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Abstract
We define a (symmetric key) encryption of a signal s ∈ R

N as a random mapping s �→ y =
(y1, . . . , yM )T ∈ R

M known both to the sender and a recipient. In general the recipients may
have access only to images y corrupted by an additive noise of unknown strength. Given the
encryption redundancy parameter (ERP) μ = M/N ≥ 1 and the signal strength parameter

R =
√∑

i s
2
i /N , we consider the problem of reconstructing s from its corrupted image by

a Least Square Scheme for a certain class of random Gaussian mappings. The problem is
equivalent to finding the configuration of minimal energy in a certain version of spherical
spin glass model, with squared Gaussian random interaction potential. We use the Parisi
replica symmetry breaking scheme to evaluate the mean overlap p∞ ∈ [0, 1] between the
original signal and its recovered image (known as ’estimate’) as N → ∞, for a given (’bare’)
noise-to-signal ratio (NSR) γ ≥ 0. Such an overlap is a measure of the quality of the signal
reconstruction. We explicitly analyze the general case of linear-quadratic family of random
mappings and discuss the full p∞(γ ) curve. When nonlinearity exceeds a certain threshold
but redundancy is not yet too big, the replica symmetric solution is necessarily broken in
some interval ofNSR.We show that encryptionswith a nonvanishing linear component permit
reconstructions with p∞ > 0 for any μ > 1 and any γ < ∞, with p∞ ∼ γ −1/2 as γ → ∞.
In contrast, for the case of purely quadratic nonlinearity, for any ERP μ > 1 there exists
a threshold NSR value γc(μ) such that p∞ = 0 for γ > γc(μ) making the reconstruction
impossible. The behaviour close to the threshold is given by p∞ ∼ (γc − γ )3/4 and is
controlled by the replica symmetry breaking mechanism.

Keywords Spin glass · Signal reconstruction · Inference

1 Introduction

1.1 Description of the Problem

In this paper we consider a schematic model of a reconstruction of a source signal from its
encrypted form corrupted by an additive noise when passed from a sender to a recipient.
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Signals are represented by N−dimensional source (column) vectors s =
⎛
⎝

s1
. . .

sN

⎞
⎠ ∈ R

N ,

and we define the associated signal strength R via the Euclidean norm as R =
√

1
N (s, s),

where (·, ·) stands for the Euclidean inner product in R
N . By a (symmetric key) encryption

of the source signal we understand a random mapping s �→ y =
⎛
⎝

y1
. . .

yM

⎞
⎠ ∈ R

M known both

to the sender and a recipient. For further reference we find it useful to write the mapping
component-wise explicitly as

yk = Vk(s), k = 1, . . . , M , (1)

with the collection of random functions V1(s), . . . , VM (s) representing an encryption algo-
rithm shared between the parties participating in the signal exchange. Due to imperfect
communication channels the recipients however get access to the encrypted signals only
in a corrupted form z. We consider only the simplest corruption mechanism when the
encrypted images y are modified by an additive random noise, i.e. z = y + b. The noise
vectors b are further assumed to be normally distributed: b ∼ N (0, σ 21M ), i.e. compo-
nents bk, k = 1, . . . , M are i.i.d. mean zero real Gaussian variables with the covariance
〈bkbl〉 = δklσ

2, where the notation 〈. . .〉 here and henceforth stands for the expected value
E[. . .] with respect to all types of random variables. A natural parameter is then the ’bare’
noise-to-signal ratio (NSR) γ = σ 2/R2, which will be eventually converted to true NSR
dependent on the parameters of encryption algorithm (we will later on refer to such conver-
sion in the text as an appropriate ’scaling’) characterizing the level of signal corruption in
the chosen type of encryption.

The recipient’s aim is to reconstruct the source signal s from the knowledge of z. In the
presence of noise such reconstruction can be only approximate, and reconstructed signals are
known in the signal processing literature as ’estimates’ of the source signals. Their properties
depend on the reconstruction scheme (or the ’estimator’) used. Our assumption is that the
strength of the noise, i.e. the parameter σ 2, is not used by the recipient when reconstructing
the source signal. We consider the input signal through the reconstruction procedure as a
fixed vector, and then employ the Least-Square reconstruction scheme, which for a given set
of observations zk = Vk(s) + bk returns an estimate of the input signal as

x := Argminw

[
M∑
k=1

(zk − Vk(w))2

2

]
, w ∈ W ⊆ R

N , (2)

where W is a set of feasible input signals.
To avoid misunderstanding, we briefly contrast our approach with the Bayesian inference

philosophy. In the latter framework one assumes that the probability density ρ(w) over the set
W of feasible input signals (the ’prior’ distribution) is either knownor one canmake anAnsatz
on its form. TheBayes theoremprovides the a posteori probability density p(w|z) of the input
signal w for a given observation z in the form p(w|z) = p(z|w)ρ(w)/

∫
W

p(z|w) ρ(w) dw,
where p(z|w) is the probability to observe z for a given input w. In Bayesian inference
one then seeks to minimize some expected (with respect to p(w|z)) error/loss function.
For example, if one seeks to minimize the mean square error loss function (MMSE), the
optimal estimate is given by the mean xMMSE := ∫

W
wp(w|z) dw. In our model with the

Gaussian noise b ∼ N (0, σ 21M ) the probability p(z|w) to observe z is given by p(z|w) ∼
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A Spin Glass Model for Reconstructing... 791

exp
{
−∑M

k=1
(zk−Vk (w))2

2σ 2

}
. Therefore evaluation of xMMSE requires that the noise strength

σ 2 is explicitly known to the recipient. Such a knowledge is formally not required in the
estimate Eq. (2) used in the present paper. Instead we note that our approach can be given
a formal Bayesian meaning as a Maximum–A-Posteriori (MAP) estimator (optimal under
’hit-or-miss’ or 0− 1 loss function) with a uniform prior distribution ρ(w) = const over the
feasibility set W. In such a case it also incidentally coincides with the maximal likelihood
(ML) estimator which seeks to maximize the probability p(z|w) over w for the observation
z corresponding to the actual input signal s.

Quality of the signal reconstruction under our scheme is then characterized by the value
of a distortion parameter measuring the difference between the fixed source signal s and the
estimate x. For this one may use any suitable distance function d(x; s), e.g the Euclidean
distance normalized to the signal strength:

d(x; s) = (x − s, x − s)
N R2 . (3)

One is interested in getting the expression for the distortion in the asymptotic limit of large
signal dimensions (M, N ) → ∞. As long as M remains smaller than N , any solution
x ∈ W ⊆ R

N of the set of M equations bk + Vk(s) − Vk(x) = 0, k = 1, . . . , M will
be corresponding to the exactly zero value of the cost function, and could be used as a
legitimate estimate. The set of estimates then form continuously parametrized manifolds in
R

N . It is therefore clear that even in the absence of any noise full reconstruction of the signal
for M < N under this scheme is impossible. Although such a case is not at all devoid of
interest, we do not treat it in the present paper leaving it for a separate study. In contrast,
for ’redundantantly’ encrypted signals with M ≥ N the set of possible estimates generically
consists of isolated points in R

N . To this end we introduce the Encryption Redundancy
Parameter (ERP) μ = M/N ∈ (1,∞). We will see that under such conditions signals can
be in general faithfully reconstructed in some range of the noise-to-signal ratios γ > 0.

In this paperwe are going to apply tools of StatisticalMechanics for calculating the average
asymptotic distortion for a certain class of the least square reconstruction of a randomly
encrypted noisy signal. As this is essentially a large-scale random optimization problem,
methods of statistical mechanics of disordered systems like the replica trick developed in
theory of spin glasses are known to be efficient in providing important analytical insights in
the statistical properties of the solution, see e.g. [31,34]. It is also worth noting that distinctly
different aspects of the problem of information reconstruction ( the so-called error-correcting
procedures) were discussed in the framework of spin glass ideas already in the seminal work
by Sourlas [39].

We consider the reconstruction problem under two technical assumptions. The first
assumption is that the recipient is aware of the exact source signal strength R, and therefore
can restrict the least square minimization search in Eq. (2) to the feasibility set W given by
(N − 1)−dimensional sphere of the radius R

√
N . We will refer to such a condition as the

’spherical constraint’. From the point of view of the Bayesian analysis our reconstruction
scheme can be considered as a MAP estimator with postulated prior distribution being the
uniform measure on the above-mentioned (N − 1)−dimensional sphere. As the lengths of
both the input signal s and an estimator x are fixed to R

√
N , the distance Eq. (3) depends

only on the scalar product (x, s). We therefore can conveniently characterize the quality of
the reconstruction via the quality parameter defined as

pN = (x, s)
N R2 ∈ [0, 1], (4)
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792 Y. V. Fyodorov

where pN = 1 corresponds to a reconstruction without any macroscopic distortion, whereas
pN = 0 manifests impossibility to recover any information from the originally encrypted
signal. Note that the assumption of the fixed input signal strength R is technically convenient
but can be further relaxed; the analysis can be extended, without much difficulty, to the search
in a spherical shell R1

√
N ≤ |w| ≤ R2

√
N , and allows to include additive penalty terms

which do not violate the rotational symmetry, e.g. squared Euclidean norm of the signal, and
hopefully to some other situations.

Our second assumption is that the random functions Vk(s) belong to the class of (smooth)
isotropic gaussian-distributed random fields on the sphere, independent for different values
of k (and independent of the noise b) , withmean-zero and the covariance structure dependent
only on the angle between the vectors. Using the scaling appropriate for our problem in the
limit of large N we represent such covariances as

〈Vk(x)Vl(s)〉 = δlk�

(
(x, s)
N

)
, (5)

where the angular brackets 〈. . .〉 denote the expectation with respect to the corresponding
probability measures. We will further assume for simplicity that � (u) in Eq. (5) is infinitely
differentiable.

The simplest case of random fields of this type corresponds to a linear encryption algo-
rithm, with the functions Vk(x), k = 1, . . . , M chosen in the form of random linear
combinations:

Vk(x) =
N∑
i=1

aki xi := (ak, x), (6)

where the vectors ak are assumed to be random, mean-zero mutually independent Gaussian,

eachwith N i.i.d. components characterized by the variances
〈
aki al j

〉 = J 21
N δlkδi j . Such choice

implies the covariance Eq. (5) with �(u) = J 21 u.
The linear encryption is very special, yet not completely trivial, instance of the recon-

struction problem, as in that case one can formally solve the minimization problem by the
method of Lagrange multipliers explicitly. To this end we introduce the cost function (cf. Eq.
(2))

Hs(x) =
M∑
k=1

H(k)
s (x), H(k)

s (x) = (bk + Vk(s) − Vk(x))2

2
, (7)

which depends on the source signal s as a parameter. Then following the standard idea of a
constrained minimization we need to consider the stationarity conditions ∇Lλ,s(x) = 0 for
the Lagrangian Lλ,s(x) = Hs(x) − λ

2 (x, x), with real λ being the Lagrange multiplier taking
care of the spherical constraint. In the general case of a non-linear encryption algorithm this
procedure does not seem to help much to our analysis, as the stationarity equations look hard
to study. In the linear case one can however introduce a N × M matrix A whose M rows are
represented by (transposed) vectors aTk featuring in Eq. (6). We than can easily see that the
stationarity conditions in that case amount to the following matrix equation:

AT [A(x − s) − b] = λx , (8)

which can be then immediately solved and provides the signal estimate in the form

x =
[
1N + λ

(
AT A − λ1N

)−1
]
s +

(
AT A − λ1N

)−1
AT b . (9)
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The possible set of Lagrange multipliers is obtained by solving the equation implied by the
spherical constraint: (x, x) = N R2, which is in general equivalent to a polynomial equation
of degree 2N in λ. The number of real solutions of that equation depends on the noise vector
b. One of the real solutions corresponds to the minimum of the cost function, others to
saddle-points or maxima. In particular, in the (trivial) limiting case of no noise b = 0 the
global minimum corresponds to λ = 0 implying reconstruction with no distortion: x = s,
hence pN = 1 as is natural to expect. At the same time, for any b �= 0 the analysis of Eq. (9)
becomes a non-trivial problem. One possible way is to account for the presence of a weak
noise with small variance σ 2 by developing a perturbation theory in the small scaled NSR

parameter γ̃ = σ 2

J 21 R
2 � 1. Such a theory is outlined in the Appendix A, where we find that

for a given value of ERPμ > 1 and in the leading order in γ̃ the asymptotic disorder-averaged
quality reconstruction parameter defined in Eq. (4) is given by:

p∞ := lim
N→∞ 〈pN 〉 = 1 − γ̃

1

μ − 1
+ o(γ̃ ) . (10)

This result is based on the asymptoticmeandensity of eigenvalues of randomWishartmatrices
AT A due to Marchenko and Pastur [30]. Similarly, one can develop a perturbation theory for
very big NSR γ̃ � 1, see Appendix A. In this way one finds that the Lagrange multiplier

|λ| ∼ (μγ̃ )1/2 and p∞ ∼
√

μ
γ̃
.

Although the perturbation theories are conceptually straightforward, and can be with due
effort extended to higher orders, the calculations quickly become too cumbersome. At the
moment we are not aware of any direct approach to our minimization problem in the linear
encryption case which may provide non-perturbative results, as N → ∞, for asymptotic
distortion p∞ at values of scaled NSR parameter γ̃ of the order of unity. At the same time
we will see that methods of statistical mechanics provide a very explicit expression for any
γ̃ .

It is necessary to mention that various instances of not dissimilar linear reconstruction
problems in related forms received recently a considerable attention. The emphasis in those
studies seems however to be mainly restricted to the case of source signals being subject to a
compressed sensing, i.e. represented by a sparse vector with a finite fraction of zero entries,
see e.g. [28,32,42] and references therein. To this end especially deservementioning theworks
[7–9] which studied the mean value of distortions for MAP estimator for a linear problem
(though with prior distribution different from the spherical constraint). More recently, a very
general signal reconstruction problem for nonlinear encryption functions of a linear random
mappingwas considered in the frameework of statistical-mechanics basedBayesian approach
in [6]. One may also mention a particular case of bi-linear reconstruction considered in a
similar framework in [38]. Although having a moderate overlap with methods used in this
work, the actual calculations and the main message of those papers seem rather different.

In particular, our main emphasis will be on ability to analyse the case of a quite general
nonlinear randomGaussian encryptions1. The corresponding class of functionsVk(x) extends
the above-mentioned case of random linear forms to higher-order random forms, the first
nontrivial example being the form of degree 2:

Vk(x) = (ak, x) + 1

2
(x,J (k)x) , (11)

1 In the context of compressed sensing some reconstruction aspects of nonlinear models were considered,
e.g. in [10,37], but our approach seems distinctly different.
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794 Y. V. Fyodorov

where entries of N × N real symmetric random matrices J (k), k = 1, . . . , M are mean-zero
Gaussian variables (independent of the vectors ak) with the covariance structure

〈
J (k)
i j J (l)

mn

〉
= J 22

N 2 δlk
(
δimδ jn + δinδ jm

)
, (12)

which eventually results in the covariance Eq. (5) of the form �(u) = J 21 u + 1
2 J

2
2 u

2. We
will refer to the above class of random encryptions as the linear-quadratic family.

In fact, the general covariance structure of isotropic Gaussian random fields on a sphere of
radius R

√
N is also well-known from the theory of spherical spin glasses: these are functions

which can be represented by a (possibly, terminating) series with non-negative coefficients:

�(u) =
∞∑
l=1

clu
l , cl ≥ 0 ∀l (13)

such that �
(
R2

)
has a finite value, see e.g. [1]. Although our theory of encrypted signal

reconstruction will be developed at N � 1 for the general Gaussian case, all the explicit
analysis of the ensuing equations will be restricted to the case of the linear-quadratic family,
Eq. (11).

As our main results reported below are asymptotic in nature and employ N as a big
parameter, it is natural to ask how robust are our findings against relaxing the Gaussianity
assumption. For the linear case Eq. (6) such generalization is possible, see e.g. [7], by consid-
ering rotationally-invariant ensemble of the associatedmatrices A and employing the large-N
asymptotics of the so-called spherical integrals found in [24,25]. Whether similar methods
may help to settle the question for the linear-quadratic family by replacing the GOEmatrices
J (k) with their counterparts from more general class of rotationally-invariant random matrix
ensembles remains an interesting topic for a future research.

1.2 Main Results

Our first main result is the following

Proposition 1 Given a value of R > 0 characterizing the source signal strength, and the
value of the ERP μ > 1, consider the functional

E[ws(u); Q, v, t] = −
⎡
⎣ R2 − t2 − Q

v + ∫ R2

R2−Q ws(u) du
+

∫ R2

R2−Q

dq

v + ∫ R2

q ws(u) du

⎤
⎦

+ μ

⎡
⎣σ 2 + �(R2) − 2�(Rt) + �(R2 − Q)

1 + v�′(R2) + ∫ R2

R2−Q ws(u)�′(u) du

+
∫ R2

R2−Q

�′(q) dq

1 + v�′(R2) + ∫ R2

q ws(u)�′(u) du

⎤
⎦ , (14)

where the variable v ≥ 0, the variables t and Q take values in intervals [−R, R] and [0, R2],
correspondingly, and ws(u) is a non-decreasing function in u ∈ [R2 − Q, R2]. Then in the
framework of the Parisi scheme of the Full Replica Symmetry Breaking (FRSB) the mean
value of the parameter pN characterising quality of the information recovery in the signal
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reconstruction scheme, Eqs. (2)–(5), with normally distributed noise b ∼ N (0, σ 21M ) is
given for N → ∞ by

p∞ := lim
N→∞ 〈pN 〉 = t

R
, (15)

where the specific value of the parameter t to be substituted to Eq. (15) should be found by
simultaneously minimizing the functional E[ws(u); Q, v, t] over t and maximizing it over all
other parameters and the function ws(u).

Our next result provides an explicit solution to this variational problem in a certain range
of parameters.

Proposition 2
In the range of parameters such that the solution t to the equation

μ R2 [
�′(Rt)

]2
(R2 − t2) = t2�′(R2)

[
R2γ + �(R2) − 2�(Rt) + �(R2)

]
(16)

satisfies the inequality

[
�′(R2)

]3 t2

R2 ≤ μ
[
�′(Rt)

]2 [
�′(R2) − �′′(R2)(R2 − t2)

]
(17)

the variational problem Eq. (14) is solved by the Replica-Symmetric Ansatz Q = 0. In
particular, for a given ’bare’ Noise-to-Signal ratio γ = σ 2/R2 the quality parameter p∞
definied in Eq. (15) is given by the solution of the following equation:

p2
(

γ + 2
�(R2) − �(R2 p)

R2

)
= μ(1 − p2)

[
�′(R2 p)

]2
�′(R2)

. (18)

In addition, for the range of parameters such that the solution t of Eq. (68) violates the
inequality Eq. (69) the variational problem Eq. (14) can be solved by the FRSB Ansatz
amounting to assuming the minimizer function ws(u) to be continuous and non-decreasing.
In this case the value p of the quality parameter p∞ definied inEq. (15) is given by the solution
of the following system of two equations in the variables p ∈ [0, 1] and Q ∈ [0, R2]:

μ
[
�′(R2 p)

]2 (
R2(1 − p2) − Q)

) = p2�′(R2 − Q)
[
R2γ + �(R2)

−2�(R2 p) + �(R2 − Q)
]

(19)

and
[
�′(R2 − Q)

]3
p2 = μ

[
�′(R2 p)

]2 [
�′(R2 − Q) − �′′(R2 − Q)

(
R2(1 − p2) − Q

)]
.

(20)

We finally note in passing that the FRSB scheme as we use it automatically includes
the case of the so-called 1-Step Replica Symmetry Breaking (1-RSB) which corresponds
to looking for a solution of the variational problem being a constant function ws(u) =
const, ∀u ∈ [R2 − Q, Q]. Closer inspection, which we however omit, shows that such a
solution respecting the required constraints on the parametersv, t and Q simply does not exist,
and any nontrivial solution ws(u) is continuous and increasing in the interval [R2 − Q, Q].
The question whether the variational problem may have a valid solution with higher discrete
level of the replica-symmetry breaking (the so-called r − step, which in our language will
correspond to ws(u) being nondecreasing in [R2 − Q, Q], but with r − 1 discontinuities)
has been however not investigated. Note, that in general in the spin-glass literature such
a possibility is considered to be relatively exotic, though can not be excluded on general
grounds, see [3].
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796 Y. V. Fyodorov

1.2.1 Results for the Linear-Quadratic Family of Encryptions

Both Propositions providing the solution of our reconstruction problem in full generality,
for every specific choice of the covariance structure �(u) the equations need to be further
analyzed. In this work we performed a detailed analysis of the case of encryptions belonging
to the linear-quadratic family Eq. (11) with the covariance structure of the form � (u) =
J 21 u + 1

2 J
2
2 u

2. The most essential qualitative features of the analysis are summarized below.
For such a family, apart fromourmain control parameters, scaledNSR γ̃ = γ /J 21 andERP

μ, the reconstruction is very essentially controlled by an important parameter a = R2 J 22 /J 21
which reflects the degree of nonlinearity in the encryption mapping. Our first result is that
there exists a threshold value of this parameter, a = 1, such that for all encryptions in the
family with a < 1 the variational problem is always solved with the Replica-Symmetric
Ansatz Eq. (18). In contrast, for linear-quadratic encryptions with higher nonlinearity a > 1

there exists a threshold value of the ERP μ = (a2/3−a1/3+1)3

a := μAT (a) > 1 such that for
anyμ ∈ (1, μAT (a)) the replica symmetric solution is broken in some interval of NSR and is
replaced by one with FRSB. This implies that increasing redundancy for a fixed non-linearity
one eventually always ends up in the replica-symmetric phase, see the phase diagram in Fig. 1.

In contrast, at a fixed nonlinearity a > 1 and not too big redundancy values μ ∈
(1, μAT (a)) there exists generically an interval of scaled NSR’s γ̃

(1)
AT < γ̃ < γ̃

(2)
AT such

that the replica-symmetry is broken inside and preserved for γ̃ outside that interval. The
exact values γ̃

(1,2)
AT can be in general found only by numerically solving the 4th-order poly-

0 5 10 15 20
0

2

4

6

8

10

a

RSB

RS

Fig. 1 Schematic Phase diagram in (a, μ) plane. In the shaded region of parameters 1 < μ <
(a2/3−a1/3+1)3

a
replica symmetry can be fully broken for some amplitude of the noise
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nomial equation, see Eq. (57). At the same time, using that for large enough scaled NSR
γ̃ > γ̃

(2)
AT the replica symmetry is restored, one can employ the RS equation Eq. (57) to

determine the behaviour of the quality parameter p∞(γ̃ ) as γ̃ → ∞. One finds that in all
cases but one this quantity vanishes for asymptotically large values of NSR as p∞ ∼ γ̃ −1/2,
see Eq. (58), i.e. in qualitatively the same way as for purely linear system with a = 0.

The only exceptional case, showing qualitatively different behaviour to the above picture,
is that of purely quadratic encryption with vanishing linear component,2 when J1 → 0 at
a fixed value of J2 > 0. The appropriately rescaled NSR in this case is γ̂ = γ

J 22 R
2 . In this

limit the second threshold γ̃
(2)
AT escapes to infinity and the replica symmetry is broken for all

γ̂ > γ̂AT = (μ − 1)2/μ. Moreover, most importantly there exists a threshold NSR value
γ̂c = μ − 1

2 > γ̂AT such that p∞ = 0 for γ̂ > γ̂c making the reconstruction impossible.
The full curve p∞(γ̂ ) can be explicitly described in this case analytically. In particular, the
behaviour close to the threshold NSR is given by p∞ ∼ (γ̂c − γ̂ )3/4 and the non-trivial
exponent 3/4 is completely controlled by the FRSB mechanism.

The existence of a sharp NSR threshold γ̂c in the pure quadratic encryption case may
have useful consequences for security of transmitting the encrypted signal. Indeed, it is a
quite common assumption that an eavesdropper may get access to the transmitted signal by
a channel with inferior quality, characterized by higher level of noise. This may then result
in impossibility for eavesdroppers to reconstruct the quadratically encoded signal even if the
encoding algorithm is perfectly known to them.

1.2.2 General Remarks on the Method

The task of optimizing various random ’cost functions’, not unlike Hs(x) in Eq. (7), is long
known to be facilitated by a recourse to the methods of statistical mechanics, see e.g. [34] and
[31] for early references and introduction to themethod. In that framework one encounters the
task of evaluating expected values over distributions of random variables coming through the
cost function in both numerator and denominator of the equations describing the quantities
of interest, see the right-hand side of Eq. (22) below. Performing such averaging is known
to be one of the central technical problems in the theory of disordered systems. One of
the most powerful, though non-rigorous, methods of dealing with this problem at the level
of theoretical physics is the (in)famous replica trick, see [31] and references therein. A
considerable progress achieved in the last decades in developing rigorous aspects of that
theory [4,33] makes this task, in principle, feasible for the cases when the random energy
function Hs(x) is Gaussian-distributed. The model where configurations are restricted to
the surface of a sphere are known in the spin-glass literature as ’spherical models’, but their
successful treatment, originally nonrigorous [13,14,27] and in recent years rigorous[1,5,
11,12,40,41], seems again be restricted to the normally-distributed case. In the present [2]
case however the cost function is per se not Gaussian, but represented as a sum of squared
Gaussian-distributed terms. We are not aware of any systematic treatment of spherical spin
glass models with such type of spin interaction. Some results obtained by extending replica
trick treatment to this type of random functions were given by the present author in [18], but
details were never published. To present the corresponding method on a meaningful example
is one of the goals of the present paper. Indeed, we shall see that, with due modifications,

2 It is worth noting that in the absence of linear component the encryption mapping V (s) in Eq. (11) becomes
invariant with respect to the reflections s → −s. As a result, the least-square reconstruction may formally
return solutions with negative values of the parameter pN in Eq. (4). To avoid this we consider the pure
quadratic case as the limit J1 → 0 taken after N → ∞, which is enough to break the mentioned invariance.
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798 Y. V. Fyodorov

the method is very efficient, and, when combined with the Parisi replica symmetry breaking
Ansatz allows to get a reasonably detailed insight into the reconstruction problem.As squared
gaussian-ditributed terms are common to many optimization problems based on the Least
Square method, one may hope that the approach proposed in the present paper may prove to
be of wider utility. In particular, an interesting direction of future research may be study of
the minima, saddles and other structures of this type in the arising ’optimization landscape’
following an impressive recent progress in this direction for Gaussian spherical model, see
[35] and references therein. This may help to devise better search algorithms for solutions of
the optimization problems of this type.

Another technical aspect of our treatment which is worth mentioning is as follows. In
problems of this sort replica treatment is much facilitated by noticing that after performing
the disorder averaging the replicated partition function possesses a high degree of invariance:
an arbitrary simultaneous O(N ) rotation of all n replica vectors xa, a = 1, . . . , n leaves the
integrand invariant. To exploit such an invariance in the most efficient way one may use a
method suggested in the framework of Random Matrix Theory in the works [17,23] 3 That
method allowed one to convert the integrals over N− component vectors xa, a = 1, . . . , n
to a single positive-definite n × n matrix Qab ≥ 0. Such transformation than allows to
represent the integrand in a form ideally suited for extracting the large-N asymptotic of the
integral. In the context of spin glasses and related statistical mechanics systems this method
was first successfully used in [22] and then [20,21], and most recently in [29], and proved
to be a very efficient framework for implementing the Parisi FRSB scheme. In the present
problem however the integrand has lesser invariance due to presence of a fixed direction
exemplified by the original message s. Namely, it is invariant only with respect to rotations
forming a subgroup ofO(N ) consisting of all N×N orthogonal transformationsOs satisfying
OT
s Os = 1N and Oss = s. In the Appendix C we prove a Theorem which is instrumental

in adjusting our approach to the present case of a fixed direction. One may hope that this
generalization may have other applications beyond the present problem.

2 Statistical Mechanics Approach to Reconstruction Problem

2.1 General Setting of the Problem

To put the least square minimization problem Eq. (2) in the context of Statistical Mechanics,
one follows the standard route and interprets the cost function in Eq. (7) as an energy asso-
ciated with a configuration xT of N spin variables (x1, . . . , xN ), constrained to the sphere
of radius |x| = N

√
R. This allows one to treat our minimization problem as a problem of

Statistical Mechanics, by introducing the temperature parameter T > 0, and considering
the Boltzmann-Gibbs weights πβ(x) = Z−1

β e−βHs(x) associated with any configuration x
on the sphere, with Zβ being the partition function of the model for the inverse temperature
β = T−1 :

Zβ =
∫

|x|=R
√
N
e−βHs(x)dx, dx =

N∏
i=1

dxi . (21)

The power of the method is that in the zero-temperature limit β → ∞ the Boltzmann-Gibbs
weights concentrate on the set of globally minimal values of the cost function, so that for
any well-behaving function g(x) the thermal average value gβ(x) := ∫

g(x)πβ(x)dx should

3 Equivalent transformations were also suggested earlier in [36], see also [15].
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tend to the value of that function evaluated at the argument corresponding to solutions of
the minimization problem Eq. (2). To this end we introduce the thermal average p(β)

N of the
distance function defined in Eq. (3) and consider its expected value with respect to both the
set of random functions Vk(x) and the noise b:

〈
p(β)
N

〉
:=

〈
1

Zβ

∫

|x|=R
√
N

(x, s)
N R2 e−βHs(x)dx

〉

V ,b
. (22)

Our goal is to evaluate the above quantity for finite β = 1/T in the limit of large
N � 1, and eventually perform the zero temperature limit T → 0 thus extracting

p∞ := limβ→∞ limN→∞
〈
p(β)
N

〉
providing us with ameasure of the quality of the asymptotic

signal reconstruction in the original optimization problem.

2.2 Replica Trick

The main challenge in evaluating the right-hand side in Eq. (22) is related to presence of
random Gaussian variables entering Hs(x) both in the integrand and through the normal-
ization factor 1/Zβ in the Boltzmann–Gibbs weights. To bypass this difficulty we follow
the framework of the replica trick by representing the normalization factor formally as
1/Zβ = limn→0 Zn−1

β and treating the parameter n before the limit as a positive integer.

Employing Eq. (21) for each factor in Zn−1
β one than can represent Eq. (22) formally as

〈
p(β)
N

〉
= lim

n→0

〈
p(β)
N ,n

〉
, (23)

where we defined

〈
p(β)
N ,n

〉
=

∫

|x1|=R
√
N

. . .

∫

|xn |=R
√
N

[
1

n

n∑
c=1

(xc, s)
N R2

] 〈
e−β

∑n
a=1 Hs(xa)

〉 n∏
a=1

dxa . (24)

The disorder average can be now performed in the following steps. First, using the additive
form of the cost function in Eq. (7) and independence ofH(k)

s (xa) for different k = 1, . . . , M
we obviously have 〈

e−β
∑n

a=1 Hs(xa)
〉
=

〈
e−β

∑n
a=1 H(k)

s (xa)
〉M

. (25)

Using the Gaussian nature of V (x) entering to H(k)
s (x) in a squared form, see Eq. (7), and

exploiting the covariance structure Eq. (5) one can show that
〈
e−β

∑n
a=1 H(k)

s (xa)
〉
= [det G(x1, . . . , xn; s)]−1/2 , (26)

where we have introduced the (positive definite) n × n matrix G(x1, . . . , xn; s) with entries
Gab(x1, . . . , xn; s) = δab

+β

[
σ 2 + �(R2) + �

(
(xa, xb)

N

)
− �

(
(xa, s)
N

)
− �

(
(xb, s)
N

)]
. (27)

For convenience of the reader we provide a derivation of the formula Eq. (26) in the Appendix
B. Note that this result is well-known in the probability literature, see e.g. [26]. We see that

〈
p(β)
N ,n

〉
=

∫

|xa|=R
√
N

[
1

n

n∑
c=1

(xc, s)
N R2

]
[det G(x1, . . . , xn; s)]−M/2

n∏
a=1

dxa . (28)

123



800 Y. V. Fyodorov

At this step it is very helpful to notice that the integrand in Eq. (28) possesses a high degree
of invariance. Namely, consider all possible rotations around the axis whose direction is
given by the vector s. Such rotations form a subgroup of O(N ) consisting of all N × N
orthogonal transformations Os satisfying OT

s Os = 1N and Oss = s. Then the integrand in
Eq. (28) remains invariant under a simultaneous change xa → Osxa for all a = 1, . . . , n. In
the Appendix C we prove a Theorem which is instrumental for implementing our previous
approach to similar problems [22] to the present case of somewhat lesser invariance. Not
surprisingly, in such a case the integration needs to go not only over n × n matrix of scalar
products Qab = (xa, xb) ≥ 0, but also over an n-component vector t = (t1, . . . , tn) ∈ R

n of
projections ta = (xa, s). Applying the Theorem and rescaling for convenience the integration
variables Qab → NQab and t → √

N t we bring Eq. (29) to the form

〈
p(β)
N ,n

〉
= N

n(N−n−1)
2 C (o)

N−1,n

∫

Dn

[
1

n

n∑
c=1

tc
R

]
[det Q]−

(n+2)
2 e− N

2 F(Q,t)dQdt , (29)

where C (o)
N ,n is defined in Eq. (110), the integration goes over the domain

Dn : (Q > 0, t ∈ R
n, Qaa + t2a = R2, ∀a = 1, . . . , n

)
(30)

and we defined
F(Q, t) = μTr ln [1n + β g(Q, t)] − Tr ln Q , (31)

with n × n matrix g(Q, t) characterized by its entries (cf. Eq. (27))

gab(Q, t) = σ 2 + �(R2) + �(Qab + tatb) − � (Rta) − � (Rtb) . (32)

So far our treatment of
〈
p(β)
N ,n

〉
was exact for any positive integer values N and n satisfying

N > n + 1 and involved no approximations. Our goal is however to extract the leading
behaviour of that object as N � 1 and allowing formally n to take non-integer values to be
able to perform the replica limit n → 0.

2.3 Variational Problem in the Framework of the Parisi Ansatz

Clearly, the form of the integrand in Eq. (29) being proportional to the factor e− N
2 F(Q,t) is

suggestive of using the Laplace (a.k.a saddle-point or steepest descent) method. In following
this route we resort to a non-rigorous and heuristic, but computationally efficient scheme
of Parisi replica symmetry breaking [31]. We implement this scheme in a particular variant
most natural formodels with rotational invariance, going back to Crisanti and Sommers paper
[13], and somewhat better explained in the Appendix A of [22], and in even more detail in
the Appendix C of [19]. We therefore won’t discuss the method itself in the present paper,
only giving a brief account of necessary steps.

The scheme starts with a standard assumption that in the replica limit n → 0 the inte-
gral is dominated by configurations of matrices Q which for finite integer n have a special
hierarchically built structure characterized by the sequence of integers

n = m0 ≥ m1 ≥ m2 ≥ . . . ≥ mk ≥ mk+1 = 1 (33)

and the values placed in the off-diagonal entries of the Q matrix block-wise, and satisfying:

0 < q0 ≤ q1 ≤ q2 ≤ . . . ≤ qk . (34)
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Finally, we complete the procedure by filling in the n diagonal entries Qaa of the matrix Q
with one and the same value Qaa = qd := qk+1 ≥ qk . Note that in our particular case the
diagonal entries qd must in fact be chosen in the form qd = R2 − t2a , in order to respect the
constraints impose by the integration domain Eq. (30). As to the vector t of variables ta , we
are making an additional assumption that with respect to those variables the integral is in fact
dominated by equal values: ta = t,∀a = 1, . . . , n.

Obviously, the matrix g(Q, t) defined in Eq. (32) inherits the hierarchical structure from
Q, with parametersml , l = 0, . . . , k+1 shared by both matrices, but parameters ql replaced
by parameters gl given by

gl = σ 2 + �(R2) − 2�(Rt) + �(ql + t2)), l = 0, 1, . . . , k (35)

and

gk+1 = σ 2 + 2�(R2) − 2�(Rt) := gd .

The next task of the scheme is to express both Tr ln g(Q, t) and Tr ln Q in terms of the
parameters entering Eqs. (33) and (34). This is most easily achieved by writing down all
distinct eigenvalues λ1, . . . , λk+2 of the involved matrices, and their degeneracies di+2 =
n
(
m−1

i+1 − m−1
i

)
∀i = 0, . . . , k, and d1 = 1. For the matrix Q those eigenvalues are listed,

e.g., in the appendix C of [19], and for the matrix g(Q, t) the corresponding expressions
can be obtained from those for Q by replacing ql by parameters gl from Eq. (35). The
subsequent treatment is much facilitated by introducing the following (generalized) function
of the variable q:

x(q) = n +
k∑

l=0

(ml+1 − ml) θ(q − ql) , (36)

where we use the notation θ(z) for the Heaviside step function: θ(z) = 1 for z > 0 and zero
otherwise. In view of the inequalities Eqs. (33, 34) the function x(q) is piecewise-constant
non-increasing, and changes between x(0 < q < q0) = m0 ≡ n through x(qi−1 < q <

qi ) = mi for i = 1, . . . , k to finally x(qk < q < qd) = mk+1 ≡ 1. A clever observation by
Crisanti and Sommers allows one to express eigenvalues of any function of the hierarchical
matrix Q in terms of simple integrals involving x(q). In particular, for eigenvalues λ

(g)
l of

the matrix g(Q, t) we have:

λ
(g)
1 =

∫ qd

0
x(q)

dgt
dq

dq, and λ
(g)
i+2 =

∫ qd

qi
x(q)

dgt
dq

dq, i = 0, . . . , k , (37)

where we introduced a piecewise-continuous function gt (q), q ∈ [0, qd ] such that in the
interval q ∈ [q0, qk] it is given by

gt (q0 ≤ q ≤ qk) = σ 2 + �(R2) − 2�(Rt) + �(q + t2)) , (38)

whereas outside that interval it has two constant values:

gt (0 ≤ q < q0) = 0 and gt (qk < q ≤ qd := qk+1) = σ 2 + 2�(R2) − 2�(Rt) . (39)

In particular, λ(g)
1 can be further rewritten as

λ
(g)
1 =

∫ q0

0
x(q)

dgt
dq

dq +
∫ qd

q0
x(q)

dgt
dq

dq = ngt (q0) +
∫ qd

q0
x(q)

dgt
dq

dq . (40)
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Such a representation, together with the definition Eq. (36) of the function x(q) facilitates
calculating quantities interesting to us in the replica limit as:

lim
n→0

1

n
Tr ln (1n + β g(Q, t)) = lim

n→0

1

n

[
ln

(
1 + βλ

(g)
1

)
+

k∑
i=0

di+2 ln
(
1 + βλ

(g)
i+2

)]

= lim
n→0

1

n
ln

(
1 + βngt (q0) + β

∫ qd

q0
x(q)

dgt
dq

dq

)

+ lim
n→0

∫ qk+0

q0−0
ln

(
1 + β

∫ qd

q
x(q)

dgt
dq

dq

)
d

dq

[
1

x(q)

]
dq . (41)

In the last term it is convenient to integrate by parts, and use x(qk+0) = 1 and x(q0−0) = n,
which after obvious regrouping of terms reduces the right-hand side of Eq. (41) as

lim
n→0

1

n

[
ln

(
1 + βngt (q0) + β

∫ qd

q0
x(q) g′

t (q) dq

)
− ln

(
1 + β

∫ qd

q0
x(q)g′

t (q) dq

)]

+ lim
n→0

{
ln [1 + β (gt (qd) − gt (qk))] + β

∫ qk

q0

g′
t (q)dq

1 + β
∫ qd
q x(q̃)g′

t (q̃)dq̃

}
, (42)

where we denoted g′
t (q) := dgt

dq . The limit n → 0 is now easy to perform following the
general prescription of the Parisi method: in such a limit the inequality Eq. (33) should be
reversed:

n = 0 ≤ m1 ≤ m2 ≤ . . . ≤ mk ≤ mk+1 = 1 , (43)

and the function x(q) is now transformed to a non-decreasing function of the variable q in
the interval q0 ≤ q ≤ qk , and satisfying outside that interval the following properties

x(q < q0) = 0, and x(q > qk) = 1 . (44)

In general, such a function also depends on the increasing sequence of k real parameters ml

described in Eq. (43) . Performing the corresponding limit and taking into account that in
view of x(q < q0)) = 0 we have

∫ q0

0

g′
t (q)dq

1 + β
∫ qd
q x(q̃)g′

t (q̃)dq̃
= gt (q0)

1 + β
∫ qd
q0

x(q)g′
t (q) dq

,

we eventually see that

lim
n→0

1

n
Tr ln (1n + β g(Q, t)) = ln [1 + β (gt (qd) − gt (qk))]

+ β

∫ qk

0

g′
t (q)dq

1 + β
∫ qd
q x(q̃)g′

t (q̃)dq̃
, (45)

and by a similar calculation also find:

lim
n→0

1

n
Tr ln Q = ln (qd − qk) +

∫ qk

0

dq∫ qd
q x(q̃)dq̃

. (46)

The two formulas Eqs. (45)–(46) provide us therefore with a full formal control of the main

exponential factor e− N
2 F(Q,t) in Eq. (29) for N → ∞ in the replica limit n → 0. Note that the

fact that the limit in the left hand-side of Eq. (46) is finite implies also that det Q|n→0 → 1

further implying [det Q]−
(n+2)

2 |n→0 = 1 in Eq. (29). Collecting finally all factors in Eq. (29)
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when performing the replica limit n → 0, using explicit forms Eqs. (38)–(39), remembering
qd = R2 − t2 and finally understanding by x(q) only its non-trivial part in the interval q0, qk
we arrive to the following

Proposition 2.1 Given the values of real parameters R > 0 and μ > 1, consider the func-
tional

φ[x(q); q0, qk, t] = μ ln
(
1 + β

[
�(R2) − �(qk + t2)

]) − ln (R2 − t2 − qk)

+ μ
β

[
σ 2 + �(R2) − 2�(Rt) + �(q0 + t2)

]

1 + β
[
�(R2) − �(qk + t2)

] + β
∫ qk
q0

x(u)�′(u + t2)du

− q0
R2 − t2 − qk + ∫ qk

q0
x(u)du

+ μβ

∫ qk

q0

�′(q + t2) dq

1 + β
[
�(R2) − �(qk + t2)

] + β
∫ qk
q x(u)�′(u + t2)du

−
∫ qk

q0

dq

R2 − t2 − qk + ∫ qk
q x(u)du

, (47)

which depends on the parameters −R ≤ t ≤ R, and 0 ≤ q0 ≤ qk < qd = R2 − t2 and
a non-decreasing function x(q) of the variable q in the interval q0 ≤ q ≤ qk. Then in the

framework of the replica trick the asymptotic mean value of the quality parameter
〈
p(β)
N

〉
as

N → ∞ is given by

lim
N→∞

〈
p(β)
N

〉
= t

R
, (48)

where the specific value of the parameter t is found by simultaneously minimizing the func-
tional φ[x(q); q0, qk, t] over t and maximizing it over all other parameters and the function
x(q).

Recall, however, that for the purposes of our main goal the quantity
〈
p(β)
N

〉
is only of aux-

iliary interest, and is used to provide an access to its ’zero-temperature’ limit β = 1
T → ∞

which is expected to coincide with the quality parameter characterizing the performance of
our signal reconstruction scheme. A simple inspection shows that in such a limit the com-
bination Tφ[x(q); q0, qk, t] does have a well-defined finite value if we make the following
low temperature Ansatz valid for T → 0

qk = R2 − t2 − v T , q0 = R2 − t2 − Q, βx(u) → w(u) := ws(u + t2) , (49)

with v, Q and ws(u) tending to a well-defined finite limit as T → 0. Performing the cor-
responding limit in Eq. (47) and changing u → u − t2 one arrives at the statement of the
Proposition 1 in the Main Results section.

3 Analysis of the Variational Problem

To solve the arising problem of extremizing the functional E[ws(u); Q, v, t] from Eq. (14)
we first consider the stationarity equations with respect to three parameters: t, Q and v. The
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conditions ∂E
∂t = 0 and ∂E

∂Q = 0 yield the two equations, the first being

t

v + ∫ R2

R2−Q ws(u) du
= μ

R�′(Rt)
1 + v�′(R2) + ∫ R2

R2−Q ws(u)�′(u) du
, (50)

and, assuming that ws(R2 − Q) �= 0, the second one:

R2 − t2 − Q(
v + ∫ R2

R2−Q ws(u) du
)2 = μ�′(R2 − Q)

σ 2 + �(R2) − 2�(Rt) + �(R2 − Q)(
1 + v�′(R2) + ∫ R2

R2−Q ws(u)�′(u) du
)2 .

(51)
The Eq. (51) can be used to simplify the third equation arising from the stationarity condition
∂E
∂v

= 0 bringing it eventually to the following form:

R2 − t2 − Q(
v + ∫ R2

R2−Q ws(u) du
)2

[
1 − �′(R2)

�′(R2 − Q)

]
+

∫ R2

R2−Q

dq(
v + ∫ R2

q ws(u) du
)2

= μ�′(R2)

∫ R2

R2−Q

�′(q)dq(
1 + v�′(R2) + ∫ R2

q ws(u)�′(u) du
)2 . (52)

3.1 Replica Symmetric Solution

Notice that the last equation Eq. (52) is identically satisfied with the choice Q = 0, defining
the so-called Replica Symmetric (RS) solution. For such a choice the interval [R2−Q, R2] of
the support of the function ws(u) shrinks to a point, making that function immaterial for the
variational procedure. Moreover, the equations Eqs. (50)–(51) drastically simplify yielding
the pair:

t

v
= μ

R�′(Rt)
1 + v�′(R2)

,
R2 − t2

v2
= μ�′(R2)

σ 2 + 2�(R2) − 2�(Rt)(
1 + v�′(R2)

)2 . (53)

Remarkably, this pair can be further reduced to a single equation in the variable p = t/R,
precisely one given in the list of Main Results, see Eq. (18), thus providing the asymptotic
value of the quality reconstruction parameter p∞ = p.

As expected, in the case of no noise γ = 0 the solution of Eq. (18) is provided by p = 1
corresponding to the perfect reconstruction of the source signal. It is also easy to treat the
equation perturbatively in the case of weak noise γ → 0 and obtain to the leading order:

p = 1 − γ

2(μ − 1)�′(R2)
+ o(γ ) . (54)

In particular, this result agrees with the first-order perturbation theory analysis for the linear
case �(u) = u, see Eq. (10) and Appendix A, and generalizes it to a generic nonlinearity. It
also emphasizes the natural fact that the signal recovery becomes very sensitive to the noise
for the values of ERP μ → 1.

For the linear-quadratic family Eq. (11) with the covariance structure of the form � (u) =
J 21 u + 1

2 J
2
2 u

2 the equation Eq. (18) can be readily studied non-perturbatively for any value
of NSR. We start with two limiting cases in the family: that of ’purely linear’ and ’purely
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Fig. 2 The quality parameter p as a function of the scaled noise-to-signal ratio γ̃ for purely linear encryptions
and two different values of the ERP, μ = 2 and μ = 4

quadratic’ encryptions. In the former case J2 = 0, but J1 �= 0 and after introducing the
scaled NSR γ̃ := γ /J 21 we arrive at a cubic equation

p2 (γ̃ + 2(1 − p)) = μ(1 − p2) . (55)

In particular, p is nonvanishing for any value of the scaled NSR 0 ≤ γ̃ < ∞, and tends to
zero as p ∼ √

μ/γ̃ for γ̃ � 1, in full agreement with the direct perturbation theory approach,
see appendix A. For intermediate NSR values the solution can be easily plotted numerically,
see Fig. 2.

In the opposite case of purely quadratic encryption when J1 = 0 but J2 �= 0 the equation
Eq. (18) is biquadratic, so that one can find the RS solution explicitly. Introducing the rescaled
NSR pertinent to this limit as γ̂ := γ

J 22 R
2 we have

p =
{√

1 − γ̂
μ−1 if γ̂ ≤ γ̂

(RS)
c := μ − 1

0 γ̂ > γ̂
(RS)
c

. (56)

Thus, in this case the replica-symmetric solution predicts the existence of a NSR threshold
γ̂

(RS)
c = μ−1 beyondwhichmeaningful reconstruction of the encrypted signal is impossible.

We will see later on that although this conclusion is qualitatively correct, the actual value
for the threshold and the critical exponent controlling the behaviour close to the threshold is
different and is obtained when the phenomenon of the replica symmetry breaking is taken
into account.

Finally, in the case of a generic linear-quadratic encryption with both J1 �= 0 and J2 �= 0
the resulting equation Eq. (18) is a general polynomial of the fourth degree. Introducing
again the scaled NSR γ̃ := γ /J 21 and a parameter characterizing effective non-linearity of
the mapping a := (R J2/J1)2 we can rewrite the equation as:

(1 + a)p2
(
γ̃ + 2(1 − p) + a(1 − p2)

) = μ(1 − p2)(1 + ap)2 . (57)

In particular, we see that p tends to zero as NSR γ̃ → ∞ as in the purely linear case:

p =
√

μ

1 + a

1

γ̃
+ o(γ̃ −1/2) . (58)
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We will see in the next section that generically for linear-quadratic encryptions with big
enough, but finite nonlinear component 1 < a < ∞ the replica-symmetric solution of the
variational problem is not correct in some interval of the scaled NSR γ̃

(1)
AT < γ̃ < γ̃

(2)
AT , and

should be replaced with one involving Q �= 0. Nevertheless, asymptotic decay of the quality
parameter p for γ → ∞ is always given by Eq. (58), apart from the only limiting case of
purely quadratic encryption, when a → ∞.

3.2 Solution with Fully Broken Replica Symmetry

The goal of the present section is to seek for a solution of the variational problem for the
functional Eq. (14) which breaks the replica symmetry, so that Q > 0. Doing this necessarily
implies taking the function ws(u) into account, and deriving the equation involving such a
function. The corresponding equation is obtained by requiring stationarity of the functional
E with respect to a variation ofws(u), assuming that function to be continuous in the interval
u ∈ [R2 − Q, R2]. Let us reiterate that this potentially includes the case of 1RSB solutions
corresponding to ws(u) = w = const, ∀u ∈ [R2 − Q, R2]. For every value of q in that
interval it yields the equation

R2 − t2 − Q(
v + ∫ R2

R2−Q ws(u) du
)2 +

∫ q

R2−Q

dq̃(
v + ∫ R2

q̃ ws(u) du
)2

= μ�′(q)

⎡
⎢⎣ σ 2 + �(R2) − 2�(Rt) + �(R2 − Q)(

1 + v�′(R2) + ∫ R2

R2−Q ws(u)�′(u) du
)2

+
∫ q

R2−Q

�′(q̃)dq̃(
1 + v�′(R2) + ∫ R2

q̃ ws(u)�′(u) du
)2

⎤
⎥⎦ , (59)

which using again Eq.(51) can be simplified into

R2 − t2 − Q(
v + ∫ R2

R2−Q ws(u) du
)2

[
1 − �′(q)

�′(R2 − Q)

]
+

∫ q

R2−Q

dq̃(
v + ∫ R2

q̃ ws(u) du
)2

= μ�′(q)

∫ q

R2−Q

�′(q̃)dq̃(
1 + v�′(R2) + ∫ R2

q̃ ws(u)�′(u) du
)2 . (60)

Our first observation is that setting q = R2 in Eq. (60) in fact reproduces Eq. (52), so the
fundamental system comprises three rather than four independent stationarity conditions:
Eqs. (50), (51) and either Eq. (59) or (60) . Next we observe that Eq. (50) can be rewritten as

1 + v�′(R2) + ∫ R2

R2−Q ws(u)�′(u) du

v + ∫ R2

R2−Q ws(u) du
= μ

R�′(Rt)
t

, (61)

which when substituted to Eq. (51) yields the following equation

μ R2 [
�′(Rt)

]2
(R2 − t2 − Q) = t2�′(R2 − Q)

[
σ 2 + �(R2) − 2�(Rt) + �(R2 − Q)

]
.

(62)
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After introducing the variable p = t/R, and the NSR γ = σ 2/R2 the above equation is
presented in the Main Results section, see Eq. (19).

At the next step we differentiate Eq. (59) over the variable q , and find that for any q ∈
[R2 − Q, R2] holds:

1(
v + ∫ R2

q ws(u) du
)2 = μ

[
�′(q)

]2
(
1 + v�′(R2) + ∫ R2

q ws(u)�′(u) du
)2

+μ�′′(q)

⎡
⎢⎣ σ 2 + �(R2) − 2�(Rt) + �(R2 − Q)(

1 + v�′(R2) + ∫ R2

R2−Q ws(u)�′(u) du
)2

+
∫ q

R2−Q

�′(q̃)dq̃(
1 + v�′(R2) + ∫ R2

q̃ ws(u)�′(u) du
)2

⎤
⎥⎦ . (63)

Now, by comparing Eq. (63) with Eq. (59) and assuming that �′′(q) �= 0 one arrives to the
following relation:

R2 − t2 − Q(
v + ∫ R2

R2−Q ws(u) du
)2 +

∫ q

R2−Q

dq̃(
v + ∫ R2

q̃ ws(u) du
)2

= �′(q)

�′′(q)

⎡
⎢⎣ 1(

v + ∫ R2

q ws(u) du
)2 − μ

[
�′(q)

]2
(
1 + v�′(R2) + ∫ R2

q ws(u)�′(u) du
)2

⎤
⎥⎦ .

(64)

We further substitute the value q = R2 − Q in the above getting

R2 − t2 − Q(
v + ∫ R2

R2−Q ws(u) du
)2

= �′(R2 − Q)

�′′(R2 − Q)

⎡
⎢⎣ 1(

v + ∫ R2

R2−Q ws(u) du
)2

−μ

[
�′(R2 − Q)

]2
(
1 + v�′(R2) + ∫ R2

R2−Q ws(u)�′(u) du
)2

⎤
⎥⎦ , (65)

which we further rearrange into

(
1 + v�′(R2) + ∫ R2

R2−Q ws(u)�′(u) du
)2

(
v + ∫ R2

R2−Q ws(u) du
)2

[
�′(R2 − Q)

�′′(R2 − Q)
− (R2 − t2 − Q)

]

= μ

[
�′(R2 − Q)

]3
�′′(R2 − Q)

. (66)
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Finally, upon using Eq. (61) the above relation is transformed into the following equation:

[
�′(R2 − Q)

]3 t2

R2 = μ
[
�′(Rt)

]2 [
�′(R2 − Q) − �′′(R2 − Q)(R2 − t2 − Q)

]
, (67)

which is yet another equation presented in the Main Results section, see Eq. (20).
We therefore conclude that the pair of equations Eqs. (62) and (67) is sufficient for finding

the values of the parameters t and Q, and hence for determining the value of p giving the
quality of the reconstruction procedure.

Using the above pair, the first task is to determine the range of NSR parameter γ = σ 2/R2

where the solution with Q > 0 is at all possible. The boundary of this regionwhich we denote
as γAT (in the general spin-glass context such boundaries are known as the de-Almeida-
Thouless lines [16]) can be found by setting Q = 0 in Eqs. (62) and (67), yielding the system
of two equations:

μ R2 [
�′(Rt)

]2
(R2 − t2) = t2�′(R2)

[
R2γAT + �(R2) − 2�(Rt) + �(R2)

]
(68)

and [
�′(R2)

]3
p2 = μ

[
�′(Rt)

]2 [
�′(R2) − �′′(R2)(R2 − t2)

]
. (69)

Moreover, it is not difficult to understand that by replacing in Eq. (69) the equality sign =
with the inequality sign≤ defines the NSR domain γ ≤ γAT corresponding to solutions with
stable unbroken replica symmetry, Q = 0.

3.3 Analysis of Replica Symmetry Breaking for the Linear-Quadratic Family of
Encryptions

In this section we use the following scaling variables naturally arising when performing the
analysis of the general case of linear-quadratic family: the scaled NSR γ̃ = σ 2/J 21 R

2, the
variables p = t/R and Q̃ = Q/R2 and the non-linearity parameter a = (RJ2/J1)2.

3.3.1 Position of the de-Almeida Thouless Boundary

Not surprisingly, the equation Eq. (68) in scaled variables simply coincides with Eq. (57),
which we repeat below for convenience of the exposition:

(1 + a)p2
(
γ̃AT + 2(1 − p) + a(1 − p2)

) = μ(1 − p2)(1 + ap)2 , (70)

whereas Eq. (69) takes after simple rearrangements the form

p2 = μ

(1 + a)3
(1 + ap2)(1 + ap)2 . (71)

One can further use Eq. (71) to bring Eq. (70) to a more convenient form explicitly defining
γ̃AT as:

γ̃AT = (1 − p)2
(a2 + a − 1) + 2a(a + 1)p + a2 p2

1 + ap2
. (72)

To find γ̃AT for given values of the parameters μ ≥ 1 and a ≥ 0 one has to find a value
p ∈ [0, 1] by solving Eq. (71), and substitute it to Eq. (72). A simple consideration shows that
both sides of Eq. (71), fL(p) = p2 and fR(p) = μ

(1+a)3
(1+ap2)(1+ap)2 aremonotonically

increasing and convex for p ∈ [0, 1], with the value of the right-hand side being larger than the
left-hand side at both ends of the interval, see Fig. 3. This implies that generically there must
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Fig. 3 Plots of fL (p) and fR(p) for a = 8 andμ = 2 (left) andμ = (3/2)3 (right). In the former case the two
curves intersects in two points p2 < p1, in the latter case the two curves touch each other at p = a−2/3 = 0.25.
For μ > (3/2)3 the two curves do not intersect (not shown)

be either no solutions ifμ > μAT (a), or two solutions: 0 ≤ p2 < p1 < 1 ifμ < μAT (a). The
parameter μAT (a) is precisely one when only a single solution is possible, and corresponds
geometrically to the situation when the curves fL(p) and fR(p) touch each other at some
p = pAT ∈ [0, 1], see the Fig. 3 below. The latter can be then found as a solution to the
system of two equations: fL(p) = fR(p) and f ′

L(p) = f ′
R(p) for pAT and μAT for a given

a > 1. Surprisingly, the system can be solved explicitly:

pAT = a−2/3, μAT (a) = (a2/3 − a1/3 + 1)3

a
. (73)

A detailed mathematical analysis of the discriminant of the 4th-order polynomial equation
Eq. (71)4 fully confirms the picture outlined above, giving the explicit criterion for existence
of solutions in the (μ, a) parameter plane, cf. Fig. 1:

(i) For a given μ > 1 no solutions with p ∈ [0, 1] are possible for a < 1, whereas for a
fixed a > 1 no solutions exist for μ > μAT (a).

(ii) For μ = μAT (a) there exists a single solution: p = pAT .
(iii) For a given a > 1 and 1 < μ < μAT (a) there exist exactly two solutions 0 ≤ p2 <

p1 < 1.

Correspondingly, in the case (i) the RS solution is valid for all values of the scaled Noise-to-
Signal ratio γ̃ , with the parameter p given by solving the RS equation Eq. (57). In contrast,
in the last case (iii) the two solutions give rise to two different AT thresholds in the scaled
N RS values: γ̃

(2)
AT > γ̃

(1)
AT . In other words, for fixed values of parameters μ and a there is

generically an interval of NSR’s γ̃
(1)
AT < γ̃ < γ̃

(2)
AT such that the replica-symmetry is broken

inside and preserved for γ̃ outside that interval.
As is easy to see, for the minimal value ERP μ = 1 and any a > 1 one must have only

one solution at the edge of the interval: p = 1, with γ̃AT = 0. Let us increase μ slightly so
that μ − 1 � 1. A simple perturbation analysis then shows that a solution to Eq. (71) close
to the interval edge exists, and is given by:

p1 = 1 − a + 1

2(a − 1)
(μ − 1) + o(μ − 1) . (74)

4 I am grateful to Dr. Mihail Poplavskyi for his help with the corresponding analysis.
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We conclude that for a fixed a > 1 and small ERP values μ − 1 � 1 the replica symmetry
is broken for NRS satisfying

γ̃ > γ̃
(1)
AT =

(
a − 1

4

)(
a + 1

a − 1

)2

(μ − 1)2 + o((μ − 1)2) . (75)

Finally, one may also consider the AT equations in the limiting case of large nonlinearity
a � 1 when the quadratic term in the covariance is dominant over the linear term. In this
limit one easily finds two solutions of Eq. (71), given to the leading orders by p21 ≈ 1/μ and

p2 ≈
√

μ

a3/2
yielding the AT thresholds

γ̃
(1)
AT ≈ a

(μ − 1)2

μ
, γ̃

(2)
AT ≈ a2 + 2

√
μ a . (76)

We see that the ratio γ̃
(1)
AT /a remains finite in the limit a → 0, whereas γ̃

(2)
AT /a → ∞.

To interpret this fact we recall that a → ∞ is equivalent to J 21 → 0 at a fixed value of

J 22 > 0. Then the value γ̃
a ≡ γ

J 22
:= γ̂ . We conclude that the value γ̃

(1)
AT /a = (μ−1)2

μ
:= γ̂AT

must give the value of AT boundary in NRS for a given ERP μ > 1 for the purely quadratic
encryption, with the second threshold in this limiting case escaping to infinity and leaving

the system in the RSB phase for all γ̂ >
(μ−1)2

μ
. This conclusion will be fully confirmed by

a detailed analysis of the purely quadratic case given in the next section.

3.3.2 Analysis of Solutions with the Broken Replica Symmetry for the Linear-Quadratic
Family of Encryptions

After getting some understanding of the domain of parameters where replica symmetry is
expected to be broken, let us analyse the pair of equations Eqs. (62) and (67), looking for
a solution with 0 < Q ≤ 1. As before introduce p = t/R and Q̃ = Q/R2 as our main
variables of interest.

We start with considering the two limiting cases in the family: that of purely linear scheme
with �(u) = J 21 u and the opposite limiting case of purely quadratic encryption scheme with

�(u) = J 22
u2
2 . In the former case the previous analysis indicates that only RS solution must

be possible. Indeed, we immediately notice that for purely linear scheme Eq. (67) takes the
form p2 = μ which can not have any solution as μ > 1 but p ∈ [0, 1]. 5 We conclude that a
solution with broken replica symmetry Q > 0 does not exist, so in this case the correct value
of p is always given by solving the RS equation Eq. (55), as anticipated.

In the opposite limiting case of purely quadratic encryption we first need to introduce a
different scaling for NRS as γ̂ = γ

J 22 R
2 . Then one may notice that unless p = 0 (which is

always a solution) the pair Eqs. (62) and (67) reduces to the form

μ(1 − p2 − Q̃) = (1 − Q̃)

[
γ̂ + 1 − p2 − Q̃ + 1

2
Q̃2

]
, μp2 = (1 − Q̃)3 . (77)

Since p �= 0 implies Q̃ �= 1, we can further simplify this system and bring it to the form

Q̃3 + 3
(μ

2
− 1

)
Q̃2 + 3Q̃(1 − μ) + δμ = 0, μp2 = (1 − Q̃)3 , (78)

5 One can in fact easily demonstrate that the pair Eqs. (62) and (67) can not have a real solution for anyμ > 0.
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where we introduced, in accordance with the Eq. (76),

δ = γ̂ − γ̂AT , γ̂AT := (μ − 1)2

μ
. (79)

At this point we need to recall that the broken replica symmetry corresponds to Q ∈ (0, R2],
hence Q̃ ∈ (0, 1]. It is easy to show that the cubic equation in Eq. (78) may have a positive
solution in that interval only for δ > 0. We conclude that the replica symmetry is broken
for γ̂ > γ̂AT whereas for γ̂ < γ̂AT the RS solution with Q ≡ 0 and p given by Eq. (57)
remains valid. For small 0 < δ � 1 one easily finds Q̃ = μ

3(μ−1 )δ + O(δ2)6. On the other

hand one can see that the solution Q̃(δ) → 1 as δ → δc = 3
2 − 1

μ
. so that a meaningful

solution only exists in the interval δ ∈ [0, δc]. Moreover, it is easy to show that for δ → δc

we have Q̃ = 1 −
√

2
3 (δc − δ). We see that the second of Eq. (78) then implies that when

approaching the true threshold value γ̃
(RSB)
c = μ − 1

2 dictated by broken replica symmetry

the quality parameter vanishes as p ∼ (γ̂
(RSB)
c − γ̂ )3/4 rather than as a square root, as in the

replica-symmetric solution Eq. (56).
To study the behaviour of the solution Q̃(δ) for δ of the order of one it is instructive to

consider a particular (but generic) case of μ = 2, when δc = 1. The cubic equation for Q̃
takes then a particular simple form:

Q̃3 − 3Q̃ + 2δ = 0 , (80)

which represents one of the rare instances when the Cardano formula for solving cubic
equations is really helpful for the analysis. Indeed, according to the Cardano formula in this
case the solution is given by

Q̃ =
[
−δ +

√
δ2 − 1

]1/3 +
[
−δ −

√
δ2 − 1

]1/3
. (81)

As δ ∈ [0, 1] we can further parametrize δ = sin φ, φ ∈ [0, π/2], and obtain the three
different solutions to Eq. (80) in the following form

Q̃n = 2 cos

(
1

3

[
φ + π

(
2n + 1

2

)])
, n = 0, 1, 2 . (82)

We see then that Q̃0,1 are outside the interval [0, 1], as Q̃0 = 2 cos
( 1
3φ + π

6

) ∈ [1,√3] and
Q̃1 = 2 cos

( 1
3φ + π

6

) ∈ [−√
3,−1], whereas Q̃2 = 2 sin φ

3 is exactly the valid solution.
The nature of the solution for purely quadratic scheme for a general μ > 1 is exactly of

the same type. After finding Q̃ from the cubic equation for γ̃AT < γ̃ ≤ γ̃
(RSB)
c = μ − 1/2

we find the quality parameter p from the second of Eq. (78), and combining it with RS
expression Eq. (56) obtain the full corresponding curve for p(γ̂ ) for a given μ. In particular,
for the above special value μ = 2 the full curve can be described by an explicit expression:

p =

⎧
⎪⎪⎨
⎪⎪⎩

√
1 − γ̂ if γ̂ ≤ γ̂AT = 1

2
1√
2

[
1 − 2 sin 1

3

(
arcsin

(
γ̂ − 1

2

))]3/2
if 1

2 ≤ γ̂ ≤ γ̂
(RSB)
c = 3

2

0 if γ̂ > γ̂
(RSB)
c = 3

2

, (83)

which is depicted in the left figure below. For μ �= 2 the analytic solution of the cubic
equation is less instructive, and it is easier to solve the equation numerically (Fig. 4).

6 The two other solutions of the cubic equation can be shown to be out of the interval (0, 1], see the explicit
example below.
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Fig. 4 The quality parameter p as a function of the scaled noise-to-signal ratio γ̂ for purely quadratic encryp-
tions and two different values of the ERP, μ = 2 (left) and μ = 4 (right). The blue broken curve is the
continuation of the replica-symmetric solution in the region of Full RSB
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Fig. 5 The quality parameter p as a function of the scaled noise-to-signal ratio γ̃ for a generic representative
of linear-quadratic encryptions for the nonlinearity a = 8 and ERP μ = 2. In the interval of scaled noise-

to-signal ratio γ̃
(AT )
2 < γ̃ < γ̃

(AT )
2 the replica symmetry is broken as signified by a non-zero values of the

parameter Q̃, plotted as a green broken line

After full understanding of the limiting cases we briefly discuss the solution for a generic
linear-quadratic encryption algorithm with some finite value 1 < a < ∞ of the nonlinearity
parameter. In this case the NRS scaling is still given by the NRS variable γ̃ = γ /J 21 . One

recalls that for a given a as long as μ < μAT (a) = (a2/3−a1/3+1)3

a there exists two NSR

thresholds γ̃
(1)
AT and γ̃

(2)
AT such that for γ̃ /∈ [γ̃ (1)

AT , γ̃
(2)
AT ] the curve p(γ̃ ) is given by RS solution

Eq. (57), whereas for γ̃ ∈ [γ̃ (1)
AT , γ̃

(2)
AT ] the curve p(γ̃ ) is given by the Full RSB solution from

the system of two equations:

p2 = μ[
1 + a(1 − Q̃)

]3 (1 + ap2)(1 + ap)2 (84)
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and
[
1 + a(1 − Q̃)

]
p2

(
γ̃ + 2(1 − p) + a(1 − p2) − aQ̃ + a

1

2
Q̃2

)

= μ(1 − p2 − Q̃)(1 + ap)2 . (85)

In Fig. 5 we plot the full resulting curve for a generic choice of parameters.
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Appendix A: Perturbation Theory in the Lagrange Multipliers Frame-
work

We set the parameter J 21 = 1 in this Appendix.
Substituting the solution Eq. (9) into the spherical constraint (x, x) = N R2 and using

the notations W := AT A and G = (W − λ1N )−1 one gets an equation for the Lagrange
multiplier λ:

2λ (s,Gs) + 2
(
s,G AT b

)
+ λ2

(
s,G2s

)+ 2λ
(
s,G2 AT b

)
+

(
b, A G2 AT b

)
= 0 . (86)

Recall that for σ = 0 the global minimum corrersponds to λ = 0, so we will look for a
weak-noise expansion λ = λ1σ + λ2σ

2 + . . . � 1. writing b = σ ξ , with components of
the vector ξξξ having variance unity and remembering that for M > N the matrixW > 0 with
probability tending to one is invertable, one can safely expand G ≈ W−1 +λW−2 +· · · and
substituting this to Eq. (86) find the first and then second order coefficient in the Lagrange
multiplier as:

λ1 = −
(
s,W−1 AT ξ

)

p1
, λ2 = − 1

2p1

[
3λ21 p2 + 4λ1

(
s,W−2AT ξ

)
+ (

ξ , AW−2Aξ
)]

,

(87)
where we introduced the following notations:

p1 = (
s,W−1 s

)
, p2 = (

s,W−2 s
)

. (88)

Using this one can get the following expansion for the quality parameter Eq. (4):

1 − pN = 1

N R2

{
σ

[
λ1 p1 +

(
s,W−1 AT ξ

)]

+σ 2
[
λ21 p2 + λ2 p1 + λ1

(
s,W−2 AT ξ

)]
+ . . .

}
(89)

valid at every realization of both the noise and the randommatrix A. Substituting here Eq. (87)
and taking the expected value first only over the Gaussian noise ξ gives after straightforward,
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but somewhat lengthy manipulations, to the leading order:

1 − pN = σ 2

N R2 p1 〈λ2〉ξ = σ 2

2N R2

[
Tr

[
W−1] − p2

p1

]
. (90)

It remains to perform the average over the ensemble of Wishart matrices W with M > N .
One finds that as long as N � 1 the fraction p2/p1 remains of the order of unity, whereas
the first term Tr

[
W−1

] = O(N ) and is dominant. Using the well-knownMarchenko-Pastur
limiting law for the spectral density of eigenvalues of W

ρMP (λ) = 2

π

1(√
λ+ − √

λ−
)2

√
(λ − λ−)(λ+ − λ)

λ
, λ− ≤ λ ≤ λ+ , (91)

where λ± = (
√

μ ± 1)2 are positions of the spectral edges, one can find for the mean trace
of the resolvent:

lim
N→∞

1

N

〈[
(W − λ1N )−1]〉 = 2√

λ−λ+ − λ + √
(λ − λ−)(λ − λ+)

, λ < λ− . (92)

In particular, for λ = 0 we have

lim
N→∞

1

N

〈
Tr

[
W−1]〉 = 1√

λ−λ+
= 1

μ − 1
. (93)

resulting in Eq. (10) valid in the first-order in small-noise value.

One can also straightforwardly extract the behaviour for asymptotoically large noise vari-
ance values (b,b) ∝ σ 2 → ∞ when Eq. (9) implies that

x ≈ (W − λ1N )−1 AT b . (94)

Substituting Eq. (94) to the spherical constraint gives

(x, x) = bT A (W − λ1N )−2 AT b = N R2 , (95)

and further averaging over the Gaussian noise b the above relation yields:

1 = σ 2

N R2 Tr
[
A (W − λ1N )−2 AT

]
= σ 2

N R2 Tr
[
(W − λ1N )−2 W

]
. (96)

It is clear that for γ̃ = σ 2

R2 � 1 the relevant value of the Lagrange multiplier λ has to be large
in modulus, |λ| � 1, which immediately implies in the large-N limit:

λ2 ≈ γ̃
1

N
Tr W |N→∞ = γ̃

∫ λ+

λ−
ρMP (λ) λ dλ = γ̃

(
√

λ+ + √
λ−)2

4
= γ̃ μ , (97)

so that |λ| ≈ √
γ̃ μ � 1. Now, the Eq. (9) implies for the quality parameter

pN = (x, s)
N R2 = 1 − λ

N R2 s
T (W − λ1N )−1 s + 1

N R2 s
T (W − λ1N )−1 AT b . (98)

Expanding for large |λ| ∼ √
γ � 1 as

sT (W − λ1N )−1 s ≈ − N R2

λ
+ 1

λ2
(s,W s) + . . . , sT (W − λ1N )−1 AT b ≈ − 1

λ
sT AT b + . . .
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shows that to the leading order

pN = −1

λ

1

N R2

[
(s,W s) +

(
s, AT b

)]
, (99)

which upon averaging over theWishart matricesW and the noise b, taking the limit N → ∞,
and taking into account that actually λ → −∞, yields

p∞ = 1

|λ|
1

N
〈Tr W 〉 |N→∞ = μ√

μγ̃
=

√
μ

γ̃
. (100)

Appendix B

In this Appendix we give a proof of the following

Lemma
Let x ∈ R

N , and V (x) be a Gaussian random field with mean zero and the covariance

〈V (x1)V (x2)〉 = φ (x1; x2) , (101)

where φ(x; y) = φ(y; x) is any suitable covariance structure function. Then for any β > 0
holds 〈

e− β
2

∑n
a=1 V

2(xa)
〉
= [det G(x1, . . . , xn]−1/2 , (102)

where the (positive definite) n × n matrix G(x1, . . . , xn) has the entries

Gab(x1, . . . , xn) = δab + βφ(xa; xb) . (103)

Proof it is convenient to linearize the squared terms in the exponential by exploiting the
Gaussian integration of an auxiliary real variable ua for every a = 1, . . . , n (the trick known
in the physical literature as the Hubbard-Stratonovich transformation):

e− β
2 V

2(xa) =
∫

R

e−i
√

βuaV (xa) e− 1
2 u

2
a dua√
2π

, (104)

which implies
〈
e− β

2

∑n
a=1 V

2(xa)
〉
=

∫

Rn

〈
e−i

√
β

∑n
a=1 uaV (xa)

〉
e− 1

2

∑
a u

2
a
∏
a

dua√
2π

. (105)

Now the average is immediate to perform due to the Gaussian nature of the random field
V (x). Using Eq. (101) we get:

〈
e−i

√
β

∑n
a=1 uaV (xa)

〉
= e− β

2

∑n
a,b uaubφ(xa ,xb) . (106)

Substituting now Eq. (106) back to Eq. (105) we see that the integrals over the variables ua
remain multivariate Gaussian, and hence can be easily performed, resulting in Eq. (102). ��

Appendix C

In this Appendix we give a proof of the following
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Theorem
Consider a function F(x1, . . . , xn; s) of N-component real vectors xl 1 ≤ l ≤ n and a
N-component real vector s (considered as a parameter) such that

∫

RN
dx1...

∫

RN
dxn |F(x1, . . . , xn; s)| < ∞ . (107)

Suppose further that the function F depends on its arguments only via n(n + 1)/2 scalar
products Q̃ab = (xa, xb), 1 ≤ a, b ≤ n and on n projections t̃a = (xa, s) for a = 1, . . . , n.
Rewrite then such a function as F(Q̃, t̃) of n × n real symmetric matrix Q̃ with entries Q̃ab

and a vector t = (t1, . . . , tn). Then for N ≥ n + 1 the integral defined as

I (F)
N ,n(s) =

∫

RN
dx1...

∫

RN
dxn F(x1, ..., xn; s) (108)

is equal to

I (F)
N ,n (s) = C(o)

N−1,n

∫

Q>0
F(Q + t ⊗ tT , |s|t) [det Q](N−n−2)/2 dQ dt . (109)

where the proportionality constant is given by

C(o)
N ,n = π

n
2

(
N− n−1

2

)

∏n−1
k=0 �

( N−k
2

) , (110)

the integration in the Eq. (109) goes over the manifold of real symmetric non-negative definite
n × n matrices Q and the vector t ∈ R

n, whereas the diadic product T = t ⊗ tT is used to
denote a (rank one) n × n matrix T with entries Tab = tatb.

Proof Denote eN = (0, . . . , 0, 1) the last of the standard basis vectors in R
N . Then there

exists an orthogonal transformation O(s) ∈ O(N ) such that we can represent the vector s as
s = |s|O(s)eN . Perform the transformation of variables xa → ya = O(s)xa, ∀a = 1, . . . , n
in the integrand of Eq. (108). Such transformation leaves invariant the volume element:∏

a dxa = ∏
a dya and the scalar products Q̃ab = (xa, xb) = (ya, yb), 1 ≤ a, b ≤ n but

transforms the n projections t̃a = (xa, s) for all a = 1, . . . , n into t̃a = |s|yaN , where yaN is
the N−th component of the vector ya . Now decompose each vector ya as ya = (va, yaN ),
where va are (N − 1)-dimensional vectors. Such a decomposition implies:

Q̃ab = (ya, yb) = (va, vb) + yaN ybN ,
∏
a

dya =
∏
a

dva
∏
a

dyNa ,

so that using the notations of the Theorem, renaming yNa → ta and introducing Q(v)
ab =

(va, vb) and t = (t1, . . . , tn) we can rewrite Eq.(108) as

I (F)
N ,n(s) =

∫

Rn
I(F)
N ,n(t; s) dt, I(F)

N ,n(t; s) :=
∫

RN−1
dv1...

∫

RN−1
dvnF

(
Q(v) + t ⊗ tT , |s|t

)
.

(111)
Note that the last integral with respect to vectors va, a = 1, . . . , n has the full O(N − 1)
invariance of the integrand. The statement of the Theorem then immediately follows by
applying to this situation the ’dimensional reduction’ formula suggested for the first time in
[36] and essentially rediscovered in [17]; see the Appendix D of [23] and the appendix B of
[19] for alternative proofs. ��
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