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Abstract The effect of a mutation on the organism often depends on what other mutations
are already present in its genome. Geneticists refer to such mutational interactions as epista-
sis. Pairwise epistatic effects have been recognized for over a century, and their evolutionary
implications have received theoretical attention for nearly as long.However, pairwise epistatic
interactions themselves can vary with genomic background. This is called higher-order epis-
tasis, and its consequences for evolution are much less well understood. Here, we assess
the influence that higher-order epistasis has on the topography of 16 published, biological
fitness landscapes. We find that on average, their effects on fitness landscape declines with
order, and suggest that notable exceptions to this trend may deserve experimental scrutiny.
We conclude by highlighting opportunities for further theoretical and experimental work
dissecting the influence that epistasis of all orders has on fitness landscape topography and
on the efficiency of evolution by natural selection.
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1 Introduction

One of the more evocative pictures of biological evolution is that of a population climbing
the fitness landscape [37,44]. This image was originally proposed by Wright [73] to build
intuition into his [72] and Fisher’s [19] technical treatment of Darwin’s theory of natural
selection in finite populations under Mendelian genetics [51]. The topography of the fitness
landscape represents the strength and direction of natural selection as local gradients that
influence the direction and speed with which populations evolve.

While several distinct framings of the fitness landscape have been suggested [51], here
we employ the projection of genotypic fitness over Maynard Smith’s sequence space [36].
Sequence space is a discrete, high-dimensional space in which genotypes differing by exactly
one point mutation are spatially adjacent. Thus, proximity on the fitness landscape cor-
responds to mutational accessibility, and selection will try to drive populations along the
locally steepest mutational trajectory. (See [68] for several processes not readily captured by
this construction.)

The most obviously interesting topographic feature of the fitness landscape is the number
of maxima, a point already recognized by Wright [73]. Two (or more) maxima can constrain
natural selection’s ability to discover highest-fitness solutions, since populations may be
required to transit lower-fitness valleys on the landscape en route. (Though see [25,65] for
the population genetics of that process, sometimes called stochastic tunneling [15,25].)

1.1 Epistasis and Fitness Landscape Topography

Epistasis is the geneticist’s term for interactions among mutational effects on the organism
[46]. For example, genetically disabling two genes whose products act in the same linear
biochemical pathway can have a much more modest effect than the sum of the effects of
disabling either gene in isolation. Alternatively, disabling two functionally redundant genes
can have a much more substantial effect than expected. (Indeed, such observations have
taught us quite a bit about the organization of biochemical pathways, e.g., [2].)

Epistatic interactions between mutations can occur for any organismal trait, including
fitness. Importantly, epistasis for fitness has an intimate connection to the topography of
the fitness landscape, a fact also already appreciated by Wright [73]. For example, multi-
ple peaks require the presence of mutations that are only conditionally beneficial (called
sign epistasis [49,68]). More generally, an isomorphism exists between fitness landscapes
defined by mutations at some L positions in the genome and the suite of epistatic interac-
tions possible among them. This follows because, while any particular mutation can appear
on 2L−1 different genetic backgrounds (assuming two alternative genetic states, or alle-
les, at each position), each such mutation-by-background pair corresponds to a distinct
adjacency in sequence space. Consequently, arbitrary differences in the fitness effect of a
mutation across genetic backgrounds can generically be represented on the fitness landscape
[68].

1.2 Higher Order Epistasis and Fitness Landscape Topography

Widespread epistasis between pairs of mutations has been recognized in nature for over 100
years [46,67], and the corresponding evolutionary theory is fairly advanced (e.g., [5,71]).
However, pairwise interactions can themselves vary with genetic background, called higher-
order epistasis [13,67]. And while it is now becoming clear that higher-order interactions
are commonplace in nature [32,42,61,67], their influence on natural selection is less well
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understood (though see [55]). Here, we present a simple framework for assessing the influ-
ence on fitness landscape topography of epistatic terms of arbitrary order. We speculate
that epistatic influence on the topography of naturally occurring fitness landscapes should
decline with epistatic order. We tested this prediction using 16 published biological fitness
landscapes.

2 Methods

2.1 The Order of Epistatic Interactions

Any set of L biallelic loci defines 2L genotypes, each with 2L potentially independent fitness

values. Simultaneously, there are

(
L
k

)
distinct subsets of k mutations that in principle can

also independently contribute to a genotype’s fitness. In total, there are thus
∑L

k=0

(
L
k

)

= 2L subsets of mutations (i.e., the power set of L mutations). This counting reflects the
isomorphism between any fitness landscape and its corresponding suite of epistatic terms
[67].

We designate interactions among any subset of k mutations as kth-order epistasis. Note
that here first-order “epistasis” is degenerate in the sense that it represents the fitness effects of
each of the L mutations in isolation. And our zeroth-order “epistatic” term is the benchmark,
relative to which the effect of each subset of mutations is computed.

2.2 The Fourier–Walsh Transformation

Following earlier work [22,41,59,64,67] we employ the Fourier–Walsh transformation
(Fig. 1a) to convert between fitness landscapes and their corresponding epistatic terms. This
is a linear transformation written

−→
EW = 1

2L
�

−→
W . (1)

Here
−→
W is the vector of all 2L fitness values arranged in the canonical order defined by

ascending L-bit binary numbers encoding the corresponding genotype with respect to the
presence or absence of each mutation (e.g., [33]). (W is the traditional population genetics
symbol for fitness.) � is the Hadamard matrix, the unique, symmetric 2L ×2L matrix whose
entries are either +1 or −1 and whose rows (and columns) are mutually orthogonal. (�
can be written for arbitrary L , as for example with the hadamard() function in the software

packageMatlab, Mathworks, Natick, MA.) Finally,
−→
EW is the resulting vector of 2L epistatic

terms arranged in the canonical order defined by ascending L-bit binary numbers whose 1’s
indicate the corresponding subset of interacting loci. Figure 1a illustrates this transformation

using the data in [45]. For example, the fourth component of
−→
EW (–0.1429) signals a negative

epistatic interaction between the two most 3’ mutations in that dataset. (See Fig. 1 in [54]

for a graphical representation of the elements of
−→
EW , and [50] for the relationship between

Eq. (1) and other formalisms for computing epistatic terms.)
The orthogonality and symmetry of � means that �T · � = �2 = 2LI, where I is the

identity matrix. This means that, just as Eq. (1) converts any landscape into its epistatic
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Fig. 1 Analytic pipeline, illustrated with data from Palmer et al. [45]. a For each dataset, published fitness

data (or a suitable proxy, written
−→
W ) were first converted to the corresponding epistatic terms ( �E using the

Fourier–Walsh transformation (Eq. 1). b Explanatory power of a succession of models using only the m

largest epistatic terms in absolute value (
−−−→
W (m)
best ) were compared with the published data. For given value

of m, these models provably have the greatest explanatory power (smallest residual variance) of any model
with exactly m parameters (Appendix). The symbols plotted represent the epistatic order (Sect. 1.2) of each
successive parameter added to the model. c Rank correlation coefficient (τb) between the empirical sequence
of epistatic orders and those of our naïve expectation (Eq. 2) were computed. In cases where experimental
variance was reported, these sequences were truncated as soon as the remaining model variance was less
than the experimental variance. For the data shown, that truncation occurred after the 55th epistatic term.
Finally, statistical significance was assessed by a permutation test that asked whether the observed sequence
of epistatic orders was significantly different than random. For the data shown (red arrow), the observed value
of τb (0.1921) was smaller than only the 3639 largest of 105 values obtained by the permutation test, yielding
P = 0.03639
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terms, so too can any vector of epistatic terms �E be converted into its corresponding fitness

landscape as
−→
W = � �E . We take advantage of this fact next.

2.3 Subsetting Approximations of a Fitness Landscape

Given fitness function
−→
W , we now introduce subsetting approximations

−−→
W (m) = �

−−→
E (m)
W .

Here, the
−−→
E (m)
W are constructed so that 0≤ m ≤ 2L of the components are from

−→
EW = 1

2L
�

−→
W

(Eq. 1) and the remaining 2L −m components are set to zero. There are thus 22
L
subsetting

approximations for any fitness function
−→
W (corresponding to the power set of the 2L epistatic

terms in
−→
EW ). As a consequence of the orthogonality of the Fourier–Walsh transformation, the

sum of squares distance between fitness function
−→
W and subsetting approximation

−−→
W (m) =

�
−−→
E (m)
W is minimized for givenm if and only if

−−→
E (m)
W uses them largest components in absolute

value of
−→
EW (see Appendix). We denote these 0 ≤ m ≤ 2L best subsetting approximations−−→

W (m)
best .
(Subsetting approximations defined by interaction order rather than absolute magnitude

of epistatic terms were recently employed elsewhere [55].)

2.4 Quantifying the Influence of Epistatic Terms on Empirical Fitness Landscape
Topography

To examine the influence of epistasis on fitness landscape topography as a function of epistatic

order, we first used Eq. (1) to compute
−→
EW for each

−→
W gleaned from the literature (Sect.

2.7). For each 1 ≤ m ≤ 2L , we then iteratively constructed each
−−→
W (m)

best . Finally, for each

m we recorded the residual variance between
−−→
W (m)

best ) and
−→
W (minimized by this subsetting

approximation; Sect. 2.3), together with the epistatic order of the mth-largest component of−→
EW . Figure 1b illustrates this process.

2.5 Statistics

Our hypothesis is that the influence of an epistatic term on the fitness landscape should
decline with epistatic order. Put another way, we expected that after sorting the elements of−→
EW (Eq. 1) by their absolutemagnitudes, the associated epistatic orders should be represented
by a vector of 2L integers that reads:

0, 1, 1, . . ., 2, 2, 2, . . ., . . .L − −1, L − −1, . . ., L . (2)

Specifically, this vector consists of one zero, followed by L ones,

(
L
2

)
twos and in general(

L
k

)
k’s for all 0 ≤ k ≤ 2L .

We tested this hypothesis for each dataset by first computing Kendall’s τb correlation
coefficient [28] between this expectation and the epistatic orders observed among the elements

in
−→
EW sorted by absolute magnitude. τb is one (negative one) when the observed epistatic

orders are perfectly correlated (anticorrelated) with expectation, and zero when they are
uncorrelated. Note that Kendall’s τb statistic is appropriate because it accommodates ties.
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For studies that also reported experimental variance, we computed the correlation coefficient

after discarding the epistatic orders of all jelements in
−→
EW that reduced residual variance by

less than experimental variance (see Fig. 1b and Table 1) as well as the last j epistatic order
values in our expectation (given by Eq. 2).

For each dataset, we then used a permutation test to test the null hypothesis that the corre-
sponding correlation coefficient is zero. Specifically, each dataset is characterized by some
number of epistatic terms: 2L in cases where no experimental variance estimate is provided,
or 2L – j in cases where we were able to identify non-significant epistatic components (see
previous paragraph and Table 1). For each of n = 105 replicates, we computed the rank cor-
relation coefficient between two random permutations of this number (2L or 2L – j) of the
epistatic order values drawn from Eq. (2) for given L . We then sorted correlation coefficients,
and the uncorrected P value reported for each dataset (Table 1) was taken as the fraction of
permutations in which a correlation coefficient greater than or equal to the empirical value
was observed. Thus, ours is a one-tailed test of the hypothesis that no positive correlation is
present. This process is illustrated in Fig. 1c.

We used the Bonferroni–Holmmethod [24] to correct for multiple tests. In addition, under
the null hypothesis that epistatic orders are uncorrelated with the naïve expectation given by
Eq. (2), the distribution of P values observed across datasets should be uniformly distributed.
We tested this hypothesis with aG-test after binning counts of empirically observed Pvalues.
We assessed statistical significance relative to the χ2 distribution [56].

2.6 Empirical Datasets

To compute all 2L epistatic terms in a fitness landscape defined over L biallelic loci requires
data on the fitness values (or suitable proxy) for each of the corresponding 2L genotypes. We
previously designated such datasets combinatorially complete [67], and the datasets analyzed
here are shown inTable 1. Several datasets [4,34,43,45] had a few lociwith cardinality greater
than two. In these cases, we examined one “slice” through the landscape defined by randomly
choosing just two alleles at those loci.

Several studies examined multiple phenotypes for a single set of mutations, and follow-
up studies sometimes presented additional phenotypes for a previously described set
of mutations. Those cases are enumerated in Table 2; for each set of mutations we
randomly sampled just one phenotype. Table 2 also lists all combinatorially complete
datasets we know that are defined over loci with cardinality greater than two. These were
excluded here because the Fourier–Walsh framework doesn’t trivially generalize to higher
cardinalities.

Following [67], datasets reportinggrowth rates [4,10,14,16,20,21,70] anddrug-resistance
phenotypes [8,33,38,39,45,66] were log-transformed before analysis. Following [45], neg-
ative two was used in place of log-transformed values when growth rate or drug resistance
phenotypes of zero were observed. (In all cases, this is roughly one log order smaller than
the smallest non-zero log-transformed value.) In cases where only mean and experimental
variances (but not individual replicate observations) were provided, log transformations were
approximated by Taylor expansions: ln(x) ≈ ln(x̄) − s2x/2x̄

2 and s2ln(x) ≈ (sx/x̄)2. In cases
where only means (but not variances) were provided, log transformations were approximated
as ln(x) ≈ ln(x̄).

Following [45], for studies in which experimental variance estimates were provided, we
recorded this quantity as a fraction of the total model variance. In one case [8], standard error
was reported as standard error over “at least” two replicates; we therefore assumed n = 2 for
each observation in that dataset. In one case [29], 95%experimental confidence intervalswere
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Table 2 Published combinatorially complete fitness landscapes not examined here

Phenotype [citation] Number of loci Number of genotypesa

Cycloguanil IC50 of S. cerevisiciae carrying P.
falciparum DHFR allelesb [11]

3 23 = 8

Pyrimethamine IC50 of S. cerevisiciae carrying
P. falciparum DHFR allelesb [8]

3 23 = 8

MIC against pyrimethamine of S. cerevisiae
carrying P. falciparum DHFR allelesb [8]

3 23 = 8

Pyrimethamine IC50 of P. vivax DHFR alleles
assayed in S. cerevisiaeb [26]

4 24 = 16

MIC of TEM β-lactamase mutants against 15
β-lactamsb [39]

4 24 = 16c

E. coli operator binding affinities for 400
repressor sequences [48]

4 44 = 256

Relative fitness among LTEE E. coli mutants in
DM25b [29]

5 25 = 32

Relative fitness among LTEE E. coli mutants in
DM25 + guanazoleb [20]

5 25 = 32

HIV replicative capacity on CXCR5+ cellsb [14] 5 25 = 32

Transcription factor/response element specificity
in an ancient steroid hormone receptor [1]

5 42× 23 = 128d

MIC of TEM-β-lactamase mutants against
Piperacillin supplemented with clavulanic
acidb [63]

6 25 = 32

Diploid S. cerevisiae mutant growth rateb [21] 6 26 = 64

Percent production of minor products by
sesquiterpene synthase mutantsb [43]

6 26 = 64

Percent production of 4-EE by sesquiterpene
synthase mutantsb [43]

6 26 = 64

Percent production of PSD by sesquiterpene
synthase mutantsb [43]

6 26 = 64

104 mouse DNA-binding proteins’ affinity for
10 bp binding motifs [3]

10 410 = 1,048,576e

GFP affinity for 10 nucleotide base pair binding
motifs [52]

10 410 = 1,048,576

Affinity of 1032 DNA-binding proteins spanning
eukaryotic diversity against 10 nucleotide base
pair binding motifs [69]

10 410 = 1,048,576f

aWritten as the product of cardinalities across loci
bAnother phenotype from this system is included in Table 1
cIn total, 16 × 15 distinct β-lactam compounds = 240 observations are reported in this study
dThis study examined all combinations of 4 nucleotides at two key positions in the DNA response element
together with all combinations of two amino acids at three key positions in the transcription factor
eIn total 1,048,576 × 104 DNA-binding proteins = 109,051,904 observations are reported in this study
f In total 1,048,576 × 1,032 DNA-binding proteins = 1,082,130,432 observations are reported in this study

reported, so variance estimates were computed under the assumption of normally distributed
noise as s2 = (n · C I95/1.96)2.
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2.7 Simulated Fitness Landscapes

We used NK fitness landscapes [27] to test our hypothesis in a framework with explicitly
tunable mutational interactions. Genomes in the NK model carry N loci. The fitness contri-
bution of each locus depends on its allelic state and that at K others. Thus 0 ≤ K ≤ N – 1
represents a parameter that tunes the level of epistatic interaction in the landscape. (See [41]
and references therein for a number of elegant statistical properties ofNK fitness landscapes.)
We set N= 5 and generated one NK landscape for each 0 ≤ K ≤ N – 1, where interacting
loci were assigned at random in the genome. Simulated data were then analyzed as described
in Fig. 1.

2.8 Data and Software Archiving

Input data files, togetherwith purpose-builtMatLab code to performall analyses described are
archived at https://github.com/weinreichlab/JStatPhys2018. Kendall’s τb correlation coeffi-
cient was computed usingMatLab code developed elsewhere [9].NK fitness landscapes were
generated using code downloaded from https://github.com/qzcwx/NK-generator.

3 Results

Epistasis can have profound consequences at many levels of biological organization [47,
53,60,71]. Here we tested the hypothesis that the influence of epistasis on empirical fitness
landscape topography should decline as a function of epistatic order.

This study was originally stimulated by Fig. 2 in Palmer et al. [45], which examined six
mutations in the dihydrofolate reductase (DHFR) gene of E. coli that contribute to increased
resistance to an antimicrobial called trimethoprim. In that analysis, particular second- and
third-order interactions were the third- and second-most influential epistatic terms for fitness
landscape topography respectively. Indeed, just two of the first ten most influential epistatic
termswere first-order, and in aggregate first-order terms explained just∼ 28% of the variance
in fitness across the landscape. At first blush, these results seem to challenge the hypothesis
outlined in the previous paragraph, and we therefore sought to explore the pattern more
broadly using published data from other systems.

Fig. 2 Distribution of
uncorrected P values among 16
empirical datasets. Under any
null model, P values are
expected to be uniformly
distributed (black bars; note both
axes are log-transformed).
Instead observed P values (grey
bars) are sharply skewed toward
small values (G = 143.77,
Pd.f.=5 � 0.01)
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Figure 1 illustrates the application of our analytic pipeline (see Sect. 2) to these same
data. Our Fig. 1b closely recapitulates Fig. 2a in Palmer et al. [45]. While the precise
sequence of epistatic terms differs slightly (likely because the previous study employed
a subtly different framework for computing epistatic terms), higher-order epistatic interac-
tions are again responsible for some the largest reductions in residual variance. Indeed, as
previously observed, just two of the first ten terms are first-order, and in aggregate and first-
order terms again explain just ∼ 28% of the variance in the data (Table 3a, compare the
first two columns with Fig. 2b in [45]). Importantly however, Fig. 1c illustrates that we find
a significant, positive correlation between expectation (Eq. 2) and the observed influence
of epistatic terms on landscape topography as a function of their order (τb = 0.1921, P =
0.03639).

We next applied our pipeline to 15 other published, combinatorially complete datasets.
Results are summarized in Table 1 and shown graphically in Fig. S1. Out of all 16 datasets
examined, 14 exhibit a significantly positive correlation between observation and the expec-
tation, and eight of these remain significant after Bonferroni correction for multiple tests.
Moreover, across datasets Table 1 exhibits a bias toward small P values. Under the null
hypothesis (no significant correlation with expectation), we would expect a uniform distri-
bution of P values. Instead, the observed distribution is sharply and significantly skewed
toward small values (Fig. 2, G = 143.77, Pd.f.=5 � 0.01).

We also applied our pipeline toNK fitness landscapes generated for N = 5 and 0≤ K ≤ N
– 1. We set N = 5 because the average size of the empirical datasets is 4.875 loci. Those
results are also included in Table 1 (though omitted from Fig. 2).

4 Discussion

Using a novel analytic pipeline (Fig. 1), we have examined 16 published, combinatorially
complete biological datasets. This analysis broadly confirms our intuition that the influence of
epistatic terms on empirical fitness landscape topography should decline with order, i.e., with
the number of interactingmutations. Consistent with this intuition, observed fit to expectation
in our simulated (NK) fitness landscapes deteriorates as the amount of epistasis (K ) goes up.
In the limit of K = N – 1, fitness values (and hence, our epistatic terms) are i.i.d., and
consequently the correlation is ∼ 0.

While considerable heterogeneity in effect exists among our empirical datasets (Table 1),
eight of the 16 exhibit a Bonferroni-corrected, significantly positive correlation with expecta-
tion (Eq. 2).Moreover, across all 16 empirical datasets, we find a sharp bias toward significant
P values (Fig. 2). Nor is there any correlation between the size of the dataset and uncorrected
P value (not shown), suggesting that low statistical power is unlikely to contribute to the
overall picture.

The relativemagnitudes of epistatic terms depend on the underlying fitness scale employed
[30,67]. Although we log-transformed growth rate and drug resistance data (see Sect. 2.6),
we have otherwise overlooked this fact. Recently, approaches for systematically rescaling
data to minimize higher-order epistatic effects have been introduced [54] (see also [41,62]).
Applications of such methods would certainly have quantitative consequences for results
presented here.However, because these approaches (on average) reduce higher-order epistatic
terms, we believe this omission renders our conclusions conservative.

We also acknowledge that we failed to honor experimental uncertainty in the magnitudes
of epistatic effects observed, which would almost certainly weaken the signal reported in
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Table 1. While we regard a rigorous treatment of experimental noise to be outside the scope
of the present study, we note that the results presented in Fig. 2 are robust to its influence.
Nevertheless, this is a serious concern for future consideration: because epistasis represents
the difference between mutational fitness effects on different genetic background, experi-
mental variance in fitness assays must be summed when computing variance in epistatic
terms. For example, variance in epistatic terms computed with Eq. (1) will be roughly 2L

as large as variance in the individual, underlying fitness measurements. Recently, an alter-
native, ranks-based approach to assessing epistatic interactions between mutations has been
proposed [13], which appears to be less sensitive to this effect.

4.1 The Combinatorics of Higher-Order Epistasis

This work was originally stimulated by a previous study [45] that examined six mutations in
the DHFR gene responsible for increased trimethoprim resistance in E. coli. At first blush,
results summarized in Fig. 2 of that study called into question the hypothesis that higher-

Table 3 Average epistatic influence on fitness landscape topography as a function of epistatic order in select
datasets

Epistatic order Aggregate reduction in
residual variance

Number of epistatic terms
significantly different from
zero

Mean reduction in residual
variance per epistatic terma

(a) Log[IC75 of E. coli DHFR alleles against trimethoprim] [45]

First 0.279 5 0.056

Second 0.266 12 0.022

Third 0.233 18 0.013

Fourth 0.144 11 0.013

Fifth 0.0685 6 0.011

Sixth 0.0065 1 0.0065

(b) Mammalian glucocorticoid receptor cortisol sensitivity [7]

First 0.171 4 0.043

Second .405 6 0.067

Third 0.420 4 0.105

Fourth 0.004 1 0.004

(c) Log[MIC of E. coli TEM alleles against ampicillin] [39]

First 0.353 4 0.088

Second 0.278 6 0.043

Third 0.279 4 0.070

Fourth 0.091 1 0.091

(d) N = 5, K = 4

First 0.027 5 0.005

Second 0.315 10 0.315

Third 0.402 10 0.402

Fourth 0.241 5 0.412

Fifth 0.015 1 0.015

aLargest value for each dataset shown in bold
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order epistasis should only modestly influence naturally occurring fitness landscapes. And
the salient features of that figure were recapitulated by our treatment (Fig. 1b, Table 3a).

However, our statistical analysis of those data reveals a strong positive correlation between
epistatic influence on fitness topography as a function of epistatic order, consistent with our
hypothesis (Fig. 1c). Thus in this system, the substantial influence of a fewhigh-order epistatic
terms is nevertheless consistent with the idea that high-order epistatic terms should in general
only modestly contribute to fitness topography.

The resolution to this puzzle resides in the combinatoric number of epistatic terms. As

noted above, given L biallelic loci there are

(
L
k

)
epistatic coefficients of order k, and

this quantity grows almost exponentially for k � L . Indeed, after normalizing the summed
influence of all epistatic terms of order k by the number of such terms, we observe that the per-
term effect declines almost monotonically with order in this dataset (Table 3a; see also [67]).
More generally, in all but three of the datasets examined, the normalized explanatory power
is largest for first-order epistatic terms. Intriguingly, those three exceptions (see Table 3b-d:
mammalian glucocorticoid receptor cortisol sensitivity [7], log[MIC of E. coli TEM allele
sensitivity to ampicillin] [39] and the N = 5, K = 4 simulated fitness landscape) correspond
to the three datasets with the largest P values in Table 1.

The consideration of the combinatorics of the problem is closely related to the Fourier
spectrum of a fitness landscape [41,57], namely the sum of squared epistatic coefficients as
a function of interaction order. (This connection derives formally from the Appendix, which
implies that the squared magnitude of each epistatic coefficient is monotonic in its influence
on landscape topography.) The Fourier spectrum is proportional to the binomial coefficient
when each genotype’s fitness is identically and independently distributed. This follows from
the fact that on such landscapes all epistatic coefficients are also i.i.d., together with the
combinatorics outlined in the previous paragraph. But as already anticipated by results in
Table 3, the Fourier spectrum for the DHFR datasets is sharply shifted toward lower-order
terms (not shown), as has previously been reported for both sesquiterpene synthase and
several others biological datasets [41].

Nevertheless, declining average epistatic effects notwithstanding we find many examples
of specific epistatic terms with anomalously large explanatory effects in many of the datasets
examined here (Fig. S1).We suggest that thesemay reflect importantmechanistic interactions
among those particular mutations in the underlying biology of the system, thus representing
potentially fruitful entry points for the molecular biologist [17].

4.2 Epistasis and the Efficiency of Natural Selection

Our observation that the influence of epistatic terms on naturally occurring fitness landscapes
declines with epistatic order raises the question of how epistatic terms influence the efficiency
of natural selection. We lack a complete theoretical understanding of this connection.

One well-developed result concerns the influence of epistasis on the selective accessibility
of mutational trajectories to high fitness genotypes. First, sign epistasis means that the sign of
the fitness effect of a mutation varies with genetic background [68], and it renders selectively
inaccessible at least some mutational trajectories to high fitness (e.g., [66]). But connections
between sign epistasis and epistatic order are only now being developed [13]. Second, a
subsetting approach similar to ours (Sect. 2.3) was recently used to examine the influence of
epistatic interactions selectively accessible mutational trajectories to high fitness genotypes
[55] in six of the datasets described here. Those authors found that higher-order terms indeed
substantially alter the identity of selectively favored mutational trajectories to high-fitness
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genotypes, as well as their probabilities of realization. Further and consistent with findings
here, that study also noted that the absolute magnitude of epistatic terms had an even larger
effect on realized mutational trajectories than did their interaction order.

Moreover, pairwise epistasis has long been understood to influence not just the selective
accessibility of high fitness genotypes but also the pace at which natural selection both
increases the frequency of beneficial mutations (e.g., [18]) and at which it purges deleterious
mutations (e.g., [31]). This work is closely related to the role that genetic recombination
can play in “unlocking” epistatically interacting mutations (e.g., [5,40]). However, to our
knowledge the relationship between these effects and higher-order epistasis remains entirely
unexplored.

In addition, we have only quantitatively examined the sequence of epistatic orders sorted
by explanatory power (Fig. 1c). Thus, a great deal of information present in these data (e.g.,
the slopes in Figs. 1b and S1) remains to be examined. And of course, the number and size
of available combinatorially complete datasets continues to grow, motivating further work in
this regard. It seems reasonable to suppose that the development and testing of more nuanced
theoretical predictions may be possible using data of the sort examined here.

Finally, we note that the Fourier–Walsh framework employed here depends on the avail-
ability of combinatorially complete datasets. But the experimental demands of this approach
grow exponentially with the number of mutations examined. This fact sharply limits the
scalability of analytic pipelines like ours. Recently, theoretical progress has been made in the
analysis of less-than-complete datasets [6,12,13], and older work has also explored this idea
[23,58]. Theory that allows inferences using sparse datasets is likely to be a key advance in
our ability explore broad, evolutionarily fascinating questions such as those considered here.
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Appendix: The Explanatory Power of Fourier–Walsh Coefficients is Mono-
tonic in Their Absolute Magnitude

Assume two fitness functions defined over L biallelic loci are represented as column vectors−→
W and �X with Fourier–Walsh coefficients

−→
EW and

−→
EX computedwith Eq. (1). Define the sum

of squares distance between
−→
W and �X as ‖−→W − �X‖ ≡ ∑2L

i=1(Wi −Xi )
2 = (

−→
W − �X)T ·−→W − �X ,

where wi and xi are the i th components of
−→
W and �X , respectively.

Theorem 1 Sum of squares distance equivalence

‖−→W − �X‖ = 2L‖−→EW − −→
EX‖.
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Proof By definition

−→
W = �

−→
EW and �X = �

−→
EX

where � is the Hadamard matrix (see Sect. 2.2).

Therefore

‖−→W − �X‖ = ‖�−→
EW − �

−→
EX‖

=
(
�

−→
EW − �

−→
EX

)T ·
(
�

−→
EW − �

−→
EX

)

=
((

�
−→
EW

)T −
(
�

−→
EX

)T)
·
(
�

−→
EW − �

−→
EX

)

=
((−→

EW

)T
�T −

(−→
EX

)T
�T

)
·
(
�

−→
EW − �

−→
EX

)

=
((−→

EW

)T −
(−→
EX

)T)
�T · �

(−→
EW − −→

EX

)

But recall that �T� = 2LI, where I is the identity matrix. Thus

‖−→W − �X‖ = 2L
((−→

EW

)T −
(−→
EX

)T)
·
(−→
EW − −→

EX

)

= 2L
(−→
EW − −→

EX

)T ·
(−→
EW − −→

EX

)
= 2L‖−→EW − −→

EX‖.

�

An interesting property of the Hadamard matrix is that �T = 2L�−1. Without the 2L

this equality is the hallmark of a rotational transformation. This means that Fourier–Walsh
coefficients are simply the result of a high dimensional axis rotation of the coordinates of
function space, together with a uniform contraction. This provides intuition into Theorem 1:
rotating the space and contracting it uniformly only changes the distance between two vectors
in the space by the constant of contraction.

Theorem 2 Minimizing the sum-of-squares distance of subsetting approximations

The subsetting approximation
−−→
W (m) = �

−−→
E (m)
W that minimizes the sum of squares distance

to function
−→
W is the one whose

−−→
E (m)
W uses the m largest components in absolute value in−→

EW = 1
2L

�
−→
W .

Proof By Theorem 1, the sum of squares distance between
−→
W and

−−→
W (m) is ‖−→W −−−−→

W (m)‖ =
2L‖−→EW −

−−→
E (m)
W ‖, which means that we can equivalently solve the minimization problem on

either side of the equality. And trivially, the right-hand side is minimized when them nonzero

components in
−−→
E (m)
W are the m largest components in absolute value in

−→
EW . (The squaring of

differences in epistatic terms in the definition of ‖−→EW −
−−→
E (m)

w ‖ removes the significance of
their sign.) 
�
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