we adjust the parameters so that &/ passes through an
integer value, we have a phase transition to a different equilibrium regime.

As mentioned earlier, and explained in more detail in Sect. 2, our results are in line with
a more general hypothesis: for a very wide range of parameter values, the maximum queue
length of the (n, d, A)-supermarket model in equilibrium is within 1 of the largest k such that

T = Alrdetd T l

n

(Recall that m is the “predicted” proportion of queues of length at least k; see (1.2).) This
general hypothesis holds when A and d are constants: see [11]. It is also valid for the range
where A is fixed and d — oo: see [6], and at least approximately when & — 1 and d is fixed:
see [5].

We now state our results concerning “rapid mixing”, i.e., rapid convergence to equilibrium.
For x € Z', let L(X}) denote the law at time ¢ of the (n, d, A)-supermarket process (X;)
started in state x. Also let IT denote the stationary distribution of the (n, d, A)-supermarket
process.

Theorem 1.2 Suppose that .(n) = 1 — n™* and d(n) = nP, where o, g and k = [/ 8]
satisfy the conditions of Theorem 1.1. Let x be a queue-lengths vector in N'(n, a, B). Then,
for all sufficiently large n and for all t > 0,

dry (L(X5), TT) <n <2e—4l log”n | 4 exp (—%»
e 1600kn!+*=DF J |-

In other words, for a copy of the process started in a state in N'(, «, 8), the mixing time is
at most of order n'**=DP logn = o(n'*t%) = o(n?). In fact, this upper bound on the mixing
time is best possible up to the logarithmic factor: we show that mixing, starting from states
in N'(n, «, B), requires order at least pltk=DAp steps.

Theorem 1.3 Suppose that .(n) = 1 —n~% and d(n) = n®, where a, g and k = [/ B] sat-
isfy the conditions of Theorem 1.1. For all sufficiently large n, there is a state 7 € N'(n, a, B)
such that, fort < énlﬂk’l)ﬁ,

dry (L(XD), TT) = 1 —2e™ 418",
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From states not in A/ (n, «, 8), we cannot expect to have rapid mixing in general. For
instance, suppose we start from a state x with number of customers || x||; > kn. The expected
decrease in the number of customers at each step of the chain is at most so mixing takes

1+A°
at least of order (||x|ly — kn)(1 —A)~! = (||x[l; — kn)n® steps. Similarly, if we start with
one long queue, of length ||x||» > k, then mixing takes at least of order (||x|co — k)7 steps,
to allow time for enough departures from the long queue. This shows that, for instance, if
either ||x||{ = 2kn or || x|o > 2k, and

1
t = max (Ilx1lin®, l1xlloon), (1.3)

then the total variation distance drv (£(X;, IT) is near to 1. The next result gives an upper
bound on the mixing time for (X;') in terms of ||x||; and ||x ||, and shows that (1.3) is best
possible up to the constant factor.

Theorem 1.4 Suppose that a and B satisfy the hypotheses of Theorem 1.1, and let x be any
queue-lengths vector with ||X||eo < e% log?n_ Then for n sufficiently large and

t > 7200(kn" + ||x[[1n® + [Ix[|oon),
we have dry (L(X7), TT) < 275 log’n,

In the case where the dominant term in the expression above is kn'T® this result is not
as sharp as that in Theorem 1.2, since o > (k — 1)8.

The supermarket model is an instance of a model whose behaviour has been comprehen-
sively analysed even though there are an unbounded number of variables that need to be
tracked — namely, the proportions u; (X;). While what we achieve in this paper is similar to
what is achieved by Luczak and McDiarmid in [11] for the case where A and d are fixed as
n — 00, only some of the techniques of that paper can be used here, as we now explain.

The proofs in [11] rely on a coupling of copies of the supermarket process where the
distance between coupled copies does not increase in time. This coupling is, in particular,
used to establish concentration of measure, over a long time period, for Lipschitz functions
of the queue-lengths vector; this result is valid for any values of (n, d, 1), and in particular
in our setting. Fast coalescence of coupled copies, and hence rapid mixing, is shown by
comparing the behaviour of the (n, d, A)-process (d > 2) with the (n, 1, 1)-process, which
is easy to analyse. This then also implies concentration of measure for Lipschitz functions in
equilibrium, and that the profile of the equilibrium process is well concentrated around the
fixed point 7 of the equations (1.1).

The coupling from [11] also underlies the proofs in the present paper. However, in our
regime, comparisons with the (n, 1, A)-process are too crude. Thus we cannot show that
the coupled copies coalesce quickly enough, until we know something about the profiles
of the copies, in particular that their maximum queue lengths are small. Our approach is to
investigate the equilibrium distribution first, as well as the time for a copy of the process
from a fairly general starting state to reach a “good” set of states in which the equilibrium
copy spends most of its time. Having done this, we then prove rapid mixing in a very similar
way to the proof in [11].

To show anything about the equilibrium distribution, we would like to examine the tra-
jectory of the vector u(X,), whose components are the u; (X;) fori > 1. This seems difficult
to do directly, but we perform a change of variables and analyse instead a collection of just k
functions Q(X;), ..., Qr(X;). These are linear functions of u;(X;), ..., ur(X,), with the
property that the drift of each Q;(X;) can be written, approximately, in terms of Q;(X;)
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and Qjy1(X;) only. Exceptionally, the drift of Q4 (X;) is written in terms of Q¢ (X,) and
ug+1(X;) (which in fact is usually zero in equilibrium). The particular forms of the Q; are
chosen by considering the Perron—Frobenius eigenvalues of certain matrices My, derived from
the drifts of the u ;(x). Making this change of variables allows us to consider one function
Q;(X;) at a time, and show that each in turn drifts towards its equilibrium mean (which is
derived from the fixed point w of (1.1)), and we are thus able to prove enough about the
trajectory of the Q;(X;) to show that, starting from any reasonable state, with high proba-
bility the chain soon enters a good set of states where, in particular, ux1(X;) = 0, and so
the maximum queue length is at most k. We also show that, with high probability, the chain
remains in this good set of states for a long time, which implies that the equilibrium copy
spends the vast majority of its time in this set. The argument from [11] about coalescence
of coupled copies can be used to show rapid mixing from this good set of states. The drift
of the function Qy to its equilibrium is slower than that of any other Q ;, and its drift rate is
approximately n~'~* =18 which is close to the spectral gap of the Markov chain (X,), and
hence determines the speed of mixing in Theorem 1.2.

The structure of the paper is as follows. In Sect. 2, we expand on the discussion above,
and motivate the definitions of the functions Q; : Z" — R, which are fundamental to the
proof. In Sect. 3, we give a number of results about the long-term behaviour of random walks
with drifts, including several variants on results from [11]. In Sect. 4, we describe the key
coupling from [11], and use it to prove some results about the maximum queue length and
number of customers. In Sect. 5, we discuss in detail the drifts of the functions Q ;. The
proof of Theorem 1.1 starts in Sect. 6, where we show how to derive a slightly stronger result
from a sequence of lemmas. These lemmas are proved in Sects. 7-9. We prove our results
on mixing times in Sect. 10.

Note this paper is heavily based on a manuscript [3] by the first and third named authors,
placed on the arXiv in 2012, but not published in any other outlet. The present paper also
incorporates results from the second author’s PhD thesis [6]. The results proved in the present
paper are in some sense weaker than those in [3] and [6], as, purely for the sake of exposition,
we only treat the case where 1 — A(n) and d(n) are powers of n, and state our results only
in asymptotic form. In a more important sense, our results here are stronger, as they cover
essentially best possible ranges of exponents; the key improvement in our methodology
compared to [3] is that here we state and use Lemma 3.2 in a form where we get a stronger
bound when a function on the state space stays the same with high probability at any step,
allowing us to take proper account of the fact that the Q; for j < k rarely change value. Our
intention is to update [3] to incorporate these improvements in our more general setting.

2 Heuristics

In this section, we set out the intuition behind our results and proofs. As before, let (¥;) be
an equilibrium copy of the (n, d, A)-supermarket process. Guided by the results in [6,11],
we start by supposing that, for eachi > 1, u; (Y;) is well-concentrated around its expectation
u;, and seeing what that implies about the u;. For a function F defined on the state space,
and a state x, we define the drift of F at x tobe AF(x) = E[F(X;+1) — F(X;) | X; = x],
which is independent of 7. We have

Aui (V) = E[u; (Yr+1) — ui(Yy) | Y]

=¥[)\u- L7 = Ay (0 = i (V) + i1 (V) | @.1)
n(l—}—)») i— t ACS? ACS? i+ t . -
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The Supermarket Model with Bounded Queue Lengths in Equilibrium 1157

To see this, observe that, for i > 1, conditioned on Y;, the probability that the event
at time f 4 1 is an arrival to a queue of length exactly i — 1, increasing u; by 1/n, is
A

Sy (ui_ 1 (Y,)d — u; (Y,)d), while the probability that the event is a departure from a queue

of length exactly i, decreasing u; by 1/n, is ﬁ (u;i (Yy) — ui+1(Yy)). Note that ug is identi-
cally equal to 1.

Taking expectations on both sides, and setting them to 0, we see that, since (Y¥;) is in
equilibrium,

1

0=E[u;(Yr+1) —ui(Y)] = n(l+5)

[)\uil — )»u;i —u; + Mi+1] , 2.2)
where the approximations Eu; (Y,)? ~ u¢ and Eu;_;(Y;)? >~ u{_, are justified because of
our assumption that u; (¥;) and u; _1 (Y¥;) are well-concentrated around their respective means
u; and uj_1.

The system of equations

0=anl | —anf —m+mp (=12,...), (2.3)
with 79 = 1, has a unique solution with 7; — 0 as i — oo, namely:
mo= AT G001,

as in (1.2). See [11] and the references therein for details.

By analogy with [11], and motivated by (2.2), if the u;(Y;) are well concentrated, we
expect that u; =~ m;, for each i, and moreover that the values of u; (¥;) will be close to the
corresponding 7r; with high probability. In the regime of Theorem 1.1,

logmi =log(1 — (1 =) +---+d ™) ~ —p=e+i=DB

for each i > 1. As we are assuming that (k — 1) < o < k@, this means that 7; is close
to 1 fori < k, and very close to O for i > k. In particular, mx41 (which we expect to be
the approximate proportion of queues of length greater than k) is much smaller than 1/n,
suggesting that, in equilibrium, the probability that there is a queue of length greater than k
is very small.

On the other hand, the fact that 7y is close to 1 suggests that, in equilibrium, most queues
have length exactly k. Moreover, n'l.d =1-—0()fori < k, sothat 1 — nid ~ d(1 — m;),

whereas n,f = o(1). We then obtain the following linear approximation to the equations
(2.3), written in terms of variables 1 — iy, ..., 1 — ig:

0=2xd(l —up)+ 1A —u)— (1 —io),
0= —ad(l —it—1) + 2d(1 — iip) + (1 — i) — (1 = 1)
2=<i<k-1D,

0=—-xd(l —itg—1) + (1 —itg) — (1 = 21).

These linear equations have solution & given by
- =0 =DA+Gd) +--+0d) ™Y (=1,....k).
We then have the further approximation
-~ (1 —00d) ™, (=1,...k),

and we aim to show that indeed each u;(x) is close to the corresponding i; with high

probability in equilibrium.
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Ideally, we would seek a single “Lyapunov” function of the u; (x), which is small when
u;i(x) ~ u; for each i, and larger otherwise, and which has a downward drift outside of a
small neighbourhood of ii: we could then analyse the trajectory of this function to show that
(u1(x), ..., ug(x)) stays close to & for a long period. We have been unable to find such a
function, and indeed analysing the evolution of the u; (X,) directly appears to be challenging.
Instead, we work with a sequence of functions Q;(x), j = 1,...,k, each of the form
Qjx)=n Zl/: 1 Vi (1 —u;(x)), where the y; ; are positive real coefficients. This sequence
of functions has the property that the drift of each Q;(x) can be written (approximately) in
terms of Q;(x) itself and Q41 (x).

Let us see how these coefficients should be chosen, starting with the special case j = k,
where we write y; for i ;. Consider a function of the form Q(x) = n Zle yi (1 — u;i(x)).
As in the argument leading to (2.1), we have that the drift of this function satisfies

I+ 2)AQ0k(x)

k
—(1L+ 201 ) yidu;(x)

i=1

k
- Z yilhati—1 (0 — Ay 0O — u; (x) + w1 (0)]
i=1

k
D oyl =i () = A0 = ui ()%
i=1

—(I = ui(x)) + (I —uiy1(x))].

Making the approximations ux (x)¢ ~ 0,and 1 —u; (x)¢ ~ d(1 —u;(x)) fori =1,..., k—1,
and rearranging, we arrive at

IT+MVA0(x) = Yl = A = up1(0)) + (V-1 — vi) (1 — ur(x))
k—1
+ Y g — i) = vi + vic)(1— i (x). (2.4)

i=1

We set y9 = 0 for convenience of writing the above expression. This calculation is done
carefully, with precise inequalities, in Lemma 5.1 below. We would like to choose the y; so
that the vector

(M2 —yD) = vi+ 0, - AV — Yk—1) — Vk=1 + Yk—2, Ve—1 — Yk) (2.5

of coefficients of the (1 — u;) in (2.4) is equal to some multiple —u (1, ..., yk—1, yx) of the
vector with components y;, with ;> 0. This would entail
Ok (x)
A+ MAQk(x) = k(1 — A — ug41(x)) — —
which in turn would mean that Qj drifts towards a value of y; (1 — X — ug41(x))n/w. If also
ui+1(x) is (nearly) equal to 0, we should obtain that Qi (x) approaches yx (1 — A)n/p —if
Qy is above this value then it drifts down, whereas if Qy is below then it drifts up. What we

need in order for the vector (2.5) to be a multiple of (yl, R yk) is for (Vl, e yk) tobe a
left eigenvector of the k x k matrix
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—Ad — 1 1 0 0 0 0

rAd —xd—1 1 0 0 0

0 rdo —xd—1--- 0 0 0
M= : A |

0 0 0 coe—Ad — 1 1 0

0 0 0 ceeooAMd —Ad—1 1

0 0 0 0 rd o —1

with eigenvalue —u, or, equivalently, of the matrix

010---0 00
Ad 01
0AdO---0 0 O

(=)
(=)
o

M, =M+ Md+ DI = Soro
-0 10

0 00--
0 00---ad 0 1
0 00---0 AdArd

The non-negative matrix M, has a unique largest “Perron—Frobenius™ eigenvalue, with a
positive left eigenvector. By inspection, we see that, for k > 2, this left eigenvector is close
to the all-1 vector, with an eigenvalue close to Ad + 1, so that M} has largest eigenvalue
very close to 0. Recursion shows that a better approximation to the Perron—Frobenius left
eigenvector of M is (y1, ..., yk), where

1 G-
Gd)t )k

vi=1

fori = 1,..., k, and the largest eigenvalue u of My is very close to —1/(Ad)*~!. We shall
see in Lemma 5.1 that this approximation is close enough for our purposes, enabling us to
show that, with these choices of the y;,

Ok (x)

I+ M AQK() = (1 =4) = 2T

and thus Qg (x) drifts towards a value close to (1 — Mn(d)¥1. A further consequence is
that, in order for Qy (x) to move from (14 2¢)(1 — M)n(Ad)* ' to (1 £&)(1 —V)n(Ad)F 1, it
has to travel a distance of £(1 — A)n(Ad)*~1 while drifting at rate no greater than 2¢(1 — 1),
and so time of order n(Ad)¥~! is required. This is then a lower bound on the mixing time from
a “good” state to equilibrium, nearly matching that in Theorem 1.2. We make this argument
precise at the very end of the paper..

Forl <j <k if Q;j(x)=n Z{Zl vj,i (1 — u;), then a similar analysis reveals that

J
(1+2A0;(0) = Y (U = () [1jim1 + 2dyjies — Od + Dyl + (=51 (0).
i=1

(See the proof of Lemma 5.2.) We think of 1 — u;1(x) as an “external” term (which in
practice will be very close to Q41(x)/n), which will determine the value towards which
Q; drifts. We would like the rest of the expression to be a negative multiple of Q; (x). For
this we need (yjﬁl, ey yjyj) to be a left eigenvector of the j x j matrix
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—ad —1 1 0 0 0 0
rAd —xd—1 1 0 0 0
0 rAd —id —1 0 0 0
M; = )
0 0 0 —Ad —1 1 0
0 0 0 rd —xd -1 1
0 0 0 0 rAd —xd —1

with eigenvalue —p < O or, equivalently, of the matrix

Oxd 0 ---00 O
10xd---00 0
oOo1 0---00 O
M;=Mj+Gd+DI; = . |,
00 O 0OAd O
00 O 1 0 Ad
00 0 01 0

with eigenvalue Ad + 1 — w. These matrices are tridiagonal Toeplitz matrices, and there
is an exact formula for the eigenvalues and eigenvectors. (See, for instance, Example 7.2.5

in [16].) The Perron-Frobenius eigenvalue of M; " is 2+4/2d cos ( n 1) with left eigenvector

(V./,l, vy )/J,,,) given by
sin (J.’L)

jm
Jj+1

yii =)V
sin
This means that the largest eigenvalue of M; is —Ad + O(+/Ad), so that we obtain

(1+M)AQ;(x) = —rd Qf'n(x) i Qj+nl(x)

I=j<h),

meaning that Q ;(x) will drift to a value close to Q;11(x)/Ad. The choices of coefficients
ensure that, if the u; (x) are allneartoir; ~ 1 — (1 — 2 (d) 1, then

_ - M i=14+(j=0)/2
Q,(x)—nZy,l(l ui (x)) ~ n(l A)Z (Ad)

Jjm
i=1 i= ISln(]+l

and the top term i = j dominates the rest of the sum, provided Ad is large, so Q;(x) =~
(I —u(x)): this is also true for j = k. Thus the relationship Q ; >~ Q;11/Ad is as we would
expect.

This means that, if Q;(X;) remains in an interval around Q.H-l = n(l — A)(Ad)’ for
a long time, then Q;(X,) will enter some interval around 0; ;j within a short time, and stay
there for a long time. We can then conduct the analysis for each Q ; ) j in turn, starting with
J =k, to show that indeed all the Q ; (X,) quickly become close to Q j»and stay close to Q j
for a long time. This will then imply that the u ; (X,) all become and remain close to i ;.

A subsidiary application of this same technique forms another important step in the proofs
(see the proof of Lemma 6.5(1)). If we do not assume that ux 1 (x) is zero, but instead build
this term into our calculations, we obtain the approximation
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Ok (x)
d)k—1n”
If ug+1(Xy) remains above e(1 — 1), for some & > 0, for a long time, this drift equation tells
us that Qy drifts down into an interval whose upper end is below the value Oy, and then each
of the Q; in turn drift down into intervals whose upper ends are below the corresponding

A +MAQk(x) = (I — A —up41(x)) —

0 j» and remain there. For j = 1, this means that the number of empty queues is at most
(1 = 8)(1 — M)n, for some positive §, for a long period of time; this results in a persistent
drift down in the total number of customers (since the departure rate is bounded below by
n—(1—-98)(1—2xi)n =xin+ §(1 — X)n while the arrival rate is An), and this is not possible.

3 Random Walks with Drifts

In this section, we state some general results about the long-term behaviour of real-valued
functions of a Markov chain with bounds on the drift. These are variants of results of Luczak
and McDiarmid [11] and Brightwell and Luczak [2], and we do not give the proofs in full
detail.

We start with a lemma concerning random walks with a drift, adapted from a result of
Luczak and McDiarmid [11]. We have a sequence (R;) of real-valued random variables; on
some “good” event, the jumps Z, = R; — R,_; have magnitude at most 1, and expectation
at most —v < 0. The lemma shows that, on the good event, with high probability, such a
random walk, started at some value ro, hits a lower value r; after not too many more than
(ro — r1)/v steps.

Lemma 3.1 Let o9 € ¢ C -+ C @ be a filtration, and let Z,, ..., Z, be random
variables taking values in [—1, 1] such that each Z; is ¢;-measurable. Let Eq, E1, . .., Ep—1
be events where E; € ¢; for each i, and let E = ﬂ;";ol E;. Fixv e (0,1), and letrg,r1 € R
be such that ro > r1 and vm > 2(ro — r1). Set Ry = ro and, for each integer t > 0, let
R = Ro + th‘=1 Zi.

Suppose that, for eachi =1, ..., m,

E(Z; | ¢i—1) < —von Ei_1 N{Ri—1 > r1}.

Then

2
P(EN{R, > ry Vte{l,...,m}})fexp<_%>.

We omit the proof, which is similar to one in [11].
For a discrete-time Markov process (X;) with state space X, a real-valued function F
defined on X, and an element x of X', we define

AF(x) :=E[F(X;41) — F(Xy) | X; = x],

and call this the drift of F (at x). Similarly, we shall also use the notation A F(X;) to denote
the random variable E[F (X;11) — F(X;) | X:].

The next lemma says that, if the function F has a negative drift of magnitude atleastv > 0
on a good set U/, and makes jumps of size at most 1, then it is unlikely to increase by a large
positive value before leaving Uf.

Lemma 3.2 Let a, v and p be positive real numbers, with v < p < 1. Let (X;);>0 be a
discrete-time Markov process with state-space X, adapted to the filtration (¢;);>0. Let F be a
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real-valued function on X such that, |F(y) — F (x)| < 1 wheneverP(X;11 =y | Xi = x) >
0. Let U be a subset of X such that, for x € U, AF(x) < —v and P(F(Xi+1) = F(X;) |
Xi=x)>1—p. Let Tyy = inf{t : X; ¢ U}, and let T = inf{r : F(X;) — F(Xo) > a}
Then

00

1
P(T <Ty) < —

5 e—va/4p'
v

Proof (Sketch) We use Theorem 2.5 of [2], applied to the function F. Translated into our
setting, that result says that, for all # > 0, and all w > 0,

P({Ty > t} N {F(X;) — F(Xo) + vt > max(v/opt, )} | go) < 2e~/4.

Foreachr, wechoose w(t) = Lp (2a+|vt—al).Itiseasy to verify that max (J/w () pt, w(t)) <
vt + a for each ¢ (note that the hypotheses imply that v < p). Therefore

s > 100
P(T < Ty | go) <2 e @0/ <dev/Ap )" o=V if8p < —ove/dr,

v
t=0 i=0
as desired. ]

We now use the two lemmas above to prove a result about real-valued functions of a
Markov chain which we shall use repeatedly in our proofs.

Lemma 3.3 Leth, v, c, p > 2, m, p < 1 and s be positive real numbers with vm > 2(c —h).
Let (X;)1=0 be a discrete-time Markov process with state-space X, adapted to the filtration
(¢1)i=0. Let S be a subset of X, and let F be a real-valued function on X such that, for all
x € Swith F(x) > h,

AF(x) < —v, and P(F(X;41) # F(X;) | X, =x) < p,

and forall t > 0, |F(Xs+1) — F(Xy)| < 1 a.s. Let T* be any stopping time, and suppose
that F(X1+) < c a.s.

Let

To =inf{t > T* : X, ¢ S},

Ty =inf{t > T* : F(X;) < h},

T, =inf{t > T : F(X;) > h + p}.
Then

() P(Ty ATy > T* +m) < exp(—v>m/8);
100

(i) P(T> < 5 A To) < — exp(—pv/8p).

v

When we use the lemma, m will be much smaller than s, with high probability 7* will be
much smaller than s, and also P(7y < s) will be small. In these circumstances, the lemma
allows us to conclude that P(T; > T* 4+ m) and P(T, < s) are small. This means that, with
high probability, F(X;) decreases from its value at 7* (at most c) to below /4 in at most a
further m steps, and does not increase back above & + p before time s. We shall sometimes
use the conclusion of (ii) in the weaker form P(7, < s < Tp) < 'S# exp(—pv/8p). For
most uses of part (ii), we shall simply set p = 1, but on occasion we need to use the stronger

result in cases where the function F rarely changes value.
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Proof We start by proving the lemma in the special case where the stopping time 7 is equal
to 0.

For (i), we apply Lemma 3.1. The filtration ¢9 € ¢; C --- C ¢, will be the initial
segment of the filtration (¢;);>0. Fort > 1, we set Z; = F(X;) — F(X;—1), so that R, :=
Ry + Zle Z; = F(X;). Fort > 0, we set E; to be the event that Ty > ¢ (i.e., X; € S for
alli withO <i <t),s0o E = ﬂ;";ol E; is the event that Ty > m. We set ro = F(Xp) < c,
and r1 = h. We may assume that ro > ry; otherwise 71 = 0 and there is nothing to prove.

On the event E;_; N {R;—; > r1}, we have X;_| € S and F(X;—1) > ri = h, so
E(Z; | ¢i—1) = AF(X;_1) < —v. Thus, noting that vin > 2(r¢g — r1) by our assumption
on m, we see that the conditions of Lemma 3.1 are satisfied. The event that R, > r; for all
t =1,...,mis the event that T} > m, so

]P)(T] AN T() > m) < IP({T] > m} N {TO > m}) < 671)2)11/8’

as required for (i).
‘We move on to (ii). For each time r € {0, ..., s — 1}, set

T(r)=min{t = 0: F(X,4/) ¢ [h, h + p)}.

We say that r is a departure point if: Ty < r, F(X,) € [h, h+ 1), F(X;+7¢)) = h + p, and
r+T(r) <s ATp. Tosay that T, < s A Tp means that F(X,) crosses from its value, at most
h, at time T, up to a value at least & + p, taking steps of size at most 1, by time s A Ty. This
is equivalent to saying that there is at least one departure point r € [0, 5). Therefore

s—1
Py =s ATy = Y P ({11 =1} N {F(X) € [hh+ 1)
r=0

NFXrar) 2 h+ o)1 [r +T() <5 A To})

s—1
=) E []l{TlSr}]l{F(Xr)E[h,h+l)} E[L{F(X, 70 2ht0) Lir+ T () =sATo) | <Pr]]~
r=0
Fix any r € [0, s). We claim that, for any hg € [k, h + 1), on the ¢.-measurable event
that F(X,) = ho, the conditional expectation

E[L(rX,srenzhtnl L+ T 5Ty} | @]
e
and so that P(7, < s A Tp) < % exp(—pv/8p), as required.

To prove the claim, we use Lemma 3.2. We consider the re-indexed process (X;) = (X,4+);
by the Markov property, this is a Markov chain with the same transition probabilities as (X;),
and initial state X, = X, with F(X{) = ho. We set ¢! = ¢,4; for each i, so that (X})
is adapted to the filtration ((plf). Weseta =h+p—hy >p—1> p/2. We also set
U=SN{x: F(x)>h}, Tyy =inf{i : le ¢ U}, and T = inf{i : F(X,4;) > a}. Therefore,
ifr4+T@r)<Toand F(X,47()) = h+p,thenT =T (r) < Ty.

Fori < Ty,wehave X! | = X, ;1 € Sand F(X]_,) > h, and therefore AF (X|_,) <
—v, and also IF’(F(X;) = F(le_l) | i—1) > 1 — p. From Lemma 3.2, we now conclude
that, on the event F(X,) = hy,

is at most /8P This will imply that each term of the sum above is at most %e"’“/gl’,

P ({F(Xr+T(r)) >h+p}N{r+T) <s < To} ‘ <.0r)

100 100

< P (T < TL{) < ?e—vaﬂp < v2 e_PU/SP!
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as required. This completes the proof in the special case where T* = 0.

We now proceed to the general case. Suppose then that the hypotheses of the lemma are
satisfied, with stopping time T*. We apply the result we have just proved to the process
(X]) = (X7+4¢). By the strong Markov property, (X)) is also a Markov process, adapted
to the filtration (¢});>0 = (@7+4+¢)1>0. The condition that F(X7+) < c is equivalent to
F(X{) <c. Set:

Ty=inf{t>0:X, ¢S} =inf{t >0: Xq+1, ¢S} =Ty — T*

T\ =inf{t >0: F(X;) <h}=inf{t >0: F(X7+4,) <h} =T - T*

Ty=inf{t > T] : F(X)) > h+p}=inf{t > T| : FXr+3) > h+p} =T — T",
and note that these are all stopping times with respect to the filtration (¢;). The special case
of the result (with 7* = 0) now tells us that:

i) PMATy>T +m) =P(T*+T)ANT*+Ty) >T" +m)
=P(T{ ATy > m)
< exp(—v’m/8);
(i) P(Th<sATy) =P(T*+T) <sAT*+T))
SP(T*+ T, < (T*+5) AT+ Tp))
=P(T, <sA TO’)

00
2p exp(—pv/8p).
v

IA

In both cases, these are the desired results. m]

We also use a “reversed” version of Lemma 3.3 where AF(x) > v for all x in some
“good” set S with F(x) < h. The result and proof are practically identical to Lemma 3.3,
changing the directions of inequalities where necessary, and using “reversed” versions of
Lemmas 3.1 and 3.2.

The next lemma is a more precise version of Lemma 2.2 in [11]. We omit the proof,
which is exactly as in [11], except that we track more carefully the values of the various
constants appearing in that proof, and separate out the effects of the two occurrences of § in
that theorem. We will use this result in our proof of Lemma 10.1, showing rapid mixing.

Lemma 3.4 Let (¢;);>0 be afiltration. Let Z1, Z3, . . . be {0, £1}-valued random variables,
where each Z; is g;-measurable. Let So > 0 a.s., and for each positive integer j let S; =

So + Zi‘/zl Zi. Let Ay, A1, ... be events, where each A; is @;-measurable.

Suppose that there is a positive integer ko and a constant § with 0 < § < 1/2 such that
P(Zi=—1]@i-1) =8onAi 1 N{Si—1€f{l,....ko—1}}and P(Z; = -1 | ;1) = 3/4
on Aj_1 N{S;—1 > ko}. Then, for each positive integer m

m m—1 ko—1
8 0
P(Dl{s,- £0}N D) Al-) <P(So > [m/16]) + 3exp (—mm).

Several times we shall use the fact that, if Z is a binomial or Poisson random variable
with mean u, then for each 0 < € < 1 we have

P(Z —p < —ep) < e /D0, 3.1)
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4 Coupling

We now introduce a natural coupling of copies of the (n, d, A)-supermarket process (X;)
with different initial states x. The coupling is a natural adaptation to discrete time of that
in [11]. In this section, we make no assumptions about the values of the parameters 7, A and
d.

We describe the coupling in terms of three independent sequences of random variables.
There is an iid sequence V = (Vi, V5, ...) of 0-1 random variables where each V; takes
value 1 with probability A/(1 + A); V; = 1 if and only if time i is an arrival. Corresponding
to every time i there is also an ordered list D; of d queue indices, each chosen uniformly at
random with replacement. Let D = (D1, D>, ...). Furthermore, corresponding to every time
i there is a uniformly chosen queue index Ei. LetD = (f)l, 52, ...). Attime i, D; will be
used if Z; = 1, and there will be an arrival to the first shortest queue in D;; otherwise, there
will be a departure from the queue with index D;, if that queue is currently non-empty.

Suppose that we are given a realisation (v, d, &) of (V,D, f)). For each possible initial
queue-lengths vector x € Z", this realisation yields a deterministic process (x;) with xg = x:
let us write x; = s;(x; v,d, &). Then, for each x € Z", the process s;(x; V, D, 13) has the
distribution of the (n, d, )-supermarket process X; with initial state x. In this way, we
construct copies (X;) of the (n, d, 1)-supermarket process for each possible starting state
x on a single probability space. When we treat more than one such copy at the same time,
we always work in this probability space, and we let IP(-) denote the corresponding coupling
measure.

‘We shall use the following lemma, which is a discrete-time analogue of Lemma 2.3 in [11]
and is proved in exactly the same way.

Lemma 4.1 Fixany triplez,d, d as above, and for each queue-lengths vector x, write s; (x)
fors;(x; z,d, d). Then, foreach x,y € 7", both ||s;(x) —s;(y) |1 and ||s;(x) — 5:(¥) |l 0o are
nonincreasing; and further, if 0 <t < t’' and s;(x) < s;(y), then sy (x) < sy (y).

Given positive real numbers ¢ and b, we set

Ao(l,b) = {x : |xllc = €and |lx|y < bn};
A€, b) = {x : [xlloo = 3€and [lx| < 3bn}.

We also set
=1 —=1""log?n, b* = 201 =)7L, Ay = Ag(€*, b*), A = A (£F, b*).

Thus a state x is in Ay if there are at most 2n(1 — 1)~ ! customers in total, and no more than
(1 — 2)~ 1og? n in any queue. These requirements are relaxed by a factor of 3 in Aj;.

The next result tells us that the (n, d, A)-supermarket process (Y;), in equilibrium, is very
unlikely to be outside the set .Ag, for any d. This is accomplished by proving the result for
d = 1, when the process is easy to analyse explicitly, and then using coupling in d to deduce
the result for all d. Of course, the result is actually extremely weak for all d > 1, and later
we shall show a much stronger result whenever the various parameters of the model satisfy
the conditions of Theorem 1.1; the importance of the lemma below is that it gets us started
and enables us to say something about where the equilibrium of the process lives.

Lemma 4.2 Let (Y;) be a copy of the (n, d, \)-supermarket process in equilibrium. Then
P(Y, ¢ Ag) < 2ne= o€’ n,
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Proof Let Y denote a stationary copy of the (n, 1, A)-supermarket process, in which each
arriving customer joins a uniform random queue. Then the queue lengths ¥; (j) are indepen-
dent geometric random variables with mean A /(1 — X), where ]P(f’,(j) =r)=(1-—1A"
forr =0,1,2,.... Therefore, ]P’(||I7, lco > r) < nA”", and also it can easily be checked that

P (1%l = 2n(1 = 3)7") < /4,
As mentioned in the remarks after Theorem 1.1, there is a coupling between supermarket

processes with different values of d, which can be used to show that the equilibrium copy (Y;)
of the (n, d, A)-supermarket process, for any d, also satisfies [P (||Yt||1 >2n(1 — A)_l) <

2 -1 2 .
e 4 and P(||Y; lloo > log?n(1 — 2)~1) < paleg™nd=N7" < ye—log’n a5 required. O
Next we prove a very crude concentration of measure result: if the process (Y;) in equi-
librium is concentrated inside some set Ao (£, b), and we start a copy (X;) of the process at

a state x € Ao (¢, b), then the process (X}) is unlikely to leave the larger set A (¢, b) over a
long period of time.

Lemma 4.3 Let £ and b be natural numbers and x a queue-lengths vector in Ay(L, b). Let
(Yy) be a copy of the (n, d, \)-supermarket process in equilibrium, and let (X}') be a copy
started in state x. Then for any natural number s,

P@Et € [0,s], X ¢ A1(€,b)) <P@Et €[0,s], ¥; ¢ Ao(L, b)).

Proof By Lemma 4.1, we can couple (X;) and (Y¥;) in such a way that || X} — Y;||; and
| X; — Y:lloc are both non-increasing, and hence that, for each t > 0,

IX7 I = 1X7 = Yello + Y2l < llx — Yol + Y2l
< lxllt 4+ Yol + 1Yelly = bn + [[Yollt + 1Y2]l1,

and similarly

X7 lloe <€+ 1Y0lloo + 1Y lloo-
‘We deduce that, for each t > 0,
(X7 ¢ A, b)y = {IX/ I > 3bn} ULl X[ lloo > 3¢}
S {liYolli > bn} U{lIY ll1 > bn} U {[[Yolloo > £} U {lIYillcc > £}
={Yo ¢ Ao(£, D)} U{Y; ¢ Ao(L, b)}.
The result now follows immediately. m}

We shall use Lemma 4.3 later for general values of £ and b, but for now we note the
following immediate consequence of the previous two lemmas. Let Tj‘ = Tj‘ (x) = inf{z :
X ¢ Ai}: this will be an instance of a more general notation we introduce later: when we
have a pair of sets Sp € S, we will use Ts to denote the first time we enter the inner set,
and Tg to denote the first time after 7's that we leave the outer one.

Lemma 4.4 Let x be any queue-lengths vector in Ag. Then, for n sufficiently large,
P(rAw s etlen) seshen,
1

Proof The probability in question is P(3¢ € [0, e3 log?n], X ¢ Ap) which, by Lemma 4.3
and Lemma 4.2, is at most

P@Er € [0, e5F M, ¥, ¢ Ag) < (3 F N 4 )P(Y, ¢ A7) < 3ne 3w,

1

. . . 2
which, for n sufficiently large, is at most ¢~ 2 1°¢""

, as required. O
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5 Functions and Drifts

We now start the detailed proofs of our main results.

As explained in Sect. 2, we will consider a sequence of functions Qk, Qk—1, ..., Q1
defined on the set Z" of queue-lengths vectors. We now give precise definitions of these
functions, along with another function P;_j, and derive some of their properties.

The results in this section will be used in the course of the proof of Theorem 1.1, and we
could assume that we are in the regime covered by our theorem; however, for this section
all that is necessary is that Ad > 16. In the special case k = 1, we need only consider the
function Q; = Q1 and its drift; otherwise we assume that k > 2.

Asin Sect. 2, let Qy be the function defined on the set Z'} of all queue-lengths vectors by

k
Or(x) =nY_yi(l —u;(x)),

i=1
where, fori =1, ..., k,
1 i—1
1-— - —
) (hd)*

Vi =

It is also convenient to set yp = 0. Evidently y; < 1 for each i, an inequality we shall use
freely in future. We also note that, provided Ad > 2,
1 1 1

T G R oD

Yi+1 — Vi

fori =0, ...,k — 1. Therefore y; is increasing in i; also y, = 1 — k(d)~*.
Ifk > 2, we set Pr_1(x) = n Y=} (1 — u;j(x)). Also, for j = 1,....k — 1, we let
Qi(x)=n Z{:] vj,i (1 — u;(x)), where the coefficients y;; are given by

sin (i>
i JH
Vi = Q)0 —= L
sin (m)
Consistent with the expression above, we also define y; 0 = y;,j+1 = 0. It can easily be
checked that, foreachi =1,...,j — l,and foreach j = 1,...,k — 1,
b4
Ayjiv1+yji-1 =2vAd cos (.7)]/],1'-
Jj+1
This is equivalent to saying that the y; ; form eigenvectors of the tridiagonal Toeplitz matrices
M given in Sect. 2, with eigenvalue —Ad — 1 + 2+/Ad cos (]”?)
We will need some bounds on the sizes of the O (x), for j < k. Observe that y; ; =1
for each j, while generally we have

< sin(ir/(j + 1)) _ sin(ir/(j 4+ 1)) <j
“osin(jr/(j4+ 1) sin(@r/(+1) T

(5.2)

since the sine function is concave on [0, 7]. Thus (Ad)V =772 < y;; < i(Ad)VU~"/? and
therefore .
j
Qi) <nYy i)V P < ————— <2n(ad)V V2, (53)
/ ; (1 — 1//2d)?
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provided Ad > 16. We also note at this point that changing one component x (£) of x by +1
changes Q;(x) by at most y; | = (rd)U—b/2,
It can readily be checked that, for j > 1, the function

N in . in
f@ _51n<j+2>/51n (j+ 1)

is increasing over the range [1, j], and so we have, for 1 <i < j <k —2:

Vitli _ sin(in/(j +2)) sin(zr/(j + 1))
Yii sin(izr/(j + 1) sin(z/(j + 2))
Adsin(jﬂ/(j +2))sin(/(j + 1)
sin(jr/(j + 1) sin(z/(j +2))
MS{H@JT/({' +2)) <2id.
sin(r/(j +2))
using (5.2) for the final inequality. A consequence is that, for j = 1,...,k — 2, and any
x e,

J
=(1- uj_H(x)) + Zyj+l,i(1 —u;(x))

i=1

Qj+1(x)
n

J
<A —ujn1 () + Y 2Vady; (1 — u;(x))

i=1

i(x
<—ujpi(x)+ ZVAdM. 5.4
n
For j = k — 1, we have the stronger inequality that, for any x € Z",
k(x) k— 1( )
Qn < Z(l — i) < (1 — o) + 21 (5.5)
i=1
We now prove that the drift of the function Qx(x) is approximately equal to
B A B TES)
1+ o O 0 )

Lemma 5.1 Ifk > 2, then, for any state x € 7},

(I 4+DAQk(x) < (1 = A) — ugg1(x) + Aexp(—d Qk(x)/kn))

1 Qk(x)(l_g)
[OX ) L) rd )’

1
1+ DA = yi((1 = 2) — ugr1(x)) — O (x)

D1 n
~ (Qk_l (x))2 I
n (Ad)k=3"

(1+MAQ01(x) < y1((1 = 1) —uz(x) + Aexp(—=d Q1 (x)/n)) —
01(x)
=

Fork =1, we have

01(x)
n 9
(1+2MA01(x) = yi((1 = 21) —uz(x)) —
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Proof Asin (2.1), we have that, fori =1, ..., k,

1
D) = s (rtim1 @ = 20! = w0 + i1 ()

and that u¢ is identically equal to 1. We deduce that

k
_”Z%‘Aui(x)
i=1
|k
=11 Vi<_)¥”i71(x)d+)\”i(x)d + u;(x) —u,'+1(x)).
i=1

AQ(x)

We rearrange the formula above as follows:

1+ DA =y (1= 1) + 20 = e (0 + A0 = w1 () = (1 = e (1))
k—1
3w (A = i @D = (= w0
i=1

—( = @) + (1 = i1 ()

= 7 (=2 + () = 1 ()
k—1 k
A1) i — A =)D =D (v = v = wi ().

i=1 i=1

Here we have used the facts that 9 = 0 and 1 — ug(x) = 0.
Now, for 1 <i <k, we have 1 — u;(x) < 1 — uy(x) for all x, and y; < 1. Therefore
Qi (x) < nk(l — ug(x)), and hence

Qk(x)
kn

d
0 <up(x)? < (1 — ) < exp(—d Qx(x)/kn).

For k > 2,in order to estimate the terms constituting the two sums, we note the inequalities
d(l —u) — (’21)(1 —uw)? <1 —u? <d(1 — u). To obtain our upper bound on A Q(x), we
apply the inequality 1 — u;(x)? <d( —u;(x)) foreachi =1,..., k—1. Using also (5.1),
we have

k—1 k

LY it = =@ =Y = v = i)
i=1

i= i=1

<ad Y (i1 =y = i) = 3 = v (1 = ui ()
i=1 i=1
1 2
=- [W - W] (1 —ur(x))
k—1
Ad Ad rd 1 1 1
2 [@d)" TG GaF G Gay (Ad)k] (=it

i=1
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1 2 - 1
=~ G T [(1 - ﬁ> (1= ue@) + ) <1 - m) (1- ui(x))}
i=1

o ! %(1_3).
=T 0T n rd

This establishes the required upper bound on (14 1) A Qi (x). The calculation works because
the y; are the entries of a good approximation to the Perron—Frobenius eigenvector of the
matrix My, defined in Sect. 2.

For the lower bound, the previous calculation, and the bound 1 — u; (x)d >d(1 —u)—
(3)(1 —u)?, lead us to

k—1 k
R @it — (1= w0 =Y 05 = yim) (= ui (x)
i=1

i=1

d k—1
> —x(2> gml — (= i ()2
k—1

1 2 1
~ G [(1 - m) (1 = up () + ; (1 - ﬁ> (1- m(x))}

N 1
= _)\<2> ;(y“rl — ) (1 —u;(x))? — Qk(X).

OdFT

Here we used the fact that 1 — 1/(Ad) < y; for each i.
It remains to show that

4\ 010\ 1
A(2> ;w,-ﬂ—m(l—ui(x))zs( . ) G

We observe that

‘ 2
2 k—1 sin (2%
(Lk;l(x)) = Z(Ad)(kli)ﬂ.((g_kl))”)(l —u;(x))
i=1 Sin %
k—1

> 0ad A = wi(x))?

i=l1

%

k—1

> )Y i — v (1= i (0))?,

i=1

which implies the required inequality.
In the special case k = 1, the equation for the drift reduces to

01(x)

n

(1 +0A01() = y1(1 =& —ua(x)) — + yihu (07,
and both the required bounds follow immediately. O

We prove a similar result for the functions Q;(x), 1 < j < k — 1. Ideally, the drift bounds
would be expressed in terms of O (x) itself and Q ;1 (x): however, there is a complication.
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In the upper bound, there appears a term which can be bounded above by k(g) Zl] Vi —

u; (x))?%, and we would like to show that this is small compared with Ad Z{:l vji(L—u;(x)).
This is true if 1 — u;(x) <« 1/d, but in general we cannot assume this. We bound this term
above, very crudely, by

9\ (3° 3 Pr_1(x) Qi (x)
)»(2) (;(1 — u,(x))) ; viill —u;j(x)) | = A(Z)%

we use the function Px_ here because its drifts are relatively easy to handle.

Lemma 5.2 Fix j with 1 < j <k — 1. For any state x € 7, we have

2 de—l(x)> n Qj+1(x)
ad n n

2 >+ Ojt+1(x)
Vad no

(14+1)AQ;j(x) < —Ad Qf:x) (1 -

(1 +1)AQ;(x) = —rd Q’;x) (1 +

Proof We begin by calculating

J
1+ DAQ; () = D v = tim1 (0 4 2t () + 145 (0) = i1 ()
i=1

J J
=3 i (R = w0 =20 —w0D) + Y v (= (= wi )
i=1 =

+( = i1 ().

Rearranging now gives

J
A+0AQ;(x) =Y (vji-1 — vj) (1 — ui(x))

i=1

J
=1 i = VDA = ui ) + (1= ujyr ().
i=1
Recall that yj o = ¥, j+1 = 0, and note that y; | > yj2 > --- > y; ;j = L.
As before, we proceed by approximating 1 — u; (x) by d(1 — u;(x)), for i < j. Using
first that 1 — u; (x)? < d(1 — u; (x)) for each i, we have

J J
(I+MAQ;(x) > Z(Vj,i—l —vi)(1 —u;i(x)) — Ad Z(Vj,i —Vii+D —u;(x))
i=1 i=1
+( —ujt1(x))

J
Zl—u @) [vji-1 +2dyjivt — Od + Dyji] + (0 —ujp1(x)

- 2(1 — i ()Y [,\d 41— 24/ad cos (%)] (1= (x))

i=1
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= |:Ad + 1 —2+/d cos <]7Tﬁ>:| Q];q(x) + 1 —ujp1(x))

L a2 L Qi) 20,00
n n

n

as claimed. In the last line above, we used (5.4), as well as the inequality 2+/Ad cos(/(j +
1)) > /2Ad > 1, valid since Ad > 16.

For the upper bound, we use the facts that 1 — u;,1(x) < M and 1 — u,-(x)d >
d(1 —ui(x)) — (3)(1 — u;(x))?, to obtain

(1 +MAQj(x) < — [Ad +1—2Vd cos (%)} Q’;x) + (1= 1 ()

d J
+A (2) E(m —yiir (= u; (x))?

0;(x) (l— 2 >+ Qj+1(x)
n Jad n

Po1(x) [(d\ <
RSIC A(J;m(l—ui(x)).

n

< —\d

This is the result we require, since Zij:l vii(l —u;(x)) = Q;j(x)/n. ]

We have a similar result for the function Px_1. For this function, we need only a fairly
crude upper bound on the drift, and we omit the simple proof.

Lemma 5.3 For any state x € 7%, we have

MPr_1(x)  Qr(x)

(I+MAP 1 (x) < — — Dn .

6 Hitting Times and Exit Times

At this point, we begin the proof of Theorem 1.1. Accordingly, from now on we fix values of
a, B € (0, 1), and a natural number &, satisfying (k —1)8 <« < kf and 2« < 14 (k—1)B.
Throughout the proof, we consider the (n, d, 1)-supermarket model with A = 1 — n~% and
d = nP. (As mentioned in the Introduction, our proofs go through essentially unchanged if
we assume only that | —A = n=¥H M and d = pf+92™ where 81 (n) and §»(n) tend to zero
as n — oo, where we replace the expression n~2tU=DB in the definition of N¢ (n,a, B)
below by (1 — 2)d/~1)

We shall actually prove a result stronger than Theorem 1.1, in that we replace the “toler-
ance” 1/logn in that result by a general function ¢ = &(n). We assume that e(n) < 1/100,
with 1/e(n) = o(n®) for every § > 0, though in fact the proof goes through even if &(n)
tends to zero as n~% for & sufficiently small (in terms of « and ).

Accordingly, given «, 8 € (0, 1), and ¢ = ¢(n) as above, set k = [«/B] as usual, and let
N¢(n, a, B) be the set of queue-lengths vectors x such that uy1(x) = 0and, for1 < j <k,

(1 —6e)n™@TU=DB <1 —y;(x) < (1 + 6e)n=@TU=DE,
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Theorem 6.1 Suppose that a, § € (0, 1] are constants with k — 1 < o/ < k for some
natural number k, and that 2o < 1 + B(k — 1). Suppose also that » = A(n) = 1 —n™%
andd = dn) = nP. Let ¢ = e(n) < 1/100 be any function such that e(n)~! = o(ns)for
every 8§ > 0. Then, for n sufficiently large, a copy (Y;) of the (n, d, ))-supermarket process
in equilibrium satisfies

P(Y, ¢ N(n, e, B)) < e 31087,
Moreover, if Xo € N¢/%(n, , B), then
P (X, ¢ N°(n,a, B) for somet € [0, e%logz"]) < e ilog’n,

Theorem 1.1 is the case of Theorem 6.1 with ¢ = 1/61logn.

The assumptions of Theorem 6.1 assure us that functions of n suchas e~ n=¢+*=DF 102
tend to zero, as the dominant term is the strictly negative power of n. We shall use such facts
freely throughout the proof, and we shall (sometimes tacitly) assume that » is sufficiently
large.

We define a sequence of pairs of subsets of Z} . Each pair consists of a set Sy in which
some inequality holds, and a set S; in which a looser version of the inequality holds: we also
demand that Sy and S be subsets of the previous set R in the sequence. Associated with
each pair (Sp, S1) in the sequence is a hitting time

Ts =inf{t > Tr : X; € Sp},
where (Ro, R1) is the previous pair in the sequence, and an exit time
Ti=inf{t > Ts : X, ¢ S1).

Our aim in each case is to prove that, with high probability, unless the previous exit time T;
occurs early, Ts is unlikely to be larger than some quantity m s whose order is polynomial
in n. To be precise, if we start in a state in Ao (¢, b), then the sum of all the m s is of order at
most the maximum of bn'*® and ¢n, so if £ and b are bounded by a polynomial in 7, then
so are all the mgs.

Throughout the proof, we set

1

50 = e3log’n

We shall also prove that, again with high probability, each exit time T; is at least so, which
is larger than the sum of all the terms m s. For convenience, we shall not be too precise about
our error probabilities, and simply declare them all to be at most 1/sg = =3 log? ", or some
small multiple of 1/so. We will thus prove that, with high probability, we enter each of the
sets Sp in turn, while remaining inside all the earlier sets Sj.

We fix, for the moment, a pair of positive real numbers ¢ and b with £ > b > k. We set
g0, b) = (22k +72b)e " 'n'*¥ + 8tn,

and we make the (mild) assumption that £ < e% log? " sothat g(¢, b) < s9/2.
The first pair of sets in our sequence will be as defined earlier:

Ao = Ao(l,b) = {x : [xllec < €and ||lx|[y < bn},

Ap=A1(€,b) = {x : llxllc = 3€and |lx]; < 3bn},

and we adopt the hypothesis that X¢ = xo almost surely, where xg is a fixed state in Ay =
Ao, b),sothat T4 :=min{t > 0: X, € Ap} =0.
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Fort = ¢* =n” log2 nand b = b* = 2n%, Lemma 4.4 tells us that indeed the exit time
T;1 =inf{t > 0 : X; ¢ A;} is unlikely to be less than so. For smaller values of ¢ and b, we
do not know this a priori.

The sets we define are dependent on the chosen values of n, «, 8 and ¢, as well as on £
and b. For the most part, we drop reference to this dependence from the notation. When we
need to vary & while keeping all other parameters fixed, we shall use the notation (e.g.) 3
to emphasise the dependence. We define:

By = {x: Qx(x) = (1 +e)n(l —HGDH 1N A,

Bi = {x: Qk(x) < (14+2e)n(1 — NG} N A,

Co = {x: Pro1(x) < 2kn(1 — M)A 2y N By,

Cr = {x: P1(x) < 3kn(1 — (D )N By,

Do = {x : Qy—1(x) < (1 +4e)n(l — V(D 2} ney,

Dy = {x: Qk—1(x) = (1+5e)n(1 — V() 2} ney,

o = {x 1 upr1(x) < &(1 — ) and Q(x) = (1 —3e)n(l — M)(Ad)* '} N Dy,
& = {x upp1(x) <e(1 =) and Qi (x) > (1 —4e)n(1 — N1y N D;.

Next we have a sequence of pairs of sets, indexedby j =k —1,..., 1:

6) = fx:[1-(a+ HT_m)e]na — DD = 0,0

< [1+ (44 #

gl = {x : [1 —(4+ k;j)e]n<1 —N0d) ! < 0j(x)

k—j
k

Je|nt = oy} ngl™,

< [1+(4+ )s]n(l —A)(kd)j_ll ngit.

where we declare g’f to be equal to &;. Finally, departing slightly from our pattern, we define

H=Hy=H = {x:upp1(x) =0} NG}

In the special case k = 1, only the pairs (Bo, B1), (€0, £1) and H are defined.

The hitting times and exit times are all defined in accordance with the pattern given. For
instance 7 = inf{r : X; € By}, Tg =inf{t > Tg: X; ¢ Bi},and Tc = inf{t > T : X, €
Co}. We also set Tgr = Tg and Tgk = Tg , in accordance with the notion that the set pair
(gg‘l, Qi‘_l) follows (&p, £1) in the sequence.

Initially, the sets above all depend on the values of £ and b defining the initial pair of sets
(Ao, Ay), since all the sets are intersected with .4;. However, since states in H have no queue
of length k + 1 or greater, we have H C Aq(k, k) € A (¢, b) for all £, b > k, and so the set
‘H does not depend on £ and b, provided these parameters are each at least k.

We claim that H® € N¢ = N¥(n, o, B). Indeed, if x € H?, then

xeBNDINENG N NG N{x w1 (x) = 0).

This implies that indeed U1 (x) = 0, and also that all the Q ; (x) are within a factor 1 4 5¢ of
the values n(1 — 1) (Ad)? 1. It now follows from (5.4) and (5.5) that, foreach j = 1, ..., k,

QJ'T(’C) — (1 —u; )| <201 = DA T2 < e(1 — 1)(d) T,
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and so 1 — u;(x) is within a factor 1 £ %8 of n(1 — A)(Ad)? 1, so that indeed x € N¢.
We now state a sequence of lemmas. Throughout, we assume that Xo = xg a.s., where xq

is an arbitrary state in A9 = Ao (¢, b).

Lemma 6.2 Letmp = 8ke~'n(1 — 1)~ L.

(1) P(Tg AT} = mp) < 1/s.

) P(T < 50 < T)p) < 1/s0.

Lemma 6.3 Fork > 2, let m¢ = 8kn(1 — 2)~'(Ad)' 7~

(1) P(Te AT} > T + me) < 1/s0.

Q) (T} <50 < T3 < 1/s0.

Lemma 6.4 Fork > 2, let mp = 8 'n(1 — A)~1(hd)*/2.

(1) P(Tp AT] > Te +mp) < 1/s0.

@) B(T) < 50 < T)) < 1/s0.

Lemma 6.5 Let mg = mg(b) = (13k + 72b)e~'n(1 — 1)~ L.

(1) P(Te AT}, > Tp +me) < 1/s0.

@) P(T{ < s0 < T}) < 1/s0.

Lemma 6.6 Fork > 2, letmg = 32ke 'n(1—=0)"'(Ad)~ . For j = k—1, ..., 1, we have:

() Forj=k—1,...,1, P(Tg; A TgTj+I > Tgin1 +mg) < 1/s0;

Q) Forj=k—1,...,1, P(TgTj <50 < Tg;0) < 1/50.

Lemma 6.7 Let myy = my(£) = n(8¢ + 321log? n).
(1) B(Ty AT, = Tgi +ma) < 1/so.
@) P(T, <50 < T)) < 1/so.
We shall postpone the proofs of these lemmas to later sections. For the remainder of this

section, we show how the lemmas imply Theorem 6.1. To start with, combining the lemmas
gives the following result.

Proposition 6.8 Forany xg € Ay = Ao(¢, b), and a copy (X;) of the process with Xo = xg
a.s., we have

2%k +8 .
P(X, € H forall t € [q(0, b), so]) > 1 — —~° _ P(T’, < o).
50

Proof The idea is that, with high probability, either the chain (X,) exits .4; (¢, b) before time
50, or the chain enters each of the sets By, ..., Hp in turn, within time ¢ (¢, b), and does not
exit any of the sets Ay, ..., H; before time s¢, which is what we need.

We assume that k > 2: if k = 1, the proof is very similar and shorter. Consider the
following list of events concerning the various stopping times we have defined:

E, = {T;\ > s0), E»={Tg <mp), Ez=I(T}> so),
Ey ={Tc <mp+mc}, Es= {T(,T >0}, Ee¢={Tp <mp+mc+mp},

E7 = (T}, > 0}, Es={Te <mp+---+me}), Eo={T} > s},
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Eyo ={Tgi-i <mg+---+mg +mg}, E= {Tgk—l > 50}, e
Exye = (Tgt <mp+---+ (k— Dmg}, Exyy7= {Tng > 50},
Exprs = {T <mp+---+ (k= Dmg +my}, Expio= {T; > 50}
If Eok4g holds, then
T <mp+mc+mp+mg+ (k—1)mg+my
= 8ke 'n(1 =)' +8kn(1 — M) ') K
+8¢'n(1 =) 'd) ™2 4+ (13k + 72b)e'n(1 — 1)~
+32(k — Dke 'n(1 — )7 d) ™! + n(8¢ + 321og® n)

<ke 'n(1-2)" (8+8 + 2 2k
n(l — 8 8 32k -1
= wd " d wd

+32elog? n(1 — ) +72be " 'n(1 — 2)~" + 8¢n
< e 'n(1 = 07122k + 72b) + 8tn
=q((, D),
for sufficiently large n. Therefore, if £ = ﬂ?kw E; holds, then in particular Ep g and
E2j+9 hold, which implies that X, € H for g(¢,b) <t < s9. Thus E is contained in the

event {X, € H forallt € [g(£, b), so]}, and it suffices to show that P(E) < 2";;8 +P(E)).
We write

2k+9

P(E) = IF’(EI)+ZIP’ E; mﬂ

and now we see that it suffices to prove that each of the terms P (E N ﬂf;ll E ,-) is at most

1/s0.
We show how to derive the first few of these inequalities from Lemmas 6.2-6.7; first we
have

P(E2 N E1) = B(T} > so, T > mp) < P(Tg AT} = mp) < 1/s0
by Lemma 6.2(1). Then we have
P(E3 N E\ N Ey) <P(E3NE) =P(T <50 < T}) < 1/50
by Lemma 6.2(2). Next we have, using the fact that mp + m¢ < so,

P(EsNE N EyNE3) < P(E4N Ex N E3)
= IF’(T; > 50, Tg < mp, Te > mp + me)
< P(Tc ATS > mp +me, Tg < mp)
< P(T¢ A Tg > Tp +mc)
< 1/so0.

by Lemma 6.3(1). For j = 5, ..., 2k + 9, the upper bound on P (E N ﬂlj:_ll E,-) follows
either as for j = 3 or as for j = 4: it is important here that mp + m¢ + mp + mg + (k —
Dmg +my < q(€,b) < sp. o
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We now have the following consequence for an equilibrium copy (Y;) of the (n, d, A)-
supermarket process.

Corollary 6.9 P(Y; € Hforallt € [0,s50]) > 1 — (4k +20)/s0 > 1 — e_%logzn, for n
sufficiently large.

Proof Recall the definitions of £* and b* in Sect. 4. Set also ¢* = q(£*, b*), and note that
q* < s0/2, with plenty to spare. From Lemma 4.2, we have that P(Yy ¢ Ag) < ne=logn <
eslogtn — /S0, since n > 5. Also, from Lemma 4.4, for a copy (X;) of the process starting
in a state x € Ap, we have that IP’(T; < 50) < 1/s0. We now have

P(Y; ¢ H for some ¢ € [0, s9/2]) = P(Y, ¢ H for some t € [¢*, ¢* + 50/2])
< P(Y, ¢ Hforsomet € [g*, g +50/2] | Yo € Ag)

+P(Yo ¢ Ao)
< P(Y; ¢ H for some t € [¢*, s0] | Yo € Ap)

+P(Yo ¢ Ao)

1

< sup P(X; ¢ H forsomet € [¢*, s0]) + —

xeAf 50
_2%+8 11 2k+10
YY) so S0 B so

by Proposition 6.8. Hence P(Y; ¢ H for some ¢ € [0, so]) < (4k + 20)/s0. O

The first part of Theorem 6.1 now follows, since we have already noted that H* < N*.
We can also use Corollary 6.9 to prove the following more explicit version of Proposi-
tion 6.8.

Theorem 6.10 Suppose that € and b are at least k, and that q(£,b) < so/2. Let xo be
any queue-lengths vector in Ao(€, b), and suppose that Xo = xg a.s. Then we have, for n
sufficiently large,

6k + 28

50

> — e tlog’n,

P(X; € Hforallt € [q(4, D), s0]) > 1—

Proof We apply, successively, Proposition 6.8, Lemma 4.3 and Corollary 6.9 to obtain that

2k +38 T
P(X, € H forall t € [g(€,b), so]) = 1 — — P(Ty = s0)
S0
2k +8
=1- 8 P@Er € [0, sol, X; ¢ Ai(£, D))
S0
2k+8
>1— 8 P@Er € [0, sol, Y: ¢ Ao(¢, b))
S0
2k +8
St —P@Er €0, 501, Y ¢ H)
S0
2k +8 4k 420
>1- - ’
S0 50
as required. -
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To see the final assertion of Theorem 6.1, suppose that Xo = xq a.s., where xg is in the
set
k=1
I=AyNByNCoNDyNE N[ )G NHo.
j=1

Then all the hitting times T3, T¢c, Tp, Ts, ng and Ty are equal to 0. In the notation of the
proof of Proposition 6.8, this implies that the events E; for j even occur with probability 1.
Also, by Lemma 4.4, P(E1) < 1/sp. So following the proof of Proposition 6.8 yields that,
for Xg = x¢ € Z,

P(X, € Hforallt € [0,50]) > 1 — (k +5)/s0 = 1 — e~310€"n, (6.1)

It can easily be seen that N /6 C 7% and hence this result completes the proof of Theorem 6.1.

7 Proofs of Lemmas 6.2, 6.3 and 6.4

In this section, we prove the first three of the sequence of lemmas stated in the previous
section, and also derive tighter inequalities on the drifts of the functions Q ;(x) for x € Dj.
The proofs of the three lemmas are all straightforward applications of Lemma 3.3, and all
similar to one another.

Proof of Lemma 6.2

Proof We apply Lemma 3.3. We set (¢;) = (F;), the natural filtration of the process, and
also: F = 0, S=A1,p=1,

h= 1+l -G, p=ell —nGd*,

m=mp=8ke 'n(1—2)"1s=s= e%k’g%’ and T* = 0. It is clear that p > 2 and that
Ok (x) < c:=kn for any x € Z',. We note also that Qy takes jumps of size at most 1.
Suppose now that Qy(x) > h. Then

dQr(X1) (1 =MGD*Y _ el =2)
exp| —— <exp|-— . ==
n

The final inequality above is true comfortably, as (1 — A)d¥ = n=*+*# = 3 for some § > 0.
Hence, by Lemma 5.1, for x with Qx(x) > h, we have

1+ M)AQ() < Be((1 = 1) — ups1 (x) + Aexp(—d Qx(x)/kn))
1 QW»O_&)
()1 )

< B ((1 —) +A¥) — (4o =) —e/5)

& &
<a —x)[1+Z —(1+35/4)] = —(1-»3.

So AQk(x) < —(1 —A)e/4 := —v. Note that mpv = 2c.

We have now verified that the conditions of Lemma 3.3 are satisfied, for the given values
of the parameters. As in the lemma, we have Tp = T;‘, Ty = inf{r : Qr(X;) < h} and
T, =inf{t > T} : Qx(X;) > h + p}.
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It need not be the case that 71 = T3, since X7, need not be in A;. However, we do have
T A T; =T A T; and thus

P(Tg AT} > mp) = P(T1 AT} > mp)
< exp(—v?mp/8)
= exp(—ekn(l —1)/16) < 1/sp.

Also the events T» < sp < T; and Tg <50 < Tj‘ coincide, so we have

P(Tj <50 <Ty) < P(Th <50 <T})

00s
= v2 exp(—pv/S)
100,
= —Lexp(—e2(1 = 1) ()1 /32)
v
10050 2, k=1, 1-2a+(k—1)B
=2 exp(—e“ A" 'n T /32)
< 1/so,
as required. Here we used that 1 — 2o + (k — 1) > 0. ]

Proof of Lemma 6.3

Proof Again we apply Lemma 3.3 to the Markov process (X;) with its natural filtration. Set
F="P_1,5=B8,p=1,

h=2kn(1 — MO 2, p =kn(l — 1)(Ad)*2,

m =me = 8kn(l — 1) L(Ad)! 7, and s = 9. Set T* = Ty. It is again clear that p > 2,
that P takes jumps of size at most 1, and that P, (x) < c¢ := kn for all x € Z} . Here
Ty = Tg,, Ty =inf{t > T : Pr—1(X;) <h},and T» = inf{t > T} : Pr—1(X;) = h + p}.

For x € By with P,_(x) > h, we have Qx(x) < (1 + 2&)n(1 — 1)(Ad)*~! and so, by
Lemma 5.3,

AdPi—1(x)  Qr(x)
(k—1)n n

(IT+MAP1(x) < —

< —2xd(1 = M)A 2 + (1 4 26)(1 — M)(Ad)*!
LT k-1
< 2(1 MNAD .
We conclude that, for such x, AP;_;(x) < _}T(l — M) ;= —v. Note that mcv = 2c.

As in the previous lemma, it need not be the case that 71 = T¢, since X7, need not be in

Bi, so we may have 7¢c > T1. However, we do have 71 A Tg =Tc AN Tg. From Lemma 3.3,
we obtain that

P(Te ATy > Tg +me)

P(Ty ATy > Tg +mc)
exp(—vzmc/S)
exp(—kn(1 — 1) (Ad)*~1/16) < 1/s.

IA

Similarly, the events 7> < sg < Tg and TCJr <sp < Tg coincide, and so, for k > 2,
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]P)(TCT <50 < Tl;) =P(T; <59 < Tp)
100s0

=z exp(—pv/8)
100s
= — 2 exp(—kn(1 — 1)>(hd)*3/32)
v
- lOgSo exp (_kk2k—3n1—2a+(k—1)ﬁ+(k—2)ﬁ/32>
v
= 1/s0,
as required. .

Sketch of Proof of Lemma 6.4

Proof The basic plan for this proof is the same as for the previous two lemmas, but here
we have to take account of the fact that Q_; can take jumps of size up to ()Ld)(k_z)/ z
and accordingly we apply Lemma 3.3 to the “scaled” function F(x) = Q) ,(x) =
Qi—1(x)/ (hd) =272,

Apart from this, the proof is identical in structure to that of Lemma 6.3, and we give only
the key calculation. For x € €y with Q}_,(x) = h = (1 +4e)n(1 — 2)(d)* /2, we
have Qr(x) < (1 +2e)n(1 = MG ™", Po1(x) < 3kn(1 —2)(Ad)* " and Qg1 (x) =
(14 4e)n(1 — 1)(Ad)*=2. Thus, by Lemma 5.2 with j = k — 1, we have

Y IIE) (1_ 2 _de—l(X)>+Qk(X)7

I+ MAQk-1(x)

IA

n d n n
< —ad(1 +4e)(1 — VH)(Ad)*2 <1 2 3kd(1 — A)(Ad)k_2>
B Vid

+(1 +28)(1 — M) (Ad)F!
< —e(1 =N

Thus, for such x, the drift in the scaled chain satisfies AQ;{_l x) < —%8(1 —DODF? =
—v. Now Q;{_l(x) < ¢ :=2n for all x by (5.3), and mpv = 2c.
It is now straightforward to derive the result. O

A queue-lengths vector x € D satisfies the three inequalities:

Qk(x) < (1+2e)n(1 — 1)), (7.1)
Pei(x) < 3kn(l — 2)(hd) 2,
Or—1(x) < (1 +5e)n(1 — V(A % (7.2)

in fact the second of these is redundant, as Py_j(x) < Qr—1(x) <2n(1 — 1) (Ad)*2 for all
x € ZI . Substituting these bounds into the bounds of Lemmas 5.1 and 5.2, we obtain the
following.

Lemma 7.1 For x € Dj, we have

(14D = Bl =1 =g () = -
o+ exXp(—d Qi (x)/ ) + = (1= 2),
(DA = il =4 = uea(0) =~ — 1 =),
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and, for1 < j <k —1,
0;(x) (1 £ ) Qjr1(x)
+ =,

(l—i—)»)AQ,-(x)f—de ~ 5k

n
A Q;(x) € Qjr1(x)
L+ WAQ () = —Ad=L= (14 ) + =,

8 Proof of Lemma 6.5

This section is devoted to the rather more complex proof of Lemma 6.5. First, we prove a
statement stronger than part (1) of the lemma. We set

K= {x i ueni (@) = e(l =2 and Q) = (1 - g)(l —ned = npi;
Wi =inf{t > Tp : X, € K}.
Note that I C &, so to prove Lemma 6.5(1) it suffices to prove that
P(Wic A T), > Tp +me) < 1/s.

We prove this result on the assumption that 7p = 0 (i.e., that xo € Ag N By N Co N Dp).
The general case follows immediately by applying the result for 7p = 0 to the shifted
process (X;) = (Xrp+:), using the strong Markov property. So our task is to show that
P(Wi A Tg >mg) < 1/s9, where Wi = inf{t > 0 : X, € K}, whenever Xo = xq a.s., for
any xo € Ao N By N Co N Dy.

We define the following further sets, hitting times and exit times. We set

L =pi\k
= [ w10 > e = 2y or Qu) < (1 - g)(l —weatno,

Ween =0and W, =inf{r > 0: X, ¢ i} = Wic A T, Also, for j =k, ... 1, let

£y = {" L 0;(0) < n(1—10d) (1 - 2 - 5)} e
el = {xs 000 <nt-maay- 5= 2 Syl agl
Wei = inf{r > Wejen : X, € £));
Wi =inflr > We 1 X, ¢ L)}
Our goal is to show that IPJ(WZ,(+1 <mg) > 1—1/s0. If x9 € K, then WZHI = 0 and

we are done, so we may assume that xo ¢ C, and hence that xo € ﬁ'f“ . Thus Lemma 6.5(1)
follows from the proposition below.

Proposition 8.1 Let xq be any queue-lengths vector in Ellﬁ'l. Foracopy (X;) ofthe (n, d, \)-
supermarket process with Xo = xg a.s., we have

P(Wiey > me) < 1/s0.
For the proof of Proposition 8.1, we fix a state xp € lllfﬂ
the (n, d, A)-supermarket process where Xy = xg a.s.

, and work with a copy (X;) of
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Our general plan for proving Proposition 8.1 is as follows. We suppose that the process
(X;) stays inside ll]fH = D; \ K over the interval [0, mg), with the aim of showing that
this event has low probability. Observe that, if x € Elfﬂ \ LK, then Ugt1(x) > e(1 —A) and
Or(x) >n(l — %)(1 — M) d)*1. This “excess” in ui+1 would result in a downward drift
in QO (X;), so if the process does not exit LlfH quickly, then it enters EI(‘) quickly, and stays in
L’[ throughout the interval [0, mg): i.e., W« is small and Wzk is large, with high probability.
This means that Q4 (X;) maintains a “deficit” compared to Qk = n(l — A)d)*! until
time mg. A deficit in Qx(X;) would lead to a deficit in each Q;(X;) in turn, compared
to Qj =n(1 —ANAd) " for j = k—1,k—2,...,1: each W, is small, and sz is
large, with high probability. Finally, a deficit in Q(X;) compared to 01 =n(l —A)is
unsustainable, as this would lead to a drift down in the total number of customers over a long
enough time interval to empty the entire system of customers. This would entail exiting the
set B1 2 E]]‘H, a contradiction.

Lemma 8.2 (1) ]P(WU AWl = 12ke™'n(1 = )71 < 1/65.
@) P(W), <me < W),,)) < 1/125.

Proof We apply Lemma 3.3 to the process (X;), with its natural filtration, and the function
F=QrWeseth=(1-%5nl -0 and p = 550l —N(Ad) ! > 2. We
also set S = CII‘H and T* = 0. We note that Qi (x) < ¢ := kn for every x, and we take
m = 12ke~'n(1 =)', and s = mg — 1. Then Ty = W\, Ty = inf{r : Qx(X,) < h}
and T, = inf{t > T} : Qx(X;) > h + p}, as in the lemma.

For x € EI]‘H with Qg (x) > h, we have uy41(x) > (1 —A) and x € D;. So Lemma 7.1
applies, and we have

(1 +)AQ() < Br(l — A — ugg1 (X1)) — 3;3,3 o+ exp(—d Qi) /km) + (1= 1)
<A=n1—g) —(1—-1(1- §)+6(1—A)+6(1—A)
= —%8(] —A).

So AQk(x) < —éa(l — M) := —v for such x. Note that mv = 2c¢. Hence we may apply

Lemma 3.3.
As in earlier lemmas, we have 71 A WZ:W =W A Wﬁw1 , SO we obtain

P(Wex AWy > m) =P(T) ATy > m)

IA

exp(—vzm/S)
= exp(—ekn(l — X1)/24) < 1/6sp.

Also the events WZ,( <mg < w' , coincide, and the second is

Lkt
equivalentto 7> < s < WZHI (since s = mg — 1). So

yand Tr < mg < W£k+

]P)(Wzk <mg = WZ”‘) =P(T» <5 < Tp)

100s
< —5 exp(—pv/8)
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100

= —25 exp(—eZn(1 — M) (hd)* " /1152k)
v

< 1/12s0,

as required. O

The next lemma states that, if the process stays in some set L{ fora long time, then it

quickly enters the “next” set cl , and stays in L'{ for a long time.

Lemma 8.3 Foreach j=k—1,...,1,
(1) P(WZ_,-H AWei > Wejn +eln =0 < 1/3kso.
Q) PW), <me < W) < 1/3kso.

Proof (Sketch) This proof is very similar to that of earlier lemmas, and we mention only
a few points. As in Lemma 6.4, we apply Lemma 3.3 to the scaled process Q/j(x) =
0j (x)/(Ad)U=1/2 The key step is to show that, for x € E{H with Q/j > h =
n(1 — ) (d)V=D2(1 — £ — 1) we have AQL(x) = =3 (1 = WNODUTD2 = _y.
The proof now proceeds as earlier ones.

For part (2) of the lemma, we set p = ﬁn(l — M) d)Y=D/2 We make use of the fact
that the value of Q’j only changes if either (i) the event is an arrival, and some queue of length
atmost j — 1 is inspected, or (ii) the event is a departure from some queue of length at most j.
Fromany state x € £/, the probability of (i) is at most d (1 —uj(x)) <dQj(x)/n < (1 —N)d/,
and the probability of (ii) is at most (1 —u;11(x)) < Qjr1(x)/n < (1 — A)d’ . Hence we
may apply Lemma 3.3(ii), with p = 2(1 — A)d/.

100mg
]P’(WZ/- <mg < WL.H) < —0 exp(—pv/8p)

100m ¢ &2/
- P (-
V2 eXp( 260852 "¢ ))
< 1/3ksg.

‘We now prove a hitting time lemma for || X, || 1, the total number of customers in the system
at time r. Let Waq = min{t > W, 1 : || X;]|; = 0}.

Lemma 8.4
P(W) AWar > Wer+ 720 n(1 = )71 < 1/1250.

Proof We apply Lemma 3.3(i) to the chain (X;), with the filtration (F;), and the function
F(x) = ||x|l1, which takes jumps of size at most 1. Since A; (¢, b) D £, we have | Xo|l; <
c:=3bn. Wealsoset S = L], T* = Wpi,h =0andm = 72be~'n(1 — 1)~

Note that || X;+1]1 — | X/ |1 is equal to +1 if the event at time ¢ is an arrival, with probability
A/(1+ 1), and equal to —1 if the event is a potential departure from a non-empty queue, with
probability u1(X;)/(1 4 A), so the drift A|x||; is equal to ﬁ(k —uy(x)). Forx € E{, we
have

I —ui(x) =

an(X)5(1_)‘)<1_%_6ik+2%k)S(l_k)(l_g)'

Hence, forx € £}, (1+ M)Allx]li = (1 —ui () — (1 =) < —£(1 — 1), and s0 Al|x |}y <
—15 (1 = 1) := —v. Note that vm = 2c.
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Hence we may apply Lemma 3.3(i). With Ty and 7} as in that lemma, we have Ty = WZI
and 71 = W, so we conclude that

]P)(W[T:l AWrt = Wi +m) < exp(—v2m/8)
= exp(—ebn(1 — 1)/16) < 1/12s0,

as required. O

We now combine Lemmas 8.2, 8.3 and 8.4 to prove Proposition 8.1.
Observe that, for a copy (X;) of the (n, d, A)-supermarket process starting in a state
X0 € LII]{H, exactly one of the following occurs:

@ Wi, <me,

(b) not (a), and one of WZ:k’ WLH, ey WZI is less than m ¢,

(c) neither of the above, and W« > 12ke~'n(1 — 1)1,

(d) none of the above, and W,; > W, ;41 + e~ In(1 = 27! for some j =k—1,...,1,
(e) none of the above, and Waq > W1 + 72be " n(1 — 1)~

(f) none of the above, and Wxq < mg < WL‘,(H.

Indeed, if none of (a)—(e) occurs, then WZ,( 41 = mg since (a) fails, and also

k—1
Wam = Wer + Z(ng = Weis1) + (War — Wer)
j=1
< 12ke'n(1 ="+ k= De tn@ =)+ 7267 In(1 = 2)7!
< (13k +72b)e " 'n(1 — 1)~ = mg.

We now show that the probability of each of (b)—(f) is small. For (b), Lemmas 8.2(2) and
8.3(2) give that

PWh AWL A AW <me <WEL)
k—1
<PW) <mg WL )+ Y PWL <mg <W],.))
j=1

1 1

1
< — k—1 < s
~ 650 +( )3kS() — 250
i.e., the probability of (b) is at most 1/2s9. The probability of (c) is at most 1/12sy by
Lemma 8.2(1). The probability of (d) is at most (k — 1)% < 1/3s9 by Lemma 8.3(1). The
probability of (e) is at most 1/12sg by Lemma 8.4. Finally, (f) is not possible, since at time
W there are no customers in the system, so Q¢ (Xw,,) > n, and thus Wy > Tg, but also

Tg > WZ:HI since Elﬁl C D; C B by definition.

Thus the probability of (a), for a copy of the process starting in a state in
1 1 1 1
L= 5 ~ T ~ 3 ~ e

thus also Lemma 6.5(1). .

Now we move to the proof of Lemma 6.5(2), stating that the exit time T‘gT is large with
high probability. There are two things to prove here. The first is that, if X; € &, then it is
very unlikely that, at time ¢ + 1, a customer arrives and creates a queue of length k + 1. The
second is that, once Qx(X;) has reached (1 —3&)n(1 —A)(Ad)* !, while ug+1(X;) is at most
e(1 — 1), Qg is unlikely to “cross down against the drift” to (1 — 4¢)n(1 — LNk

ll]fﬂ, is at least

=1- %, which is what we need to prove Proposition 8.1, and
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For t > 0, let L; denote the event that, at time ¢, a customer arrives and joins a queue
of length at least k (equivalently, the probability that the event is an arrival and that all the
selected queues have length at least k). So L, is the event that u ; (X;) > u;(X,_) for some
j=k+1.

Lemma 8.5 On the event that X; € &1, we have P(L;41 | Fr) < e~ logn,
Proof From the definition of L;, we have P(L,y1 | F;) = H_kuk(X,)d < uk(X,)d For

x € &, we have Qx(x) > (1 —4e)n(l — AN (Ad)* ' and Qx_1(x) < (1 + 5e)n(l —
MOd)*2 < Ten(l — 1) (Ad)* 1. Therefore, by (5.5), we have

1 —up(x) > Q’;(x) S ICINS <1 - 13—38> (1 =00 = %(1 —ndk!,

n

Hence, on the event that X; € &,

d 1 k—1 ¢ 1 k 2
(X)) <(1- 5(1 —Ad < exp —5(1 —A)d" | <exp(—log”n),
as required. O

Let UT = inf{t > Te : upp1(Xy) > (1 — M)} and VT = inf{r > Te : Or(X)) <
(1 — 4e)n(1 — M) (Ad)*~1}, and note that Tg = Tg AUT A V. We thus have

P(TS <50 < Tp) <PUT <so ATH AV +P(VT <59 ATHAUD).

We claim that each of these last two probabilities is at most 1/2s. For the first, we may
apply Lemma 8.5. Observe that, if U = ¢ + 1, then the event L, | occurs. We now have:

so—1
PW' <sonTHAvH =Y PW =1 +1<T) AV
t=0
so—1 so—1
=Y PW =t+1and X, € &) = Y Ellx,ee) Bz, | 7))
t=0

~
(=]

so—1

< E[l(x,eey E(1L,,, | FI

t

S

Il
=

. 2
By Lemma 8.5, each term is at most e~ log”n and so we have
. N 2
PWUT <so ATHA VT <spe” 8" < 1/250,

as claimed.

To obtain the other required inequality, we apply the reversed version of Lemma 3.3(ii).
We consider the process (X;), with its natural filtration, the function F = Qp, and the
set S = {x upp1(x) < e(1—=1)}ND. Weseth = (1 —3e)n(l — L (d)*! and
p=en(l — 1)) > 2. We also set s = s and T* = Te. We have Ty = inf{r > T¢ :
X, ¢ Dyorugi1(X,) > e(1—1)},sothat Ty > T, /\UT(strlctmequallty occurs1fTI < Tg)
AlsoT) = inf{t > Te : Qr(X;) > h} = Te,and Tz inf{t > Te : Qr(X;) < h— ,0}

Take x € S with Qx(x) < h. As x € D1, we apply Lemma 7.1 to obtain
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Ok (x)
n(hd)*—1

> Bl — )1 —e) — (1= 2)(1 — 3e) — gu — )

A +MAQk(x) = Br(1 =& — upq1(x)) — —%(1—?»)

z(1—A)[(1—§)(1—e)—1+3a—2]
> e(1— ).

This yields A Qx(x) > $e(1 — A) := v, for such x.
The reversed version of Lemma 3.3(ii) gives that

P(VI <so ATH AUT) < (T < 59 A To)

< 1(102‘?0 exp(—pv/8)

- lO(;so exp(—e2n(1 — 1)2(rd) =1 /16)
1/3So,

IA

as required. This completes the proof of Lemma 6.5.

9 Proofs of Lemmas 6.6 and 6.7

In this section, we prove the final two of our sequence of lemmas.

Proof of Lemma 6.6

Proof Fix j with 1 < j < k — 1, and consider the state of the process at the hitting time
Tgj+1. The hitting time T; is the firsttime ¢ > Tgj+1 that Q j(X;) lies in the interval between

[1— @+ S 2e|a(t = Gy~ and [14 @+ S 2)e [n(1 = ) Gy~ Let By
be the event that Q./'(Xng-;-l) > [1 + @4+ #)g]n(l —A)(Ad)’~1, and By be the event

that Q.i(XngH) < [1 — 4+ k_jki_l/z)g:ln(] —)(d)/ L

For part (1) of the lemma, we have to show that, on the event Bj,, with high probability
Qj(X;) enters the interval from above within time mg, and also that, on the event By, with
high probability Q;(X,) enters the interval from below within time mg. These two results
are essentially the same, and we give details only for the first. Of course, we have nothing to
prove on the event that Q ; (Xt it ) is already in the interval.

We apply Lemma 3.3(i) to (X;), with its natural filtration, and the scaled function F'(x) =
Q} (x)=0Q; (x)/(Ad)(j_l)/z. We take S = Q{'H and T* = Tgj+1. We set
k—j—1/2 .
7’]( / e |n(t =Gy =D,
and m = mg = 32ke~'n(1 — A)~'(Ad)~". From (5.3), we have that Q'(x) < ¢ == 2n for
all x. Also Ty = T} ., and Ty = inf{r > Tgjs1 : Q(X,) < h).

i1
For x € g{* , we have

h=[1+(4+

k—j—1
Qj+l(x)§|:1+(4+;

p )e} n(l — A (d) .
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(This follows from the specification of Q{H for j < k — 1, and since g’f = &1 C B for
j =k —1.)If also Q’j(x) > h, we have

O e e ) R

Lemma 7.1 applies since x € Dy, so

) Qj+1(x)
25k n

k—j—1/2 ‘ e
- [1 + (4+ p )e] (1 - 2)(rd)? (1 - ﬁ)
k—j—1 .
n [1 n (4+ T) e} (1 — ()’

1 .
_ _ j
< 4k8(1 A (Ad)/,

I+1AQ;(x)

I /\

Q](x)(

IA

and so AQ';(x) < —gre(1 = 1)(Ad)UHD/2 := —y. Note that vmg > 2c.
Lemma 3.3(i) now gives

P(Ty ATy > Tgjr1 +mg) < exp(—vzmg/8)
= exp(—en(1 — M)(Ad)Y D72 /16k)
< 1/2s0.

On the Tg;-measurable event By, the stopping times 71 A Ty and Tg; A Tp coincide, so we
have

P(By N {Tgs A TS > Tgrer +mg)) < 1/250.
Essentially exactly the same calculation gives

P(Be N {Tgi A Tg,Jrl > Tgj+1 +mg}) < 1/2s0,

and part (1) of the lemma now follows, for this value of ;. '
To prove part (2) of the lemma, we need to show that, once X; has reached Q(j), and
while it remains in g{ H, the process is unlikely to leave the set g{ quickly. There are two

separate things to prove: that Q;(X;) is unlikely to cross against the drift from [1 + @4+
LR )e |l = 1)) ™" 10 [14+ 4+ E5he]n(1 = 1))~ before time so, and also
that Q (X, is unlikely to cross against the drift from [ 1— 4+ 527 2)e |n(1 = ) Gud) !

to [1 — 4+ %)s]n( 1 — A)(Ad)/~! before time so. Again, the two calculations required
here are essentially identical, and we shall concentrate on the first.

We apply Lemma 3.3(ii), again for the process (X;) with its natural filtration, and the
scaled function F(x) = Q;(x)/ (Ad)U=D/2 We take the same values of parameters as
above, and additionally set p = ;—kn(l —0Od)YD/2 and s = 9. As before, we may take
p=2(1—A)d/.Here T» = inf{r > T} : Q(X) = h + p}.
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100s
B(Ty <50 < Tya) < — 5 exp(—pv/8p)

100 .
— —Cexp(—eZn(l — M)A /256k)
v

1/2s0.

IA

Setting U = inf{t > T1 : Q;(X;) <
P(Uz < 50 < Tg;0) < 1/250.

The events Th) A Uy < 509 < TgTj+1

[ —

1— @4+ %)s]n(l — ) (Ad)i~ 1}, we have, similarly,

and TgTj <sp < Tng coincide, so

P(T), <50 < Tj) < P(T < s < To) + P(Uz < s < Ty)
- 1 n 11
= 250 250 S0
as required for part (2) for this value of j. O
Proof of Lemma 6.7

Proof We first prove part (1). Fori =1, ..., n, let N; be the number of potential departures
from queue i over the time period between 71 and Tg1 + myy¢, so N; is a binomial random
variable with parameters (m, 1/n(1 4+ 1)). Recall that L, is the event that, at time 7, a
customer arrives and joins a queue of length k or longer, and observe that

Tg1+mH
P(Ty A TQT, > T +m) <P| | (Ln{X1egih | +PELN <30).
t=T,1+1
g

Indeed, at time Tg:, the process is in A; (£, g), and so there is no queue with more than 3¢

customers in it at that time. If there are at least 3¢ potential departures from each queue over

L Tg1+my
the time interval, and UIZTQ1 +1
reduced to length at most &, and no new queue of length k + 1 is created before Tg1 + myy.

Now let (X)) = (X175, +0), (F) = (Frg+:) and L = L1, 4. We have:

L; does not occur, then by time Tg1 + my, every queue is

Tg1+m'H my
P U (Lin{Xi—1€Gi) | =P (U(L; N{X;_ € gll})>
t=Tg|+l t=1

my
<> P(L;iN{X,_, €G}D
t=1

my

=Y E[Lix g Bl | 7]

t=1

C1no2
< mye” °F " < 1/25,

where we used the strong Markov property, and Lemma 8.5.
Recall that my; = n(8¢ + 3210g2 n), so that the mean p of each N; is my/n(1 + 1) >
40 + 1610g2 n. By (3.1), with ¢ = 1/4, we have

P(N; <30) < P(N; < %m < oM < gmrlog
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for each i. Thus the probability that there are fewer than 3¢ departures from any queue over
the interval from T to Tg1 + myy is at most ne~11og’n 1/2s0, and part (1) follows.

For part (2), as above we have

Tg1+so

Pl | @niXi1 €6l | <s0e " < 1/s0.
I=Tg1+l

Thus ]P’(T;( < sy < Tng) is at most the probability that X; exits the set H; before time

Tgl A 8o, necessarily by the creation of a new queue of length k 4 1, is at most 1/s9, as
required. O

10 Rapid Mixing

In this section, we prove our results about rapid mixing of the (n, d, A)-supermarket process.
We continue to assume that the functions A = A(n) = 1 —n~%,d = d(n) = nf and e = e(n)
of the model satisfy the conditions of Theorem 6.1. We also assume throughout this section
that b < € < e¥192°7 o that g(¢£, b) = (22k + 72b)e~"n** + 8¢n < s50/2.

We say that two queue-lengths vectors are adjacent if they differ by one customer in one
queue, and we first consider two copies of the process starting in adjacent states in .4 (¢, b),
coupled according to the coupling referred to in Lemma 4.1. The proof partly follows along
the lines of the proof of Lemma 2.6 in [11].

Lemma 10.1 Let x, y be a pair of adjacent states in Ay (€, b), with x(jo) = y(jo) — 1 for
some queue jo, and x(j) = y(j) for j # jo. Consider coupled copies (X}) and (Xty) of the
(n, d, \)-supermarket process, where X = x and Xg = y. For n sufficiently large, and all
timest > 2q (¢, b), we have

E (X} - X} = P(X} # X)) <2e730",

Proof By Lemma 4.1, X and X; are always neighbours or equal, always X} < X;, and
if for some time s we have X7 = ng , then X = Xty for all + > s. Thus in particular
E||XF — X7 |1 = P(X} # X;). The probability of coalescence is increasing with 7, so we
may assume that t = 2¢ (¢, b).

Initially, the queue jo is unbalanced, i.e., Xj(jo) # Xg (jo), and all other queues are
balanced. Observe that the index of the unbalanced queue in the coupled pair of processes
may change over time. Let W; denote the longer of the unbalanced queue lengths at time ¢,
if there is such a queue, and let W; = 0 otherwise. The time for the two coupled processes
to coalesce is the time 7 until W; hits 0.

We first run (X7) and (X;) together using the coupling. Let T}, and T}_'[ denote the times
Ty, as defined in Sect. 6, for the two copies of the process, and set T;_“ = TTJ_‘( \Y2 T;_( By
Theorem 6.10, T;Q < g (¢, b) with probability at least

{ 2(6k + 28) .1— le*%logzn.
K - 3

We now track the performance of the coupling after time T;. If the processes have coa-

lesced by time T;f{ (e, if T < T;;), then we are done. Otherwise, X’}* and X ;* are still

H
adjacent, and there is some random index Jy such that the queue Jy is unbalanced, i.e.,
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X ;7*1 (Jo) # X )T;_‘ (Jo), and all other queues are balanced. Moreover, since uy1(x) = 0 for
all x € H, we have W < k.

We shall use Lemma 3.4 to give a suitable upper bound on P(W; > 0). The idea is that,
since, with high probability, both copies of the process remain in H for a long time, the
unbalanced queue length W; will often drop below k, and then there is a chance of going all
the way down to O before returning to k.

For each t > 0, let B; be the event that X3 , X} € H for all s with T;f{ <s<t—1Tt

follows from Theorem 6.10 that P(B,) < (12k + 56)/sp < %e—i log?n srovided £ < 0.

Let N, be the number of jumps of the longer unbalanced queue length in the first r steps
after T,. Also set N = Nr, the total number of these jumps, with Ny = 0if T < T}.
For j = 1,2,...,let T; be the time of the jth jump after T;_‘t if N > j, and otherwise set
Tj =Ty vT.Thus,if ) < T,wehave T} < T} <--- <T =Ty =Tny1 =---. If
T}, > T, then all of the T} are equal to T,.

Let So = y(Jo)]l{T%ﬁT} = WT;1 ]l{T;;<T}, the longer unbalanced queue length at time
t= T;_k{ if coalescence has not occurred. For each positive integer j,if N > j,let §; = WTj,
which is either O or the longer of the unbalanced queue lengths at time 7';, immediately after
the jth arrival or departure at the unbalanced queue. Also, if N > j, let Z; be the =1-valued
random variable S;j — ;1. For each non-negative integer j, let ¢; be the o-field Fr,,, -1 of
all events before time T 1. Let also A; be the ¢ ;-measurable event Br;,,, that is the event
that X7, XY € H for each s with 7}, <s < Tj11 — L.

We shall use Lemma 3.4. We take the sequences (¢;) j>0, (£;) j=0, (Sj)j=0 and (A;) j>0
as defined above, and we set ko = k and 6 = 1/(Ad + 1). Note first that, at any time t < T,
the probability, conditioned on F;, of an arrival to the longer of the unbalanced queues is
at most dA/n(1 4+ A1), while the conditional probability of a departure from that queue is
1/n(1 + 1). Therefore, on the event that N > j, the probability, conditioned on ¢;_1, that
the event at time 7 is a departure from the longer unbalanced queue is at least

1/n(14 1) 1 s
1/n(A+1)+dr/n(1+1)  14+dr

In other words, on the event N > j wehave P(Z; = —1 | ;1) > 6.
We now show that, on the event {N > j} N A;_; N{S;_1 > k}, we have

3
P(Zj=—-1]|gj-1) > 7

To see this, consider a time ¢ > T;;. On the event B;, we have X; € H C &j, and so,
by Lemma 8.5, the conditional probability P(L,y; | F;) that the event at time ¢ + 1 is

an arrival to a queue of length k or greater is at most e~log?n In particular, on the event
B; N {W;_1 > k}, the conditional probability that the event at time # + 1 is an arrival joining
the longer unbalanced queue is at most e~ log’ ", while the conditional probability that the
event at time 7 4 1 is a departure from the longer unbalanced queue is 1/n(1 + A). Therefore,
ontheevent {N > j}NA; | N{S;_1 > k}, we have

1/n(h+ 1)
1/n(h+ 1) 4 e~ log*n

3
P(Zj=-1]¢j-1) = =7

We have now shown that S,, — Sp can be written as a sum Z;”zl Z; for {0, £1}-valued
random variables Z; that satisfy the conditions of Lemma 3.4, withkg = kand§ = 1/(Ad+1).
(The argument above establishes this for m < N: form > N, we have set Z,, = S, = 0,
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which also meets the requirements of the lemma.) Note that 5= — xd+Dk-1 < 24k-1,
Hence, for m > 16k,

m m—1 k—1
)
P S; #0}N A; ) < IP(S 16 3 -
(Dl{,;é } Q) ,)_ (So > Lm/16]) + exp( 200km>
m
=0+ 3exp (~ ot

Here P(-) refers to the coupling measure in the probability space of Sect. 4, with coupled
copies of the process for each possible starting state.

Letg = g(¢,b) and m = |g/4n] > n*. Since, at each time after T;f( and before 7', a
jump in the longer unbalanced queue occurs with probability at least 1/2n while the queue
is nonempty, we have, by inequality (3.1), P({T > T}, +q} N {N,; < m}) < e~4/16n _Also,

m—1

—_— — - 1

P ({N, >m}N U AN {T;ft < q}) < P(Byg) < P(By) < ge*%loghz’
i=0

Now we have that

P(T > 2q) < P(T}; > q) + PT > T}, + q} N {T}; < q})
<P(T}; > q) + PUT > T}, + g} N {N; < m})
m—1
+P (N =m0 |J A 015, < q))
i=0

m—1 m
-HP’({Nq >m)n () 40 [ (S ;é()}).

i=0 i=1

To see this, note that {N, > m} N Ulm=1{5i =0} C{T < T;ft + q}. Now we have

]P)(T > Zq) < %e—%l()gzn +e—q/l6n + %e—%logZﬂ

q
200 (- i)
P\ T600kd—Tn
2 e pe—(k=1p

< _pTgzlogn 4 [

=3¢ + exP( 1600k

< efélogzn,
as required. O

Theorem 10.2 Let (X;) and (X ,y) be two copies of the (n, d, ))-supermarket process, start-
ing in states x and y in Ao(£, b). Then, for n sufficiently large and t > 2q (€, b), we have

1 2 1 2
E X7 — X)'|l; < 2bne 318" < g=5log™n,
Proof Given two distinct states x and y in Ag(¢, b), we can choose a path x =

20,21, - .-, Zm = y of adjacent states in Ay(¢, b) from x down to the empty queue-lengths
vector and back up to y, where m = ||x||; + || y|1 < 2bn. By Lemma 10.1, for r > 2¢ (¢, b),
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m—1
E ”X;Y - X;V”l = Z E ”XIZ' — XtZHH ||1 < 2bne_%10g2n’
i=0
as required. o
We saw in Corollary 6.9 that ¥; € Ag(£, b) with probability atleast 1 —¢ ™% °¢° whenever

£,b > k, where (Y;) is a copy of the (n, d, A)-supermarket process in equilibrium. Thus we
have the following corollary.

Corollary 10.3 Take any €,b > k, and let (X}') be a copy of the (n,d, \)-supermarket
process starting in a state x € Ay(L, b). Also let (Y;) be a copy in equilibrium. Then, for n
sufficiently large and t > 2q (£, b), we have

Ay (L(XF), L(Y,)) < 2~ 510¢",

This now implies Theorem 1.4. We choose ¢(n) = 1/100. The hypothesis that ¢ =
Ixlloo < e%k’gz”, together with b = ||x||;/n < £, ensures that g (¢, b) < %so, and the setting
of & ensures that g (¢, b) < 7200(kn'™® + bn!* 4 ¢n).

We now show that mixing actually takes place faster if we start from a “good” state, i.e.,
a state in V' = N°.

Lemma 10.4 Let x, y be a pair of adjacent states in N¢, with x(jo) = y(jo) — 1 for some
queue jo, and x(j) = y(j) for j # jo. Consider coupled copies (X}) and (Xty) of the
(n, d, A)-supermarket process. For n sufficiently large and all times t > 0, we have

11002 t
EX7 —X] |1 <e 3°C" +dexp (—m> .
Proof The proof is nearly identical to that of Lemma 10.1. Instead of starting by running the
two copies of the process together until some time 7%, we use the final part of Theorem 6.1,
which tells us that, with probability at most 1 — e_% log? ", both X} and X ,V remain within
N throughout the interval 0 < ¢ < so. We may thus repeat the proof of Lemma 10.1 with
T* and g = ¢q (¥, b) replaced by 0, and running the second phase for any number ¢ of steps
instead of ¢, and we obtain the result. O

As before, we can use this result to deduce an upper bound on the mixing time, starting
from a good state.

Theorem 10.5 Let (X}) and (X ,y) be two copies of the (n, d, \)-supermarket process with
starting states x and y in N¢. Then, for n sufficiently large and t > 0, we have

_ 11002 t

Proof (Sketch) Take any two queue-lengths vectors x and y in N. It is straightforward
to show that there is a path between x = zoz; -z, = y in N of length m < 4n(l —
2 (Ad) ! < n between x and y. The result now follows as in the proof of Theorem 10.2. O

Asbefore, since Yy liesin H® € N* with probability at least 1 —e—#log’n ,by Corollary 6.9,
we may now deduce that the total variation distance dry (L(X}), £(Y;)) is at most
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1002 1002 t

—4log*n v
<n <2e i —|—4exp< 1600kn1+(k—1)5)>

whenever x € AN*. This result is exactly the statement of Theorem 1.2 (where we take
e = 1/logn: the result would hold if our initial state were in N¢ for ¢ a suitably small
constant).

Theorem 1.2 shows that, from states x € A/, we have mixing to equilibrium in time of order
n! T« DB Jog n. We finish by proving Theorem 1.3, showing that this bound is approximately
best possible.

Note that there is a state z in Z8 € ‘H® € N* with Qx(z) < (1 — 3e)n(l — A)(Ad)* 1.
However, we know from Corollary 6.9 that P(Y; € HEPPYy > 1 — e‘i log? " so in order for
dry (L(X?), TT) to be small, we need that Qi (X?) > (1 — &)n(l — A)(Ad)*~! with high
probability. Set t = fn(rd) 1.

Forx € H?, we obtain from Lemma 7.1, with a calculation almost exactly as in Lemma 8.2,
that

A+MAQk(x) = (1 =21 +¢/6) - % + exp (—d Qx(x)/kn)

<(-=2NU4+¢e/3—(1—4e)) <5e(1 — 1),
s0 AQk(x) < 5e(1—A) also. We know from (6.1) that, with probability at least 1 — e 1log’ n

X:eHPforalls =0,...,¢t — 1, and we also have that Qx(x) < kn for every state x. It
follows that

t—1

EQu(X]) = Qi(2) + ) E (E(AQk(XD) | 7))

s=0
< (1=3e)n(1 — N)dy ™ + 5e1(1 — 1) + kne 3 108"
< (1 =2¢)n(1 — 1))

A result from [11] (adapted for discrete time) states that, for some absolute constant ¢, for
any 1-Lipschitz function f, any starting state z, any ¢t > 0 and any u > 0,

P(f(X3) —E f(X3)| > u) < ne~cw’/0+0),
Applying this with f = Qi1 = gn(d)* ™" andu = er (1 — %), we find that

P(Qk(X?) > (1 —e)n(1 — D))

A

P(Qr(X?) — E Qk(X?) > en(l — 0)(hd)h
—ceZn(1-2)2(d)F=1/2

IA

ne < 1/so.

This completes the proof of Theorem 1.3.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
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