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Abstract Recently, the scaling limit of cluster sizes for critical inhomogeneous random
graphs of rank-1 type having finite variance but infinite third moment degrees was obtained
inBhamidi et al. (AnnProbab 40:2299–2361, 2012). It was proved thatwhen the degrees obey
a power law with exponent τ ∈ (3, 4), the sequence of clusters ordered in decreasing size
and multiplied through by n−(τ−2)/(τ−1) converges as n → ∞ to a sequence of decreasing
non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest
cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as
a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237–269,
2001) for the Erdős–Rényi random graph to the setting of rank-1 inhomogeneous random
graphs with infinite third moment degrees. We make use of delicate large deviations and
weak convergence arguments.
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1 Introduction

The Erdős–Rényi random graph G(n, p) on the vertex set [n] := {1, . . . , n} is constructed
by including each of the

(n
2

)
possible edges with probability p, independently of all other

edges. Erdős and Rényi discovered the double-jump phenomenon: The size of the largest
component was shown to be, in probability, of order log n, n2/3, or n, depending on whether
the average vertex degree was less than, close to, or more than one. In 1984 Bollobás [10]
and subsequently Łuczak [28] showed for the scaling window p = (1+ λn−1/3)/n, that the
largest component is of the order n2/3. Since then, the critical, or near-critical behavior of
random graphs has received tremendous attention (see [2,4,9,18,27]). Let (C(i))i≥1 denote
the connected components of G(n, p), ordered in size, i.e., |Cmax| = |C(1)| ≥ |C(2)| ≥ · · ·
Aldous [2] proved the following result:

Theorem 1.1 (Aldous [2]). For p = (1 + λn−1/3)/n, λ ∈ R fixed, and n → ∞,

(|C(1)|n−2/3, |C(2)|n−2/3, . . .
) d−→ (γ1(λ), γ2(λ), . . .) , (1.1)

where γ1(λ) > γ2(λ) > · · · are the ordered excursions of the reflected version of the process
(W λ

t )t≥0 ≡ (Wt + λt − t2/2)t≥0 with (Wt )t≥0 a standard Wiener process.

Theorem 1.1 says that the ordered connected components in the critical Erdős–Rényi
random graph are described by the ordered excursions of the reflected version of (W λ

t )t≥0.
The strict inequalities between the scaling limits of the ordered cluster follows from the
local limit theorem proved in [23], see also [25,29]. Pittel [31, Eq. (1.12)] derived an exact
formula for the distribution function of the limiting variable γ1(λ) (of the largest component)
and various asymptotic results were obtained, including

P(γ1(λ) > u) = 1√
9π/8u3/2

e− 1
8 u(u−2λ)2(1 + o(1)), u → ∞. (1.2)

As pointed out in [32,33], the constant
√
9π/8 was mistakenly reported in [31, Eq. (1.12)]

as
√
2π due to a small oversight in the derivation. The result in (1.2) gives sharp asymptotics

for the largest component in the critical Erdős–Rényi graph. It was rederived and extended
in [33] using the original approach in [31]. Another generalization of (1.2) was obtained in
[24] by studying the excursions of the scaling limit of the exploration process that is used
to describe the limits in Theorem 1.1. In this paper, we follow a similar path, but then for a
class of inhomogeneous random graphs and its scaling limit, and extend (1.2) to this setting.

Several recent works have studied inhomogeneity in random graphs and how it changes
the critical nature. In our model, the vertices have a weight associated to them, and the weight
of a vertex moderates its degree. Therefore, by choosing these weights appropriately, we can
generate random graphs with highly variable degrees. For our class of random graphs, it is
shown in [22, Theorem 1.1] that when the weights do not vary too much, the critical behavior
is similar to the one in the Erdős–Rényi random graph. See in particular the recent works
[6,34], where it was shown that if the degrees have finite third moment, then the scaling limit
for the largest critical components in the critical window are essentially the same (up to a
trivial rescaling that we explain in more detail below) as for the Erdős–Rényi random graph
in Theorem 1.1.

When the degrees have infinite third moment, instead, it was shown in [22, Theorem 1.2]
that the sizes of the largest critical clusters are quite different. In [7] scaling limits were
obtained for the sizes of the largest components at criticality for rank-1 inhomogeneous
random graphs with power-law degrees with power-law exponent τ ∈ (3, 4). For τ ∈ (3, 4),
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40 R. van der Hofstad et al.

the degrees have finite variance but infinite third moment. It was shown that the sizes of
the largest components, rescaled by n−(τ−2)/(τ−1), converge to hitting times of a thinned
Lévy process. The latter is a special case of the general multiplicative coalescents studied by
Aldous and Limic in [2] and [3]. We next discuss these results in more detail.

1.1 Inhomogeneous Random Graphs

In our random graph model, vertices have weights, and the edges are independent, with edge
probabilities being approximately equal to the rescaled product of the weights of the two
end vertices of the edge. While there are many different versions of such random graphs
(see below), it will be convenient for us to work with the so-called Poissonian random
graph or Norros–Reittu model [30]. To define the model, we consider the vertex set [n] :=
{1, 2, . . . , n} and suppose each vertex is assigned a weight, vertex i having weight wi . Now,
attach an edge between vertices i and j with probability

pi j = 1 − exp
(

− wiw j

�n

)
, where �n =

∑

i∈[n]
wi . (1.3)

Different edges are independent. In this model, the average degree of vertex i is close to wi ,
thus incorporating inhomogeneity in the model.

There are many adaptations of this model, for which equivalent results hold. Indeed,
the model considered here is a special case of the so-called rank-1 inhomogeneous random
graph introduced in great generality by Bollobás et al. [11]. It is asymptotically equivalent
with many related models, such as the random graph with prescribed expected degrees or
Chung-Lu model, where instead

pi j = max(wiw j/�n, 1), (1.4)

and which has been studied intensively by Chung and Lu (see [13–17]). A further adaptation
is the generalized random graph introduced by Britton et al. [12], for which

pi j = wiw j

�n + wiw j
. (1.5)

See Janson [26] for conditions under which these random graphs are asymptotically equiv-
alent, meaning that all events have asymptotically equal probabilities. As discussed in more
detail in [22, Sect. 1.3], these conditions apply in the setting to be studied in this paper.
Therefore, all results proved here also hold for these related rank-1 models. We refer the
interested reader to [22, Sect. 1.3] for more details.

Having specified the edge probabilities as functions of the vertex weights w = (wi )i∈[n]
in (1.3), we now explain how we choose the vertex weights. Let the weight sequence w =
(wi )i∈[n] be defined by

wi = [1 − F]−1(i/n), (1.6)

where F is a distribution function on [0,∞) for whichwe assume that there exists a τ ∈ (3, 4)
and 0 < cF < ∞ such that

lim
x→∞ xτ−1[1 − F(x)] = cF , (1.7)

and where [1− F]−1 is the generalized inverse function of 1− F defined, for u ∈ (0, 1), by

[1 − F]−1(u) = inf{s : [1 − F](s) ≤ u}. (1.8)
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Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs 41

By convention, we set [1 − F]−1(1) = 0. Note that our inhomogeneity is chosen in such a
way that the vertex weights i 	→ wi are decreasing, with w1 being the largest vertex weight.

For the setting in (1.3) and (1.6), by [11, Theorem 3.13], the number of vertices with
degree k, which we denote by Nk , satisfies

Nk/n
P−→ E

[
e−W Wk

k!
]
, k ≥ 0, (1.9)

where
P−→ denotes convergence in probability, and where W has distribution function F

appearing in (1.6). We recognize the limiting distribution as a so-calledmixed Poisson distri-
bution with mixing distribution F, i.e., conditionally on W = w, the distribution is Poisson
with meanw. As discussed in more detail in [22], since a Poisson random variable with large
parameter w is closely concentrated around its mean w, the tail behavior of the degrees in
our random graph is close to that of the distribution F . As a result, when (1.7) holds, and
with Dn the degree of a uniformly chosen vertex in [n], lim supn→∞ E[Da

n ] < ∞ when
a < τ − 1 and lim supn→∞ E[Da

n ] = ∞ when a ≥ τ − 1. In particular, the degree of a
uniformly chosen vertex in [n] has finite second, but infinite third moment when (1.7) holds
with τ ∈ (3, 4).

Under the key assumption in (1.7),

[1 − F]−1(u) = (cF/u
)1/(τ−1)

(1 + o(1)), u ↓ 0, (1.10)

and the thirdmoment of the degrees tends to infinity, i.e., withW ∼ F , we haveE[W 3] = ∞.
Define

ν = E[W 2]/E[W ], (1.11)

so that, again by (1.7), ν < ∞. Then, by [11, Theorem 3.1] (see also [11, Sect. 16.4] for a
detailed discussion on rank-1 inhomogeneous random graphs, of which our random graph is
an example), when ν > 1, there is one giant component of size proportional to n, while all
other components are of smaller size o(n), and when ν ≤ 1, the largest connected component
contains a proportion of vertices that converges to zero in probability. Thus, the critical value
of the model is ν = 1. The main goal of this paper is to investigate what happens close to the
critical point, i.e., when ν = 1.

With the definition of the weights in (1.6) and for F such that ν = 1, we write G0
n(w) for

the graph constructed with the probabilities in (1.3), while, for any fixed λ ∈ R, we write
Gλ
n (w) when we use the weight sequence

w(λ) = (1 + λn−(τ−3)/(τ−1))w. (1.12)

We shall assume that n is so large that 1 + λn−(τ−3)/(τ−1) ≥ 0, so that wi (λ) ≥ 0 for all
i ∈ [n]. When τ > 4, so that E[W 3] < ∞, it was shown in [6,22,34] that the scaling limit
of the random graphs studied here are (apart from a trivial rescaling of time and λ) equal
to the scaling limit of the ordered connected components in the Erdős–Rényi random graph
in Theorem 1.1. The rescaling of time and λ is due to the variance of the step distribution
of the cluster exploration process being unequal to 1 (see Sect. 1.2 below for more details
on what we mean with ‘cluster exploration’). For the Erdős–Rényi random graph the step
distribution has a Poisson distribution with parameter 1 minus one. When τ ∈ (3, 4) the
situation is entirely different, as discussed next.

Throughout this paper, we make use of the following standard notation. We let
d−→

denote convergence in distribution, and
P−→ convergence in probability. For a sequence
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42 R. van der Hofstad et al.

of random variables (Xn)n≥1, we write Xn = oP(bn) when |Xn |/bn P−→ 0 as n → ∞.
For a non-negative function n 	→ g(n), we write f (n) = O(g(n)) when | f (n)|/g(n) is
uniformly bounded, and f (n) = o(g(n)) when limn→∞ f (n)/g(n) = 0. Furthermore, we
write f (n) = �(g(n)) if f (n) = O(g(n)) and g(n) = O( f (n)). Finally, we abbreviate

α = 1/(τ − 1), ρ = (τ − 2)/(τ − 1), η = (τ − 3)/(τ − 1). (1.13)

1.2 The Scaling Limit for τ ∈ (3, 4)

We next recall two key results that we recently established in [7]:

Theorem 1.2 (Weak convergence of the ordered critical clusters for τ ∈ (3, 4) [7]) Fix the
Norros–Reittu random graph with weights w(λ) defined in (1.6) and (1.12). Assume that
ν = 1 and that (1.7) holds. Then, for all λ ∈ R,

(|C(1)|n−ρ, |C(2)|n−ρ, . . .
) d−→ (γ1(λ), γ2(λ), . . .), (1.14)

in the product topology, for some non-degenerate limit (γi (λ))i≥1.

In order to further specify the scaling limit (γi (λ))i≥1, we need to introduce a continuous-
time process (St )t≥0, referred to as a thinned Lévy process, and defined as

St = b − abt + ct +
∞∑

i=2

b

iα

[
Ii (t) − at

iα

]
, (1.15)

where a, b, c have been identified in [7, Theorem 2.4] as a = cα
F/E[W ], b = cα

F and
c = θ = λ + ζ with

ζ = c2αF
E[W ]

∑

i≥1

[∫ i

i−1
u−2αdu − i−2α

]
∈ (−∞, 0) (1.16)

the constant given in [7, (2.18)]1. The process (St )t≥0 starts out positive. It can be positive
or negative, and we will be interested in the first hitting time of (St )t≥0 of zero.

Further, here we use the notation

Ii (t) = 1{Ti≤t}, (1.17)

where (Ti )i≥2 are independent exponential random variables with mean

E[Ti ] = iα/a. (1.18)

The term thinned Lévy process refers to the fact that Ii (t) can be interpreted as 1{Ni (t)≥1},
where (Ni (t))i≥1 are independent Poisson processes with rate a/ iα . If we replace 1{Ni (t)≥1}
by Ni (t) in this representation, then the corresponding process is a Lévy process. In (St )t≥0,
only the first point in these Poisson processes is counted, thus we can think about the Poisson
processes as being thinned. See below for more details on the interpretation of (St )t≥0.

Let H1(0) denote the first hitting time of 0 of the process (St )t≥0, i.e.,

H1(0) = inf{t ≥ 0 : St = 0}, (1.19)

and C(1) the connected component to which vertex 1 (with the largest weight) belongs. We
recall from [7, Theorem2.1 andProposition 3.7] that also |C(1)|n−ρ converges in distribution:

1 There is a typo in [7, Theorem 2.4], in which c = θ − ab should read c = θ = λ + ζ .
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Theorem 1.3 (Weak convergence of the cluster of vertex 1 for τ ∈ (3, 4)). Fix the Norros–
Reittu random graph with weights w(λ) defined in (1.6) and (1.12). Assume that ν = 1 and
that (1.7) holds. Then, for all λ ∈ R,

n−ρ |C(1)| d−→ Ha
1 (0), (1.20)

with Ha
1 (0) the hitting time of 0 of (St )t≥0 with a = cα

F/E[W ], b = cα
F , c = θ .

Let us informally describe how the process (St )t≥0 arises through a cluster exploration,
and how it is linked to Ha

1 (0) in (1.20) as well as (γi (λ))i≥1 in (1.14). In Theorem 1.3, we
explore the connected component of vertex 1 one vertex at a time in a breadth-first way, and
keep track of the number of active vertices, which are vertices that are found to be in C(1), but
whose neighbors have not yet been inspected whether they are in C(1). Let S (n)

k be the number
of active vertices after k steps, so that S (n)

0 = 1. Obviously, |C(1)| = inf{k : S (n)

k = 0}, since
we are done with the exploration of a cluster when there are no unexplored vertices left, and
we explore one vertex at a time. By construction, S (n)

1 is the number of neighbors of vertex 1,
which can be seen to be close to w1 ≈ bnα . Thus, the exploration process can be expected
to be of order nα , and we will rescale S (n)

1 by a factor n−α .
As explained in more detail in [7] and for the edge-probabilities in (1.3), the exploration

can be performed rather effectively in terms of a marked branching process with mixed
Poisson offspring distribution. Here, an unexplored vertex in the branching process, v, first
draws a mark Mv for which P(Mv = i) = wi/�n , and after this, it draws a Poisson number of
children withmeanwMv . The connection to the cluster exploration in the graph is obtained by
thinning all vertices whose mark has appeared earlier. Here, we can think of the mark Mv = i
as indicating that the vertex v in the branching process is beingmapped to vertex i in the graph.

The largest weights correspond to the small values of i ∈ [n]. The amount of time it takes
us to draw a mark corresponding to vertex i is of the order �n/wi , which is of order nρa/ iα ,
which suggests that (n−αS (n)

tnρ )t≥0 converges in distribution to some process (St )t≥0. Further,

the first time that i ≥ 2 is chosen, T (n)

i , satisfies n−ρT (n)

i
d−→ Ti , where Ti is exponential

with rate a/ iα . Further, vertex i has roughly wi ≈ nαb/ iα neighbors, so that S (n)

k makes a
jump of order nαb/ iα when i is found to be in C(1). This informally explains the process
(1.15)–(1.18), while (1.19) explains that when the exploration process hits zero, then the
cluster is fully explored. Turning this into a formal proof was one of the main steps in [7].

The above description does not yet describe the scaling limit (γi (λ))i≥1 in (1.14). For this,
we note that after the exploration of C(1), we need to explore the clusters of the (high-weight)
vertices that are not part of C(1). We do this by taking the vertex with largest weight that is
not in C(1), which in the scaling limit corresponds to the smallest i for which Ii (H1(0)) = 0,
and start exploring the cluster of that vertex. This is again done by using processes similar
to (St )t≥0, but changes arise due to the depletion-of-points effect. Indeed, since C(1) is fully
explored, in later explorations those vertices cannot arise again. We refrain from describing
this in more detail, as it is not needed in this paper. We repeat this procedure, and explore
the connected components of unexplored vertices of the highest weights one by one. After
performing these explorations infinitely often, we obtain (γi (λ))i≥1 as the ordered vector of
hitting times of zero of these cluster exploration processes. Some more details are given in
Sect. 2.4.

By scaling, Ha
1 (0)/a for some a, b, c has the same distribution as the hitting time H1(0)

obtained by taking b′ = a′ = 1, and c′ = c/(ab) = (λ + ζ )/(ab). We shall reparametrize
a′ = b′ = 1 and let
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44 R. van der Hofstad et al.

St = 1 + β̃t +
∞∑

i=2

ci [Ii (t) − ci t], (1.21)

where we set

β̃ = β − 1 with β = c′ = θ/(ab) = (λ + ζ )/(ab), (1.22)

have used the notation

ci = i−α, (1.23)

and where Ii (t) is defined in (1.17)–(1.18) with a replaced by a′ = 1. This scaling is
convenient, as it reduces the clutter in our notation.

1.3 Main Results

In this section we state our main results. Recall γ1(λ) from (1.14). Our Main Theorem
establishes a generalization of Pittel’s result in (1.2) to our rank-1 inhomogeneous random
graph with power-law exponents τ ∈ (3, 4):

Main Theorem (Tail behavior scaling limit for τ ∈ (3, 4)). When u → ∞, there exists
I > 0 independent of λ and A = A(λ), κi, j = κi, j (λ) such that

P(γ1(λ) > au) = A

u(τ−1)/2
e−I uτ−1+uτ−1∑

i+ j≥1 κi j u−i(τ−2)− j (τ−3)
(1 + o(1)). (1.24)

The constants I , A and κi j are specified in Sect. 2. By scaling, these constants only depend
on a, b through c′ = c/(ab) = (λ+ ζ )/(ab), any other dependence disappears since the law
of H1(0) only depends on c′. Since τ ∈ (3, 4), the sum over i, j such that i + j ≥ 1 is in fact
finite, as we can ignore all terms for which τ −1− i(τ −2)− j (τ −3) < 0. We also see that
the Main Theorem connects up nicely with Pittel’s result in (1.2) that arises for τ = 4, as for
example seen in the fact that the exponent of u in the exponential is equal to 3 for τ = 4 and
the exponent in the power of u in the prefactor is equal to 3/2, as in (1.2). That these powers
depend sensitively on τ is a manifestation of the importance of the inhomogeneity, which we
will see throughout this paper.

Aside from the Main Theorem, we prove two further theorems about the structure of the
largest connected component when it is large. The first theorem concerns the probability that
Ha
1 (0) > u for some u > 0 large, where Ha

1 (0) is the weak limit of n−ρ |C(1)| identified
in Theorem 1.3. This is achieved by investigating the hitting time H1(0) of 0 of the process
(St )t≥0 in (1.21).

Theorem 1.4 (Tail behavior scaling limit cluster vertex 1 for τ ∈ (3, 4)). When u → ∞,
there exists I > 0 independent of β̃ and A = A(β̃) and κi j (β̃) ∈ R such that

P(H1(0) > u) = P(Ha
1 (0) > au)

= A

u(τ−1)/2
e−I uτ−1+uτ−1∑

i+ j≥1 κi j u−i(τ−2)− j (τ−3)
(1 + o(1)). (1.25)

The constants I , A and κi j are equal to those in the Main Theorem. Comparing the Main
Theorem and Theorem 1.4, we see that P(H1(0) > u) = P(γ1(λ) > au) · (1 + o(1)).

This has the interpretation that vertex 1, which is the vertex with the largest weight in
our rank-1 inhomogeneous random graph, is with overwhelming probability in the largest
connected component when this largest connected component is quite large.
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Fig. 1 Numerical plots of p 	→ IE (p) for τ = 3.1, 3.5 and 3.9. In a first step, θ∗ was determined as the
unique θ such that IE (1) = IE (1, θ) = 0

We can even go one step further and study the optimal trajectory the process t 	→ St takes
in order to achieve the unlikely event that H1(0) > u when u is large. In order to describe
this trajectory, we need to introduce some further notation. In the proof, it will be crucial
to tilt the distribution, i.e., to investigate the measure P̃ with Radon–Nikodym derivative
eθuSu/E[eθuSu ], for some appropriately chosen θ . The selection of an appropriate θ for the
thinned Lévy process(St )t≥0 is quite subtle, and has been the main topic of our paper [1].
The main results from paper [1] are reported in Sect. 2, and will play an important role in
the present analysis. We refer to below (2.13) for the definition of θ∗ that appears in the
description of the optimal trajectory that is identified in the following theorem (Fig. 1):

Theorem 1.5 (Optimal trajectory). For p ∈ [0, 1], define

IE(p) = (τ − 1)
∫ ∞

0

( eθ∗v(1 − e−pv)

eθ∗v(1 − e−v) + e−v
− pv

) dv

vτ−1 , (1.26)

with θ∗ as defined below (2.13). Then, for u → ∞ and for any ε > 0,

P

(
sup

p∈[0,1]
|Spu − uτ−2 IE(p)| ≤ uτ−2ε | H1(0) > u

)
= 1 − o(1). (1.27)

Our Main Theorem follows by combining Theorems 1.4 and 1.5, and showing that, for u
large, the probability that 1 ∈ C(1) is overwhelmingly large. This argument is performed in
detail in Sect. 2.4:

Brownian motion on a parabola Note that substituting τ = 4 into (1.24) yields
A

u3/2
e−I u3+κ01u2+(κ10+κ02)u(1 + o(1)), which agrees with the result of Pittel in (1.2). This

suggests a smooth transition from the case τ ∈ (3, 4) to the case τ > 4. We next further
explore this relation.

Consider the process (W λ
t )t≥0 = (Wt + λt − t2/2)t≥0 with (Wt )t≥0 a standard Wiener

process as mentioned in Theorem 1.1. We now apply the technique of exponential change
of measure to this process. First note that the moment generating function of W λ

u can be
computed as

logφ(u;ϑ) ≡ logE

[
eϑuWλ

u

]
= ϑu

(
λu − 1

2u
2 + 1

2ϑu
2) (1.28)

and let θ∗
u be the solution of θ∗

u = argminϑ logφ(u;ϑ), which is given by

θ∗
u = 1

2
− λ

u
. (1.29)
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46 R. van der Hofstad et al.

The main term is

φ(u) = φ(u; θ∗
u ) = E

[
eθ∗

u uW
λ
u

]
= e− 1

8 u
3+ 1

2 λu2− 1
2 λ2u = e− 1

8 u(u−2λ)2 . (1.30)

Noting that

P(γ1(λ) > u) ≤ P
(
W λ

u > 0
) ≤ P

(
eθ∗

u uW
λ
u > 1

)
≤ E

[
eθ∗

u uW
λ
u

]
, (1.31)

we see that this upper bound agrees to leading order with the result of Pittel in (1.2). In order
to derive the full asymtptotics in (1.2), one can define the measure

P̃(E) = φ(u)−1
E

[
eθ∗

u uW
λ
u 1E

]
, (1.32)

rewrite

P(γ1(λ) > u) = φ(u)Ẽ
[
eθ∗

u uW
λ
u 1{γ1(λ)>u}

]
, (1.33)

and then deduce the asymptotics of the latter expectation in full detail. Our analysis will be
based on this intuition, now applied to a more involved, so-called thinned Lévy, stochastic
process.

2 Overview of the Proofs

In this section,we give the overviewof the proofs of Theorems 1.4–1.3. The point of departure
for our proofs is the conjecture that P(H1(0) > u) ≈ P(Su > 0) for large u. The event
{H1(0) > u} obviously implies {Su > 0}, but because of the strong downward drift of the
process (St )t≥0, it seems plausible that both events are roughly equivalent.

In [1] a detailed study was presented on the large deviations behavior of the process
(St )t≥0. Using exponential tilting of measure the following two theorems were proved.

Theorem 2.1 (Exact asymptotics tail Su [1, Theorem 1.1]). There exists I, D > 0 and
κi j ∈ R such that, as u → ∞,

P(Su > 0) = D

u(τ−1)/2
e−I uτ−1+uτ−1∑

i+ j≥1 κi j u−i(τ−2)− j (τ−3)
(1 + o(1)). (2.1)

Theorem 2.2 (Sample path large deviations [1, Theorem 1.2]). There exists a function p 	→
IE(p) on [0, 1] such that, for any ε > 0 and p ∈ [0, 1),

lim
u→∞ P

(∣∣Spu − uτ−2 IE(p)| ≤ εuτ−2 | Su > 0) = 1. (2.2)

In [1] it is explained that specific challenges arise in the identification of a tilted measure
due to the power-law nature of (St )t≥0. General principles prescribe that the tilt should follow
from a variational problem, but in the case of (St )t≥0 this involves a Riemann sum that is
hard to control. In [1] this Riemann sum is approximated by its limiting integral, and it is
proved that the tilt that follows from the corresponding approximate variational problem is
sufficient to establish the large deviations results in Theorems 2.1 and 2.2. Details about this
tilted measure are presented in Sect. 2.1.

It is clear that Theorems 2.1 and 2.2 for the event {Su > 0} are the counterparts of
Theorems 1.4 and 1.5 for {H1(0) > u}. Let us now sketch how we make the conjecture that
P(H1(0) > u) ≈ P(Su > 0) for large u formal. We show that P(H1(0) > u) has the same
asymptotic behavior as P(Su > 0) in (2.1), with the same constants except for the constant
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D. Despite the similarity of this result, the proof method we shall use is entirely different
from the exponential tilting in [1]. In order to establish the asymptotics for P(H1(0) > u),
we establish sample path large deviations, not conditioned on the event {Su > 0}, but on the
event {H1(0) > u}. This is much harder, since we have to investigate the probability that
St > 0 for all t ∈ [0, u]. However, this is alsomore important, as only the hitting times H1(0)
give us asymptotics of the limiting cluster sizes. In order to prove these strong sample-path
properties, we first prove that, under the tilted measure, St is close to its expected value for a
finite, but large, number of t’s, followed by a proof that the path cannot deviate much in the
small time intervals between these times.

Now here is our strategy for the proofs. We extend the conjecture P(H1(0) > u) ≈
P(Su > 0) by a conjectured sample path behavior that says that, under the tilted measure, the
typical sample path of (St )t≥0 that leads to the event {Su > 0} remains positive and hence
implies {H1(0) > u}. To be more specific, we divide up this likely sample path into three
parts: the early part, the middle part, and the end part. Our proof consists of treating each of
these parts separately. We shall prove consecutively that with high probability the process:

(i) Does not cross zero in the initial part of the trajectory (‘no early hits’);
(ii) Is high up in the state space in the middle part of the trajectory, while experiencing

small fluctuations, and therefore does not hit zero (‘no middle ground’);
(iii) Is forced to remain positive until the very end.

In the last step, we have to be very careful, and it is in this step that it will turn out that the
constant D arising in the asymptotics of P(Su > 0) in (2.1) is different from the constant A
arising in the asymptotics of P(H1(0) > u) in (1.25). This is due to the fact that even when
Su > 0, the path could dip below zero right before time u and does so with non-vanishing
probability. The proof reveals that then it will do so in the time interval [u − Tu−(τ−2), u]
for some large T .

We next summarize the technique of exponential tilting developed in [1] for the thinned
Lévy process (St )t≥0 with τ ∈ (3, 4), which allows us to give more details about how we
shall establish the conjectured sample path behavior for each of the three parts described
above.

2.1 Tilting and Properties of the Tilted Process

All results presented in this subsection are proved in [1].

Exponential tilting Parts of this section are taken almost verbatim from [1]. We use the
notion of exponential tilting of measure in order to rewrite

P(Su > 0) = φ(u;ϑ)Ẽϑ

[
e−ϑuSu1{Su>0}

]
, (2.3)

where ϑ is chosen later on. For every event E , define the measure P̃ϑ with corresponding
expectation Ẽϑ by means of the equality

P̃ϑ(E) = 1

φ(u;ϑ)
Eϑ

[
eϑuSu1E

]
, (2.4)

with normalizing constant φ(u;ϑ) given by

φ(u;ϑ) = E
[
eϑuSu

]
. (2.5)

In terms of this notation, we are interested in

P(H1(0) > u) = φ(u;ϑ)Ẽϑ

[
e−ϑuSu1{S[0,u]>0}

]
, (2.6)
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where we write {S[0,u] > 0} = {St > 0∀t ∈ [0, u]}.
We now explain inmore detail how to choose a goodϑ . The independence of the indicators

(Ii (u))i≥2 yields

φ(u;ϑ) = E[eϑuSu ] = eϑu(1+β̃u)
∞∏

i=2

e−ϑu2c2i
(
e−ci u + eϑci u(1 − e−ci u)

)

= eϑu(1+β̃u)e
∑∞

i=2 f (i/uτ−1;ϑ) (2.7)

with

f (x;ϑ) = log
(
1 + e−x−α

(e−ϑx−α − 1)
)+ ϑx−α − ϑx−2α. (2.8)

The function x 	→ f (x;ϑ) is integrable at x = 0 and at x = ∞, so the above sum can be
approximated by the integral

∞∑

i=2

f (i/uτ−1;ϑ) = uτ−1
∫ ∞

0
f (x;ϑ)dx + eϑ(u) ≡ uτ−1�(ϑ) + eϑ(u), (2.9)

for some error term u 	→ eϑ(u) given by

eϑ(u) = ϑ
{
u[ζ(α) − 1] − u2[ζ(2α) − 1]}+ oϑ(1), (2.10)

where α = 1/(τ − 1) and the Riemann zeta functions ζ(·) defined as

ζ(s) = lim
N→∞

{
N∑

n=1

n−s − N 1−s

1 − s
− 1

2
N−s

}

, Re(s) > −1, s �= 1, (2.11)

where Re(s) denotes the real part of s ∈ C. Equation (2.11) follows from Euler–Maclaurin
summation [21, p. 333]. The error term in (2.10) converges to 0 uniformly for ϑ in compact
sets bounded away from zero. As a result,

φ(u;ϑ) = eu
τ−1�(ϑ)+ϑu(ζ(α)+(β̃−ζ(2α)+1)u)+oϑ (1). (2.12)

Let θ∗
u be the solution of

θ∗
u = argmin

ϑ

[
�(ϑ) + ϑu2−τ (ζ(α) + (β̃ − ζ(2α) + 1)u)

]
. (2.13)

Moreover, let θ∗ be the value of ϑ where ϑ 	→ �(ϑ) is minimal. It follows easily that
I ≡ −�(θ∗) > 0 and that θ∗ is unique. In [1, Lemma 3.6], we have seen that θ∗

u = θ∗+o(1).
Further, θ∗ > 0 by [1, Lemma 3.5]. Set φ(u) = φ(u; θ∗

u ). The asymptotics of φ(u) are as
follows.

Proposition 2.3 (Asymptotics of main term [1, Proposition 2.1]). As u → ∞, and with
I = −minϑ≥0 �(ϑ) > 0, there exist κi j ∈ R such that

φ(u) = E

[
eθ∗

u uSu
]

= e−I uτ−1+uτ−1∑
i+ j≥1 κi j u−i(τ−2)− j (τ−3)

(1 + o(1)). (2.14)

Properties of the process under the tilted measure In what follows, take ϑ = θ∗
u , and

let P̃ = P̃θ∗
u
with corresponding expectation Ẽ = Ẽθ∗

u
. Abbreviate θ = θ∗

u . Under this new
measure, the rare event of Su being positive becomes quite likely. To describe these results,
let us introduce some notation. Recall from (1.26) that, for p ∈ [0, 1],

IE(p) = (τ − 1)
∫ ∞

0

( eθ∗v(1 − e−pv)

eθ∗v(1 − e−v) + e−v
− pv

) dv

vτ−1 , (2.15)
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where we take ϑ = θ∗, which turns out to be the limit of θ∗
u as u → ∞ (see, e.g., [1,

Lemma 3.6]). The asymptotic mean of the process p 	→ Spu conditionally on Su > 0 can
be described with the help of the function p 	→ IE(p), cf. Theorem 2.2. One easily checks
that

IE(0) = 0, and IE(1) = 0, (2.16)

the latter by definition of θ∗, as 0 = �′(θ∗) = IE(1). Finally,

IE(p) > 0 for every p ∈ (0, 1), (2.17)

and

I ′
E(0) > 0 and I ′

E(1) < 0. (2.18)

Lemma 2.4 (Expectation of St [1, Lemma 2.2]). As u → ∞,

(a) Ẽ[St ] = uτ−2 IE(t/u) + O(1 + t + t |θ∗ − θ∗
u |uτ−3) uniformly in t ∈ [0, u].

(b) Ẽ[St −Su] = uτ−2 IE(t/u)+O(u− t+u−1+|θ∗ −θ∗
u |uτ−2) uniformly in t ∈ [u/2, u].

(c) Ẽ[St − Su] = uτ−3 I ′
E(1)(t − u)(1 + o(1)) + O(u−1) when u − t = o(u).

(d) uẼ[Su] = o(1) when u → ∞.

Wewill also need some consequences of the asymptotic properties of Ẽ[St ]. This is stated
in the following corollary:

Corollary 2.5 As u → ∞,

(a) Ẽ[St ] ≥ ctuτ−3 and Ẽ[St ] ≤ ctuτ−3 uniformly for t ∈ [ε, u/2], where 0 < c < c < ∞;
(b) Ẽ[Su−t −Su] ≥ ctuτ−3 and Ẽ[Su−t −Su] ≤ ctuτ−3 uniformly for t ∈ [Tu−(τ−2), u/2],

where 0 < c < c < ∞;
(c) Ẽ[St ] = Ẽ[St1 ](1 + o(1)) for t ∈ [t1, t2] and t1 ∈ [ε, u/2] and t2 − t1 = O(u−(τ−2));
(d) Ẽ[St ] = Ẽ[St1 ](1 + oT (1)) for t ∈ [t1, t2] and t1 ∈ [u/2, u − Tu−(τ−2)], where oT (1)

denotes a quantity c(T, u) such that limT→∞ lim supu→∞ c(T, u) = 0 and t2 − t1 =
O(u−(τ−2)).

Proof Part (a) for t ∈ [ε, εu] for ε > 0 sufficiently small follows fromLemma 2.4(a) together
with the facts that IE(0) = 0, I ′

E(0) > 0, and that 1+t+t |θ∗−θ∗
u |uτ−3 = o(tuτ−3). The fact

that I ′
E(0) > 0 also implies that c can be taken to be strictly positive. For t ∈ [εu, u/2], Part

(a) follows from the fact that IE(p) > 0 for all p ∈ [ε, 1/2] and that 1+ t+ t |θ∗ −θ∗
u |uτ−3 =

o(uτ−2).
Part (b) follows as Part (a), now using Lemma 2.4(b) together with the fact that IE(1) = 0,

I ′
E(1) < 0.
Part (c) follows from Lemma 2.4(a), by subtracting the two terms. Note that the error term

O(1 + t1 + t1|θ∗ − θ∗
u |uτ−3) is o(t1uτ−3) since t1 ≥ ε, while Ẽ[St1 ] = �(t1uτ−3) by Part

(a) of this corollary. Further, note that

uτ−2[IE(t/u) − IE(t1/u)] = O

(
uτ−2 max

p∈[0,1] |I
′
E(p)|(t2 − t1)

)
= O(1), (2.19)

which is o(1)Ẽ[St1 ].
Part (d) follows again from Lemma 2.4(a) by subtracting the two terms. Note again that the
error term O(1+ t1 + t1|θ∗ − θ∗

u |uτ−3) is o(t1uτ−3), while Ẽ[St1 ] = �(t1uτ−3) by part (b)
of this corollary and Lemma 2.4(a). Further, note that

uτ−2[IE(t/u) − IE(t1/u)] = O

(
uτ−2 max

p∈[0,1] |I
′
E(p)|(t2 − t1)

)
= OT (1), (2.20)
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which is oT (1)Ẽ[St1 ]. ��
The next lemma gives asymptotic properties of the variance of St . Define, for p ∈ [0, 1],

IV (p) = (τ − 1)
∫ ∞

0

eθ∗v(1 − e−pv)

eθ∗v(1 − e−v) + e−v

(
1 − eθ∗v(1 − e−pv)

eθ∗v(1 − e−v) + e−v

) dv

vτ−2 (2.21)

and

JV (p) = (τ − 1)
∫ ∞

0

eθ∗v(e−pv − e−v)

eθ∗v(1 − e−v) + e−v

(
1 − eθ∗v(e−pv − e−v)

eθ∗v(1 − e−v) + e−v

) dv

vτ−2 , (2.22)

GV (p) = (τ − 1)
∫ ∞

0

e2θ
∗v(1 − e−pv)(e−pv − e−v)
(
eθ∗v(1 − e−v) + e−v

)2
dv

vτ−2 . (2.23)

Again, it is not hard to check that

0 < IV (p) < ∞ for every p ∈ (0, 1], while IV (0) = 0, (2.24)

and

0 < JV (p) < ∞ for every p ∈ [0, 1), while JV (1) = 0. (2.25)

Lemma 2.6 (Covariance structure of St [1, Lemma 2.3]). As u → ∞,

(a) Ṽar[St ] = uτ−3 IV (t/u) + O(1 + t |θ∗ − θ∗
u |uτ−4) uniformly in t ∈ [0, u].

(b) Ṽar[St − Su] = uτ−3 JV (t/u) + O((u − t)u−1 + (u − t)|θ∗ − θ∗
u |uτ−4) uniformly in

t ∈ [0, u].

(c) C̃ov[St ,Su −St ] = −uτ−3GV (t/u)+O((u− t)u−1+ (u− t)|θ∗ −θ∗
u |uτ−4) uniformly

in t ∈ [0, u].
The next result bounds the Laplace transform of the couple (St ,Su):

Proposition 2.7 (Joint moment generating function of (St ,Su) [1, Proposition 2.4]). (a) As
u → ∞,

Ẽ

[
e
λ

St−Ẽ[St ]√
IV (t/u)uτ−3

]
= e

1
2 λ2+�, (2.26)

where |�| ≤ ou(1) as u → ∞ uniformly in t ∈ [u/2, u] and λ in a compact set.
(b) Fix ε > 0 small. As u → ∞, for any λ1, λ2 ∈ R,

Ẽ

[
e
λ1

St−Ẽ[St ]√
IV (t/u)uτ−3

+λ2
Su−St−Ẽ[Su−St ]√

JV (t/u)uτ−3

]
= e

1
2 λ21+ 1

2 λ22−λ1λ2
GV (t/u)

IV (t/u)JV (t/u)
+�

, (2.27)

where |�| ≤ ou(1) + O(t3(3−τ)/2) uniformly in t ∈ [ε, u − u−(τ−5/2)] and λ1, λ2 in a
compact set.

Combine Proposition 2.7 and uẼ[Su] = o(1) (see [1, Lemma 4.1]) to show that
u−(τ−3)/2Su converges to a normal distribution with mean 0 and variance IV (1). Moreover,
as we see below, the density of Su close to zero behaves like (2π IV (1))−1/2 u−(τ−3)/2:
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Proposition 2.8 (Density ofSu near zero [1, Proposition 2.5])Uniformly in s = o(u(τ−3)/2),
the density f̃Su of Su satisfies

f̃Su (s) = Bu−(τ−3)/2(1 + o(1)), (2.28)

with B = (2π IV (1))−1/2 and IV (p) defined in (2.21). Moreover, f̃St (s) is uniformly bounded
by a constant times u−(τ−3)/2 for all s, u and t ∈ [u/2, u].

There are threemore results from [1] thatwill be used in this paper. The first is a description
of the distribution of the indicator processes (Ii (t))t≥0 under the measure P̃. Since our
indicator processes (Ii (t))t≥0 are independent, this property also holds under the measure P̃:

Lemma 2.9 (Indicator processes under the tilted measure [1, Lemma 4.2]) Under the mea-
sure P̃, the distribution of the indicator processes (Ii (t))t≥0 is that of independent indicator
processes. More precisely,

Ii (t) = 1{Ti≤t}, (2.29)

where (Ti )i≥2 are independent random variables with distribution

P̃(Ti ≤ t) =
⎧
⎨

⎩

eθci u(1−e−ci t)
eθci u(1−e−ci u)+e−ci u

for t ≤ u;
eθci u(1−e−ci u)+(e−ci u−e−ci t)

eθci u(1−e−ci u)+e−ci u
for t > u.

(2.30)

The second lemma describes what happens to the variances for small p or for p close to
1:

Lemma 2.10 (Asymptotic variance near extremities [1, Lemma 4.3(b)]). As p → 1,
JV (p) = −(1 − p)J ′

V (1)(1 + o(1)) with J ′
V (1) < 0, while, as p → 0,

IV (p) = pτ−3IV (1 + o(1)), with IV = (τ − 1)
∫ ∞

0
(1 − e−y)e−y dy

yτ−2 . (2.31)

Consequently, there exist 0 < c < c < ∞ such that, for every p ∈ [0, ε] with ε > 0
sufficiently small,

c pτ−3 ≤ IV (p) ≤ cpτ−3. (2.32)

We finally rely on the following corollary that allows us to compute sums that we will
encounter frequently:

Corollary 2.11 (Replacing sums by integrals in general [1, Corollary 3.3]). For every a ∈
R, a > τ − 1 and b > 0, there exists a constant c(a, b) such that

∞∑

i=2

cai e
−bci u = c(a, b)uτ−a−1(1 + o(1)). (2.33)

2.2 No Early Hits and Middle Ground

In this section, we prove that the tilted process is unlikely to hit 0 until a time that is very
close to u. We start by investigating the early hits.

No early hits In this step, we prove that it is unlikely that the process hits zero early on, i.e.,
in the first time interval [0, ε] for some ε > 0 sufficiently small. In its statement, we write
0 ∈ S[0,t] for the event that {Ss = 0} for some s ∈ [0, t], so that P(H1(0) > u) = P(0 /∈
S[0,u]).
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Lemma 2.12 (No early hits). For every u ∈ [0,∞), as ε ↓ 0,

P(0 ∈ S[0,ε],Su > 0) = oε(1)P(Su > 0), (2.34)

where oε(1) denotes a function that converges to zero as ε ↓ 0, uniformly in u.

The proof of Lemma 2.12 follows from a straightforward application of the FKG-
inequality for independent random variables (see [19], or [20, Theorem 2.4, p. 34]). The
standard versions of the FKG-inequality hold for independent indicator random variables,
and in our case we need it for independent exponentials. It is not hard to prove that the
FKG-inequality we need holds by an approximation argument.

Proof We note that the process (St )t≥0 is a deterministic function of the exponential random
variables (Ti )i≥2 (recall (1.15), (1.17) and (1.18)). Now, the event {0 ∈ S[0,ε]} is increasing in
terms of the random variables (Ti )i≥2 (use that St only has positive jumps). Here we say that
an event A is increasing when, if A occurs for a realization (ti )i≥2 of (Ti )i≥2, and if (t ′i )i≥2 is
coordinatewise larger than (ti )i≥2, then A also occurs for (t ′i )i≥2. Clearly, the event {Su > 0}
is decreasing (for a definition, change the role of ti and t ′i in the definition of an increasing
event), so that the FKG-inequality implies that these events are negatively correlated:

P(0 ∈ S[0,ε],Su > 0) ≤ P(0 ∈ S[0,ε])P(Su > 0). (2.35)

We conclude the proof by noting that P(0 ∈ S[0,ε]) = oε(1) independently of u. ��
The key to our proof of Theorem 1.4 will be to show that P(H1(0) > u) = �(P(Su > 0)),
so that Lemma 2.12 and the known asymptotics of P(Su > 0) imply that it is unlikely to
have an early hit of zero.

No middle ground By (2.4) (recall that φ(u) = φ(u; θ) with θ = θ∗
u ), Lemma 2.12 and

Theorem 2.1,

P(H1(0) > u) = φ(u)Ẽ
[
e−θuSu1{S[0,u]>0}

]

= φ(u)Ẽ
[
e−θuSu1{S[ε,u]>0}

]+ φ(u)u−(τ−1)/2oε(1). (2.36)

For M > 0 arbitrarily fixed, we split

P(H1(0) > u) = φ(u)Ẽ
[
e−θuSu1{S[ε,u]>0,Su∈[0,M/u]}

]

+φ(u)Ẽ
[
e−θuSu1{S[ε,u]>0,Su>M/u}

]+ φ(u)u−(τ−1)/2oε(1). (2.37)

By Proposition 2.8, we can bound

Ẽ
[
e−θuSu1{S[ε,u]>0,Su>M/u}

] ≤ Ẽ
[
e−θuSu1{Su>M/u}

] ≤
∫ ∞

M/u
e−θuv f̃Su (v)dv

≤ O(u−(τ−3)/2)

∫ ∞

M/u
e−θuvdv = O(u−(τ−1)/2)e−θM .

(2.38)

As a result, we arrive at

P(H1(0) > u) = φ(u)Ẽ
[
e−θuSu1{S[ε,u]>0,Su∈[0,M/u]}

]

+φ(u)u−(τ−1)/2oM(1) + φ(u)u−(τ−1)/2oε(1), (2.39)

where oM(1) denotes a quantity c(M, u) such that lim supM→∞ lim supu→∞ c(M, u) = 0.
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We continue to prove that the dominant contribution to the expectation of the right-hand
side of (2.39) originates from paths that remain positive until time u − t for t = Tu−(τ−2),
with T > 0 arbitrarily fixed.

Proposition 2.13 (Nomiddle ground). Fix ε > 0. For every u ∈ [0,∞) and ε, M > 0 fixed,

P̃(0 ∈ S[ε,u−Tu−(τ−2)],Su ∈ [0, M/u]) ≤ oT (1)u
−(τ−1)/2, (2.40)

where we recall that oT (1) denotes a quantity c(T, u) such that limT→∞ lim supu→∞
c(T, u) = 0.

We prove Proposition 2.13 in Sect. 3.
By (2.39) and Proposition 2.13,

P(H1(0) > u) = φ(u)Ẽ
[
e−θuSu1{S[u−Tu−(τ−2),u]>0}

]

+φ(u)u−(τ−1)/2[oε(1) + oM(1) + oT (1)
]
. (2.41)

Since ε, M and T are arbitrary, it now suffices to identify the asymptotics of the expectation
appearing on the right-hand side of (2.41).

2.3 Remaining Positive Near the End

To prove Theorem 1.4, by Proposition 2.3 and Eq. (2.41), it suffices to prove that, with
γ = (τ − 1)/2,

Ẽ

[
e−θuSu1{S[u−Tu−(τ−2),u]>0,Su∈[0,M/u]}

]
= (A + oM(1) + oT (1))u

−γ (1 + o(1)), (2.42)

where T > 0 fixed. In the above expectation, we see two terms. The term e−θuSu forces Su to
be small, more precisely, Su = �(1/u) for u large, while the term 1{S[u−Tu−(τ−2),u]>0} forces
the path to remain positive until time u. We now study these two effects.

We start by highlighting the ideas behind the analysis of the process (St )t∈[u−Tu−(τ−2),u].
Comparing Theorem 1.4 to Theorem 2.1, we see that they are identical, except for the precise
constant, which is A in Theorem 1.4 and D > A in Theorem 2.1. This difference is due to
the fact that, conditionally on Su > 0, the process has a probability of not hitting zero in the
interval [u − Tu−(τ−2), u] that is strictly positive and bounded away from zero. In order to
analyse this probability, we identify the scaling limit of the process (uSu−tu−(τ−2) − uSu)t≥0

as u → ∞ conditionally on uSu = v, and relate it to a certain Lévy process. The parameter
A/D is closely related to the probability that this limiting process is bounded below by −v,
integrated over v. Let us now give the details.

In order to investigate the probability that S[u−Tu−(τ−2),u] > 0, we proceed as follows. Let

J (u) = { j : I j (u) = 1} (2.43)

denote the set of indices for which Tj ≤ u. We condition on the set J (u). Note that Su is
measurable with respect to J (u). We now rewrite Su−t in a convenient form. For this, recall
(1.21) and write

Su−t = t

u
+ u − t

u
Su +

∞∑

i=2

ci

[
Ii (u − t) − u − t

u
Ii (u)

]

= t

u
+ u − t

u
Su −

∞∑

i=2

ci

[
1{Ti∈(u−t,u]} − t

u
Ii (u)

]
. (2.44)
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Thus, with

Qu(t) ≡ uSu−t − t − (u − t)Su = −
∞∑

i=2

ci [u1{Ti∈(u−t,u]} − tIi (u)], (2.45)

we have that Su−t > 0 precisely when Qu(t) > −t − (u − t)Su . We rewrite

Qu(t) = −
∑

i∈J (u)

ci [u1{Ti∈(u−t,u]} − t]. (2.46)

Note that, for any t = o(u),

Ẽ[e−θuSu1{S[u−t,u]>0}] = 1

u

∫ ∞

0
e−θv

P̃
(
S[u−t,u] > 0 | uSu = v

)
f̃Su (v/u)dv

= 1

u

∫ ∞

0
e−θv

P̃
(
Qu(s) > −v − s + sv/u ∀s ∈ [0, t] | uSu = v

)

f̃Su (v/u)dv. (2.47)

Weaim to use dominated convergence on the above integral, andwe start by proving pointwise
convergence. By Proposition 2.8, f̃Su (v/u) = Bu−(τ−3)/2(1+ o(1)) pointwise in v (in fact,
even when v = o(u(τ−1)/2)). This leads us to study, for all v > 0,

gu,t (v) ≡ P̃
(
Qu(s) > −v − s + sv/u ∀s ∈ [0, t] | uSu = v

)
. (2.48)

We split

Qu(t) = Au(t) − Bu(t), (2.49)

where

Bu(t) ≡ u
∑

i∈J (u)

ci
[
1{Ti∈(u−t,u]} − P̃(Ti > u − t | Ti ≤ u)

]
,

Au(t) ≡ −
∑

i∈J (u)

ci
[
uP̃(Ti > u − t | Ti ≤ u) − t

]
. (2.50)

Thus, (Au(t))t∈[0,u] is deterministic given J (u), while (Bu(t))t∈[0,u] is random given J (u).
The main result for the near-end regime is the following proposition, which proves that gu(v)

converges pointwise.

Proposition 2.14 (Weak conditional convergence of time-reversed process). (a) As u → ∞,
conditionally on uSu = v,

(Au(tu
−(τ−2)))t≥0

d−→ (κt)t≥0, (2.51)

where κ ∈ (0,∞) is given by

κ =
∫ ∞

0
x−α eθx−α

e−x−α

eθx−α
(1 − e−x−α

) + e−x−α

[
ex

−α − 1 − x−α
]
dx . (2.52)

(b) As u → ∞, conditionally on uSu = v,

(Bu(tu
−(τ−2)))t≥0

d−→ (Lt )t≥0, (2.53)

where (−Lt )t≥0 is a Lévy process with no positive jumps and with Laplace transform

E

[
ea(−Ls )

]
= es

∫ 0
−∞(eaz−1−az)�(dz), a ≥ 0, (2.54)
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and characteristic measure

�(dz) = (τ − 1)
(−z)−(τ−1)e−θ z

e−θ z(1 − ez) + ez
ezdz. (2.55)

Proposition 2.14 is proved in Sect. 5, and determines the precise constant A from (1.25),
as we now explain in more detail.

We proceed by investigating some properties of the supremum of the Lévy process from
(2.53) that we need later on. Note in particular that the distribution of Ls in (2.54) does not
depend on v. With a slight abuse of notation, also the probability law describing the limiting
process (Ls)s≥0 shall be denoted by P.

Lemma 2.15 (Supremum of the Lévy process). Let I∞ ≡ inf t≥0(−Lt + κt). Then

P(I∞ ≥ −v) = W(v)/W(∞), (2.56)

where W : [0,∞) → [0,∞) is the unique continuous increasing function that has Laplace
transform

∫ ∞

0
e−axW(x)dx = 1

ψ(a)
, a > �(0), (2.57)

where the Laplace exponent ψ is given by E[ea(κt−Lt )] = etψ(a) and is computed in (2.58)
below, while�(0) is the largest solution of the equationψ(a) = 0, andW(∞) = 1/ψ ′(0) =
1/κ is a constant.

Proof We rewrite (2.54) to see that Xs ≡ −Ls +κs is a Lévy process with no positive jumps
and Laplace exponent

ψ(a) = κa +
∫

(−∞,0)

(
eaz − 1 − az

)
�(dz)

= β ′a +
∫

(−∞,0)

(
eaz − 1 − az1{z>−1}

)
�(dz) (2.58)

with

β ′ = κ +
∫

(−∞,0)
(−z)1{z≤−1}�(dz) > 0 (2.59)

as defined in [5, Sect. VII.1]. Indeed, recall from [5, Sect. VII.1] that E[eaXs ] = esψ(a)

and note that our β ′ corresponds to a in [5]. Also note from (2.52) that κ > 0. Thus
ψ ′(0+) = κ > 0 and [5, Corollary 2(ii) in Sect. VII.1] yields that Xs drifts to ∞ (for
a definition, see [5, Theorem 12(ii) in Sect. VI.3]). This in turn implies (see [5, Proof of The-
orem 8, in Sect. VII.2])

P(I∞ ≥ −v) = W(v)/W(∞), (2.60)

where W is given in the statement of [5, Theorem 8, in Sect. VII.2]. For the definition of �

see before [5, Theorem 1 of Sect. VII.1]. Also note from the second equation of the proof of
[5, Proof of Theorem 8, in Sect. VII.2] that W(∞) > 0. To see that W(∞) = 1/ψ(0), note
that if a ↓ 0,

∫ ∞

0
e−axW(x)dx = W(∞)

a(1 + o(1))
. (2.61)

Now,ψ(0) = 0, so that 1/ψ(a) = 1/(aψ ′(0))(1+o(1)) as a ↓ 0, which identifiesW(∞) =
1/ψ ′(0) = 1/κ . ��
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By Proposition 2.14 and the continuity ofW in Lemma 2.15, withMT = sup0≤s≤T (Ls −
κs) for each v ≥ 0 and for t = Tu−(τ−2), for u → ∞,

gu,t (v) → gT (v) ≡ P
(
MT ≤ v

)
. (2.62)

Further, as T → ∞,

gT (v) ↓ g(v) ≡ P

(

sup
0≤s<∞

(Ls − κs) ≤ v

)

= W(v)

W(∞)
. (2.63)

Now we are ready to complete the proofs of our main results.

2.4 Completion of the Proofs

Completion of the Proof of Theorem 1.4 We start by completing the proof of Theorem 1.4.
Recall that it remains to prove (2.42) with γ = (τ − 1)/2. By (2.47) and (2.48), we need to
compute

Ẽ[e−θuSu1{S[u−t,u]>0,Su∈[0,M/u]}] = 1

u(τ−1)/2

∫ M

0
e−θvgu,t (v)

[
u(τ−3)/2 f̃Su (v/u)

]
dv,

(2.64)

where t = Tu−(τ−2). A similar problem was encountered in [1, Proof of Theorem 1.1],
which is restated here as Theorem 2.1, apart from the fact that there the function gu,t (v) was
absent.

We wish to use bounded convergence. For this, we note that u(τ−3)/2 f̃Su (v/u) → B
by Proposition 2.8 for each v (in fact, for all v = o(u)), while, by (2.62)–(2.63),
gu,t (v) → gT (v), which, in turn, converges to g(v) as T → ∞. Further, since
gu,t (v) ≤ 1 and u(τ−3)/2 f̃Su (v/u) is uniformly bounded (see Proposition 2.8), the integrand
e−θvgu,t (v)

[
u(τ−3)/2 f̃Su (v/u)

]
is uniformly bounded by a constant. Thus, by the Bounded

Convergence Theorem,

Ẽ
[
e−θuSu1{S[u−t,u]>0,Su∈[0,M/u]}

] = B

u(τ−1)/2

∫ M

0
e−θvgT (v)dv(1 + o(1))

= B

u(τ−1)/2

∫ M

0
e−θvg(v)dv(1 + o(1) + oT (1)).

(2.65)

This identifies (recall (2.42), (2.56), (2.57) and (2.62))

A= B
∫ ∞

0
e−θvg(v)dv = B

∫ ∞

0
e−θv

P
(
M ≤ v

)
dv = B

θ
E[e−θM] = Bψ ′(0)

ψ(θ)
. (2.66)

Recall that D is the constant appearing in Theorem 2.1. Since D = B/θ by [1, (7.4)] and
P
(
M ≤ v

)
< 1 for every v, we also immediately obtain that A ∈ (0, D). and completes the

proof of Theorem 1.4. ��
Path properties: Proof of Theorem 1.5 We bound, using that {H1(0) > u} ⊆ {Su > 0},

P

(
sup

p∈[0,1]
|Spu − uτ−2 IE(p)| > εuτ−2 | H1(0) > u

)

≤ P

(
sup

p∈[0,1]
|Spu − uτ−2 IE(p)| > εuτ−2 | Su > 0

)
P(Su > 0)

P(H1(0) > u)
. (2.67)
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By Theorems 2.1 and 1.4, the ratio of probabilities converges to D/A ∈ (0,∞), while, by
Theorem 2.2, the conditional probability converges to 0. This completes the proof of Theorem
1.5. ��
Completion of the Proof of theMain TheoremWe finally complete the proof of the scaling
of the critical clusters in the Main Theorem using Theorem 1.4 and recalling (1.22). For this,
we go back to the random graph setting. Let us start by giving some introduction.

The process (St )t≥0 in (1.21) arises when exploring a cluster in the Norros–Reittu random
graph with weights w(λ) defined in (1.6) and (1.12), as described informally in Sect. 1.2.
Recall Theorem 1.3. Here St denotes the scaling limit of n−1/(τ−1) = n−α times the number
of vertices found at time tn(τ−2)/(τ−1) = tnρ .

The key idea is that each time that a vertex, say j ∈ [n], is being explored, we have
a chance (1 + λn−(τ−3)/(τ−1))wiw j/�n that the edge to the vertex i with the i th largest
weight is present. As it turns out (see e.g., [6, Lemma 1.3]), the vertices are found in a
size-biased reordered way, meaning that the kth vertex found is v(k), where (here the factor
(1 + λn−(τ−3)/(τ−1)) cancels)

P
(
v(k) = j | v(1), . . . , v(k−1)

) = w j∑
l /∈{v(1),...,v(k−1)} wl

. (2.68)

Thus, the average weight of the kth vertex found is

E
[
wv(k) (1 + λn−(τ−3)/(τ−1)) | v(1), . . . , v(k−1)

] ≈
∑

j∈[n]

w2
j

�n
≈ E[W 2]

E[W ] = ν = 1, (2.69)

which informally corresponds to the graph being close to critical (as made more precise in
[7]). By (2.68), the probability that at the kth exploration we find the vertex i with the i th
largest weight is close to wi/�n . By (1.10) and (1.6),

wi ≈ (cFn/ i)1/(τ−1), (2.70)

so the probability of finding i is close to (cF/ i)1/(τ−1)n(2−τ)/(τ−1)/E[D] ≈ ai−1/(τ−1)n−ρ

by the definitions below (1.15) and (1.13). If this occurs, then the number of vertices added
to the exploration process is close to wi (1 + λn−(τ−3)/(τ−1)) ≈ (cF/ i)1/(τ−1)n1/(τ−1) =
bi−1/(τ−1)nα. Further, the probability that vertex i is not found in the time interval [0, t]nρ

is close to e−tai−1/(τ−1) = P(Ii (t) = 0). It is not hard to see that these events are weakly
dependent, so that the scaling limits of the times that the high-weight vertices are found are
close to independent exponential random variables with rate ai−1/(τ−1). This explains the
random variables arising in (1.21). The restriction to i ≥ 2 in (1.21) arises since we explore
the cluster of vertex 1. The cluster is fully explored when there are no more active vertices
waiting to be explored. This corresponds to St = 0 for the first time, which is Ha

1 (0) and
explains the result in Theorem 1.3. Recall the informal description in Sect. 1.2 here as well.

Next, we claim that when a particularly large cluster is found, then, since the weightw1 is
the largest of all weights, themaximal cluster is whp the cluster of vertex 1. This explains why
the asymptotics in the Main Theorem for the maximal cluster is identical to the asymptotics
in Theorem 1.4 for the cluster of vertex 1. To make this heuristic precise, we show, in this
section, that indeed it is unlikely for an unusually large cluster to be found that does not
contain 1. We next make the ideas in this heuristic precise, by introducing the exploration
process of the cluster of vertex i for a general i ≥ 1.
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Denote

S (i)
t = ci + β̃i t +

∞∑

j=1 : j �=i

c j [I j (t) − c j t], (2.71)

where β̃i = (λ + ζ )/(ab) − c2i (see [7, Remark 3.9] and recall a′, b′, c′ from above (1.21)).
The intuition for the above formula is that

S (i)
t = λ + ζ

ab
t +

∞∑

j≥1

c j [I j (t) − c j t], (2.72)

where we slightly abuse notation to now set Ii (0) = 1 for the process (S (i)
t )t≥0 since vertex

i is almost surely in the cluster of vertex i . Since (S (i)
t )t≥0 describes the scaling limit of

the exploration process of the cluster of vertex i ≥ 1, while I j (t) has the interpretation as
the indicator that vertex j is found in the exploration before time t , it is reasonable to set
Ii (0) = 1 for (S (i)

t )t≥0.2 Again recall the informal description of the exploration process in
Sect. 1.2.

We continue to show that it is highly unlikely that the cluster of vertex i is large, while
vertex 1 is not in it. For this, we define

H (i)(0) = inf
{
t ≥ 0 : S (i)

t = 0
}
. (2.73)

Then, H1(0) = H (1)(0) and H (i)(0) denotes (an appropriate multiple of) the scaling limit

of the cluster of vertex i , i.e., n−ρ |C(i)| d−→ aH (i)(0), where C(i) denotes the connected
component to which vertex i belongs to. Further, let C≤(i) be the set C(i) if none of the
vertices j ∈ [i − 1] = {1, . . . , i − 1} belongs to C(i), and the empty set ∅ otherwise. We

know from [7, (3.78)] and the scaling explained around (1.21) that n−ρ |C(i)| d−→ a · H (i)(0)
for each i ≥ 1 with ρ = (τ − 2)/(τ − 1) (cf. (1.13)). Finally, denote

Hi (0) =
{
0 if ∃ j < i such that I j (H (i)(0)) = 1;
H (i)(0) otherwise.

(2.74)

Then, by [7, (3.79)], n−ρ |C≤(i)| d−→ a · Hi (0). This provides us with the appropriate back-
ground to complete the proof of the Main Theorem.

We start with the lower bound. By construction, γ1(λ) ≥ a · H1(0) (see [7, Theo-
rems 1.1 and 2.1] and recall that C(i) denotes the i th-largest connected component). Therefore,

P(γ1(λ) > au) ≥ P(H1(0) > u), (2.75)

and thus the lower bound follows from Theorem 1.4.
For the upper bound, we use that (cf. [7, Theorems 1.1])

P(γ1(λ) > au) = lim
n→∞ P

(∃i : n−ρ |C≤(i)| ≥ au
)

= lim
K→∞ lim

n→∞ P
(∃i ∈ [K ] : n−ρ |C≤(i)| ≥ au

)

≤ lim
K→∞ lim

n→∞
∑

i∈[K ]
P
(
n−ρ |C≤(i)| ≥ au

)
, (2.76)

2 We take this opportunity to correct some typos in [7]. In [7, (3.76)], the term −abti−α = −abtci should be
replaced by −abti−2α = −abtc2i . This corresponds to the choice of β̃i = (λ + ζ )/(ab) − c2i here. Further,
in [7, (3.79)], the product over j ∈ [i − 1] should be over q ∈ [i − 1].
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Here we have used the fact that there are with high probability only finitely many clusters
that are larger than εnρ (as proved in [7, Theorem 1.6]).

By the weak convergence of n−ρ |C≤(i)|, it holds that limn→∞ P(n−ρ |C≤(i)| ≥ au) =
P(Hi (0) > u) for all i ≥ 1, so that we arrive at

P(γ1(λ) > au) ≤ P(H1(0) > u) +
∑

i≥2

P(Hi (0) > u). (2.77)

The first term is the main term, and we prove that
∑

i≥2 P(Hi (0) > u) = o(P(H1(0) > u))

now.
For this, we note that

P(Hi (0) > u) = P

(
I j (u) = 0 ∀ j ∈ [i − 1],S (i)

[0,u] > 0
)

= P(I j (u) = 0 ∀ j ∈ [i − 1])P
(
S (i)

[0,u] > 0 | I j (u) = 0 ∀ j ∈ [i − 1]
)

.

(2.78)

We can rewrite, on the event {I j (u) = 0 ∀ j ∈ [i − 1]}, and using that c1 ≥ ci for every
i ≥ 1,

S (i)
t = λ+ζ

ab t +
∑

j≥i+1

c j (I j (t) − c j t) + ci −
i∑

j=1

c2j t

≤ λ+ζ
ab t +

∑

j≥i+1

c j (I j (t) − c j t) + c1 −
i∑

j=1

c2j t. (2.79)

Therefore,

P

(
S (i)

[0,u] > 0 | I j (u) = 0 ∀ j ∈ [i − 1]
)

≤ P

⎛

⎝ λ+ζ
ab t +

∑

j≥i+1

c j (I j (t) − c j t) + c1 −
i∑

j=1

c2j t > 0 ∀t ∈ [0, u]
⎞

⎠

= P
(
S (1)

[0,u] > 0 | I j (u) = 0 ∀ j ∈ [i] \ {1}), (2.80)

where in the last equality, we use that, conditionally on I j (u) = 0 forall j ∈ [i] \ {1}, the
equality

S (1)
t = λ+ζ

ab t +
∑

j≥i+1

c j (I j (t) − c j t) + c1 −
i∑

j=1

c2j t

holds.
The event

{
I j (u) = 0∀ j ∈ [i] \ {1}} is decreasing (recall the notions used in the proof

of Lemma 2.12) in the random variables (Ti )i≥2, while the event {S (1)
[0,u] > 0} is increasing.

Thus, by the FKG-inequality,

P
(
S (1)

[0,u] > 0 | I j (u) = 0 ∀ j ∈ [i] \ {1}) ≤ P(S (1)
[0,u] > 0) = P(H1(0) > u). (2.81)

We can identify

P(I j (u) = 0∀ j ∈ [i − 1]) = e−∑i−1
j=1 c j u . (2.82)
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Combining (2.77), (2.81)–(2.82) we arrive at

P(γ1(λ) > au) ≤ P(H1(0) > u)
[
1 +

∑

i≥2

e−∑i−1
j=1 c j u

]
. (2.83)

Since c j = j−α with α ∈ (1/3, 1/2),
∑i−1

j=1 c j ≥ (i − 1)ci−1 = (i − 1)1−α . Therefore,

∑

i≥2

e−∑i−1
j=1 c j u = o(1). (2.84)

This completes the proof of the Main Theorem. ��

3 No Middle Ground: Proof of Proposition 2.13

In this section, we show that the probability to hit zero in the time interval [ε, u−Tu−(τ−2)],
where T is a constant, becomes negligible as T → ∞.

The strategy of proof is as follows. We start in Proposition 3.2 by investigating the value
of St at some discrete times (tk)k≥1 in [0, u] and show that with high probability St does not
deviate far from its mean. Next, in Proposition 3.3, we show that it is unlikely for the process
(St )t≥0 to make a substantial deviation in the interval [tk, tk+1] from its value in tk .

We start with a preparatory lemma that will allow us to give bounds on the asymptotic
parameters appearing in the upcoming proofs:

Lemma 3.1 (Asymptotics of parameters). There exists K ≥ 1 such that

P̃

( ∞∑

i=2

c2i Ii (u) ≥ Kuτ−3

)

≤ Cu−(τ−1), (3.1)

and, for all |λ| ≤ δu with δ > 0 sufficiently small, there exists K > 0 such that

P̃

( ∞∑

i=2

ci [1 − Ii (u/2)](eλci − 1 − λci
) ≥ Kλ2uτ−4

)

≤ Cu−(τ−1). (3.2)

Proof We use the second moment method. With Lemma 2.9 we compute that

Ẽ

[ ∞∑

i=2

c2i Ii (u)

]

≤
∞∑

i=2

c2i C(θ)
(
1 − e−ci u

)
. (3.3)

Split the sum into i with ci u ≤ 1 and ci u > 1. For the first, we bound 1− e−ci u ≤ O(1)ci u,
for the latter, we bound 1 − e−ci u ≤ 1, to obtain

Ẽ

[ ∞∑

i=2

c2i Ii (u)

]

≤ O(1)
∑

i : ci u≤1

c3i u + O(1)
∑

i : ci u>1

c2i = O(1)uτ−3(1 + o(1)), (3.4)

the latter by an explicit computation using that ci = i−1/(τ−1).
Further, with Corollary 2.11

Ṽar

( ∞∑

i=2

c2i Ii (u)

)

≤
∞∑

i=2

c4i (1 − P̃(Ti ≤ u))

≤ C(θ)

∞∑

i=2

c4i e
−ci u = O(1)uτ−5(1 + o(1)). (3.5)
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The Chebychev inequality now proves (3.1).
For (3.2), we again compute

Ẽ

[ ∞∑

i=2

ci [1 − Ii (u/2)](eλci − 1 − λci
)
]

≤ C(θ)

∞∑

i=2

cie
−ci u/2 [eλci − 1 − λci

]

= C(θ)

∞∑

i=2

cie
−ci u/2e|λ|ci (λci )2/2. (3.6)

Thus, for |λ| ≤ δu and again using Corollary 2.11, we obtain

Ẽ

[ ∞∑

i=2

ci [1 − Ii (u/2)](eλci − 1 − λci
)
]

= O(λ2uτ−4). (3.7)

Further,

Ṽar
( ∞∑

i=2

ci [1 − Ii (u/2)](eλci − 1 − λci
))

≤ C(θ)

∞∑

i=2

c2i e
−ci u/2(eλci − 1 − λci

)2

≤ C(θ)|λ|4
∞∑

i=2

c6i e
−ci u/2e2|λ|ci = O(|λ|4uτ−7). (3.8)

Again the claim follows from the Chebychev inequality. ��

We continue to show that the probability for St to deviate far from its mean at some
discrete times in the time interval [ε, u − Tu−(τ−2)] is small when T is large enough:

Proposition 3.2 (Probability to deviate far from mean at discrete times). Let η > 0 and
δu = u−(τ−2). For any ε > 0 and M > 0,

lim sup
u→∞

u(τ−1)/2
P̃
(∃ k ∈ N s.t. kδu ∈ [ε, u − T δu] :

∣∣Skδu − Ẽ[Skδu ]
∣∣ > ηẼ[Skδu ],Su ∈ [0, M/u]) = oT (1), (3.9)

where we recall the definition of oT (1) from Proposition 2.13.

Proof The proof is split between the cases t ∈ [ε, u/2], t ∈ [u/2, u − ε] and t ∈ [u − ε, u −
u−(τ−2)], where t = kδu and ε > 0 is some arbitrary constant.

Proof for t ∈ [ε, u/2]. We start by proving the proposition for t ∈ [ε, u/2], for which we
use Proposition 2.7 with λ1 = ±1 and λ2 = 0 to see that, for any x > 0,

P̃

(∣∣ St − Ẽ[St ]√
IV (t/u)uτ−3

∣∣ > x
)

≤ ce−x , (3.10)
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where we note that the e� error term can be put inside the constant c since |�| ≤ ou(1) +
O(t3(τ−3)) and t ≥ ε is strictly positive. By (2.32) in Lemma 2.10, IV (p) ≤ cpτ−3 for all
p ∈ [0, 1/2]. Applying this to p = t/u yields

P̃

(
|St − Ẽ[St ]| > cxt (τ−3)/2

)
≤ ce−x . (3.11)

By Corollary 2.5(a), we have Ẽ[St ]/(tuτ−3) ∈ [c, c] for t ∈ [ε, u/2] and some constants

c, c > 0. Therefore, taking x = aηt
1
2 (5−τ)uτ−3 for some a > 0 chosen appropriately,

P̃
(|St − Ẽ[St ]| > ηẼ[St ]

) ≤ ce−aηt
1
2 (5−τ)uτ−3

. (3.12)

We take t = kδu for kδu ∈ [ε, u/2], so that there are at most u/δu = uτ−1possible values of
k. Thus,

P̃
(∃tk ∈ [ε, u/2] : |Stk − Ẽ[Stk ]| > ηẼ[Stk ]

) ≤ c(ε)uτ−1e−aηu(τ−1)/2
. (3.13)

This proves the proposition for kδu ∈ [ε, u/2].
Proof for t ∈ [u/2, u − ε]. We continue by proving the proposition for t ∈ [u/2, u − ε], for
which we again use Proposition 2.7 with λ1 = ±1 and λ2 = 0 to see that, for any x > 0,

P̃

(∣∣ St − Ẽ[St ]√
IV (t/u)uτ−3

∣∣ > x
)

≤ ce−x . (3.14)

By Lemma 2.10 and the fact that IV (p) > 0 for every p ∈ (0, 1), we obtain that there exists
a constant c > 0 such that IV (p) ≥ c for all p ∈ [1/2, 1 − ε]. Applying this to p = t/u
yields

P̃

(
|St − Ẽ[St ]| > cxu(τ−3)/2

)
≤ ce−x . (3.15)

By Lemma 2.4(d) and Corollary 2.5(b), we have Ẽ[St ]u−(τ−2) ∈ [c, c] for all t ∈ [u/2, u−ε]
and some constants c = c(ε), c = c(ε) > 0. Therefore, taking x = aηu(τ−1)/2 for some
a > 0 chosen appropriately,

P̃
(|St − Ẽ[St ]| > ηẼ[St ]

) ≤ ce−aηu(τ−1)/2
. (3.16)

We take t = tk = kδu for kδu ∈ [u/2, u − ε], so that there are at most u/δu = uτ−1 possible
values of k. Thus,

P̃
(∃tk ∈ [u/2, u − ε] : |Stk − Ẽ[Stk ]| > ηẼ[Stk ]

) ≤ c(ε)uτ−1e−aηu(τ−1)/2
. (3.17)

This proves the proposition for kδu ∈ [u/2, u − ε].
Proof for t ∈ [u − ε, u − Tu−(τ−2)]: Rewrite The proof for t ∈ [u − ε, u − Tu−(τ−2)] is
the hardest, and is split into three steps. We start by rewriting the event of interest. We define
s = u − t and investigate Su−s in what follows, so that now s ∈ [Tu−(τ−2), ε].

Recall the definition of Qu(s) in (2.45),

Qu(s) = uSu−s − s − (u − s)Su = −
∞∑

i=2

ci [u1{Ti∈(u−s,u]} − sIi (u)], (3.18)

so that |Su−s − Ẽ[Su−s]| > ηẼ[Su−s] precisely when

|Qu(s) − Ẽ[Qu(s)] + (u − s)
(
Su − Ẽ[Su]

)| > ηuẼ[Su−s]. (3.19)
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When Su ∈ [0, M/u] and using that uẼ[Su] = o(1) by Lemma 2.4(d), we therefore obtain
that if (3.19) holds, then

|Qu(s) − Ẽ[Qu(s)]| > ηuẼ[Su−s] − M + o(1). (3.20)

By Lemma 2.4(d) and Corollary 2.5(b), we have that Ẽ[Su−s] ≥ csuτ−3 for some c > 0.
Therefore, ηuẼ[Su−s] ≥ cηT , so that, by taking T = T (M) sufficiently large, we obtain
that

P̃

(
∃sk ∈ [Tu−(τ−2), ε] : ∣∣Su−sk − Ẽ[Su−k ]

∣
∣ > ηẼ[Su−sk ],Su ∈ [0, M/u]

)

≤ P̃

(
∃sk ∈ [Tu−(τ−2), ε] : |Qu(sk) − Ẽ[Qu(sk)]| > ηcsku

τ−2,Su ∈ [0, M/u]
)
.

(3.21)

We condition on J (u) from (2.43), and note that Su is measurable w.r.t J (u) to obtain

P̃

(
∃sk ∈ [Tu−(τ−2), ε] : |Qu(sk) − Ẽ[Qu(sk)]| > ηcsku

τ−2,Su ∈ [0, M/u]
)

= Ẽ

[
1{Su∈[0,M/u]}P̃

(∃sk ∈ [Tu−(τ−2), ε] : |Qu(sk) − Ẽ[Qu(sk)]| > ηcsku
τ−2 | J (u)

)]
.

(3.22)

This is the starting point of our analysis. We split, writing η′ = η/2,

P̃
(∃sk ∈ [Tu−(τ−2), ε] : |Qu(sk) − Ẽ[Qu(sk)]| > ηcsku

τ−2 | J (u)
)

≤ P̃
(∃sk ∈ [Tu−(τ−2), ε] : |Qu(sk) − Ẽ[Qu(sk) | J (u)]| > η′cskuτ−2 | J (u)

)

+ 1{∃sk∈[Tu−(τ−2),ε] : |Ẽ[Qu(sk )|J (u)]−Ẽ[Qu(sk )]|>η′cskuτ−2}. (3.23)

We conclude using the union bound that

P̃

(
∃sk ∈ [Tu−(τ−2), ε] : |Qu(sk) − Ẽ[Qu(sk)]| > ηcsku

τ−2,Su ∈ [0, M/u]
)

≤
∑

k : sk∈[Tu−(τ−2),ε]
Ẽ

[
P̃

(
|Qu(sk) − Ẽ[Qu(sk) | J (u)]| > η′cskuτ−2 | J (u)

)

1{Su∈[0,M/u]}
]

+ P̃

(
∃sk ∈ [Tu−(τ−2), ε] : |Ẽ[Qu(sk) | J (u)] − Ẽ[Qu(sk)]| > η′cskuτ−2

)
.

(3.24)

We will bound both contributions separately, and start by setting the stage. We compute that

Qu(s) − Ẽ[Qu(s) | J (u)] = −
∞∑

i=2

ci u
[
1{Ti∈(u−s,u]} − P̃(Ti ∈ (u − s, u] | J (u))]

= −
∞∑

i=2

ci u
[
1{Ti∈(u−s,u]} − pi,u(s)

]
, (3.25)

where we abbreviate

pi,u(s) = P̃(Ti ∈ (u − s, u] | J (u)) = P̃(Ti ∈ (u − s, u] | i ∈ J (u)). (3.26)

It turns out that both contributions in (3.24) can be expressed in terms of pi,u(s), and we
continue our analysis by studying this quantity in more detail.

123



64 R. van der Hofstad et al.

Proof for t ∈ [u − ε, u − Tu−(τ−2)]: Analysis of pi,u(s). We next analyse the conditional
probability pi,u(s). We compute (recall (1.23), (2.29) and (2.43))

pi,u(s) = P̃(Ti ∈ (u − s, u] | i ∈ J (u)) = P̃(Ti ∈ (u − s, u])
P̃(Ti ≤ u)

= P̃(Ti ≤ u) − P̃(Ti ≤ u − s)

P̃(Ti ≤ u)
. (3.27)

Using the distribution of Ti formulated in Lemma 2.9, we obtain, for any s ∈ [0, u],

P̃(Ti ≤ u − s) = eθci u
(
1 − e−ci (u−s)

)

eθci u
(
1 − e−ci u

)+ e−ci u
, (3.28)

so that

pi,u(s) = eθci u
(
1 − e−ci u

)− eθci u
(
1 − e−ci (u−s)

)

eθci u
(
1 − e−ci u

) = e−ci u (eci s − 1)

1 − e−ci u
= eci s − 1

eci u − 1
.

(3.29)

We start by bounding pi,u(s), for s ∈ [0, ε], by
pi,u(s) ≤ O(s/u), and pi,u(s) ≤ O(ci s)e

−ci u(ci u ∧ 1)−1. (3.30)

Moreover, for u sufficiently large,

|upi,u(s) − s| ≤ s(ci u ∧ 1). (3.31)

Proof for t ∈ [u − ε, u − Tu−(τ−2)]: Completion first term (3.24). For the first term in
(3.24), we use Markov’s inequality in the form P(|X − E[X ]| > a) ≤ a−4

E[(X − E[X ])4]
to obtain

P̃
(|Qu(s) − Ẽ[Qu(s) | J (u)]| > η′csuτ−2 | J (u)

) ≤ (η′csuτ−2)−4

Ẽ
[
(Qu(s) − Ẽ[Qu(s) | J (u)])4 | J (u)

]
, (3.32)

and recall from (3.25) that

Qu(s) − Ẽ[Qu(s) | J (u)] = −
∞∑

i=2

ci u
[
1{Ti∈(u−s,u]} − P̃(Ti ∈ (u − s, u] | J (u))]

= −
∞∑

i=2

ci u
[
1{Ti∈(u−s,u]} − pi,u(s)

]
. (3.33)

The summands are conditionally independent given J (u) and identically 0 when Ii (u) = 0,
so that

Ẽ
[
(Qu(s) − Ẽ[Qu(s) | J (u)])4 | J (u)

]

≤
∑

i≥2

c4i u
4 pi,u(s)Ii (u)

+
∑

i, j≥2 : i �= j

c2i c
2
j u

4 pi,u(s)(1 − pi,u(s))Ii (u)p j,u(s)(1 − p j,u(s))I j (u). (3.34)
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By the second bound in (3.30) and Corollary 2.11, the first term is at most

O(1)su4
∑

i≥2

c5i e
−ci u(ci u ∧ 1)−1 ≤ O(1)su4

∑

i≥2

c5i e
−ci u[1 + (ci u)−1] = O(suτ−2). (3.35)

By (3.1) in Lemma 3.1, we may assume that
∑∞

i=2 c
2
i Ii (u) ≤ Kuτ−3, since the complement

has a probability that is o(u−(τ−1)/2). Then, in a similar way, using the first bound in (3.30),
the second term is at most

(∑

i≥2

c2i u
2 pi,u(s)Ii (u)

)2 ≤ O(1)
(
s
∑

i≥2

c2i uIi (u)
)2 = O

(
(suτ−2)2

)
. (3.36)

As a result,

Ẽ
[
(Qu(s) − Ẽ[Qu(s) | J (u)])4 | J (u)

] ≤ O(suτ−2) + O
(
(suτ−2)2

)
. (3.37)

Since s ≥ Tu−(τ−2), this can be simplified to

Ẽ
[
(Qu(s) − Ẽ[Qu(s) | J (u)])4 | J (u)

] ≤ O
(
(suτ−2)2

)
. (3.38)

We conclude using (3.32) that, on the event that {∑∞
i=2 c

2
i Ii (u) ≤ Kuτ−3},

P̃
(|Qu(s) − Ẽ[Qu(s) | J (u)]| > η′csuτ−2 | J (u)

) ≤ (csuτ−2)2

(η′csuτ−2)4

= O(η−4(suτ−2)−2), (3.39)

so that, also using that P̃(Su ∈ [0, M/u]) = O(u−(τ−1)/2) by Proposition 2.8,

u(τ−1)/2
Ẽ

[
P̃

(
|Qu(sk) − Ẽ[Qu(sk) | J (u)]| > η′cskuτ−2 | J (u)

)
1{Su∈[0,M/u]}

]

≤ O(η−4(suτ−2)−2)u(τ−1)/2
P̃(Su ∈ [0, M/u]) = O(η−4(suτ−2)−2). (3.40)

This bound is true for any s ∈ [Tu−(τ−2), ε]. Taking s = sk = ku−(τ−2) and summing out
over k ≥ T leads to

u(τ−1)/2
∑

k : sk∈[Tu−(τ−2),ε]

Ẽ

[
P̃

(
|Qu(sk) − Ẽ[Qu(sk) | J (u)]| > η′cskuτ−2 | J (u)

)
1{Su∈[0,M/u]}

]

≤ O(η−4)
∑

k≥T

k−2 = O(η−4/T ) = oT (1), (3.41)

when we take T = T (η) sufficiently large, as required.

Proof for t ∈ [u − ε, u − Tu−(τ−2)]: Completion second term (3.24). For the second term
in (3.24), we need to bound

P̃

(
∃sk ∈ [Tu−(τ−2), ε] : |Ẽ[Qu(sk) | J (u)] − Ẽ[Qu(sk)]| > η′cskuτ−2

)
. (3.42)

We compute using (3.18)

Ẽ[Qu(s)] = −
∞∑

i=2

ci
[
uP̃(Ti ∈ (u − s, u]) − sP̃(i ∈ J (u))

]
, (3.43)
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while

Ẽ[Qu(s) | J (u)] = −
∞∑

i=2

ciIi (u)
[
uP̃(Ti ∈ (u − s, u] | i ∈ J (u)) − s

]
. (3.44)

As a result, using (3.26),

Ẽ[Qu(s) | J (u)] − Ẽ[Qu(s)]

= −
∞∑

i=2

ci
[
Ii (u) − P̃(i ∈ J (u))

][upi,u(s) − s] =: sX + Y (s), (3.45)

where with (3.29)

X = −
∞∑

i=2

ci
[
Ii (u) − P̃(i ∈ J (u))

]1 + ci u − eci u

eci u − 1
,

Y (s) = −u
∞∑

i=2

ci
[
Ii (u) − P̃(i ∈ J (u))

]eci s − 1 − ci s

eci u − 1
. (3.46)

As a result,

P̃

(
∃sk ∈ [Tu−(τ−2), ε] : |Ẽ[Qu(sk) | J (u)] − Ẽ[Qu(sk)]| > η′cskuτ−2

)

≤ P̃
(|X | ≥ η′cuτ−2/2

)+ P̃

(
∃sk ∈ [Tu−(τ−2), ε] : |Y (sk)| ≥ η′cskuτ−2/2

)
. (3.47)

For both terms, we use the Chebychev inequality.
For X , as Ẽ[X ] = 0, this leads to

P̃
(|X | ≥ η′cuτ−2/2

) ≤ 4

(η′cuτ−2)2
Var(X). (3.48)

We use Lemma 2.9 to see that P̃(i ∈ J (u)) = 1−e−ci u

1−e−ci u+e−ci u(1+θ) , so that

P̃(i ∈ J (u))̃P(i /∈ J (u)) = P̃(Ii (u) = 1)̃P(Ii (u) = 0)

=
(
1 − e−ci u

)
e−ci u(1+θ)

(
1 − e−ci u + e−ci u(1+θ)

)2 ≤ O(1)ci ue
−ci u(1+θ), (3.49)

since 1 − e−x + e−x(1+θ) is uniformly bounded from below away from 0 for all x ≥ 0. We
use this together with Corollary 2.11 to compute that

Var(X) =
∞∑

i=2

c2i P̃(Ii (u) = 1)̃P(Ii (u) = 0)
(1 + ci u − eci u

eci u − 1

)2

≤ O(1)u
∞∑

i=2

c3i e
−ci u(1+θ) = O(1)uτ−3. (3.50)

Therefore,

P̃
(|X | ≥ η′cuτ−2/2

) ≤ O(1)(η′)−2u−2(τ−2)Var(X) = O(1)(η′)−2u−(τ−1)

= o(u−(τ−1)/2), (3.51)

as required below.
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For the term involving Y (s), we start by using the union bound to obtain

P̃

(
∃sk ∈ [Tu−(τ−2), ε] : |Y (sk)| ≥ η′cskuτ−2/2

)
≤ εuτ−2

max
k : sk∈[Tu−(τ−2),ε]

P̃
(|Y (sk)| ≥ η′cskuτ−2/2

)
. (3.52)

Then, by the Chebychev inequality and as Ẽ[Y (sk)] = 0,

P̃
(|Y (sk)| ≥ η′cskuτ−2/2

) ≤ 4

(η′cskuτ−2)2
Var(Y (sk)), (3.53)

where, using (3.49), eci s − 1 − ci s = O(s2c2i ) and eci u − 1 ≥ ci u,

Var(Y (s)) = u2
∞∑

i=2

c2i P̃(i ∈ J (u))̃P(i /∈ J (u))
(eci s − 1 − ci s

eci u − 1

)2

≤ O(s4)
∞∑

i=2

c4i e
−ci u(1+θ) = O(s4)O(uτ−5), (3.54)

where we used Corollary 2.11 in the last equality. Substituting this into (3.52) and (3.53), we
arrive at

P̃

(
∃sk ∈ [Tu−(τ−2), ε] : |Y (sk)| ≥ η′cskuτ−2/2

)

≤ εuτ−2 max
k : sk∈[Tu−(τ−2),ε]

O(s2k u
τ−5u−2(τ−2))(η′)−2

= O(ε3/(η′)2)u−3 = o(u−(τ−1)/2), (3.55)

since τ ∈ (3, 4). Combining (3.51) and (3.55) in (3.47) completes the proof. ��
We now know that with high probability the process does not deviate much from its mean

when observed at the discrete times kδu ∈ [ε, u−T δu].We continue to show that this actually
holds with high probability on the whole interval [ε, u−T δu]. We complete the preparations
for the proof of Proposition 2.13 by proving that it is unlikely for the process to deviate far
from the mean for all times t ∈ [ε, u − T δu] simultaneously:

Proposition 3.3 (Probability to deviate far from mean at some time). For every η > 0 and
M > 0,

lim supu→∞ u(τ−1)/2
P̃
(∃ t ∈ [ε, u − T δu] : |St − Ẽ[St ]|

≥ 10ηẼ[St ],Su ∈ [0, M/u]) = oT (1). (3.56)

Proof Fix T > 0 and recall that δu = u−(τ−2). Let

Eu = {|Skδu − Ẽ[Skδu ]| ≤ ηẼ[Skδu ] ∀k s.t. kδu ∈ [ε, u − T δu]}

∩
{ ∞∑

i=2

ci [1 − Ii (u/2)](eλci − 1 − λci
) ≤ Kλ2uτ−4

}
∩
{ ∞∑

i=2

c2i Ii (u) ≤ Kuτ−3
}
,

(3.57)

where we take λ = δu with δ > 0 sufficiently small and K ≥ 1 as in Lemma 3.1. We first
give a bound on P̃(Ec

u ∩ {Su ∈ [0, M/u]}). We apply (3.1) in Lemma 3.1 to obtain that

P̃

( ∞∑

i=2

c2i Ii (u) ≥ Kuτ−3

)

= O(u−(τ−1)) = o(u−(τ−1)/2), (3.58)
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which is contained in the error term in (3.56). Further, by (3.2) in Lemma 3.1

P̃

( ∞∑

i=2

ci [1 − Ii (u/2)](eλci − 1 − λci
) ≥ Kλ2uτ−4

)

= O(u−(τ−1)) = o(u−(τ−1)/2). (3.59)

Combined with Proposition 3.2, this ensures that

lim sup
u→∞

u(τ−1)/2
P̃
(
Ec
u ∩ {Su ∈ [0, M/u]}) = oT (1). (3.60)

As a result, we are left to control the fluctuations of the process on any interval Ik = [kδu, (k+
1)δu]. We use Boole’s inequality to bound

P̃
(
Eu, ∃ t ∈ [ε, u − T δu] : |St − Ẽ[St ]| ≥ 10ηẼ[St ]

)

≤
∑

k : kδu∈[ε,u−T δu ]
P̃
(
Eu, ∃ t ∈ Ik : |St − Ẽ[St ]| ≥ 10ηẼ[St ]

)
. (3.61)

Let tk = kδu , so that Ik = [tk, tk+1]. We split the analysis into four cases, depending on
whether tk ≤ u/2 or not, and onwhetherSt−Ẽ[St ] ≥ 10ηẼ[St ] orSt −Ẽ[St ] ≤ −10ηẼ[St ],
which we refer to as ‘large upper’ and ‘large lower’ deviations, respectively.

In all of the four cases, we take advantage of the following observations concerning the
law of our indicator processes under P̃. By (1.21),

Stk+t − Stk = β̃t +
∞∑

i=2

ci [Ii (t + tk) − Ii (tk) − ci t]

= β̃t +
∞∑

i=2

ci [1 − Ii (tk)][Ii (t + tk) − Ii (tk) − ci t] − t
∞∑

i=2

c2i Ii (tk). (3.62)

For k respectively tk fixed and t ≥ 0, let �k
i (t) = Ii (t + tk) − Ii (tk) = [1 − Ii (tk)][Ii (t +

tk) − Ii (tk)] ∈ {0, 1}. By (2.30),

P̃

(
�k

i (t) = 1
)

= P̃(Ii (t + tk) = 1, Ii (tk) = 0) = P̃(tk < Ti ≤ t + tk)

= e−ci tk

1 − e−ci u
(
1 − e−θci u

)
(
1 − e−ci t

)
, (3.63)

and

P̃(Ii (tk) = 0) = e−ci tk − e−ci u
(
1 − e−θci u

)

1 − e−ci u
(
1 − e−θci u

) ≤ e−ci tk . (3.64)

As a result,

P̃

(
�k

i (t) = 1 | Ii (tk) = 0
)

= e−ci tk

e−ci tk − e−ci u
(
1 − e−θci u

)
(
1 − e−ci t

)
> 1 − e−ci t .

(3.65)

Let (T k
i )i≥2 be a sequence of independent exponential random variables with mean

1/ci (under P̃) that are independent of Ftk , the σ -algebra generated by (St )t∈[0,tk ]. Let
(Bk

i (t))0≤t≤δu = (Bk
i (t; tk , u))0≤t≤δu be a sequence of processes that are independent in
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i (and also independent of all randomness so far), non-decreasing, taking values in {0, 1} and
with success probability at time t ∈ [0, δu] of

P̃(Bk
i (t) = 1) =

( e−ci tk

e−ci tk − e−ci u(1 − e−θci u)
− 1
)
(eci t − 1)

= e−ci u
(
1 − e−θci u

)

e−ci tk − e−ci u
(
1 − e−θci u

)
(
eci t − 1

)
. (3.66)

Thus, conditionally on Ii (tk) = 0,

(�k
i (t))t∈[0,δu ]

d= (1{T k
i ≤t} + (1 − 1{T k

i ≤t})B
k
i (t)

)
t∈[0,δu ]. (3.67)

We can therefore without loss of generality assume that under P̃, the sequence of processes
(Ii (t) : t ≥ 0)i≥2 in (3.62) is constructed inductively as follows. Recall that tk+1 = tk + δu .
Conditional on (Ii (tk))i≥2, for 0 ≤ t ≤ δu ,

Ii (t + tk) ≡ Ii (tk) + [1 − Ii (tk)]
(
1{T k

i ≤t} + (1 − 1{T k
i ≤t})B

k
i (t)

)
. (3.68)

For lower deviations (see Part 2 and 4 below), we will use as a lower bound in (3.62)

[1 − Ii (tk)][Ii (t + tk) − Ii (tk)] = [1 − Ii (tk)]�k
i (t) ≥ [1 − Ii (tk)]1{T k

i ≤t}. (3.69)

For upper deviations (see Part 1 and 3 below), we require an upper bound instead. In a first
step, we replace �k

i (t) by 1{T k
i ≤t} and show that the resulting error is sufficiently small in

case tk ≤ u/2 (see Part 1). Indeed, let

Ek
i (t) ≡ [1 − Ii (tk)]

([Ii (t + tk) − Ii (tk)] − 1{T k
i ≤t}

)

= [1 − Ii (tk)]
(
1 − 1{T k

i ≤t}
)
Bk
i (t), (3.70)

and define, for t ∈ Ik = [0, δu],

B−
tk ,t = t

∞∑

i=2

c2i Ii (tk), B+
tk ,t =

∑

i≥2

ci [1 − Ii (tk)]
(
1 − 1{T k

i ≤t}
)
Bk
i (t). (3.71)

Then, we obtain that

Stk+t − Stk = β̃t +
∞∑

i=2

ci [1 − Ii (tk)]
(
1{T k

i ≤t} − ci t
)

− B−
tk ,t + B+

tk ,t . (3.72)

By Lemma 3.1 and for t ≤ δu , the term B−
tk ,t is, with probability at least 1 − Cu−(τ−1)

bounded by δuKuτ−3 = K/u, which is o(Ẽ[Stk ]) for tk ∈ [ε, u/2] respectively oT (Ẽ[Stk ])
for tk ∈ [u/2, u − Tu−(τ−2)] by Corollary 2.5(a), (b) and Lemma 2.4(d). Further, in Part 5
below, we will prove that

P̃

(
Eu, ∃tk ∈ [ε, u − Tu−(τ−2)], t ≤ δu : B+

tk ,t ≥ 7ηẼ[Stk ]
)

= oT (u
−(τ−1)/2). (3.73)

We first complete the proof subject to (3.73). In Part 5 we will prove (3.73). There, we will
rely on the sharp bounds obtained on the middle term in (3.72), which will be obtained in
what follows by careful domination arguments in terms of Lévy processes.
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Part 1: The case tk ≤ u/2 and a large upper deviationWe start by bounding the probability
that there exists a t ∈ Ik = [tk, tk+1], ε ≤ tk ≤ u/2 such that St − Ẽ[St ] ≥ 10ηẼ[St ]. Using
that Ẽ[St ] = Ẽ[Stk ](1 + o(1)) for any t ∈ Ik by Corollary 2.5(c), we bound

P̃
(
Eu, ∃ t ∈ Ik : St − Ẽ[St ] ≥ 10ηẼ[St ]

) ≤ P̃
(∃ t ≤ δu : Stk+t − Stk ≥ 8ηẼ[Stk ]

)
.

(3.74)

By (3.72),

Stk+t − Stk ≤ β̃t +
∞∑

i=2

ci
[
1{T k

i ≤t} − ci t
]

+ B+
tk ,t . (3.75)

which can be stochastically dominated by the process β̃t + Rt + B+
tk ,t with Rt ≡∑∞

i=2 ci [Ni (t) − ci t], where (Ni (t))t≥0 is a Poisson process with rate ci . As a result, with
(3.73),

P̃
(
Eu, ∃ t ≤ δu : Stk+t − Stk ≥ 8ηẼ[Stk ],B+

tk ,t ≤ 7ηẼ[Stk ]
)

≤ P̃

(
∃ t ≤ δu : β̃t + Rt ≥ η

2
Ẽ[Stk ]

)
. (3.76)

Since (Rt )t≥0 is a finite-variance Lévy process, it is well-concentrated. In more detail, for
λ ∈ R, we define the exponential martingale

Mt (λ) = eλRt−tφ(λ), where φ(λ) = log Ẽ
[
eλR1

] =
∞∑

i=2

ci
[
eciλ − 1 − ciλ

]
.

(3.77)

Then, for every λ ≥ 0, using that φ(λ) ≥ 0 and by Doob’s inequality,

P̃(∃ s ≤ t : β̃s + Rs ≥ x) ≤ P̃

(
∃ s ≤ t : Ms(λ) ≥ exλ−tφ(λ)−t |β̃|λ)

≤ e−2[xλ−tφ(λ)−t |β̃|λ]
Ẽ
[
Mt (λ)2

] = e−[2xλ−tφ(2λ)−2t |β̃|λ].
(3.78)

We apply this inequality to x = η
2 Ẽ[Stk ], t = δu and λ = 1, and Corollary 2.5(a) implies

that Ẽ[Stk ] ≥ ctkuτ−3 = ck/u for tk = kδu ∈ [ε, u/2]. Therefore (using tk = kδu)

P̃
(
Eu, ∃ t ≤ δu : Stk+t − Stk ≥ 8ηẼ[Stk ],B+

tk ,t ≤ 7ηẼ[Stk ]
) ≤ (1 + o(1))e−ckδuuτ−3

,

(3.79)

which is small even when summed out over k as above.

Part 2: The case tk ≤ u/2 and a large lower deviation We continue with bounding the
probability that there exists a t ≤ δu and ε ≤ tk ≤ u/2 such that Stk+t − Ẽ[Stk+t ] ≤
−10ηẼ[Stk+t ], which is slightly more involved. Here we can use that B+

tk ,t ≥ 0. Again using
that Ẽ[Stk+t ] = Ẽ[Stk ](1 + o(1)) for any t ≤ δu by Corollary 2.5(c), we bound

P̃
(
Eu, ∃t ≤ δu : Stk+t − Ẽ[Stk+t ] ≤ −10ηẼ[Stk+t ]

)

≤ P̃
(∃ t ≤ δu : Stk+t − Stk ≤ −8ηẼ[Stk ]

)
. (3.80)
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Further, using (3.62) and (3.69), as well as the realization that 1{T k
i ≤t} = 1{Ni (t)≥1}, we

obtain

Stk+t − Stk ≥ β̃t +
∞∑

i=2

ci

[1 − Ii (tk)][Ni (t) − ci t] −
∞∑

i=2

ci [1 − Ii (tk)][Ni (t) − 1{Ni (t)≥1}] − B−
tk ,t

≥ β̃t + R′
t − Dt − B−

tk ,t , (3.81)

where we set

R′
t =

∞∑

i=2

ci [1 − Ii (tk)][Ni (t) − ci t] (3.82)

and

Dt =
∞∑

i=2

ci [1 − Ii (tk)][Ni (t) − 1{Ni (t)≥1}]. (3.83)

Thus, conditionally on (Ii (tk))i≥2, the process (R′
t )t≥0 is a Lévy process similar to the Lévy

process investigated in Part 1 above and Dt is the contribution due to i for which Ni (t) ≥ 2.
We deal with the two terms one by one (recalling that we have already dealt with B−

tk ,t above
(3.73)), starting with (R′

t )t≥0. As in the previous part, we show that

P̃

(
∃ s ≤ δu : β̃s + R′

s ≤ −4ηẼ[Stk ]
)

(3.84)

is small enough even when summed out over k such that tk ∈ [ε, u/2]. This again follows by
Doob’s inequality and the bound that for any λ ≥ 0, and with Ftk the σ -algebra generated
by (St )t∈[0,tk ],

P̃

(
∃ s ≤ t : β̃s + R′

s ≤ −x | Ftk

)

≤ P̃

(
∃ s ≤ t : M′

s(−λ) ≥ exλ−tφ′(−λ)−t |β̃|λ | Ftk

)

≤ e
−
[
2xλ−tφ′(−λ)−t |β̃|λ

]

Ẽ
[
M′

t (−λ)2 | Ftk

] = e
−
[
2xλ−tφ′(−2λ)−2t |β̃|λ

]

, (3.85)

where

M′
t (λ) = eλR′

t−tφ′(λ), with φ′(λ) = log Ẽ

[
eλR′

1 | Ftk

]
. (3.86)

We compute that

φ′(λ) =
∞∑

i=2

log Ẽ[eλci [1−Ii (tk )][Ni (1)−ci ] | Ftk ]

=
∞∑

i=2

ci [1 − Ii (tk)]
(
eλci − 1 − λci

)
. (3.87)

Now follow the same steps as in Part 1, using that 0 ≤ φ′(−2) ≤ const. We continue to
bound Dt by bounding

P̃
(∃ t ≤ δu : Dt ≥ 2ηẼ[Stk ]

) = P̃(Dδu ≥ 2ηẼ[Stk ]), (3.88)
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since the process t 	→ Dt is non-decreasing. By the Markov inequality,

P̃(Dt ≥ x) ≤ x−1
Ẽ[Dt ] ≤ x−1

∞∑

i=2

ci Ẽ[Ni (t) − 1{Ni (t)≥1}]

≤ cx−1
∞∑

i=2

ci (ci t)
2 ≤ ct2/x . (3.89)

Applying this to x = 2ηẼ[Stk ] with Ẽ[Stk ] ≥ ctkuτ−3 and t = δu = u−(τ−2) yields

P̃
(∃ t ≤ δu : Dt ≥ 2ηẼ[Stk ]

) ≤ cu−2(τ−2)(ηtk)
−1u−(τ−3) = ck−1u−(2τ−5). (3.90)

When summing this out over k such that tk = kδu ∈ [ε, u/2] we obtain a bound
c(log u)u−(2τ−5) = o(u−(τ−1)/2), since (2τ − 5) > (τ − 1)/2 precisely when τ > 3.
This proves that

∑

k : kδu∈[ε,u/2]
P̃(Dδu ≥ 2ηẼ[Stk ]) = o(u−(τ−1)/2), (3.91)

as required. Collecting terms completes Part 2.

Part 3: The case tk ≥ u/2 and a large upper deviation This proof is more subtle. We fix k
such that tk ∈ [u/2, u−T δu] and condition onFtk , which is the σ -field generated by (St )t≤tk
to write (recall (3.57))

P̃
(
Eu,Su ∈ [0, M/u], ∃ t ∈ Ik : St − Ẽ[St ] ≥ 10ηẼ[St ]

)

≤ Ẽ

[
1{|Stk −Ẽ[Stk ]|≤ηẼ[Stk ],∑∞

i=2 ci [1−Ii (u/2)](eλci −1−λci )≤Kλ2uτ−4
}

× P̃
(∃ t ≤ δu : Stk+t − Ẽ[Stk+t ] ≥ 10ηẼ[Stk+t ] | Ftk

)]
. (3.92)

First observe that on {|Stk − Ẽ[Stk ]| ≤ ηẼ[Stk ]}, we have
P̃
(∃ t ≤ δu : Stk+t − Ẽ[Stk+t ] ≥ 10ηẼ[Stk+t ] | Ftk

)

≤ P̃
(∃ t ≤ δu : Stk+t − Stk ≥ 8ηẼ[Stk ] | Ftk

)
(3.93)

by using that Ẽ[Stk+t ] = Ẽ[Stk ](1+ oT (1)) for any t ≤ δu by Corollary 2.5(d). Using (3.72)
similarly to (3.81), we bound

Stk+t − Stk ≤ β̃t +
∞∑

i=2

ci [1 − Ii (tk)][Ni (t) − ci t] + B+
tk ,t = β̃t + R′

t + B+
tk ,t , (3.94)

where we note that R′
t is as in Part 2, (3.81). Conditionally on Ftk , the process (R′

t )t≥0 is a
Lévy process, and we use

P̃

(
∃ s ≤ t : β̃s + R′

s ≥ x | Ftk

)

≤ P̃

(
∃ s ≤ t : M′

s(λ) ≥ exλ−tφ′′(λ)−t |β̃|λ | Ftk

)

≤ e
−2
[
xλ−tφ′′(λ)−t |β̃|λ

]

Ẽ
[
M′

t (λ)2 | Ftk

] = e−2xλ+tφ′′(2λ)+2t |β̃|λ, (3.95)
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where we recall Eqs. (3.86) and (3.87). Since eλci − 1− λci ≥ 0 for every λ ∈ R, and since
1 − Ii (tk) ≤ 1 − Ii (u/2) for every tk ≥ u/2, a.s.

φ′(λ) ≤
∞∑

i=2

ci [1 − Ii (u/2)](eλci − 1 − λci
)
. (3.96)

On the event {∑∞
i=2 ci [1−Ii (u/2)](eλci −1−λci

) ≤ Kλ2uτ−4} (recall (3.92)), we have that
φ′(λ) ≤ Kλ2uτ−4, so that we can further bound, choosing λ = δu and t = δu = u−(τ−2),

P̃(∃ s ≤ t : β̃s + R′
s ≥ x | Ftk ) ≤ e−2xλ+t K4λ2uτ−4+2t |β̃|λ

≤ e−2xδu+K4δ2+2u−(τ−3)|β̃|δ. (3.97)

We take x = η
2 Ẽ[Stk ] and note that Corollary 2.5(b) and Lemma 2.4(d) yield that Ẽ[Stk ] ≥

c(u − tk)uτ−3 for tk ∈ [u/2, u − T δu]. Then,

P̃(∃ s ≤ t : β̃s + R′
s ≥ x | Ftk ) ≤ ce−cδ(u−tk )uτ−2

. (3.98)

Summing over k with tk = kδu ∈ [u/2, u − T δu] and δu = u−(τ−2), using Proposition 2.8
and Ẽ[Stk ] ≤ c(u− tk)uτ−3 by Corollary 2.5(b) and Lemma 2.4(d) yields as an upper bound
(recall also (3.92) and the definition of Eu from (3.57))

∑

k : tk∈[u/2,u−T δu ]
P̃
(
Eu,Su ∈ [0, M/u], ∃ t ≤ δu : Stk+t − Ẽ[Stk+t ] ≥ 10ηẼ[Stk+t ],

B+
tk ,t ≤ 7ηẼ[Stk ]

)

≤ c
∑

k : tk∈[u/2,u−T δu ]
P̃(|Stk − Ẽ[Stk ]| ≤ ηẼ[Stk ])e−cδ(u−kδu )uτ−2

≤ c
∑

k : tk∈[u/2,u−T δu ]
ηẼ[Stk ]

(
sup
w

f̃Stk
(w)
)
e−cδ(u−kδu)uτ−2

≤ cu−(τ−3)/2
∑

k : tk∈[u/2,u−T δu ]
C(u − kδu)u

τ−3e−cδ(u−kδu)uτ−2

≤ cu−(τ−1)/2
∑

k : tk∈[u/2,u−T δu ]
C(u − kδu)u

τ−2e−cδ(u−kδu)uτ−2

≤ cu−(τ−1)/2e−cδT = oT (1)u
−(τ−1)/2, (3.99)

as required.

Part 4: The case tk ≥ u/2 and a large lower deviationWe again start from (3.81), and note
thatB+

tk ,t ≥ 0 and that the bound onDt proved in Part 2 and that onB−
tk ,t proved around (3.73)

still apply, now using that by Corollary 2.5(b) and Lemma 2.4(d) Ẽ[Stk ] ≥ c(u − tk)uτ−3

for tk ∈ [u/2, u − T δu] with δu = u−(τ−2) below (3.89). The exponential martingale bound
forR′

t performed in Part 3 can easily be adapted to deal with a large lower deviation as well.
We omit further details. ��
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Part 5: The error term B+
tk ,t . Recall the definition of B+

tk ,t in (3.71), and the bound that we
need to prove in (3.73). Write

B+
tk ,t =

∑

i≥2

ci [1 − Ii (tk)]
(
1 − 1{T k

i ≤t}
)
Bk
i (t)

=
∑

i≥2

ci [1 − Ii (tk)]Bk
i (t) −

∑

i≥2

ci [1 − Ii (tk)]1{T k
i ≤t}B

k
i (t) ≡ B+,1

tk ,t − B+,2
tk ,t . (3.100)

We first use the first moment method to obtain the estimate

P̃

(
Eu, ∃tk ∈ [ε, u − T δu], t ∈ [0, δu] : B+,2

tk ,t > ηẼ[Stk+t ]
)

= o(u−(τ−1)/2). (3.101)

Indeed, note that supt≤δu
B+,2
tk ,t = B+,2

tk ,δu
by the fact that t 	→ Bk

i (t) is non-decreasing. By the

independence of Ii (tk) ∈ {0, 1}, T k
i and Bk

i (t) ∈ {0, 1} (cf. below (3.65)),

Ẽ

[
B+,2
tk ,δu

]
=
∑

i≥2

ci P̃(Ii (tk) = 0)̃P(T k
i ≤ δu )̃P

(
Bk
i (δu) = 1

)
. (3.102)

Use (3.64) and (3.66) to bound this from above by

∑

i≥2

ci
(
1 − e−ci δu

) e−ci u
(
1 − e−θci u

)

1 − e−ci u
(
1 − e−θci u

)
(
eci δu − 1

)

≤ C(θ)
∑

i≥2

c3i δ
2
ue

−ci u ≤ C(θ)δ2uu
τ−4 = C(θ)u−τ , (3.103)

using Corollary 2.11. As a result, using Markov’s inequality,

P̃

(
Eu, ∃kδu ∈ [ε, u − T δu], t ∈ [0, δu] : B+,2

tk ,t > ηẼ[Stk+t ]
)

≤ C(θ)u−τ
∑

k : kδu∈[ε,u−T δu ]

1

ηẼ[Stk+t ]

≤ C(θ)

η
u−τ

⎛

⎝
∑

k : kδu∈[ε,u/2]

1

tkuτ−3 +
∑

k : kδu∈[u/2,u−T δu ]

1

(u − tk)uτ−3

⎞

⎠

≤ C(θ)u−(τ−1)
∑

k : kδu∈[ε∧T δu ,u/2]

1

k
≤ C(θ)u−(τ−1) (log(uδ−1

u /2) − log
(
εδ−1

u ∧ T
))

≤ C(θ)u−(τ−1) log(u) = o(u−(τ−1)/2), (3.104)

as required.
We continue with B+,1

tk ,t , which we bound as

sup
t≤δu

B+,1
tk ,t = B+,1

tk ,δu
, (3.105)

again by the fact that t 	→ Bk
i (t) is non-decreasing. Thus, we can write, using (3.72),

B+,1
tk ,δu

= Stk+δu − Stk − β̃δu −
∞∑

i=2

ci [1 − Ii (tk)]
(
1{T k

i ≤δu} − ciδu
)

+ B−
tk ,δu

+ B+,2
tk ,δu

≤ Stk+1 − Stk −
∞∑

i=2

ci [1 − Ii (tk)]
(
1{T k

i ≤δu} − ciδu
)

+ B−
tk ,δu

+ B+,2
tk ,δu

. (3.106)
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Using that Ẽ[Stk+1 ] = Ẽ[Stk ](1 + o(1)) by Corollary 2.5(c), we can bound this by

B+,1
tk ,δu

≤ |Stk+1 − Ẽ[Stk+1 ]| + |Stk − Ẽ[Stk ]| + ηẼ[Stk ]

+
∣
∣
∣

∞∑

i=2

ci [1 − Ii (tk)](1{T k
i ≤δu} − ciδu)

∣
∣
∣+ B−

tk ,δu
+ B+,2

tk ,δu
. (3.107)

We write

Fu =
{
∃tk ∈ [ε, u − T δu] : B−

tk ,δu
≤ ηẼ[Stk ],B+,2

tk ,t ≤ ηẼ[Stk ],
∣
∣
∣
∑∞

i=2 ci [1 − Ii (tk)](1{T k
i ≤δu} − ciδu)

∣
∣
∣ ≤ ηẼ[Stk ]

}
. (3.108)

By the analysis in Parts 1–4, as well as (3.101), we know that (with a possibly different value
for η for the last term)

P̃
(
Eu ∩ Fc

u

) = oT (u
−(τ−1)/2). (3.109)

Indeed, for the bound on B−
tk ,δu

, see the argument below (3.72). The last term is bounded
in terms of Lévy processes in each of the different parts. We conclude that it suffices to
investigate B+,1

tk ,δu
on the event Eu ∩ Fu .

On Eu , |Stk+1 − Ẽ[Stk+1 ]| ≤ ηẼ[Stk+1 ] ≤ 2ηẼ[Stk ] and |Stk − Ẽ[Stk ]| ≤ ηẼ[Stk ]. On Fu ,
the last three terms in (3.107) are bounded by ηẼ[Stk ] as well. Thus, we obtain, on Eu ∩ Fu
with probability at least 1 − oT (u−(τ−1)/2),

B+,1
tk ,δu

≤ 7ηẼ[Stk ]∀tk ∈ [ε, u − T δu], (3.110)

as required. ��
Proof of Proposition 2.13 The proof follows by Proposition 3.3. Indeed, choose η = 1/12
and observe that Ẽ[St ] > 0 on [ε, u − T δu], using that Ẽ[St ] ≥ ctuτ−3 for t ∈ [ε, u/2] and
Ẽ[St ] ≥ c(u − t)uτ−3 for all t ∈ [u/2, u − T δu] by Corollary 2.5(a),(b) and Lemma 2.4(d).

��

4 Conditional Expectations Given uSu = v

A major difficulty in the proof of Proposition 2.14 is the fact that, while the summands in
the definition of Qu(t) in (2.45) are independent, this property is lost due to the fact that we
condition on Su . The following lemma allows us to deal with such expectations:

Lemma 4.1 (Conditional expectations given a continuous random variable). Let G((Ss)s≥0)

be a functional of the process (Ss)s≥0 such that G((Ss)s≥0) ≥ 0 P̃-a.s., and 0 <

Ẽ[G((Ss)s≥0)] < ∞. Then, for every w ∈ R,

Ẽ
[
G((Ss)s≥0) | Su = w

] = 1

f̃Su (w)

∫ +∞

−∞
e−ikw

Ẽ
[
G((Ss)s≥0)e

ikSu
] dk
2π

, (4.1)

where i denotes the imaginary unit.

ForG((Ss)s≥0) = 1, (4.1) is just the usual Fourier inversion theoremapplied to the (contin-
uous) random variable Su . The expectation Ẽ

[
G((Ss)s≥0)eikSu ] factorizeswhen G((Ss)s≥0)

is of product form in the underlying random variables (Ii (s))s≥0. In our applications,
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Ẽ
[
G((Ss)s≥0) | Su = w

]
will be close to constant in w. Then, in order to compute its

asymptotics, it suffices to check that the computation in the proof of Proposition 2.8 is hardly
affected by the presence of G((Ss)s≥0).

Proof Define the measure P̃
G by

P̃
G(E) = Ẽ

[
G((Ss)s≥0)1E

]

Ẽ
[
G((Ss)s≥0)

] . (4.2)

Under the measure P̃
G , the random variable Su is again continuous, since 0 < Ẽ[G((Ss)s≥0)]

< ∞. Let f̃ GSu
denote the density of Su under the measure P̃

G . Then, we obtain, by the Fourier

inversion theorem applied to P̃
G , that

f̃ GSu
(w) =

∫ +∞

−∞
e−ikw

Ẽ
G
[
eikSu ] dk

2π
. (4.3)

Now, by (4.2),

f̃ GSu
(w) = Ẽ

[
G((Ss)s≥0) | Su = w

]

Ẽ
[
G((Ss)s≥0)

] f̃Su (w), (4.4)

while

Ẽ
G
[
eikSu ] = Ẽ

[
G((Ss)s≥0)eikSu ]
Ẽ
[
G((Ss)s≥0)

] . (4.5)

Therefore, substituting both sides in (4.3) and multiplying through by Ẽ
[
G((Ss)s≥0)

]
proves

the claim. ��

Let P̃v denote P̃ conditionally on uSu = v, so that Lemma 4.1 implies that

Ẽv

[
G((Ss)s≥0)

] = 1

f̃Su (v/u)

∫ +∞

−∞
e−ikv/u

Ẽ
[
G((Ss)s≥0)e

ikSu ] dk
2π

. (4.6)

In many cases, it shall prove to be convenient to rewrite the above using

Ẽ
[
G((Ss)s≥0)e

ikSu
] = Ẽ

[
eikSu Ẽ

[
G((Ss)s≥0) | J (u)

]]
, (4.7)

since the random variables (Ti )i∈J (u) are, conditionally on J (u), independent with

P̃(Ti ≤ u − t | Ti ≤ u) = 1 − e−ci (u−t)

1 − e−ci u
. (4.8)

In the following lemma, we investigate the effect onP(i ∈ J (u)) of conditioning on Su = w:

Lemma 4.2 (The set J (u) conditionally on Su = w). There exists a constant d > 0 such
that for any i and w = o(u(τ−3)/2),
∣∣∣̃P( j ∈ J (u) | Su = w) − P̃( j ∈ J (u))

∣∣∣ ≤ dci P̃( j ∈ J (u))̃P( j /∈ J (u))u−(τ−3)/2.

(4.9)
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Proof By Lemma 4.1 (for the second term use G ≡ 1)

∣
∣̃P( j ∈ J (u) | Su = w) − P̃( j ∈ J (u))

∣
∣

= 1

f̃Su (w)

∣
∣
∣
∣

∫ +∞

−∞
e−ikw

Ẽ

[(
1{ j∈J (u)} − P̃( j ∈ J (u))

)
eikSu

] dk
2π

∣
∣
∣
∣

= 1

u(τ−3)/2 f̃Su (w)
∣
∣
∣
∣

∫ +∞

−∞
e−iku−(τ−3)/2w

Ẽ

[(
1{ j∈J (u)} − P̃( j ∈ J (u))

)
eiku

−(τ−3)/2Su
] dk

2π

∣
∣
∣
∣ . (4.10)

Recall Lemma 2.9. Under themeasure P̃, the distribution of the indicator processes (I j (t))t≥0

is that of independent indicator processes. Define S ( j)
u = Su − c j (I j (u) − c j u). By (1.21)

and (2.43), the random variables I j (u) and S ( j)
u are independent under P̃. This yields

∣
∣̃P( j ∈ J (u) | Su = w) − P̃( j ∈ J (u))

∣
∣

≤ 1

u(τ−3)/2 f̃Su (w)

∫ +∞

−∞

∣
∣∣Ẽ
[(
1{ j∈J (u)} − P̃( j ∈ J (u))

)
eiku

−(τ−3)/2c j (I j (u)−c j u)
]∣∣∣

∣∣∣Ẽ
[
eiku

−(τ−3)/2S( j)
u
]∣∣∣

dk

2π

= 1

u(τ−3)/2 f̃Su (w)

∫ +∞

−∞
P̃( j /∈ J (u))̃P( j ∈ J (u))

∣∣∣eiku
−(τ−3)/2c j − 1

∣∣∣

∣∣∣Ẽ
[
eiku

−(τ−3)/2S( j)
u
]∣∣∣

dk

2π
. (4.11)

Next we claim that there exist constants C1,C2 such that for all j ≥ 2

∣∣∣Ẽ
[
eiku

−(τ−3)/2S( j)
u
]∣∣∣ ≤ C1e

−C2|k|τ−2
. (4.12)

Indeed, for S ( j)
u replaced by Su the result was derived in the proof of Proposition 2.8 in [1].

To prove the same for S ( j)
u with j ≥ 2 arbitrary, and following the approach in [1], we obtain

for k
2π u

−(τ−3)/2−1 ≤ 1/8 the bound

log
(∣∣∣Ẽ

[
eiku

−(τ−3)/2S( j)
u
]∣∣∣
)

≤ −cu4−τ k2
∑

i≥2:ci<1/u,i �= j

c3i ≤ −c0|k|τ−2 + cu4−τ k2c3j1{c j<1/u}

≤ −c0|k|τ−2 + cu−(τ−1)k2 ≤ −c0|k|τ−2 + c, (4.13)

while for yk = 8 k
2π u

−(τ−3)/2 > u,

log
(∣∣∣Ẽ

[
eiku

−(τ−3)/2S( j)
u
]∣∣∣
)

≤ −c0|k|τ−2 + cu4−τ k2c3j1{c j<1/yk } ≤ −c0|k|τ−2 + cu4−τ k2y−3
k

≤ −c0|k|τ−2 + cu4−τu(τ−3)u−1 = −c0|k|τ−2 + c. (4.14)
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Substituting (4.12) in (4.11) yields
∣
∣̃P( j ∈ J (u) | Su = w) − P̃( j ∈ J (u))

∣
∣

≤ 1

u(τ−3)/2 f̃Su (w)

∫ +∞

−∞
P̃(i /∈ J (u))̃P(i ∈ J (u))

∣
∣
∣eiku

−(τ−3)/2c j − 1
∣
∣
∣C1e

−C2|k|τ−2 dk

2π
.

(4.15)

We further have
∣
∣
∣eiku

−(τ−3)/2c j − 1
∣
∣
∣ =

(
2(1 − cos(ku−(τ−3)/2c j ))

)1/2 ≤ √
2|k|u−(τ−3)/2c j , (4.16)

which yields
∣
∣̃P( j ∈ J (u) | Su = w) − P̃( j ∈ J (u))

∣
∣

≤ C3
1

u(τ−3)/2 f̃Su (w)

∫ +∞

−∞
P̃(i /∈ J (u))̃P(i ∈ J (u))ku−(τ−3)/2c je

−C2|k|τ−2 dk

2π

= C3P̃(i /∈ J (u))̃P(i ∈ J (u))u−(τ−3)/2c j
1

u(τ−3)/2 f̃Su (w)

∫ +∞

−∞
ke−C2|k|τ−2 dk

2π
.

(4.17)

For w = o(u(τ−3)/2) and by Proposition 2.8, u(τ−3)/2 f̃Su (w) = B(1 + o(1)) uniformly in
w and the claim in (i) follows. ��
Corollary 4.3 There exists a constant C > 0 such that for any i and w = o(u(τ−3)/2),

P̃(i ∈ J (u) | Su = w) ≤ C(1 ∧ ci u). (4.18)

Proof The bound by 1 is obvious. The bound by Cciu follows once we recall (2.30) and
observe that for c j ≤ 1/u, P̃(Tj ≤ u) = P̃( j ∈ J (u)) ≤ C(τ )c j u. Now use Lemma 4.2(i).

��

5 The Near-End Ground: Proof of Proposition 2.14

In this section, we prove Proposition 2.14. The proof is divided into several key parts. In
Sect. 5.1, we show convergence of the mean process Au in Proposition 2.14(a). In Sect. 5.2,
we prove the convergence of Bu in Proposition 2.14(b).

5.1 Convergence of the Mean Process Au

Recall the definition of Au from (2.50). By (4.8),

Au(tu
−(τ−2)) = −

∑

j∈J (u)

c j

[

u
e−c j (u−tu−(τ−2)) − e−c j u

1 − e−c j u
− tu−(τ−2)

]

. (5.1)

We use that |ex − 1 − x | ≤ eDx2/2 for 0 ≤ x ≤ D with x = c j tu−(τ−2), where for
0 ≤ t ≤ T , c j tu−(τ−2) ≤ tu−(τ−2) ≤ const., to obtain

Au(tu
−(τ−2)) = −

∑

j∈J (u)

c j tu
−(τ−2)

[
c j u

e−c j u

1 − e−c j u
− 1

]
+ Eu(t) (5.2)
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with an error term Eu(t) bounded by

|Eu(t)| ≤ C
∑

j∈J (u)

(
c j tu

−(τ−2)
)2

c j u
e−c j u

1 − e−c j u

≤ CT 2u−2(τ−2)

⎡

⎣u
∑

j∈J (u) : c j>1/u

c3j +
∑

j∈J (u) : c j≤1/u

c2j

⎤

⎦ , (5.3)

uniformly in t ≤ T . Since
∑

j≥2 c
3
j < ∞ and u−2(τ−2)+1 = u5−2τ = o(1), the first term

vanishes. Further, by Corollary 4.3 with w = v/u,

u−2(τ−2)
Ẽv

⎡

⎣
∑

j∈J (u) : c j≤1/u

c2j

⎤

⎦ = u−2(τ−2)
∑

j∈J (u) : c j≤1/u

c2j P̃v( j ∈ J (u)) ≤ u5−2τ

∑

j∈J (u) : c j≤1/u

c3j = o(1), (5.4)

so that also the second term is oP̃v (1).
In the above proof, we see that it is useful to split a sum over j ∈ J (u) into j ∈ J (u)

such that c j > 1/u and j ∈ J (u) such that c j ≤ 1/u. Then we use upper bounds similar to
the ones in Corollary 4.3 to bound the arising sums. We will follow this strategy often below.

We further rewrite (5.2) into

Au(tu
−(τ−2)) = t

∑

j∈J (u)

q j (u) + Eu(t) with

q j (u) ≡ u−(τ−2)c je
−c j u

ec j u − 1 − c j u

1 − e−c j u
. (5.5)

Note that 0 ≤ q j (u) ≤ 1 for u big. Below, we will frequently rely on the bounds

q j (u) ≤ C(τ )u−(τ−2)c j (1 ∧ c j u) (5.6)

and, using (2.30) for t = u,

P̃(Tj ≤ u) ≤ C(τ )(1 ∧ c j u), 1 − P̃(Tj ≤ u) ≤ e−c j u(1+θ). (5.7)

By (5.3), to prove the claim of Proposition 2.14(a), it is enough to show that

κu ≡
∑

j∈J (u)

q j (u) =
∑

j≥2

I j (u)q j (u)
P̃v−→ κ. (5.8)

For this, we compute the Laplace transform of κu under the measure P̃v using Lemma 4.1
and a change of variable. For a ≥ 0,

Ẽv[e−aκu ] = 1

u(τ−3)/2 f̃Su (v/u)

∫ +∞

−∞
e−ikvu−(τ−1)/2

Ẽ
[
e−aκu eiku

−(τ−3)/2Su
] dk
2π

. (5.9)

By Proposition 2.8, for each v > 0, u(τ−3)/2 f̃Su (v/u) → B. We aim to use dominated
convergence on the integral appearing in (5.9), for which we have to prove (a) pointwise
convergence for each k ∈ R; and (b) a uniform bound that is integrable. We start by proving
pointwise convergence:
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Lemma 5.1 (Pointwise convergence). For a ≥ 0 arbitrary, v = o(u(τ−1)/2), and with κu as
in (5.8),

e−ikvu−(τ−1)/2
Ẽ
[
e−aκu eiku

−(τ−3)/2Su
] = e−aκe−IV (1)k2/2 + o(1). (5.10)

Proof Trivially, e−ikvu−(τ−1)/2 → 1 pointwise when v = o(u(τ−1)/2). To compute
Ẽ
[
e−aκu eiku

−(τ−3)/2Su
]
, recall the definition of Su from (1.21) and recall that the indicator

processes I j (t) = 1{Tj≤t} are independent under the measure P̃ (cf. Lemma 2.9), to see that

Ẽ
[
e−aκu eiku

−(τ−3)/2Su
] = eiku

−(τ−3)/2+β̃iku−(τ−5)/2

×
∏

j≥2

e−iku−(τ−5)/2c2j
(
1 + (e−aq j (u)+iku−(τ−3)/2c j − 1

)̃
P(Tj ≤ u)

)
. (5.11)

The remainder of the proof proceeds in three steps.

Step 1: Asymptotic factorization We start by proving that

Ẽ
[
e−aκu eiku

−(τ−3)/2Su
] = e−aẼ[κu ]Ẽ

[
eiku

−(τ−3)/2Su
]+ o(1). (5.12)

To this end, we first use
∣∣∣
∏

j≥2

a j −
∏

j≥2

b j

∣∣∣ ≤
∑

j≥2

∏

j1< j

|a j1 ||a j − b j ||
∏

j2> j

|b j2 | ≤
∑

j≥2

|a j − b j |

if sup
j

(|a j | ∨ |b j |) ≤ 1, (5.13)

to get (recall that q j (u) ≥ 0)
∣∣∣
∏

j≥2

a j −
∏

j≥2

b j

∣∣∣ =
∣∣∣Ẽ
[
e−aκu eiku

−(τ−3)/2Su
]− e−aẼ[κu ]Ẽ

[
eiku

−(τ−3)/2Su
]∣∣∣

=
∣∣∣
∏

j≥2

Ẽ
[
e−aI j (u)q j (u)+iku−(τ−3)/2c jI j (u)

]

−
∏

j≥2

e−aq j (u)̃P(Tj≤u)
Ẽ
[
eiku

−(τ−3)/2c jI j (u)
]∣∣∣

≤
∑

j≥2

∣∣∣Ẽ
[
e−aI j (u)q j (u)+iku−(τ−3)/2c jI j (u)

]

− e−aq j (u)̃P(Tj≤u)
Ẽ
[
eiku

−(τ−3)/2c jI j (u)
]∣∣∣

≡
∑

j≥2

� j (−aq j (u)), (5.14)

where we abbreviate q ≡ −aq j (u) ≤ 0 such that

� j (q) =
∣∣∣Ẽ
[
eI j (u)q+iku−(τ−3)/2c jI j (u)

]− eqP̃(Tj≤u)
Ẽ
[
eiku

−(τ−3)/2c jI j (u)
]∣∣∣ . (5.15)

To bound � j (q), we write eiku
−(τ−3)/2c j = 1 + (eiku

−(τ−3)/2c j − 1) and use the triangle
inequality to bound each summand by
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� j (q) =
∣
∣
∣
(
1 − P̃(Tj ≤ u) + eqeiku

−(τ−3)/2c j P̃(Tj ≤ u)
)

−eqP̃(Tj≤u)
(
1 − P̃(Tj ≤ u) + eiku

−(τ−3)/2c j P̃(Tj ≤ u)
)∣∣
∣

≤
∣
∣
∣1 − P̃(Tj ≤ u) + eq P̃(Tj ≤ u) − eqP̃(Tj≤u)

∣
∣
∣

+
∣
∣
∣eq − eqP̃(Tj≤u)

∣
∣
∣
∣
∣
∣eiku

−(τ−3)/2c j − 1
∣
∣
∣ P̃(Tj ≤ u). (5.16)

We can bound

∣
∣
∣eq − eqP̃(Tj≤u)

∣
∣
∣ ≤ |q|e(q∨0) and

∣
∣
∣eiku

−(τ−3)/2c j − 1
∣
∣
∣ ≤ |k|u−(τ−3)/2c j , (5.17)

which gives a bound |q|e(q∨0)|k|u−(τ−3)/2c j P̃(Tj ≤ u) on the last line of (5.16).
To bound the first line of (5.16), we use the error bounds |e−x − 1 + x | ≤ |x |2 for all

x ≥ 0 to all the exponential functions in it, to obtain

∣∣∣1 − P̃(Tj ≤ u) + eq P̃(Tj ≤ u) − eqP̃(Tj≤u)
∣∣∣ ≤ Cq2P̃(Tj ≤ u). (5.18)

Together, this leads us to

� j (−aq j (u)) = � j (q) ≤ C |q|e(q∨0)(|q| + |k|u−(τ−3)/2c j
)

≤ C(a)q j (u)
(
q j (u) + |k|u−(τ−3)/2c j

)
≡ � j . (5.19)

To prove (5.12), by (5.14) and (5.19) it is enough to show that
∑

j≥2 � j = o(1). Consider
the sum over c j > 1/u first. By (5.6),

∑

j≥2 : c j>1/u

� j ≤ C
∑

j≥2 : c j>1/u

u−(τ−2)c j
(
u−(τ−2)c j + c j u

−(τ−3)/2
)

≤ C
∑

j≥2 : c j>1/u

u−(τ−2)u−(τ−3)/2c2j ≤ C
∑

j≥2 : c j>1/u

u−3(τ−3)/2c3j = o(1),

(5.20)

where we have used that
∑

j c
3
j < ∞ and τ > 3 in the last equality. For c j ≤ 1/u and by

(5.6), we similarly get

∑

j≥2 : c j≤1/u

� j ≤ C
∑

j≥2 : c j≤1/u

u−(τ−3)c2j

(
u−(τ−3)c2j + c j u

−(τ−3)/2
)

≤ C

∑

j≥2 : c j≤1/u

u−3(τ−3)/2c3j = o(1). (5.21)

This completes the proof that
∑

j≥2 � j = o(1) and thus of the claim in (5.12). ��
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Step 2: The limit of Ẽ[κu]. We proceed by showing that limu→∞ Ẽ[κu] = κ with κ > 0 as
in (2.52). By definition of κu in (5.8), q j (u) in (5.5) and P̃(Tj ≤ u) in (2.30),

lim
u→∞ Ẽ[κu] = lim

u→∞
∑

j≥2

q j (u)̃P(Tj ≤ u)

= lim
u→∞ u−(τ−1)

∑

j≥2

c j ue
−c j u

ec j u − 1 − c j u

1 − e−c j u

eθc j u
(
1 − e−c j u

)

eθc j u
(
1 − e−c j u

)+ e−c j u

= lim
�→0+ �

∑

j≥2

x−α
j e−x−α

j

[
ex

−α
j − 1 − x−α

j

] eθx−α
j

eθx−α
j

(
1 − e−x−α

j

)
+ e−x−α

j

=
∫ ∞

0
x−α eθx−α

e−x−α

eθx−α
(1 − e−x−α

) + e−x−α

[
ex

−α − 1 − x−α
]
dx, (5.22)

with � = u−(τ−1) and x j = j�, j ≥ 2. Here we used that the integrand in the last line
of (5.22) is continuous and integrable over (0,∞). Set −x−α = z to get the representation
(2.52) for κ . ��
Step 3: Completion of the proof By Proposition 2.7, we know that

Ẽ

[
eiku

−(τ−3)/2Su
]

→ e−k2 IV (1)/2. (5.23)

Therefore, Steps 1-2 and (5.23) complete the proof of pointwise convergence in Lemma 5.1.
��

To show that the dominated convergence theorem can be applied, it remains to show that
the integrand in (5.9) has an integrable dominating function:

Lemma 5.2 (Domination by an integrable function).
∫ ∞

−∞
sup
u≥u0

∣∣∣Ẽ
[
e−aκu eiku

−(τ−3)/2Su
]∣∣∣ dk < ∞. (5.24)

Proof By definition of Su from (1.21) and the independence in Lemma 2.9,
∣∣∣Ẽ
[
e−aκu eiku

−(τ−3)/2Su
]∣∣∣

2

≤
∏

j≥2

∣∣∣̃P(Tj ≤ u)e−aq j (u)eiku
−(τ−3)/2c j + (1 − P̃(Tj ≤ u))

∣∣∣
2

=
∏

j≥2

[
1 + P̃(Tj ≤ u)2(e−2aq j (u) + 1)

+2P̃(Tj ≤ u) cos
(
ku−(τ−3)/2c j

)
e−aq j (u)(1 − P̃(Tj ≤ u)) − 2P̃(Tj ≤ u)

]
.

(5.25)

We can rewrite each factor as

1 − 2P̃(Tj ≤ u)
{
P̃(Tj ≤ u)

(
1 − e−2aq j (u)

)
/2 +

(
1 − cos

(
ku−(τ−3)/2c j

)
e−aq j (u)

)

(1 − P̃(Tj ≤ u))
}

≤ 1 − 2P̃(Tj ≤ u)
(
1 − cos

(
ku−(τ−3)/2c j

)
e−aq j (u)

)
(1 − P̃(Tj ≤ u)), (5.26)
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since q j (u) ≥ 0. We then use log(1 + x) ≤ x for x ≥ −1 to obtain

log

(∣
∣
∣Ẽ
[
e−aκu eiku

−(τ−3)/2Su
]∣∣
∣
2
)

≤
∑

j≥2

2P̃(Tj ≤ u)
(
cos(ku−(τ−3)/2c j )e

−aq j (u) − 1
)
(1 − P̃(Tj ≤ u)). (5.27)

The latter equals
∑

j≥2

2P̃(Tj ≤ u)(cos(ku−(τ−3)/2c j ) − 1)(1 − P̃(Tj ≤ u)) + e j (u), (5.28)

with an overall error term (using that sup j q j (u) is arbitrarily small for u big enough)

∑

j≥2

|e j (u)| ≤ C(a)
∑

j≥2

P̃(Tj ≤ u)q j (u)(1 − P̃(Tj ≤ u)). (5.29)

Applying (5.7), we get

∑

j≥2

|e j (u)| ≤ C(a)
{ ∑

j≥2:c j>1/u

u−(τ−2)c je
−c j u(1+θ) +

∑

j≥2:c j≤1/u

c j uu
−(τ−2)c2j u

}
≤ C(a),

(5.30)

where we have used the bounds
∑

i :ci>1/u

u−(τ−2)c je
−c j u(1+θ) ≤ 1, u−(τ−4)

∑

i :ci≤1/u

c3i ≤ C(τ ), (5.31)

whose proof is straightforward.
Together with (5.27) and (5.28), we obtain

log
(∣∣∣Ẽ
[
e−aκu eiku

−(τ−3)/2Su
]∣∣∣
)

≤
∑

j≥2

P̃(Tj ≤ u)
(
cos(ku−(τ−3)/2c j ) − 1

)
(1 − P̃(Tj ≤ u)) + C(a). (5.32)

As all summands are nonpositive we obtain together with (2.30)

log
(∣∣∣Ẽ
[
e−aκu eiku

−(τ−3)/2Su
]∣∣∣
)

≤ C
∑

j≥2:c j≤1/u

c j u
(
cos(ku−(τ−3)/2c j ) − 1

)
+ C(a). (5.33)

Following the proof of [1, Proposition 2.5, (6.7)-(6.10)], we obtain

log
(∣∣∣Ẽ
[
e−aκu eiku

−(τ−3)/2Su
]∣∣∣
)

≤ C1 − C2|k|τ−2 (5.34)

and integrability of |Ẽ[e−aκu eiku
−(τ−3)/2Su ]| against k uniformly in u follows. ��

Completion of the proof of Proposition 2.14(a). By the dominated convergence theorem,
Lemmas 5.1 and 5.2 complete the proof of Proposition 2.14(a). ��
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5.2 Convergence of the Process Bu

In this section, we investigate the convergence of the Bu process and prove Proposition
2.14(b). Since the limit is a random process, this part is more involved than the previous
section. We first note that

Bu(tu
−(τ−2)) =

∑

i∈J (u)

ci u
[
1{Ti∈(u−tu−(τ−2),u]} − P̃

(
Ti > u − tu−(τ−2) | Ti ≤ u

)]
,

(5.35)

and the processes (1{Ti∈(u−tu−(τ−2),u]})t≥0 are, conditionally on J (u), independent. Thus,

(Bu(tu−(τ−2)))t≥0 is, conditionally onJ (u), a sum of (conditionally) independent processes
having zeromean.Wemake crucial use of this observation, aswell as the technique in Lemma
4.1, to compute expectations of various functionals of the process (Bu(tu−(τ−2)))t≥0.

In order to prove the stated convergence in distribution, we follow the usual path of first
proving weak convergence of the one-dimensional marginals, followed by the weak conver-
gence of all finite-dimensional distributions, and complete the proof by showing tightness.
We now discuss each of these steps in more detail.

5.2.1 Convergence of the One-Dimensional Marginal of Bu

We start by computing the one-dimensional marginal of Bu(tu−(τ−2)) (recall (5.35)) and
show that it is consistent with the claimed Lévy process limit. We achieve this by computing
the Laplace transform

ψu,v(a) = Ẽv

[
e−aBu(tu−(τ−2))

]
, (5.36)

and proving that it converges to the Laplace transform of the claimed Lévy process limit at
time t . The main result in this section is the following proposition:

Proposition 5.3 (One-time marginal of Bu(tu−(τ−2))). There exists a measure � such that,
for every v, a > 0 fixed and as u → ∞,

ψv,u(a) → et
∫∞
0 (e−az−1+az)�(dz), (5.37)

which is the Laplace transform of a Lévy process (Ls)s≥0 with non-negative jumps and
characteristic measure �

�(dz) ≡ ez
e−θ z

e−θ z(1 − ez) + ez
(τ − 1)(−z)−(τ−1)dz. (5.38)

Therefore, the one-dimensionalmarginals of the process (Bu(su−(τ−2)))t≥0 converge to those
of (Ls)s≥0.

The remainder of this section is devoted to the proof of Proposition 5.3. As for Au , we
use Lemma 4.1 and a change of variables to rewrite

ψv,u(a) ≡ Ẽv

[
e−aBu(tu−(τ−2))

]

= 1

u(τ−3)/2 f̃Su (v/u)

∫ +∞

−∞
e−ikvu−(τ−1)/2

Ẽ

[
e−aBu(tu−(τ−2))eiku

−(τ−3)/2Su
] dk
2π

= 1

u(τ−3)/2 f̃Su (v/u)

∫ +∞

−∞
e−ikvu−(τ−1)/2

Ẽ

[
ψJ (a)eiku

−(τ−3)/2Su
] dk
2π

, (5.39)
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where

ψJ (a) ≡ Ẽ

[
e−aBu(tu−(τ−2)) | J (u)

]

=
∏

j∈J (u)

eac j uP̃(Tj>u−tu−(τ−2)|Tj≤u)

(
1 + (e−ac j u − 1)̃P(Tj > u − tu−(τ−2) | Tj ≤ u)

)

=
∏

j∈J (u)

eac j up
u
j,t

(
1 + (e−ac j u − 1)puj,t

)
, (5.40)

and where we abbreviate

puj,t = P̃

(
Tj > u − tu−(τ−2) | Tj ≤ u

)
= ec j tu

−(τ−2) − 1

1 − e−c j u
e−c j u, (5.41)

by (4.8). We again wish to use dominated convergence on the integral in (5.39).
We proceed along the lines of the proof of the convergence of the mean process Au .

Basically, in the proof below, we replace −aκu in (5.9) (recall the definition of κu and q j (u)

from (5.8) and (5.5)) by
∑

j∈J (u) r
u
j,t , where we define

ruj,t ≡ (e−ac j u − 1 + ac j u
)
puj,t = (e−ac j u − 1 + ac j u

) ec j tu
−(τ−2) − 1

1 − e−c j u
e−c j u . (5.42)

In what follows, we frequently make use of the bounds

puj,t ≤ Ctu−(τ−1) (c j ue−c j u ∧ 1
) ≤ Ctu−(τ−1), (5.43)

and

ruj,t ≤ C(a, T )c j u
−(τ−2)(1 ∧ c j u). (5.44)

We again start by proving pointwise convergence:

Lemma 5.4 [Pointwise convergence revisited] For a ≥ 0 arbitrary, v = o(u(τ−1)/2),

e−ikvu−(τ−1)/2
Ẽ
[
ψJ (a)eiku

−(τ−3)/2Su
] = et

∫ 0
−∞(eaz−1−az)�(dz)e−IV (1)k2/2 + o(1). (5.45)

Proof The first factor on the left-hand side of (5.45) converges to 1. We identify the limit of
the expectation in the following steps that mimic the pointwise convergence proof in Lemma
5.1. It will be convenient to split the asymptotic factorization in Step 1 of that proof into two
parts, denoted by Steps 1(a) and 1(b). We start by showing that we can simplify ψJ (a):

Step 1(a): Simplification of ψJ (a)As a first step towards the identification of the pointwise
limit, we show that we can simplify the expectation in (5.45) as follows:

Ẽ

[∣∣∣ψJ (a) − e
∑

j∈J (u) r
u
j,t

∣∣∣
]

= o(1). (5.46)

To prove (5.46), we denote the difference in (5.46) by

Eu(t) =
∏

j∈J (u)

eac j up
u
j,t

∣∣∣∣∣∣

∏

j∈J (u)

(
1 + (e−ac j u − 1)puj,t

)
−

∏

j∈J (u)

e(e−ac j u−1)puj,t

∣∣∣∣∣∣
, (5.47)

so that
∣∣∣Ẽ
[∣∣∣ψJ (a) − e

∑
j∈J (u) r

u
j,t

∣∣∣
] ∣∣∣ ≤ Ẽ[Eu(t)]. (5.48)
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Using the first line of (5.13) and applying the error bound |ex −(1+x)| ≤ |x |2 for |x | ≤ 1
to the differences |a j − b j |, the error of the approximation can be bounded by

Eu(t) ≤ C
∏

j∈J (u)

eac j up
u
j,t
∑

j∈J (u)

∏

i∈J (u),i< j

(
1 + (e−aci u − 1)pui,t

) [(
e−ac j u − 1

)
puj,t

]2

∏

i∈J (u),i> j

e(e
−aci u−1)pui,t . (5.49)

Next use that 1 − x ≤ e−x for x ≥ 0 to obtain as a further bound to the above

C
∑

j∈J (u)

eac j up
u
j,t

∏

i∈J (u)\{ j}
e(e

−aci u−1+aci u)pui,t
[(
e−ac j u − 1

)
puj,t

]2
. (5.50)

For t ≤ T with T > 0 fixed, we further have by (5.43) that eac j up
u
j,t ≤ C(a, T ). Together

with e−x − 1 + x ≥ 0 for x ≥ 0, we obtain

Eu(t) ≤ C(a, T )
∏

i∈J (u)

e(e
−aci u−1+aci u)pui,t

∑

j∈J (u)

[(
e−ac j u − 1

)
puj,t

]2
. (5.51)

The bound e−x − 1 + x ≤ x2/2, ∀x ≥ 0 yields

Eu(t) ≤ C(a, T )e
a2
2

∑
i∈J (u)(ci u)2 pui,t

∑

j∈J (u)

[(
e−ac j u − 1

)
puj,t

]2
. (5.52)

We first bound the sum in (5.52). With 1 − e−x ≤ x for x ≥ 0 and by (5.43) we obtain

∑

j∈J (u)

[(
e−ac j u − 1

)
puj,t

]2

≤
∑

j∈J (u)

(ac j u)2
(
puj,t

)2 ≤ C(a, T )u−2(τ−3)−1
{
C +

∑

j∈J (u) : c j≤1/u

c2j u
−1
}
. (5.53)

This yields as an upper bound for (5.46) (recall (5.48)),

Ẽ[Eu(t)] ≤ C(a, T )u−2(τ−3)−1
{
Ẽ

[
e
a2
2

∑
i∈J (u)(ci u)2 pui,t

]

+
∑

j : c j≤1/u

c2j u
−1

Ẽ

[
1{ j∈J (u)}e

a2
2 (c j u)2 puj,t

]
Ẽ

[
e
a2
2

∑
i∈J (u)\{ j}(ci u)2 pui,t

]}

≤ C(a, T )u−2(τ−3)−1

⎧
⎨

⎩
1 +

∑

j : c j≤1/u

c3j

⎫
⎬

⎭
Ẽ

[
e
a2
2

∑
i∈J (u)(ci u)2 pui,t

]
, (5.54)

where we have used (5.7) in the last line.

The claim (5.46) follows once we show that Ẽ

[
e
a2
2

∑
i∈J (u)(ci u)2 pui,t

]
is bounded. To prove

this, consider first the sum over ci > 1/u only. By (5.43) and (5.31),
∑

i∈J (u):ci>1/u

(ci u)2 pui,t ≤ C
∑

i∈J (u):ci>1/u

(ci u)2ci tu
−(τ−2)e−ci u ≤ C

∑

i :ci>1/u

tu−(τ−1) ≤ C(T ). (5.55)
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Using (5.43) once more, it remains to show the boundedness of

Ẽ

[
e
a2
2

∑
i∈J (u):ci≤1/u(ci u)2 pui,t

]

≤ Ẽ

[
eC(a)

∑
i∈J (u):ci≤1/u(ci u)2tu−(τ−1)]

=
∏

ci≤1/u

(
P̃(Ti ≤ u)eC(a)(ci u)2tu−(τ−1) + (1 − P̃(Ti ≤ u))

)
, (5.56)

which is equivalent to bounding

∑

ci≤1/u

log
(
P̃(Ti ≤ u)eC(a)(ci u)2tu−(τ−1) + (1 − P̃(Ti ≤ u))

)

≤
∑

ci≤1/u

P̃(Ti ≤ u)
(
eC(a)(ci u)2tu−(τ−1) − 1

)
(5.57)

appropriately. Here we used that log(1 + x) ≤ x for x ≥ 0. Next bound P̃(Ti ≤ u) ≤ Cciu
in the above to obtain that for ci ≤ 1/u we have C(a)(ci u)2tu−(τ−1) ≤ C(a, T )u−(τ−1) ≤
log(2) for u big enough. Hence we can use that ex − 1 ≤ 2x for 0 ≤ x ≤ log(2) and thus
get as a further upper bound to (5.57)

C(a, T )
∑

ci≤1/u

ci u(ci u)2u−(τ−1) ≤ C(a, T ). (5.58)

The last inequality follows from (5.31). This completes the proof of (5.46). ��

Step 1(b): Asymptotic factorization We next show that

Ẽ
[
e
∑

j∈J (u) r
u
j,t eiku

−(τ−3)/2Su
] = eẼ[∑ j∈J (u) r

u
j,t ]Ẽ

[
eiku

−(τ−3)/2Su
]+ o(1). (5.59)

To prove (5.59), we note that, by the definition of ruj,t in (5.42),

Ēu(t) ≡
∣∣∣∣Ẽ
[
e
∑

j∈J (u) r
u
j,t eiku

−(τ−3)/2Su
]− e

Ẽ

[∑
j∈J (u) r

u
j,t

]

Ẽ
[
eiku

−(τ−3)/2Su
]
∣∣∣∣

=
∣∣∣∣∣∣

∏

j≥2

Ẽ
[
eI j (u)ruj,t+iku−(τ−3)/2c jI j (u)]−

∏

j≥2

er
u
j,t P̃(Tj≤u)

Ẽ
[
eiku

−(τ−3)/2c jI j (u)
]
∣∣∣∣∣∣
. (5.60)

As in the calculations of the Laplace transform of Au in (5.14), we now apply (5.13). Note
that here we cannot apply the second bound of (5.13) as sup j (|a j | ∨ |b j |) is not bounded by
1 (recall that ruj,t ≥ 0). Instead, we get

Ēu(t) ≤
∑

j≥2

∏

2≤ j1≤ j−1

∣∣∣Ẽ
[
eI j1 (u)ruj1,t+iku−(τ−3)/2c j1I j1 (u)]∣∣∣

×
∣∣∣Ẽ
[
eI j (u)ruj,t+iku−(τ−3)/2c jI j (u)]− er

u
j,t P̃(Tj≤u)

Ẽ
[
eiku

−(τ−3)/2c jI j (u)
]∣∣∣

×
∏

j2≥ j+1

∣∣∣e
ruj2,t P̃(Tj2≤u)

Ẽ
[
eiku

−(τ−3)/2c j2I j2 (u)
]∣∣∣ . (5.61)

123



88 R. van der Hofstad et al.

We proceed to prove that the first and the third product are bounded by constants. Indeed, we
can bound the third product using (5.7) by

∏

j2≥ j+1

er
u
j2,t P̃(Tj2≤u) ≤ eC

∑
j≥2 r

u
j,t (c j u∧1)

, (5.62)

where, by (5.44) and (5.31),
∑

j≥2

ruj,t (c j u ∧ 1) ≤ C. (5.63)

For the first product in (5.61), we obtain as an upper bound
∏

j≥2

Ẽ
[
eI j (u)ruj,t

] =
∏

j≥2

(
P̃(Tj ≤ u)er

u
j,t + (1 − P̃(Tj ≤ u))

)

=
∏

j≥2

(
1 + P̃(Tj ≤ u)(er

u
j,t − 1)

)
≤ e

∑
j≥2 P̃(Tj≤u)(e

ruj,t −1)
. (5.64)

As ruj,t is uniformly bounded for u big enough the above is again bounded by (5.63).
Hence, it suffices to bound the middle part of (5.61), that is, it remains to show that

∑

j≥2

∣∣∣Ẽ
[
eI j (u)ruj,t+iku−(τ−3)/2c jI j (u)]− er

u
j,t P̃(Tj≤u)

Ẽ
[
eiku

−(τ−3)/2c jI j (u)
]∣∣∣

= � j

(
ruj,t

)
= o(1), (5.65)

where we recall the definition of � j (q) in (5.15). By (5.19),

� j

(
ruj,t

)
≤ Cruj,te

ruj,t
(
ruj,t + |k|u−(τ−3)/2c j

)
(5.66)

for u = u(k) big enough. The bound on ruj,t in (5.44) is equal to C(a, T ) times the bounds
on q j (u) in (5.6). The remaining calculations for Au in (5.19)–(5.21) therefore directly carry
over, so that (5.65) follows. ��
Step 2: The limit of E[∑ j∈J (u) r

u
j,t ]. In this step, we identify the limit of E[∑ j∈J (u) r

u
j,t ].

For this, we use that by definition of ruj,t in (5.42), that of puj,t in (5.41), and (2.30) with
t = u,

Ẽ

[ ∑

j∈J (u)

ruj,t

]
=
∑

j≥2

(e−ac j u − 1 + ac j u)
ec j tu

−(τ−2) − 1

1 − e−c j u
e−c j u

eθc j u
(
1 − e−c j u

)

eθc j u
(
1 − e−c j u

)+ e−c j u

= tu−(τ−1)
∑

j≥2

(
e−ac j u − 1 + ac j u

) ec j utu
−(τ−1) − 1

tu−(τ−1)
e−c j u

eθc j u

eθc j u
(
1 − e−c j u

)+ e−c j u

u→∞→ t
∫ ∞

0

(
e−ax−α − 1 + ax−α

)
x−αe−x−α

eθx−α

eθx−α
(
1 − e−x−α

)+ e−x−α dx . (5.67)
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The convergence of the sum to the integral follows as in (5.22). Next set −x−α = z to get

lim
u→∞

1

t
Ẽ

⎡

⎣
∑

j∈J (u)

ruj,t

⎤

⎦ =
∫ 0

−∞
(eaz − 1 − az)�(dz), (5.68)

with �(dz) as in (5.38), respectively, (2.55). For � to be the Lévy measure of a real-valued
Lévy process with no positive jumps as in [5, Sect. V.1], by the Lévy-Khintchine formula in
[5, Sect. 0.2 and Theorem1 in Sect. I.1], we have to check that� is ameasure on (−∞, 0) that
satisfies

∫
�(dz)(1∧ z2) < ∞. Indeed, close to 0, z2�(dz) behaves like (τ − 1)z−(τ−3)dz,

which is integrable at 0 and for z → ∞, �(dz) behaves like e−z(τ − 1)z−(τ−1)dz, whose
integral is finite for all n ∈ N. ��
Step 3: Completion of the proof The convergence of Ẽ

[
eiku

−(τ−3)/2Su
] → e−k2 IV (1)/2 is

already proved in (5.23). Therefore, Steps 1(a)–1(b) and 2, together with (5.23), complete
the proof of pointwise convergence in Lemma 5.4. ��

To show that the dominated convergence theorem can be applied, it again remains to show
that the integrand has an integrable dominating function:

Lemma 5.5 (Domination by an integrable function).

∫ ∞

−∞
sup
u≥u0

∣∣∣Ẽ
[
ψJ (a)eiku

−(τ−3)/2Su
]∣∣∣ dk < ∞. (5.69)

Proof This follows in a similar way as in the proof of Lemma 5.2. We compute

∣∣∣Ẽ
[
ψJ (a)eiku

−(τ−3)/2Su
]∣∣∣
2 =

∣∣∣Ẽ
[
eiku

−(τ−3)/2Su
∏

j∈J (u)

eac j up
u
j,t
(
1 + (e−ac j u − 1)puj,t

)]∣∣∣
2

=
∏

j≥2

∣∣∣1 − P̃(Tj ≤ u) + eiku
−(τ−3)/2c j P̃(Tj ≤ u)eac j up

u
j,t

(
1 + (e−ac j u − 1)puj,t

)∣∣∣
2
. (5.70)

This is identical to the bound appearing in (5.25), apart from the fact that the term e−aq j (u)

in (5.25) is replaced with b j,t (u) = eac j up
u
j,t
(
1+ (e−ac j u − 1)puj,t

)
in the above. Proceeding

as in (5.25) to (5.28), we finally obtain

log
∣∣∣Ẽ
[
ψJ (a)eiku

−(τ−3)/2Su
]∣∣∣

2

≤
∑

j≥2

2P̃(Tj ≤ u)
[
P̃(Tj ≤ u)((b j,t (u))2 − 1)/2 + ( cos(ku−(τ−3)/2c j )b j,t (u) − 1

)

× (1 − P̃(Tj ≤ u)), (5.71)

where the additional first term in comparison to (5.27) arises because b j,t (u) ≤ 1 no longer
holds. Indeed, since exp(1 + (e−x − 1)p) ≥ 1 for x ≥ 0 and p ∈ [0, 1], we have that
b j,t (u) ≥ 1. Further,

b j,t (u) = eac j up
u
j,t
(
1 + (e−ac j u − 1)puj,t

) ≤ e(e−ac j u−1+ac j u)puj,t = er j,t (u). (5.72)
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The first part of the sum in (5.71) can, by (5.72) and since ex −1 ≤ 2x for 0 ≤ x ≤ log(2),
be bounded by

∑

j≥2

P̃(Tj ≤ u)2
(
e2r

u
j,t − 1

)

≤ C(a, T )
∑

j≥2

(1 ∧ c j u)2ruj,t . (5.73)

Now we can apply (5.44) and (5.31) to get as a further bound

C(a, T )

⎧
⎨

⎩

∑

j≥2:c j>1/u

u−(τ−1) +
∑

j≥2:c j≤1/u

c3j u
−(τ−4)

⎫
⎬

⎭
≤ C. (5.74)

For the second part of the sum (5.71), we proceed as in (5.27)–(5.34) to split it as

−
∑

j≥2

2P̃(Tj ≤ u)̃P(Tj ≤ u)
(
1 − cos(ku−(τ−3)/2c j )

)
(1 − P̃(Tj ≤ u))

+
∑

j≥2

P̃(Tj ≤ u) cos(ku−(τ−3)/2c j )(b j,t (u) − 1)(1 − P̃(Tj ≤ u)). (5.75)

By a second order Taylor expansion and the fact that r j,t (u) is bounded, there exists a constant
C such that b j,t (u)−1 ≤ Cr j,t (u).Nowwe can proceed as in (5.27)–(5.34), where we again
take advantage of being able to dominate the bounds on ruj,t in (5.44) by the bounds on q j (u)

in (5.6). Integrability of |Ẽ[ψJ (a)eiku
−(τ−3)/2Su ]| against k follows. ��

Proof of Proposition 5.3. The claim follows from Lemmas 5.4, 5.5 and the dominated
convergence theorem. ��

5.2.2 Convergence of the Finite-Dimensional Distributions of Bu

In this section, the convergence of the one-dimensional marginals of the process
(Bu(tu−(τ−2)))t≥0 gets extended to convergence of its finite-dimensional distributions.
In the same way as above, it can be shown that, for 0 < t1 · · · < tn , the increments
(Bu(ti u−(τ−2)) − Bu(ti−1u−(τ−2)))ni=1 (where, by convention, t0 = 0) converge in dis-
tribution, under P̃v , to independent Lévy random variables with the correct distribution.

In what follows, we only outline some minor changes in the proof. Instead of (5.40), we
fix n ∈ N, a ∈ (R+)n and 0 = t0 < t1 < · · · < tn ≤ T and consider

ψJ (a) ≡ Ẽ

[
e−∑n

k=1 ak
(
Bu (tku−(τ−2))−Bu (tk−1u−(τ−2))

)
| J (u)

]

=
∏

j∈J (u)

e
c j u

∑n
k=1 ak p

u
j,tk−1,tk

(

1 +
n∑

k=1

(e−akc j u − 1)puj,tk−1,tk

)

(5.76)

with (the two-point analogue to (5.43))

puj,s,t ≡ P̃

(
Tj ∈ (u − tu−(τ−2), u − su−(τ−2)] | Tj ≤ u

)

= e−c j u e
c j tu−(τ−2) − ec j su

−(τ−2)

1 − e−c j u
(5.77)
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for 0 ≤ s ≤ t ≤ T , using (4.8). Then, clearly, (5.43) is replaced with

puj,s,t ≤ C(t − s)u−(τ−1)(e−c j uc j u ∧ 1). (5.78)

We follow Steps 1(a)–(b) to Step 3 in the proof of convergence of the one-time marginal.
Similarly to Step 1(a), one can show that

Ẽ

[∣∣
∣ψJ (a) −

∏

j∈J (u)

e
∑n

k=1(e
−ak c j u−1+akc j u)puj,tk−1,tk

∣
∣
∣
]

= o(1). (5.79)

We then continue to reason as from (5.39) onwards, where ruj,t in (5.42) gets replaced by

ruj,t ≡
n∑

k=1

(
e−akc j u − 1 + akc j u

)
puj,tk−1,tk . (5.80)

The remaining calculations are analogous to the one-dimensional case. The asymptotic fac-
torization in Step 1(b) is replaced with

Ẽ
[
e
∑

j∈J (u) r
u
j,teiku

−(τ−3)/2Su
] = eẼ[∑ j∈J (u) r

u
j,t]Ẽ

[
eiku

−(τ−3)/2Su
]+ o(1) (5.81)

and we calculate the limit of Ẽ[∑ j∈J (u) r
u
j,t] in a similar way as in Step 2 in the previous

subsection as

Ẽ

[ ∑

j∈J (u)

ruj,t

]
=
∑

j≥2

n∑

k=1

(e−akc j u − 1 + akc j u)
ec j tku

−(τ−2) − ec j tk−1u−(τ−2)

1 − e−c j u

e−c j u P̃( j ∈ J (u))

u→∞→
∫ ∞

0

n∑

k=1

(e−ak x−α − 1 + akx
−α)x−α(tk − tk−1)e

−x−α

eθx−α

eθx−α
(
1 − e−x−α

)+ e−x−α dx

=
∫ 0

−∞

n∑

k=1

(
eak z − 1 − akz

)
(tk − tk−1)�(dz). (5.82)

Finally, we note that

lim
u→∞ e

Ẽ

[∑
j∈J (u) r

u
j,t

]

= exp

[∫ 0

−∞

n∑

k=1

(eak z − 1 − akz)(tk − tk−1)�(dz)

]

= E

[
e
∑n

k=1 ak (−(Ltk −Ltk−1 ))
]
, (5.83)

where we have used that, by definition, Lévy processes have independent stationary
increments. This completes the convergence of the finite-dimensional distributions of
(Bu(tu−(τ−2)))t≥0. ��

5.2.3 Tightness of Bu

We next turn to tightness of the process (Bu(tu−(τ−2)))t≥0. For this, we use the following
tightness criterion:
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Proposition 5.6 (Tightness criterion [8, Theorem 15.6 and the comment following it]). The
sequence {Xn} is tight in D([0, T ], R

d) if the limiting process X has a.s. no discontinuity at
t = T and there exist constants C > 0, r > 0 and a > 1 such that for 0 ≤ t1 < t2 < t3 ≤ T
and for all n,

E

[
|Xn(t2) − Xn(t1)|r |Xn(t3) − Xn(t2)|r

]
≤ C |t3 − t1|a . (5.84)

Let

V (u)(t) = Bu(tu
−(τ−2)) =

∑

i∈J (u)

ci u
[
1{Ti∈(u−tu−(τ−2),u]}

−P̃(Ti > u − tu−(τ−2) | Ti ≤ u)
]
. (5.85)

We show tightness of V (u)(t) given uSu = v. In what follows, we therefore bound

Ẽv

[(
V (u)(t2) − V (u)(t1)

)2 (
V (u)(t3) − V (u)(t2)

)2]

= Ẽ

[
Ẽ
[
(V (u)(t2) − V (u)(t1))

2(V (u)(t3) − V (u)(t2))
2 | J (u)

] | uSu = v
]
. (5.86)

First observe that with

Iu
i (s, t) ≡ 1{Ti∈(u−tu−(τ−2),u−su−(τ−2)]} (5.87)

we have pui,s,t = Ẽ[Iu
i (s, t) | Ti ≤ u] (recall (5.77)) and

Ẽ

[(
V (u)(t2) − V (u)(t1)

)2 (
V (u)(t3) − V (u)(t2)

)2 | J (u)
]

= Ẽ

[ ∏

n∈{1,2}

( ∑

i∈J (u)

ci u
[
Iu
i (tn, tn+1) − pui,tn ,tn+1

] )2 | J (u)
]
. (5.88)

By the conditional independence of the processes conditional on J (u) (recall comment
preceding (4.8)), and as we subtract their respective expectations, we obtain

Ẽ
[
(V (u)(t2) − V (u)(t1))

2(V (u)(t3) − V (u)(t2))
2 | J (u)

]

= Ẽ

[ ∑

i∈J (u)

(ci u)4
∏

n∈{1,2}

(
Iu
i (tn, tn+1) − pui,tn ,tn+1

)2 | J (u)
]

+ Ẽ

[ ∑

i∈J (u)

∑

j∈J (u)\{i}
(ci u)2(c j u)2

(
Iu
i (t1, t2) − pui,t1,t2

)2 (Iu
j (t2, t3) − puj,t2,t3

)2 | J (u)
]

+ 2Ẽ

[ ∑

i∈J (u)

∑

j∈J (u)\{i}
(ci u)2(c j u)2

∏

n∈{1,2}

((
Iu
i (tn, tn+1) − pui,tn ,tn+1

)

(
Iu
j (tn, tn+1) − puj,tn ,tn+1

))
| J (u)

]
. (5.89)

We can bound this from above by

C

⎧
⎨

⎩

∑

i∈J (u)

(ci u)4 pui,t1,t2 p
u
i,t2,t3 +

∏

n∈{1,2}

( ∑

i∈J (u)

(ci u)2 pui,tn ,tn+1

)
⎫
⎬

⎭
. (5.90)

123



Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs 93

By (5.78),

Ẽ

[(
V (u)(t2) − V (u)(t1)

)2 (
V (u)(t3) − V (u)(t2)

)2 | J (u)
]

≤ C(t2 − t1)(t3 − t2)
{ ∑

i∈J (u)

(ci u)4u−2(τ−1)(e−ci uci u ∧ 1)2

+
( ∑

i∈J (u)

(ci u)2u−(τ−1)(e−ci uci u ∧ 1)
)2}

. (5.91)

For the first sum, note that (ci u)4u−2(τ−1) = c4i u
−2(τ−3), so that its sum is order o(1) as∑

i c
3
i < ∞ and τ > 3. For the second sum in (5.91), we note that the sum over i such that

ci > 1/u is clearly bounded, since it is bounded by

∑

i : ci>1/u

(ci u)u−(τ−1)e−ci u, (5.92)

which converges to a constant as u → ∞ since it is a Riemann approximation to a finite
integral. For the contributions due to ci ≤ 1/u, we bound its expectation as

Ẽv

[( ∑

i∈J (u) : ci≤1/u

(ci u)2u−(τ−1)
)2]

≤
∑

i �= j,ci≤1/u,c j≤1/u

(ci u)2(c j u)2u−2(τ−1)ci uc j u +
∑

i∈J (u) : ci≤1/u

(ci u)4u−2(τ−1)ci u

≤
( ∑

i : ci≤1/u

(ci u)3u−(τ−1)
)2 +

∑

i : ci≤1/u

c3i ≤ C, (5.93)

by (5.31). Hence, we get with (5.86) and (5.91)–(5.93),

Ẽv

[(
V (u)(t2) − V (u)(t1)

)2 (
V (u)(t3) − V (u)(t2)

)2]

≤ C(t2 − t1)(t3 − t2) ≤ C(t3 − t1)
2, (5.94)

as required. ��

5.2.4 Completion of the Proof of Proposition 2.14(b)

The convergence of the finite-dimensional distributions together with tightness yields

(Bu(tu−(τ−2)))t≥0
d−→ (Lt )t≥0 by [8, Theorem 5.1].
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