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Abstract This paper considers a population process on a dynamically evolving graph, which
can be alternatively interpreted as a queueing network. The queues are of infinite-server type,
entailing that at each node all customers present are served in parallel. The links that connect
the queues have the special feature that they are unreliable, in the sense that their status
alternates between ‘up’ and ‘down’. If a link between two nodes is down, with a fixed
probability each of the clients attempting to use that link is lost; otherwise the client remains
at the origin node and reattempts using the link (and jumps to the destination node when it
finds the link restored). For these networks we present the following results: (a) a system of
coupled partial differential equations that describes the joint probability generating function
corresponding to the queues’ time-dependent behavior (and a system of ordinary differential
equations for its stationary counterpart), (b) an algorithm to evaluate the (time-dependent
and stationary) moments, and procedures to compute user-perceived performance measures
which facilitate the quantification of the impact of the links’ outages, (c) a diffusion limit for
the joint queue length process. We include explicit results for a series relevant special cases,
such as tandem networks and symmetric fully connected networks.

Keywords Randomly evolving graphs · Queueing networks · Infinite-server systems · Link
failures

1 Introduction

When considering a population process on a graph, the underlying network is typically
assumed to be static: the network structure (i.e., the set of links that connect the nodes)is
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assumed to be constant over time. In many real-life situations, however, links may be tem-
porarily inactive, entailing that the underlying structure should instead be considered as
dynamic. At a conceptual level, such a system can be seen as a network of queues, where the
links’ availability fluctuates in time. The main objective of this paper is to study the perfor-
mance of such a queueing network, with links alternating between being ‘up’ and ‘down’.
Leading examples in which our model can be used include communication networks, road
traffic networks, various physics-motivated networks, and chemical reaction networks.

At a somewhat more detailed level, the network can be described as follows. The network
is a graph with nodes and links, along which clients travel. At any node, external arrivals
occur according to a Poisson process with a node-specific rate. Service times at the nodes
are exponentially distributed (with a node-specific parameter); when a customer has been
served at a node, he selects a next node through some routing mechanism (where it is also an
option to leave the network). Suppose the client resides at node i and he wants to be routed
to node j ; assume that each link’s up- and down-times are exponentially distributed. Then,
depending on the situation at hand, the following two options arise. If the link from i to j is
up, then he jumps from node i to node j . If, on the contrary, the link from i to j is down,
then either the client is lost (which happens with a node-specific probability), or he waits an
exponentially distributed amount of time at node i and tries again.

The queueing mechanism studied in this paper is infinite-server, making our analysis
particularly useful for situations in which there is no (or hardly any) interference between the
clients at each individual queue, in the sense that they can be served essentially in parallel. It is
noted that in this paper we use queueing-theoretic terminology, but infinite-server queues are
frequently used in other domains aswell.As amodel inwhich particlesmoveon a dynamically
evolving graph, it can be seen as an object relevant to statistical physics (cf., for instance, the
model considered in [11]), but there are applications in chemical reaction networks [4], (cell)
biology [27], and population dynamics [22] as well. In operations research, the infinite-server
model we have defined can be used to study e.g. the numbers of clients simultaneously using
(somewhat larger) segments in a road traffic network, or numbers of clients simultaneously
visiting connected websites.

For this class of model, we are interested in various performance measures. The most
important one is the joint distribution of the (time-dependent and stationary) queue lengths at
all nodes, together with the number of lost clients (i.e., clients who leave the network because
of link failures).

◦ In the first part of the paper we derive a series of exact results. (i) Our first class of
results is in terms of a system of coupled partial differential equations for the probability
generating function pertaining to the joint queue length distribution. (ii) In the second
place, this system of differential equations can be used to recursively determine all (time-
dependent and stationary) moments. (iii) Thirdly, we assess the impact of the network’s
down-times on the service quality that is perceived by its users.

◦ Thenwe consider scaling limits: by scaling the external arrival rates and the up- and down-
times, we present a diffusion limit. This result entails that the joint queue-length process
weakly converges to a mean-reverting Gaussian process (viz. a multivariate Ornstein-
Uhlenbeck process). An important feature of the scaling chosen is that the speed at
which the external arrival rates are scaled may differ from the speed at which the up-
and down-times are scaled. This creates the flexibility to cover networks in which the
alternation between up- and down times is relatively slow (think of road networks) or
relatively fast (think of the channel conditions in a wireless network); also time-scale
separation ideas (as often relied on in chemical reaction networks) can thus be modeled.
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1126 M. Mandjes et al.

The model in this paper can be seen as an instance of a stochastic process (viz. a queueing
process) on a dynamically evolving graph. The literature on such models is still at its infancy.
Where static random graphs form a classical topic in probability theory, dating back to the
pioneering work of Erdős and Rényi [12] and Gilbert [15], only recently the behavior of
randomly evolving graphs has received substantial attention; see e.g. [16,17,23,30] for a
few examples. Examples of papers on random processes on (dynamic) random graphs are
[3,6,7]. The systematic study of queueing processes on such a randomly evolving graph has
hardly been looked at, a notable exception being the recent study [13]. The model considered
in [13] complements the one studied in the present work. Most notably, the framework of
[13] in particular facilitates modelling the effect of nodes going down every now and then,
where the present paper has a focus on links going down. The immediate consequence of this
difference inmodelling, is that in the frameworkof [13] diffusion limits donot apply, due to the
instantaneous downward jumps of the network population vector at epochs that a node fails.

There is also a relation with the classical work [25], where the Poisson-arrival-location
model (PALM) is introduced. In this model customers arrive according to an inhomoge-
neous Poisson process and move independently through the network according to some
random location process (with a fixed routing matrix). A consequence of the way the model
is constructed is that, for instance, the number of customers at each node follows a Poisson dis-
tribution. Themajor differencewith ourmodel, is that in our setup the topology of the network
is determined by a modulating process (meaning that the routing matrix is random); conse-
quently the positions of different clients (during their path through the network) are in our
model no longer independent, thereby also destroying the ‘Poisson properties’. Observe that
it is this dependence structure that considerably complicates the analysis. It also explains why
we pursue scaling limits for obtaining insight in the network population distribution (which
is obviously not needed in the setup of [25], as there closed-form expressions are available).

Our analysis will be based on casting our model as a network of infinite-server queues
under Markov modulated arrival and service rates. Explicit results on (single-node) Markov
modulated infinite-server queues (primarily in terms of differential equations for the
probability generating function, and the corresponding moments) can be found in e.g.
[5,10,14,19,26]. Diffusion limits for such single-node systems have been derived in e.g.
[2,9]; we also refer to [18] for a recent contribution with such diffusion results for a broad
class of networks of Markov modulated infinite-server queues. For general background on
queueing networks, we refer to [20,21,28].

This paper is organized as follows. In Sect. 2we describe ourmodel. Section 3 presents our
analysis, in terms of results exact results for the probability generating function andmoments;
we restrict ourselves to the case that clients who wish to jump but the corresponding link is
down, are lost with probability 1. Section 4 concerns the weak convergence to a Gaussian
process, for the samemodel. In Sect. 5 we consider a number of extensions, including the one
in which blocked customers are not necessarily lost but retry. In Sect. 6 we discuss a number
of special cases for which the calculations can be done explicitly. Concluding remarks are
found in Sect. 7.

2 Model Description

In this section we first provide a detailed model description, and then introduce quantities of
our interest.
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The network that we consider consists of n nodes that are connected through n̄ := (n
2

)

links. Let λi be the rate of the Poissonian arrival process at node i . The time spent at node
i is exponentially distributed with parameter μi (where we discuss in Sect. 5 how our setup
extends to the case of phase-type service times). After having been served at node i , the
probability that the served customer wishes to jump to node j (where j �= i) is pi j , where
pi0 is the probability of leaving the network. We obviously assume that

∑
j �=i pi j = 1, and

we write μi j = μi pi j . It is noted that this setup does not necessarily mean that we assume
that the network be a complete graph; if a node pair (i, j) is not connected, we are to set
the corresponding μi j equal to 0. Observe that the dynamics as described above entail that
the number of clients evolves as an infinite-server queue: the clients are served in parallel,
and hence do not interact. We assume that the routing mechanism gives rise to an irreducible
structure, entailing that the μi j are such that for a client residing at a specific node with
positive probability it visits any other node before leaving the network. In addition, for at
least one node i it holds that μi0 is strictly positive, thus guaranteeing that the network is
stable. The arrival processes and service/routing processes are assumed independent.

We now describe how the links alternate between being ‘up’ and ‘down’. To this end, we
let the underlying graph dynamics be determined by a K -dimensional background process
(X(t))t�0, assumed to be independent of the arrival processes and the serving/routing pro-
cesses, that is defined as follows. The n̄ links are partitioned into K mutually disjoint sets,
which are denoted by A1, . . . , AK , which we refer to as blocks. All links that lie in a specific
block, say Ak , alternate between ‘up’ and ‘down’ simultaneously; Xk(t) = 1 means that at
time t the links in block k are ‘up’, and 0 otherwise. We define

Q(k) =
(

−q(k)
0 q(k)

0

q(k)
1 −q(k)

1

)

;

the down-time (up-time, respectively) of block k is exponentially distributed with parameter
q(k)
0 (q(k)

1 ). The ‘graph process’ is given through

(X(t))t�0 = (X1(t), . . . , XK (t))t�0,

which attains values in {0, 1}K . The two extreme scenarios are on one hand the case that
we have just one block consisting of all n̄ links, or on the other hand the case that we have
n̄ independently evolving blocks that consist of one link each. The transition rate matrix of
X(·) is of dimension K̄ × K̄ with K̄ := 2K , and given by

Q :=
K⊕

k=1

Q(k) =
K∑

k=1

I2k−1 ⊗ Q(k) ⊗ I2K−k ,

where In denotes the n-dimensional identity matrix and B1 ⊗ B2 denotes the Kronecker
product of the two matrices B1 and B2. We let qk� be the (k, �)-th entry of Q.

We now explain what happens to a client who wants to jump from i to j when the link
is not present. As long as the link is down, at any attempt the client is lost with probability
fi j ∈ [0, 1], and he remains at the node with probability 1− fi j . While being at the node the
mechanism that we defined above is in place: after an exponentially distributed amount of
time with mean μ−1

i j (with j = 0, . . . , n) he wishes to jump to node j . To keep the notation
compact, in Sects. 3 and 4 we assume that fi j = 1 for all i, j = 1, . . . , n (i.e., all clients are
lost who wish to jump from i to j when the link between i and j is absent); in Sect. 5 we
point out how to adapt the results to include situations with fi j ∈ [0, 1).
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In this paper a key role is played by the n-dimensional queue length process

(M(t))t�0 = (M1(t), . . . , Mn(t))t�0,

where Mi (t) ∈ N0 represents the number of clients in the queue at node i at time t . Our
objective is to characterize the distribution of M(t); as we will see below, this is possible,
albeit in implicit terms, viz. in terms of a partial differential equation for the corresponding
joint probability generating function. Observe that by itself (M(t))t�0 is not a Markov
process, but the joint process (M(t), X(t))t�0 is.

As we want to keep track of M(t) as well as the number of lost clients, we work with the
probability generating function

ϕk(w, z, t) = E
[
wL(t)zM1(t)

1 · · · zMn(t)
n 1{X(t)=k}

]
,

with L(t) defined as the number of lost clients due to a link being ‘down’ during the interval
[0, t] and k be an element in {0, 1}K .
Remark 1 In the model described all links are bidirectional: if the link between i and j is
‘down’, then clients can jump neither form i to j nor from j to i . The unidirectional variant
of our model works in the precise same way; then there are n(n − 1) (instead of 1

2n(n − 1))
possible links. ��

3 Prelimit Results

In this section we first set up a system of coupled partial differential equations for ϕ(w, z, t)
(i.e., the 2K -dimensional vector with elements ϕk(w, z, t)). We then point out how these can
be used to determine moments. The next subsection presents ways to quantify the effect of
the graph dynamics on the performance as perceived by the network’s users.

3.1 Partial Differential Equations

The main idea is to express ϕ(w, z, t + �t), for �t small, in terms of ϕ(w, z, t). We follow
the precise same procedure as in e.g. [24]: we first set up the Kolmogorov equations for the
state (L(t), M(t)) = (m0, . . . ,mn) at time t � 0, then multiply with wm0 zm1

1 · · · zmn
n , and

sum over m0, . . . ,mn . We recognize probability generating functions and their derivatives.
More specifically, with I(i, j, k) being 1 if the link (i, j) is ‘up’ when X(·) is in state k and
0 otherwise, we thus obtain,

ϕk(w, z, t + �t) =ϕk(w, z, t) +
n∑

i=1

ϕk(w, z, t)(zi − 1) · λi �t

+
n∑

i=1

n∑

j=1, j �=i

∂ϕk(w, z, t)
∂zi

(
z j − zi

) · I(i, j, k) · μi j �t

+
n∑

i=1

n∑

j=1, j �=i

∂ϕk(w, z, t)
∂zi

(w − zi ) · (
1 − I(i, j, k)

) · μi j �t

+
n∑

i=1

∂ϕk(w, z, t)
∂zi

(1 − zi ) · μi0 �t

+
∑

��=k

ϕ�(w, z, t) · q�k �t −
∑

��=k

ϕk(w, z, t) · qk� �t + o(�t).
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The next step is to subtract ϕk(w, z, t) from both sides, divide by �t , and send �t ↓ 0. In
matrix-vector form, the resulting system of coupled partial differential equations reads, with
IK̄ (i, j) := diag{I(i, j, 1), . . . , I(i, j, K̄ )} and JK̄ (i, j) := IK̄ − IK̄ (i, j), as follows. The
function ϕ(z) denotes the probability generating function of the stationary counterpart M of
(M(t))t�0.

Proposition 1 The joint probability generating function ϕ(w, z, t) satisfies

∂ϕ(w, z, t)
∂t

=
n∑

i=1

ϕ(w, z, t) λi (zi − 1) +
n∑

i=1

n∑

j=1, j �=i

∂ϕ(w, z, t)
∂zi

IK̄ (i, j) μi j
(
z j − zi

)

+
n∑

i=1

n∑

j=1, j �=i

∂ϕ(w, z, t)
∂zi

JK̄ (i, j) μi j (w − zi )

+
n∑

i=1

∂ϕ(w, z, t)
∂zi

μi0(1 − zi ) + ϕ(w, z, t) Q.

The probability generating function of the stationary counterpart ϕ(z) satisfies

0 =
n∑

i=1

ϕ(z) λi (zi − 1) +
n∑

i=1

n∑

j=1, j �=i

∂ϕ(z)
∂zi

IK̄ (i, j) μi j
(
z j − zi

)

+
n∑

i=1

n∑

j=1, j �=i

∂ϕ(z)
∂zi

JK̄ (i, j) μi j (1 − zi )

+
n∑

i=1

∂ϕ(z)
∂zi

μi0(1 − zi ) + ϕ(z) Q.

3.2 First Moment

In this section we exploit Proposition 1 to determine the first moments; we first point out
how this procedure works for the stationary queue length M, but later indicate how the
corresponding transient moments can be found. We let X denote the stationary version of
the background process.

Define, for i = 1, . . . , n,

vi := (EMi1{X=1}, . . . ,EMi1{X=K̄ }) = lim
z↑1

∂ϕ(z)
∂zi

.

Let π be the invariant probability measure of Q, i.e., the K̄ -dimensional row-vector such that
π Q = 0 and whose entries sum to 1. By differentiating the differential equation featuring in
Proposition 1 with respect to zi and letting z ↑ 1, we obtain, for i = 1, . . . , n,

0 = πλi −
n∑

j=1, j �=i

vi μi j +
n∑

j=1, j �=i

v j μ j i IK̄ ( j, i) − vi μi0 + vi Q.

We now explain how to set up a computational procedure with which the vi can be found. The
n sets of K̄ -dimensional systems of linear equations can be cast into a single set of nK̄ linear
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equations (in equally many unknowns). Let v ≡ (v1, . . . , vn). Also, let λ the row-vector
(λ1, . . . , λn), and

νi :=
n∑

j=1, j �=i

μi j .

In addition, we define the matrices

M+ :=

⎛

⎜
⎜
⎜
⎝

ν1 IK̄
ν2 IK̄

. . .

νn IK̄

⎞

⎟
⎟
⎟
⎠

, M− :=

⎛

⎜
⎜
⎜
⎝

0 μ12IK̄ (1, 2) . . . μ1nIK̄ (1, n)

μ21IK̄ (1, 2) 0 μ2nIK̄ (2, n)
...

. . .

μn1IK̄ (n, 1) μn2IK̄ (n, 2) 0

⎞

⎟
⎟
⎟
⎠

,

and

M0 :=

⎛

⎜
⎜
⎜
⎝

μ10 IK̄
μ20 IK̄

. . .

μn0 IK̄

⎞

⎟
⎟
⎟
⎠

, Q :=

⎛

⎜
⎜
⎜
⎝

Q
Q

. . .

Q

⎞

⎟
⎟
⎟
⎠

.

We thus arrive at the linear system

λ ⊗ π = v(M+ − M− + M0 − Q),

so that v = (λ ⊗ π)N −1, with N := M+ − M− + M0 − Q.

The transient first moment follows immediately by solving the corresponding system of
linear differential equations. Let (M(0), X (0)) = (m, k0), and let ek the k-th unit vector.
Then, in self-evident notation, and with π(t) = eTk0 e

Qt ,

v′(t) = λ ⊗ π(t) − v(t)N ,

which is solved by

v(t) = m e−N t +
∫ t

0
(λ ⊗ π(s)) e−N (t−s)ds. (1)

This approach can be extended in a straightforward fashion to also include the mean of the
number of clients lost.

Remark 2 The relation (1) can be regarded as the expected-value version of the distributional
identity

M(t)
d= m e−N t +

∫ t

0
(λ ⊗ X(s)) e−N (t−s)ds,

cf. the relation used for our model’s single-queue counterpart in [8]. The above distributional
equality has an insightful interpretation: the first term on the right-hand side corresponds to
the contribution to M(t) of clients that were already present at time 0, whereas the second
term represents the contribution of arrivals in [0, t] which are then appropriately ‘thinned’.

As pointed out in [8], this representation in principle also provides a method to evaluate
the covariance matrix of M(t), using the law of total variance; in Sect. 3.3 we will rely on
an alternative approach, though. ��
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Remark 3 In the fully symmetric situation, the formulas simplify considerably. Let λ be the
arrival rate at each of the n nodes. The service rate is σ := ν + μ0, where the client leaves
the network with probability μ0/σ and wants to move to another node (which is then picked
uniformly at random) with probability ν/σ. Let all blocks alternate independently between
being ‘up’ and ‘down’. The up- and down rates are denoted by q0 and q1, respectively (i.e.,
the down-time is exponentially distributed with mean q−1

0 , and the up-time exponentially
distributed with mean q−1

1 ). Assume that the queues start empty at time 0, while all links are
in stationary state (i.e., each of them is ‘up’ with probability π := q0/(q0 + q1)). Then, for
each of the nodes the mean number of clients present satisfies

v′(t) = λ + (n − 1) v(t)
νπ

n − 1
− v(t)σ = λ − (ν(1 − π) + μ0)v(t).

We thus find that

v(t) = λ

ν(1 − π) + μ0

(
1 − e−(ν(1−π)+μ0)t

)
,

which converges to v := λ/(ν(1 − π) + μ0) as t → ∞. ��
3.3 Higher Moments

We now point out how (mixed) higher moments can be evaluated. We work here, for obvious
reasons, with the factorial moments, from which the regular moments can be recovered in
an evident manner. We recall the standard notation (m)r := m!/(m − r)! for m, r ∈ N with
m � r ; this notation is the so-called Pochhammer symbol. The objective here is to compute,
for r ≡ (r1, . . . , rn) with ri ∈ N0,

ψk(r, t) := E

((
n∏

i=1

(Mi (t))ri

)

1{X(t)=k}

)

= lim
w↑1,z↑1

∂r1+···+rnϕk(w, z, t)

∂zr11 · · · ∂zrnn .

We will show that the ψk(r, t) can be recursively evaluated. To this end, we first introduce
the following differential operator: for f : R × R

n × R �→ R,

Dr [ f (w, z, t)] := ∂r1+···+rn f (w, z, t)

∂zr11 · · · ∂zrnn .

Now the idea is to impose the operator Dr [·] on both sides of the partial differential equation
given in Proposition 1. In addition considering the limitw ↑ 1, z ↑ 1, we thus obtain, with ei
the i-th n-dimensional unit vector, and μ+

i jk := I(i, j, k) μi j and μ−
i jk := (1− I(i, j, k)) μi j ,

lim
w↑1,z↑1

Dr [∂ϕk(w, z, t)
∂t

] = lim
w↑1,z↑1

( n∑

i=1

riDr−ei [ϕk(w, z, t)]λi 1{ri �=0}

+
n∑

i=1

n∑

j=1, j �=i

r jDr−e j+ei [ϕk(w, z, t)]μ+
i jk 1{r j �=0}+

−
n∑

i=1

n∑

j=1, j �=i

riDr [ϕk(w, z, t)]μ+
i jk
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−
n∑

i=1

n∑

j=1, j �=i

riDr [ϕk(w, z, t)]μ−
i jk

−
n∑

i=1

riDr [ϕk(w, z, t)]μi0 +
K̄∑

�=1

Dr [ϕ�(w, z, t)]q�k

)
;

these computations rely on the evident relation

lim
z↑1

∂r

∂zr
f (z)(z − 1) = lim

z↑1 r f
(r−1)(z) = r f (r−1)(1).

Observe that in the above differential equation the indicator functions 1{ri �=0} (first term on
the right-hand side) and 1{r j �=0} (second term on the right-hand side) can be left out: if the
indicator function is 0, the corresponding term equals 0 anyway.

Consequently, the transient mixed reduced moments can be alternatively expressed in
compact notation as follows. Here it is used that μ+

i jk + μ−
i jk = μi j .

Proposition 2 For r ∈ N
n
0 , k ∈ {1, . . . , K̄ } and t � 0,

∂ψk(r, t)
∂t

=
n∑

i=1

riψk(r − ei , t)λi +
n∑

i=1

n∑

j=1, j �=i

r jψk(r − e j + ei , t)μ
+
i jk

−
n∑

i=1

n∑

j=1, j �=i

riψk(r, t) μi j −
n∑

i=1

riψk(r, t) μi0 +
K̄∑

�=1

ψ�(r, t)q�k . (2)

To obtain the stationary mixed reduced moments, one has to set the left-hand side equal to 0.
The reduced moments can be determined recursively, by solving a non-homogeneous

system of linear differential equations. To verify this claim, define ξ(r) as the sum of the
entries of r , i.e., r1 + · · · + rn . Let Sr be all vectors r such that ξ(r) = r. Observe that

ξ(r) = ξ(r − e j + ei ) = ξ(r − ei ) + 1.

The idea now is to use (2) to evaluate (ψ1(r, t), . . . , ψK̄ (r, t)) recursively: for r such that
ξ(r) = r this vector is computed using the corresponding expressions for r such that ξ(r) =
r − 1. In more detail, this procedure works as follows.

◦ For r = 0, we find the ψk(0, t) = P(X (t) = k) = (eQt )k0,k .

◦ For r = 1, we find the ψk(ei , t) (for i = 1, . . . , n) by appealing to Eq. (2), using the
ψk(0, t) that we found for r = 0. This amounts to solving K̄ n coupled linear differential
equations (where it can be checked that this system is equivalent to the one set up in
Sect. 3.2).

◦ We now consider r = 2. It is readily checked that #{S2} = n+ 1
2n(n− 1) = 1

2n(n+ 1),
and that there are equally many equations of the type (2). As a consequence, using the
ψk(ei , t) thatwe found for r = 1,Eq. (2) reveals thatwehave to solve a non-homogeneous
system of K̄ · 1

2n(n + 1) linear differential equations.
◦ One can proceed in a similar way with r � 3; e.g. for ξ(r) = 3 we have that

#{S3} = n + 2 · 1
2n(n − 1) + 1

6n(n − 1)(n − 2) = 1
6n(n + 1)(n + 2).

The cases with ξ(r) � 3 are solved very similarly to the case ξ(r) = 2. Using (2) it
can be inductively verified that in the r -th step we have a system of Kr := K̄ · #{Sr }
non-homogeneous linear differential equations, where
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#{Sr } =
(
n + r − 1

r

)
= 1

r ! · n(n + 1) · · · (n + r − 1).

For the stationary reduced means a similar recursive procedure can be set up; in the r -th step
a Kr -dimensional system of linear equations needs to be solved.

The above procedure can be extended in an evident way to include also the number of
customers lost, focusing on the object

ψ̄k(r, t) := E

((

(L(t))r0

n∏

i=1

(Mi (t))ri

)

1{X(t)=k}

)

= lim
w↑1,z↑1

∂r0+···+rnϕk(w, z, t)

∂wr0∂zr11 · · · ∂zrnn ,

with r ≡ (r0, . . . , rn).

3.4 User-Perceived Performance

In this subsectionwe study the impact of the links’ outages on the performance as perceived by
the users.As it turns out, this can be done relying on classical arguments.We start by analyzing
the fraction of clients that are lost (i.e., clients who leave the network because of a link being
down, and not because of a service completion), denoted by ω. To this end, let ωik be the
probability that a client who enters the network at node i while the background process is in
state k, is lost. Observe thatμ+

i jk/σik is the probability of a client jumping from node i to node

j when the background process is in k; qk�/σik and μ−
i jk/σik can be interpreted analogously.

Then, with qk := −qkk and σik := νi + μi0 + qk , by conditioning on the first jump,

ωik =
∑

j �=i

(
μ+
i jk

σik

)

ω jk +
∑

��=k

(
qk�
σik

)
ωi� +

∑

j �=i

(
μ−
i jk

σik

)

,

or, in a more convenient form,

−
∑

j �=i

μ−
i jk = −σikωik +

∑

j �=i

μ+
i jkω jk +

∑

��=k

qk�ωi�.

These equations constitute an nK̄ -dimensional diagonally dominant system of linear equa-
tions (actually even strictly diagonally dominant as there is at least one i such that μi0 > 0),
which is known to yield a unique solution. Let, as before, π� denote the stationary proba-
bility that the background process X(·) is in state � (i.e., π solves π Q = 0). Then, with
λ̄ := ∑n

i=1 λi , the loss probability equals

ω =
K̄∑

k=1

πk

(
1

λ̄

n∑

i=1

λiωik

)

.

As an aside we mention that the loss probability ω can alternative be evaluated, using the
methodology of the previous subsections, as

lim
t→∞

E L(t)

λ̄t
.

Along the same lines, we can determine the mean time (to be denoted by τ ) the job remains
in the network, jointly with the client being eventually lost (i.e., leaving the network because
of a link failure). Define τik to be this quantity for a client who enters the network at node i
while the background process is in state k. Then, again conditioning on the first jump,
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τik =
∑

j �=i

(
μ+
i jk

σik

) (
1

σik
+ τ jk

)
+

∑

��=k

(
qk�
σik

) (
1

σik
+ τi�

)
+

∑

j �=i

(
μ−
i jk

σik

) (
1

σik

)
.

Again this system of linear equations is diagonally dominant. As above,

τ =
K̄∑

k=1

πk

(
1

λ̄

n∑

i=1

λiτik

)

.

4 Scaling Limit: Functional Central Limit Theorem

In this section we study the system under a particular scaling, under which there is conver-
gence to a Gaussian process (viz. a multivariate Ornstein-Uhlenbeck process). We consider
the following scaling: λ �→ Nλ and q(k)

i �→ Nαq(k)
i for some α > 0 (for k = 1, . . . , K

and i = 0, 1). The model is thus parametrized by N ; to stress the dependence on N , we
throughout write M(N )(t) and X (N )(t). We focus on a functional central limit theorem for a
centered and appropriately scaled version of M(N )(t). For the moment we concentrate on the
(more involved) case α = 1; in Remark 5 we point out how this provides us with the limit
result for α ∈ (0,∞) \ {1} as well.

A full proof is (far) beyond the scope of this paper. For a rigorous derivation of the
functional central limit theorem, based on martingale arguments in combination with the
continuous mapping theorem, for a class of network models that is substantially broader than
the one studied in this paper, we refer to [18]. Below we by and large follow the structure
that we used in [9] for a single Markov modulated infinite-server queue (with a crucial step
stemming from [18]), and therefore we restrict ourselves to highlighting the main steps.

◦ Deviation matrix.We now introduce some notions that we need across this subsection.
For ease, we define them here for the unscaled system, but for the scaled system they can be
adapted in a straightforward manner.

Define by pk�(t) := P(X(t) = � | X(0) = k) = (eQt )k� the transition probabilities of
X(·).The equilibrium probability that blockm is ‘up’ is given byπ(m) = q(m)

0 /(q(m)
0 +q(m)

1 ),
for m = 1, . . . , K . An important role in the analysis is played by the deviation matrix D (of
dimension K̄ × K̄ ), whose (k, �)-th entry is given by

Dk� =
∫ ∞

0
(pk�(t) − π�)dt =

∫ ∞

0
((eQt )k� − π�)dt,

with π , as before, the solution to π Q = 0 with entries summing to 1.
Let Uk be the set of blocks that is ‘up’ when X(t) = k, and Dk := {1, . . . , K } \ Uk .

Define, with q(m) := q(m)
0 + q(m)

1 ,

p(m)
00 (t) := 1 − π(m) + π(m)e−q(m)t , p(m)

11 (t) := π(m) + (1 − π(m))e−q(m)t ;
in addition p(m)

01 (t) := 1− p(m)
00 (t) and p(m)

10 (t) := 1− p(m)
11 (t). Then, as is readily verified,

pk�(t) =
⎛

⎝
∏

m∈Uk∩U�

p(m)
11 (t)

⎞

⎠

⎛

⎝
∏

m∈Uk∩D�

p(m)
10 (t)

⎞

⎠

×
⎛

⎝
∏

m∈Dk∩U�

p(m)
01 (t)

⎞

⎠

⎛

⎝
∏

m∈Dk∩D�

p(m)
00 (t)

⎞

⎠ , (3)
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and

π� =
⎛

⎝
∏

m∈U�

π(m)

⎞

⎠

⎛

⎝
∏

m∈D�

(1 − π(m))

⎞

⎠ . (4)

From the explicit expressions for the p(m)
i j (t), we conclude that p(m)

j0 (t) − (1 − π(m)) and

p(m)
j1 (t) − π(m) can be written as a linear combination of terms of the type

exp

(

−t
∑

m∈S
q(m)

)

,

where S is a non-empty set. When subtracting (4) from (3), this entails that, for non-empty
sets Sm′(k, �) that depend on m′, k, and �,

pk�(t) − π� =
∑

m′
αm′(k, �) exp

⎛

⎝−t
∑

m∈Sm′ (k,�)
q(m)

⎞

⎠ ,

for coefficients αm′(k, �) that are straightforward to evaluate but that do not allow an explicit
expression. As a consequence,

Dk� =
∑

m′

(
αm′(k, �)
∑

m∈Sm′ (k,�)
q(m)

)
.

As an example, we work out the D matrix for the case of one block (i.e., K = 1, or,
equivalently, K̄ = 2). Put q := q(1), qi := q(1)

i (for i = 0, 1), and π := π1. Then

D =
∫ ∞

0

(
πe−qt −πe−qt

−(1 − π)e−qt (1 − π)e−qt

)
dt = 1

q2

(
q0 −q0

−q1 q1

)
.

◦ Time-changed Poisson process representation. In this section we repeatedly use the
following representation. We throughout use the definition μi jk := μi j I(i, j, k) if j =
1, . . . , n and

μi0k := μi0 +
n∑

j=1, j �=i

μi j (1 − I(i, j, k)).

With all Pi j (·) (for i, j = 0, . . . , n) independent unit rate Poisson processes, it is directly
verified that with the above definition of the rates μi jk the numbers of customers in the
respective queues satisfy

M (N )
i (t) = P0i (Nλi t) +

n∑

j=1, j �=i

Pji

⎛

⎝
∫ t

0
M (N )

j (s)
K̄∑

k=1

μ j ik Z
(N )
k (s)ds

⎞

⎠

−
n∑

j=0, j �=i

Pi j

⎛

⎝
∫ t

0
M (N )

i (s)
K̄∑

k=1

μi jk Z
(N )
k (s)ds

⎞

⎠ , (5)

with Z (N )
k (t) := 1{X(N )(t)=k}. This type of Poisson processes with random time-change, and

their applications in obtaining scaling-limits, have been described in great detail in e.g. [1].
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◦ SDE for centered and normalized system. The idea is to first set up an SDE for M(N )(t),

which is then translated into an SDE for its centered and normalized version M̃
(N )

(t).
For i = 1, . . . , n, by (5),

dM (N )
i (t) = Nλidt +

n∑

j=1, j �=i

K̄∑

k=1

M (N )
j (t)μ j ik Z

(N )
k (t) dt

− M (N )
i (t)

n∑

j=0, j �=i

K̄∑

k=1

μi jk Z
(N )
k (t) dt + dκ(N )

i (t),

for some n-dimensional martingale κ (N )(·). In the functional central limit theorem, fluctu-
ations around an average are considered; this n-dimensional average vector �(t) solves the
following system of linear differential equations:

�′
i (t) = λi +

n∑

j=1, j �=i

� j (t)
K̄∑

k=1

μ j ikπk − �i (t)
n∑

j=0, j �=i

K̄∑

k=1

μi jkπk,

for i = 1, . . . , n. As shown in [18, Sect. 3], this �(·) can be considered as the fluid limit [29]
corresponding to M(N )(·).

Keeping in mind we aim at deriving results for the central-limit regime, we consider a
centered and normalized process whose i-th component is defined by

M̃ (N )
i (t) := N−1/2 · (

M (N )
i (t) − N�i (t)

)
.

It is direct that

dM̃ (N )
i (t) = N 1/2λidt + N−1/2

n∑

j=1, j �=i

M (N )
j (t)

K̄∑

k=1

μ j ik Z
(N )
k (t) dt

− N−1/2M (N )
i (t)

n∑

j=0, j �=i

K̄∑

k=1

μi jk Z
(N )
k (t) dt − N 1/2�′

i (t)dt + N−1/2dκ(N )
i (t).

The idea now is to plug in the differential equation that is obeyed by �(t); the resulting
stochastic differential equation resembles the one featuring in [9]: omitting a few elementary
steps, using the compact notation Z̄ (N )

k (t) := Z (N )
k (t) − πk ,

dM̃ (N )
i (t) = N−1/2

n∑

j=1, j �=i

K̄∑

k=1

μ j ik
(
M (N )

j (t)Z (N )
k (t) − N� j (t)πk

)
dt

− N−1/2
n∑

j=0, j �=i

K̄∑

k=1

μi jk
(
M (N )

i (t)Z (N )
k (t) − N�i (t)πk

)
dt + N−1/2dκ(N )

i (t)

=
n∑

j=1, j �=i

K̄∑

k=1

M̃ (N )
j (t)μ j ik Z

(N )
k (t) dt −

n∑

j=0, j �=i

K̄∑

k=1

M̃ (N )
i (t)μi jk Z

(N )
k (t) dt

+ √
N

⎛

⎝
n∑

j=1, j �=i

K̄∑

k=1

� j (t)μ j ik Z̄
(N )
k (t) dt −

n∑

j=0, j �=i

K̄∑

k=1

�i (t)μi jk Z̄
(N )
k (t) dt

⎞

⎠

+ N−1/2dκ(N )
i (t),
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or in integral form

M̃ (N )
i (t) =

∫ t

0

n∑

j=1, j �=i

K̄∑

k=1

M̃ (N )
j (s)μ j ik Z

(N )
k (s) ds

−
∫ t

0

n∑

j=0, j �=i

K̄∑

k=1

M̃ (N )
i (s)μi jk Z

(N )
k (s) ds

+ √
N

∫ t

0

⎛

⎝
n∑

j=1, j �=i

K̄∑

k=1

� j (s)μ j ik Z̄
(N )
k (s)ds

−
n∑

j=0, j �=i

K̄∑

k=1

�i (s)μi jk Z̄
(N )
k (s)ds

⎞

⎠ds

+ N−1/2κ
(N )
i (t).

◦A simplification.The next step is to verify that as N → ∞, M̃ (N )
i (t)−M̌ (N )

i (t) converges

to the zero process as N → ∞ (cf. [18, Lemma 4.4]); here M̌ (N )
i (t) is defined as M̃ (N )

i (t)

in the previous display, but now with the Z (N )
k (t) in the first two terms in the right-hand side

replaced by πk . To this end, observe that [18, Thm. 5.2] entails that

∫ t

0
M̃ (N )

i (t)
(
Z (N )
k (t) − πk

)
dt =

∫ t

0

(
M (N )

i (t) − N�i (t)

N

) √
N

(
Z (N )
k (t) − πk

)
dt → 0,

using the law-of-large-numbers property that M (N )
i (t)/N converges in probability to �i (t).

We have thus arrived at, with μ̄i j := ∑K̄
k=1 μi jkπk , the following system of SDE’s:

dM̌ (N )
i (t) =

n∑

j=1, j �=i

M̌ (N )
j (t)μ̄ j i dt −

n∑

j=0, j �=i

M̌ (N )
i (t)μ̄i j dt

+ √
N

⎛

⎝
n∑

j=1, j �=i

K̄∑

k=1

� j (t)μ j ik Z̄
(N )
k (t) dt −

n∑

j=0, j �=i

K̄∑

k=1

�i (t)μi jk Z̄
(N )
k (t) dt

⎞

⎠

+ N−1/2dκ(N )
i (t).

◦ Functional central limit theorem. The following steps echo those in [9, Sect. 4]. They
rely on the transformation

Y (N )(t) = exp
( − M t

)
M̌

(N )
(t),

with for i �= j the (i, j)-th entry of the (n × n)-dimensional matrix M being given by μ̄ j i ,
whereas the (i, i)-th entry is −∑n

j=0, j �=i μ̄i j . It thus follows that

dY (N )(t) = exp
( − M t

) (√
NM ◦(t)Z̄(N )

(t)dt + N−1/2dκ (N )(t)
)

,

where the (i, k)-th entry of the (n × K̄ )-dimensional matrix M ◦(t) is given by

(
M ◦(t)

)
ik :=

n∑

j=1, j �=i

� j (t)μ j ik −
n∑

j=0, j �=i

�i (t)μi jk .
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In the next step we analyze the terms
√
NM ◦(t)Z̄(N )

(t) and N−1/2dκ (N )(t) separately. As

in [9], with G(N )(t) := √
NM ◦(t) Z̄(N )

(t), it follows that G(N )(·) → G(·) as N → ∞,
where G(·) satisfies

〈G〉t = V (t) :=
∫ t

0
M ◦(s)� (M ◦(s))Tds,

with � := diag{π}D + DTdiag{π}. It entails that G(N )(·) → M ◦(·)B̄(·), with B̄(·) a
K̄ -dimensional zero-mean Brownian motion with covariance matrix �.

Using the precise same argumentation as in [9], for independent standard Brownian
motions Bi j (·), with i, j = 0, . . . , n,

1√
N

κ
(N )
i (·) → √

λi B0i (·) +
n∑

j=1, j �=i

√
� j (·)μ̄ j i B ji (·) −

n∑

j=0, j �=i

√
�i (·)μ̄i j Bi j (·),

cf. (5); the processes Bi j (·) are independent of B̄(·).
Now recall the relation betweenY (N )(t) and M̌

(N )
(t), and the fact that M̃

(N )
(·)− M̌

(N )
(·)

converges to the zero process as N → ∞. Based on the weak convergence results established
above, we thus obtain the following functional central limit theorem. It states that the process
under study converges to a (multivariate) process of Ornstein-Uhlenbeck type.

Proposition 3 As N → ∞, M̃
(N )

(·) weakly converges to M̃(·), satisfying the following
system of coupled stochastic differential equations: for i = 1, . . . , n,

dM̃i (t) =
n∑

j=1, j �=i

M̃ j (t)μ̄ j i dt −
n∑

j=0, j �=i

M̃i (t)μ̄i j dt

+ √
λi dB0i (t) +

n∑

j=1, j �=i

√
� j (t)μ̄ j idBji (t)

−
n∑

j=0, j �=i

√
�i (t)μ̄i jdBi j (t) + (M ◦(t)d B̄(t))i .

Remark 4 The distribution of M̃(t) (for a given value of t � 0, that is) can be explicitly found
from known results for multivariate Ornstein-Uhlenbeck processes. If M̃(0) is constant, then
it is an n-dimensional Normal distribution with mean 0 and covariance matrix

Cov(M̃(t), M̃(t)) =
∫ t

0
eM (t−s)M ◦(s)� (M ◦(s))T

(
eM (t−s))Tds +

∫ t

0
�̄(s)ds,

where �̄i j (s) = 0 for i �= j and

�̄i i (s) = λi +
n∑

j=1, j �=i

� j (s)μ̄ j i −
n∑

j=0, j �=i

�i (s)μ̄i j .

Observe that, as �̄i i (s) = �′
i (s) by definition,

∫ t
0 �̄i i (s)ds = �i (t). With standard theory on

multivariateOrnstein-Uhlenbeckprocesses also theCov(M̃(t), M̃(t+u)), i.e., the covariance
matrix pertaining to the system’s time-dependent behavior, can be determined. ��
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Remark 5 As we mentioned, the above result corresponds to the case α = 1. Precisely
following the line of reasoning of [9,18], for arbitrary α > 0, we have to define M̃ (N )

i (t)
through

M̃ (N )
i (t) := N−β · (

M (N )
i (t) − N�i (t)

)
,

with β := max{ 12 , 1 − α
2 }. Then the recipe is to go through precisely the same steps as in

the proof for α = 1, but it will turn out that for α > 1 a specific part of the resulting SDE
cancels, whereas for α < 1 another part cancels.

More specifically, it can be argued that for α > 1 the limiting system of differential
equations reduces, for i = 1, . . . , n, to

dM̃i (t) =
n∑

j=1, j �=i

M̃ j (t)μ̄ j i dt −
n∑

j=0, j �=i

M̃i (t)μ̄i j dt

+ √
λidB0i (t) +

n∑

j=1, j �=i

√
� j (t)μ̄ j idBji (t) −

n∑

j=0, j �=i

√
�i (t)μ̄i jdBi j (t).

Observe that this entails that for α > 1 the limiting system depends on the service rates μi jk

only through their time averaged counterparts μ̄i j ; this reflects the relatively fast alternating
link state process. The system essentially behaves as a network of non-modulated infinite-
server queues; in particular, Remark 4 indicates that the centered and normalized versions of
the individual queues, i.e., the processes M̃ (N )

i (·), become independent as N → ∞.
For α ∈ (0, 1) the limiting system of differential equations becomes, for i = 1, . . . , n,

dM̃i (t) =
n∑

j=1, j �=i

M̃ j (t)μ̄ j i dt −
n∑

j=0, j �=i

M̃i (t)μ̄i j dt + (M ◦(t)d B̄(t))i .

In this case, the link state process is relatively slow, such that the scaling limit contains
detailed information on the transition rates. In this regime, the individual queues are not
asymptotically independent. ��
Remark 6 At the expense of some additional notation and administration, the loss process
L(N )(t) can be added to vector M(N )(t), in that a functional central limit theorem for the
centered and normalized version of (L(N )(t), M(N )(t)) can be established using the same
techniques. ��

5 Extensions, Ramifications

In this section we discuss two extensions. In the first subsection we describe how to adapt
the model to incorporate phase-type distributed up- and down-times and phase-type service
times. In the second subsection we point out how to adapt the model so as to cover the
situation in which blocked customers (i.e., customers wishing to jump from i to j when the
link between i and j is down) potentially retry.

5.1 Phase-Type Distributions

In case the up- and down-times are of phase-type, this is easily incorporated in that transition
rate matrix Q. The background process now keeps tracks of each of the links being up or
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down, but in addition, it gives the phase of the current up- or down-time. If the up-time
(down-time, respectively) of the link between i and j is phase type of degree δ

(u)
i j (δ(d)

i j ,

respectively), then the dimension of X (·) is

∏

i �= j

(δ
(u)
i j + δ

(d)
i j ).

Likewise, the service times can be made phase-type, by keeping track of an infinite-server
queue of all clients at any specific node being in a specific phase of the phase-type service
time.

5.2 Model in Which Blocked Customers Retry

The previous two section considered the case that all fi j are equal to 1. It is not hard to
generalize the results to the situation in which fi j ∈ [0, 1) are allowed as well, but it comes
at the price of having to introduce a substantial amount of additional notation. For this reason,
we restrict ourselves in the subsection of just pointing out how the results have to be adapted
to accommodate fi j ∈ [0, 1).

It is readily verified that now the joint probability generating function ϕ(w, z, t) satisfies

∂ϕ(w, z, t)
∂t

=
n∑

i=1

ϕ(w, z, t) λi (zi − 1) +
n∑

i=1

n∑

j �=i

∂ϕ(w, z, t)
∂zi

IK̄ (i, j) μi j
(
z j − zi

)

+
n∑

i=1

n∑

j �=i

∂ϕ(w, z, t)
∂zi

JK̄ (i, j) μi j fi j (w − zi )

+
n∑

i=1

∂ϕ(w, z, t)
∂zi

μi0(1 − zi ) + ϕ(w, z, t) Q.

The probability generating function of the stationary counterpart M follows as before,
i.e., by plugging in w = 1 and equating the right-hand side to 0.

The time-dependent moments can be evaluated from the next result; again, the stationary
counterpart follows by equating the right-hand side to 0.

Proposition 4 For r ∈ N
n
0 , k ∈ {1, . . . , K̄ } and t � 0,

∂ψk(r, t)
∂t

=
n∑

i=1

riψk(r − ei , t)λi +
n∑

i=1

n∑

j=1, j �=i

r jψk(r − e j + ei , t)μ
+
i jk

−
n∑

i=1

n∑

j=1, j �=i

riψk(r, t) (μ+
i jk + fi jμ

−
i jk)

−
n∑

i=1

riψk(r, t) μi0 +
K̄∑

�=1

ψ�(r, t)q�k . (6)

An interesting special is case is fi j = 0 for all i, j , i.e., the case in which there are no
clients lost. If in addition full symmetry is assumed, cf. Remark 3, the mean allows an explicit
expression. It is directly seen that for each of the links the mean number of clients present at
time t , denoted as before by v(t), satisfies
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v′(t) = λ + (n − 1) v(t)
νπ

n − 1
− v(t)

(
(n − 1)

νπ

n − 1
+ μ0

)
= λ − μ0v(t). (7)

It thus follows that

v(t) = λ

μ0

(
1 − e−μ0t

)
,

which converges to v := λ/μ0 as t → ∞. Observe that v(t) is in this case not affected by
π , due to the fact that parts of the in-flux and out-flux cancel, as observed in (7).

Regarding the functional central limit theorem, the result for fi j = 1 carries over to that
for fi j ∈ [0, 1), but with

μi0k := μi0 +
n∑

j=1, j �=i

μi j fi j (1 − I(i, j, k)).

Recall that in this model with a probability 1− fi j a customer wishing to jump from node i
to node j retries when the link is not available (and hence stays at node i).

6 Examples

In this section we work out a couple of relevant examples, starting with a tandem network
in which the link between the nodes is subject to failure. In the first subsection we consider
the case that all blocked customers are lost (i.e., f12 = 1), whereas in the second subsection
all blocked customers retry (i.e., fi j = 0). Section 6.3 presents the FCLT for the two-node
tandem. In Sect. 6.4 we consider the FCLT for the case of a symmetric fully connected n-node
network in which blocked customers are lost (where it is noted that the case in which they
retry is dealt with fully analogously); Sect. 6.5 deals with its ring-shaped counterpart.

6.1 Two-Node Tandem, with Blocked Customers Being Lost

We consider a two-node tandem, where traffic arrives at the first node, is sent to the second
node after having been served at the first node, and leaves the network after having been
served at the second node. Jobs arrive at the first node according to a Poisson process with
rate λ and have exponentially distributed service times with mean μi at node i (i = 1, 2).
The link between node 1 and 2 is up (down, respectively) during an exponentially distributed
time with mean q−1

1 (q−1
0 , respectively). In this subsection we consider the case that f12 = 1:

clients who wish to jump from node 1 to node 2 when the link is down, are lost. In this case,

Q =
(−q0 q0

q1 −q1

)
.

Define by vi j (t) the mean number of clients at node i (i = 1, 2) when the background
process is in state j ( j = 0, 1). Using our expression for the transient first moment, with
p0(t) (p1(t), respectively) the probability the link is down (up, respectively),

v′
10(t) = λp0(t) + q1v11(t) − q0v10(t) − μ1v10(t),

v′
11(t) = λp1(t) + q0v10(t) − q1v11(t) − μ1v11(t),

v′
20(t) = q1v21(t) − q0v20(t) − μ2v20(t),

v′
21(t) = μ1v11(t) + q0v20(t) − q1v21(t) − μ2v21(t).
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This system can be solved in closed form, realizing that the first two differential equations
can be solved in isolation first (leading to explicit expressions for v10(t) and v11(t)), and
then the last two differential equations (using the found expression for v11(t)). As these are
standard computations involving systems of non-homogeneous linear differential equations,
we do not include the expressions here.

The stationary expectations can be found along the same lines. Let �a be a (two-
dimensional) diagonal matrix, whose diagonal elements are all equal to a ∈ R. Then the
steady-state means are, with π0 = 1 − π1 = q1/(q0 + q1) and π = (π0, π1),

(v10, v11) = λπ(�μ1 − Q)−1, (v20, v21) = (0, μ1v11)(�μ2 − Q)−1.

The number of clients lost per unit of time is μ1v10.

6.2 Two-Node Tandem, with Blocked Customer Retrying

The model in which f12 = 0 has more intricate interactions, as the link between the nodes
being down has impact on the number of clients at node 1. It means that in the set of
differential equations that we set up for f12 = 1, the first one has to be replaced by v′

10(t) =
λp0(t)+q1v11(t)−q0v10(t).Again the time-dependentmeans can be found in closed form by
solving two 2-dimensional systems of linear differential equations, and the stationary means
by solving two pairs of linear equations. As it turns out, however, we can also explicitly
find the distribution of the stationary number of clients residing at node 1, as follows; the
resulting formulae reveal the effect of the link failures on the performance experienced at
this node.

Let ϕ0(z) be the probability generating function of the stationary number of customers at
node 1 jointly with the event that the link is down, and ϕ1(z) its counterpart jointly with the
link being up. The following (differential) equations apply:

λ(z − 1)ϕ0(z) − q0ϕ0(z) + q1ϕ1(z) = 0,

λ(z − 1)ϕ1(z) − μ1(z − 1)ϕ′
1(z) − q1ϕ1(z) + q0ϕ0(z) = 0.

Inserting ϕ0(z) = q1ϕ1(z)/(q0 + λ(1 − z)) into the second equation, we obtain

λ(z − 1)ϕ1(z) − μ1(z − 1)ϕ′
1(z) − q1ϕ1(z) + q0

q1ϕ1(z)

(q0 + λ(1 − z))
= 0,

or, equivalently,

ϕ′
1(z)

ϕ1(z)
= λ

μ1

(
1 + q1

q0 + λ(1 − z)

)
.

Up to an additive constant, we thus obtain that

logϕ1(z) = λ

μ1
z − q1

μ1
log(q0 + λ(1 − z)),

and using that ϕ1(1) = π1,

ϕ1(z) = π1 exp

(
λ

μ1
(z − 1)

) (
q0

q0 + λ(1 − z)

)q1/μ1

.
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Fig. 1 Stationary probability density function

Using the relation between ϕ0(z) and ϕ1(z), we find that the transform of the stationary
number at the first node equals

ϕ0(z) + ϕ1(z) = exp

(
λ

μ1
(z − 1)

) (

π0

(
q0

q0 + λ(1 − z)

)q1/μ1+1

+π1

(
q0

q0 + λ(1 − z)

)q1/μ1
)

.

This expression has the following nice interpretation. Let A be Poisson with mean λ/μ1,
and let B with probability π0 be a negative binomial random variable with parameters r :=
q1/μ1 + 1 and p := q0/(q0 + λ) and with probability π1 a negative binomial random
variable with parameters r − 1 and p. Then the stationary number of customers at the first
node is distributed as the sum of two independent random variables A and B (which are both
non-negative and integer-valued). Note that if the link would never be down (i.e., π1 = 1
and q1 = ∞), the number of customers at node 1 is just Poisson with mean λ/μ1 (like in
the ordinary M/M/∞ queue); the additional random variable B (which is a mixture of two
negative binomial random variable) thus represents the effect of the link failures.

A numerical illustration is shown in Fig. 1, where we have estimated the stationary random
variable M by simulation. We have fixed the parameters λ = 20, μ1 = 3, μ2 = 2, q0 = 1
and f = 0, and have varied the parameter q1. This experiment visualizes the impact of the
link failures on the random variable M; the left graph corresponds with the upstream queue,
and the right graph to the downstream queue. We choose q1 = 0.01, 0.5, 1, and 3. The
simulated numbers in the left panel align with the distribution identified above.

6.3 Functional Central Limit Theorem for Two-Node Tandem

In this example we derive the FCLT for the two-node tandem. Clients wishing to jump from
node 1 to node 2 while the link is down are lost with probability f := f12, and stay at node 1
with probability 1− f. First we determine the fluid limit (which is to be used as the ‘centering
function’ in our FCLT). We use the same notation as in the above examples, and in addition
we define κ := μ1(π + (1 − π) f ) with π := π1 = q0/(q0 + q1). Then

�′
1(t) = λ − κ�1(t), �′

2(t) = μ1π�1(t) − μ2�2(t).
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Fig. 2 Sample paths and centering functions

Assuming the system starts empty, we thus obtain

�1(t) = λ

κ
(1 − e−κt ), �2(t) = μ1πλ

κ

(
1 − e−μ2t

μ2
− e−κt − e−μ2t

μ2 − κ

)
.

It can be checked that

M =
( −κ 0

μ1π −μ2

)
, M ◦(s) =

(−�1(s)μ1 f −�1(s)μ1

−�2(s)μ2 �1(s)μ1 − �2(s)μ2

)
.

In addition, with q := q0 + q1,

� := 1

q2

(
2(1 − π)q0 −(1 − π)q0 − πq1

−(1 − π)q0 − πq1 2πq1

)
.

With

eM t =
(

e−κt 0
μ1π(e−μ2t − e−κt )/(κ − μ2) e−μ2t

)
,

the matrix Cov(M̃(t), M̃(t)) can be evaluated using the expressions presented in Remark 4.
We now present a number of figures that illustrate the applicability of the diffusion limit as

an approximation to the original population process. First we consider the scaling parameter
N = 100 and the parameters λ = 25, μ1 = 10, μ2 = 20, and f = 0. In the two simulations
we varied the transition rates: they are q0 = 0.2, q1 = 0.6 in the left sample path, and
q0 = 30, q1 = 20 in the right sample path. We pick α = 1, so that the arrival rate λ(N ) is Nλ,
whereas transition rates are set to q(N )

0 = Nq0 and q(N )
1 = Nq1. The red curves appearing

in Fig. 2 above correspond to the functions N�1(·) and N�2(·), where �1(·) and �2(·) are
the two ‘centering functions’ that were computed above. The blue and green curves are the
corresponding sample paths.

In Fig. 3 histograms are presented for the centered and scaled population process in
each queue. The parameters λ, μ1, μ2 and f are chosen as above; the transition rates of
the background process are q0 = 30 and q1 = 20. We consider t = 2 and N = 60. The
graphs show that the Gaussian limiting distribution provides an accurate fit; the dotted curves
correspond to the zero-mean Gaussian distribution with the variance in line with the diffusion
limit.
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Fig. 3 Histograms for centered and scaled stationary population

6.4 Functional Central Limit Theorem for Symmetric Fully Connected
One-Block Network

In this subsection we consider the functional central limit theorem for a network with just
a single block (i.e., all links alternate between being ‘up’ and ‘down’ simultaneously), and
all parameters chosen symmetrically; blocked customers are assumed lost (but the case in
which they retry works analogously).

More concretely, the situation considered is the following. The arrival rate at each node is
Nλ. The down-time of all links is exponentially distributed with mean (Nq0)−1, whereas the
up-time is exponentially distributed with mean (Nq1)−1. As in Remark 3, the service rate is
σ := ν +μ0; after service completion a client leaves the network with probability μ0/σ and
wants to move to another node (picked uniformly at random) with probability ν/σ. Define
π := q0/(q0 + q1).

First we find the ‘centering function’ �(·):
�′(t) = λ + (n − 1)�(t)

νπ

n − 1
− �(t)σ,

solved by, assuming the queues start empty and defining κ := ν(1 − π) + μ0,

�(t) = λ

κ

(
1 − e−κt ) .

Recalling that μ̄i j := ∑K̄
k=1 μi jkπk , for i �= j and i, j ∈ {1, . . . , n}, we find that

M (i, j) = μ̄ j i = νπ/(n − 1). In addition, M (i, i) = μ̄i0 = −σ . As a consequence,
with En an n × n all-ones matrix,

M = ω1En + ω2 In, ω1 := νπ

n − 1
, ω2 := −

(
νπ

n − 1
+ σ

)
.

It is readily checked that

eM t =
(
En

(
eω1nt − 1

n

)
+ In

)
eω2t .

The matrixM ◦(s) is an (n×2)-dimensional matrix whose entries in the first column (which
are corresponding to the links being down) are allm0(s) := −�(s)σ , and whose entries in the
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second column (which are corresponding to the links being up) are all m1(s) := −�(s)μ0.
The matrix � is as in Sect. 6.3.

Using the expressions from Remark 4, we obtain, with 1n the n-dimensional all-ones
vector and m(s) := (m0(s),m1(s))T,

Cov(M̃(t), M̃(t)) =
∫ t

0
eM (t−s)1n(m(s))T � m(s) 1Tn

(
eM (t−s))Tds + diag{�(t)}. (8)

The next step is to explicitly evaluate the integral. To this end, we first observe that eM t 1n =
e(ω1n+ω2)t 1n = e−κt 1n .

We now evaluate (m(s))T � m(s). With x ∈ R
K̄ , α ∈ R, and 1 ≡ 1K̄ ,

(x − α1)T�(x − α1) = (x − α1)T(diag{π}D + DTdiag{π})(x − α1)

= (x − α1)Tdiag{π}Dx + xTDTdiag{π}(x − α1)

due to D1 = 0. In addition, πTD = 1Tdiag{π}D = 0, so that

(x − α1)T�(x − α1) = xTdiag{π}Dx + xTDTdiag{π}x = xT�x.

We therefore have that, when evaluating (m(s))T � m(s), we can replace m(s) by m(s) +
�(s)μ0 1, and consequently

(m(s))T � m(s) = q−2(−�(s)ν, 0)

(
2(1 − π)q0 −(1 − π)q0 − πq1

−(1 − π)q0 − πq1 2πq1

) (−�(s)ν
0

)

= 2q−2 (�(s))2 ν2(1 − π)q0 = 2q0q1 (�(s))2 ν2/q3.

Noting that 1n 1Tn = En , we conclude that (8) can be written as ξn(t)En + diag{�(t)},
where

ξn(t) := 2q0q1
λ2ν2

κ2q3

∫ t

0
(1 − 2e−κs + e−2κs)e−2κ(t−s)ds

= 2q0q1
λ2ν2

κ2q3

(
1 − e−2κt

2κ
− 2e−κt 1 − e−κt

κ
+ t e−2κt

)
.

With � := λ/κ , we also obtain

lim
t→∞Cov(M̃(t), M̃(t)) = q0q1

λ2ν2

κ3q3
En + diag{�}.

6.5 Functional Central Limit Theorem for Symmetric Ring-Shaped One-Block
Network

The setting considered is the same as in the previous subsection, with the only exception
that a job served at queue m moves to queue m + 1 (where n + 1 is to be understood as 1).
More specifically, the service rate is σ := ν +μ0; after service completion a client leaves the
network with probability μ0/σ and wants to move to the next node with probability ν/σ. We
concentrate on the case that fi,i+1 = fn,1 = 1 (i.e., during outages jobs that wish to jump
to the next queue are lost), but we remark that the case of retry can be handled analogously.
The shape of the centering function �(·) is as in the previous subsection, with the same
κ = ν(1 − π) + μ0.

It is verified that μ̄i,i+1 = μ̄n,1 = νπ (for i = 1, . . . n − 1) and μ̄i i = −(νπ + σ). As a
consequence, with Fn denoting an n × n matrix with ones on the subdiagonal and at entry
(1, n),
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M = ω1Fn + ω2 In, ω1 := νπ, ω2 = −(νπ + σ).

The matrix M ◦(s) is, analogously to what we found in Sect. 6.4, an (n × 2)-dimensional
matrix whose entries in the first column are all m0(s) := −�(s)σ , and whose entries in the
second column are all m1(s) := −�(s)μ0. The matrix � is as defined in Sect. 6.3.

Observe that Fn1n = 1n (as Fn is a permutation matrix), and therefore F k
n 1n = 1n , so

that

eω1Fnt1n =
∞∑

k=0

F k
n 1n
k! (ω1t)

k = eω1t1n .

This allows us to conclude that eM t1n = e−σ t1n . The remaining computations are as in the
previous subsection.

7 Concluding Remarks

In this paper we have considered networks of infinite-server queues with faulty links. Clients
that wish to jump from one queue to another while the required link is down are with a
given probability lost (and otherwise stay at the origin node to retry after an exponentially
distributed amount of time). For thismodelwe derived prelimit results (in terms of differential
equations uniquely characterizing the probability generating function, as well as a recursion
by which all moments can be determined) as well as a functional central limit theorem (after
appropriately scaling the arrival rates and the links’ failure and repair rates).

This work is among the first papers on queueing processes on dynamically evolving ran-
dom graphs. Several alternative models can be considered; we mention a few here. (i) In
our work all queues were of infinite-server type. In many applications, one would rather be
interested in the queueing discipline being single-server of many-server. (ii) Our probabilistic
analysis covers means and diffusion limits, but extreme behavior (‘far away from the mean’)
is not included. Such a rare-event analysis sheds light on the probability that the queueing
process attains values in remote sets. (iii) In dynamically evolving networks, typically mea-
sures are taken when links fail; think of rerouting mechanisms. This makes the systematic
study of the efficacy of such rerouting protocols a relevant topic for further study.
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