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Abstract For real analytic expanding interval maps, a novel method is given for rigorously
approximating the diffusion coefficient of real analytic observables. As a theoretical algo-
rithm, our approximation scheme is shown to give quadratic exponential convergence to the
diffusion coefficient. The method for converting this rapid convergence into explicit high
precision rigorous bounds is illustrated in the setting of Lanford’s map x �→ 2x + 1

2 x(1− x)
(mod 1).

Keywords Diffusion coefficient · Expanding map · Ergodic theory · Dynamical Systems

1 Introduction

For a real analytic1 expanding interval map T : X → X with absolutely continuous invariant
probability measure μ, and a real analytic function g : X → R, the corresponding diffusion
coefficient (or variance) is the quantity σ 2

μ(g) defined by

σ 2
μ(g) = lim

n→∞
1

n

∫ (
n−1∑
i=0

g ◦ T i − n
∫

g dμ

)2

dμ. (1)

1 By convention we say that T is real analytic whenever it is piecewise real analytic, i.e. the interval X admits
a partition into intervals, with T real analytic on each partition piece.
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The quantity σ 2
μ(g) plays a role in the central limit theorem: it is well known (see e.g. [11])

that provided g is not equal to a coboundary plus a constant then

1√
n

(
n−1∑
i=0

g ◦ T i − n
∫

g dμ

)

converges in law to a normal distribution with mean zero and variance σ 2
μ(g) > 0. A difficult

problem of practical interest is to calculate, or to approximate, the diffusion coefficient σ 2
μ(g),

noting that (1) is only rarely amenable to direct evaluation. Bahsoun et al. [2] recently gave
a method for the rigorous approximation of diffusion coefficients, including error bounds,
based on Ulam’s method. They illustrated this approach with the particular map

T (x) = 2x + 1

2
x(1 − x) (mod 1) (2)

introduced by Lanford [8], and the function g(x) = x2, showing that 0.3458 ≤ σ 2
μ(g) ≤

0.4152.
In this paper we develop an alternative algorithm for approximating diffusion coefficients

of expanding interval maps. In general the method uses the periodic points of T , and exploits
the real analyticity of themap T and the function g. Themethod gives highly accurate approx-
imations to the diffusion coefficient, both at the level of a theoretical algorithm converging
with a given asymptotic speed (namely quadratic exponential convergence, as described in
Theorem 1 below), and, most importantly, at the level of completely rigorous certified error
bounds (see Theorems 2 and 3). The real analyticity assumptions will be crucial in estab-
lishing both the theoretical asymptotics and the concrete error bounds, since explicit use is
made of the holomorphic extensions of the function g and (the inverse branches of) the map
T to certain regions of the complex plane. The general asymptotic speed of our algorithm is
as follows:

Theorem 1 Let T : X → X be a real analytic expanding interval map with absolutely
continuous invariant probability measure μ, and suppose g : X → R is real analytic. There
exists a sequence σ 2

n → σ 2
μ(g), where each σ 2

n can be explicitly computed in terms of periodic
points of period up to n. The rate of convergence is quadratic exponential, in the sense that
there exist constants C > 0 and κ ∈ (0, 1) such that

|σ 2
μ(g) − σ 2

n | ≤ Cκn2 for all n ∈ N. (3)

The constants C and κ of Theorem 1 can be rendered explicit, a procedure which involves
consideration of holomorphic extensions to regions in the complex plane. Amore challenging
problem, in the context of a specificmap T and function g, is to establish effective error bounds
on |σ 2

μ(g)−σ 2
n |, preferably of very high accuracy; a key purpose of this article is to show that

in such practical settings there is considerable scope for sharpening our optimal version of
the simple asymptotic form (3) so as to obtain effective high quality bounds on the diffusion
coefficient. As amodel case we shall orient our discussion of this problem around the specific
example considered in [2], namely Lanford’s map T , and the function g(x) = x2, both of
which are real analytic; henceforth we refer to this as the model problem. The problem of
obtaining high accuracy rigorous estimates on σ 2

μ(g) involves both theoretical and computer
programming elements, and any proof of such bounds will invariably be computer-assisted.
As a starting point we note that, using only a modern desktop computer, it is possible to
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Rigorous Computation of Diffusion Coefficients 223

locate all the periodic points of the Lanford map T up to period P , for some2 20 ≤ P ≤ 30.
Choosing maximum period P = 25 yields the sequence of approximations to σ 2

μ(g) given
in Table 2, which at the level of non-rigorous empirical observation suggests that

σ 2
μ(g) = 0.36010948619916067289882418682857674924166999779722 ± 10−50,

and indeed a more optimistic interpretation of Table 2 suggests the slightly more accurate

σ 2
μ(g) = 0.3601094861991606728988241868285767492416699977972288644 ± 10−55.

The task is to now harness these computed approximate values σ 2
n (and in particular the

last of these computed approximations, σ 2
P ) so as to produce a fully rigorous approximation to

σ 2
μ(g), togetherwith an error bound.Any naive expectation that the theoretical asymptotic (3),

together with specific values for κ and C , would automatically yield an effective error bound
on |σ 2

μ(g) − σ 2
n | is tempered by the realisation that, for the model problem, κ is reasonably

close to the value3 1, andC is extremely large.4 Although, as noted above, the value P = 25 is
deemed to be the maximum such that all (σ 2

n )Pn=1 can be explicitly evaluated, a finer analysis
5

of the estimates yielding the asymptotic (3) suggests that a good quality rigorous effective
estimate on σ 2

μ(g) remains out of reach for P ≤ 30.
In order to obtain high quality effective estimates on |σ 2

μ(g) − σ 2
n | we therefore develop

a hybrid approach, consisting of three distinct types of computation, the first type being
the exact evaluation of σ 2

n (see Sect. 3 for the formulae defining σ 2
n ) for all sufficiently

2 In general the specific value of P will depend on available hardware, on the computer programming imple-
mentation of our algorithm, and on the time available to make the computation. For the Lanford map T we
found it possible to locate points up to period 20 in less than an hour, while locating points of period up to
25 took around a day (computations were performed in an arbitrary precision environment, giving several
hundred correct decimal digits); note that since T is a 2-branch map, incrementing the maximum period by
one entails an approximate doubling of the computer run time.
3 For any two branch expanding map, our techniques yield a value of κ lying in the range [2−1/2, 1), while
for the Lanford map itself our optimal value is κ ≈ 0.927734 (this is the square root of the quantity θ defined

in (57)). Note that although the term κn
2
is approximately 4.3 × 10−21 when n = 25, the value of C in (3)

is too large for the asympotic estimate |σ 2
μ(g) − σ 2

n | ≤ Cκn
2
to be effectively used until n is significantly

larger (and, crucially, above the maximum value of n for which all 2n period-n points can be located using
the computational resources at our disposal).
4 The size of C will depend on κ , and C becomes larger the closer κ is chosen to the optimal value of
approximately 0.927734 (see Footnote 3). As an indication of its order of magnitude, we use the fact (see
Footnote 5) that |σ 2

μ(g) − σ 2
n | is related to (and in fact somewhat larger than) the quantity Kn

1/20En(θ) =
Kn
1/20(

∏n
i=1(1 − θ i ))−1θn(n+1)/2 , where θ ≈ 0.860691, K1/20 ≈ 3.631. We are at liberty to work

with any κ ∈ (θ1/2, 1) = (0.927734, 1), and for example with the concrete choice κ = 0.95 we can

compute supn∈N Kn
1/20En(θ)/0.95n

2 ≈ 4.440429 × 1010 (the supremum is attained at n = 26), so that

Kn
1/20En(θ) ≤ C ′κn2 for C ′ = 4.5 × 1010. It follows, after some additional calculations (along the lines of

those detailed in Sect. 8), that the value of C in (3) could be chosen to be of the order of 1011 when κ = 0.95.
5 This finer analysis consists of using what we call Euler bounds, with the quality of the estimate on |σ 2

μ(g)−
σ 2
n | closely related to the size of the quantities Kn

t En(θ) = Kn
t (

∏n
i=1(1−θ i ))−1θn(n+1)/2 given inAppendix

Tables 5 and 6 (for t = 0 and t = 1/20 respectively), where θ = κ2 ≈ 0.860691, K0 ≈ 3.378, K1/20 ≈ 3.631.

We note that for sufficiently small values of n, the quadratic exponential decay of the term θn(n+1)/2 is
swamped by the exponential increase of the term Kn

t , and the strong increase of (
∏n

i=1(1 − θ i ))−1 (though

this latter term is bounded, by (
∏∞

i=1(1− θ i ))−1 ≈ 8876.45). In particular, for n = 20 both Kn
t En(θ) terms

are greater than 1 (hence n = 20 represents a hopeless case for this naive method), while if n = 25 then
Kn
0 En(θ) ≈ 0.000084 and Kn

1/20En(θ) ≈ 0.00051, which in fact can be used (via arguments similar to those

used in the proof of Theorem 3) to justify only a single decimal digit of σ 2
μ(g).

123
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small values of n (i.e. for all 1 ≤ n ≤ P , where e.g. P = 25 for the model problem),
using exact locations of periodic points (i.e. evaluated to a given precision, typically several
hundred decimal places). We next make the observation (see Corollary 1(b)) that σ 2

μ(g) can
be expressed in terms of certain infinite series; it turns out that there are five such series, which
for convenience we denote here6 as

∑∞
n=1 s

( j)
n , for 1 ≤ j ≤ 5, where it can be shown that

each sequence (s( j)
n )∞n=1 is O(κn2) as n → ∞. The error |σ 2

μ(g)−σ 2
P | can then be expressed

in terms of the tails
∑∞

n=P+1 s
( j)
n of these series, and each of these is O(κ P2

) as P → ∞,
a result which incidentally leads to the proof of Theorem 1. A consequence is that the task
of obtaining a concrete bound on |σ 2

μ(g) − σ 2
P | reduces to bounding each tail ∑∞

n=P+1 s
( j)
n ,

and here we note that the previously described difficulties in bounding |σ 2
μ(g) − σ 2

P | (for
e.g. P = 25 in our model problem) stem from the natural upper bounds on the terms s( j)

n

being insufficiently sharp for n ≈ P .
Our resolution of this problem of insufficiently sharp bounds consists of splitting the tails∑∞
n=P+1 s

( j)
n into two parts, whose estimation can be tackled by distinct methods. Choosing

some value7 Q > P (e.g. in our model example we take Q = 40) we consider separately the
intermediate sum

∑Q
n=P+1 s

( j)
n and the deep tail

∑∞
n=Q+1 s

( j)
n . The terms in the deep tail

can be effectively bounded, essentially by a simple estimate of the form |s( j)
n | ≤ Cκn2 , the

idea being that n > Q is large enough for the smallness of κn2 to dominate the largeness of
C , to the extent that the whole deep tail is extremely small.

For the purpose of estimating the intermediate (finite) sum
∑Q

n=P+1 s
( j)
n we require some

new techniques, whose justification (see Sect. 6) stems from the theory of eigenvalues and
approximation numbers applied to a certain auxiliary (transfer) operator; these techniques
require a non-trivial amount of computation, though a key point is that the computational
effort is relatively light in comparison to that required for locating the 2n period-n points for
some high value of n (e.g. n ≈ P). The coefficients s( j)

n are related to the Taylor series for
the determinant of the transfer operator, and can be bounded in terms of the approximation
numbers of the operator. These approximation numbers can in turn be bounded by making
a judicious choice of basis for an underlying Hilbert space whose inner product is defined
by Lebesgue integration, and explicitly computing the norms of the images of (finitely many
of) these basis elements under the transfer operator yields a bound on the approximation
numbers which implies a bound on the s( j)

n for P + 1 ≤ n ≤ Q (see Sect. 7 for further
details).

In Sect. 8 we combine all of these various ingredients, in the context of themodel problem,
to obtain the following rigorous bound on the diffusion coefficient, noting that it represents
a significant improvement8 on the estimate 0.3458 ≤ σ 2

μ(g) ≤ 0.4152 established in [2] for
the same combination of function g(x) = x2 and Lanford map T .

6 In terms of the later notation, these series correspond (see Corollary 1(b)) to
∑∞

n=1 ncn(0),
∑∞

n=1 n(n −
1)cn(0),

∑∞
n=1 c

′
n(0),

∑∞
n=1 nc

′
n(0), and

∑∞
n=1 c

′′
n (0), which themselves correspond to partial derivatives of

the determinant of a (transfer) operator.
7 As will become clear, one virtue of this method is that it perfectly feasible, from a computational point of
view, to choose Q rather large (e.g. some value well over 100), a choice which may be important for expanding
maps T for which the expansion is rather mild, corresponding to significant inertia in the quadratic exponential

decay of the terms s( j)n , stemming from a value κ ∈ (0, 1) being close to 1.
8 While the rigorous estimate of [2] is less accurate than that of Theorem 2, the general strategy of [2] is based
on Ulam’s discretization method [16] and can be applied to a wider class of maps T and functions g for which
there is no analyticity assumption (see [2] for details and references, and e.g. [10] for a further guide to the
literature on numerical computations in the context of piecewise expanding maps).
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Rigorous Computation of Diffusion Coefficients 225

Theorem 2 For the Lanford map T , with absolutely continuous invariant probability mea-
sure μ, if g(x) = x2 then the corresponding diffusion coefficient σ 2

μ(g) satisfies

0.36010948619916067 < σ 2
μ(g) < 0.36010948619916067 + 10−17.

The organisation of this article is as follows. Section 2 consists of preliminary material
drawn from the ergodic theory of expanding maps, thermodynamic formalism, and Hilbert
spaces of holomorphic functions. Our algorithm is described in Sect. 3, together with var-
ious reformulations of the diffusion coefficient. The rapid convergence of the algorithm is
illustrated in Sect. 4 for certain cases where σ 2

μ(g) is known explicitly, and in Sect. 5 for the
model problem, where σ 2

μ(g) does not have a (known) closed form. The key theoretical tools
for deriving rigorous error estimates, based on the theory of eigenvalues and approximation
numbers, are developed in Sects. 6 and 7. These tools are then applied in detail to the model
problem in Sect. 8, proving a result (Theorem 3) that is slightly stronger than Theorem 2,
and concluding with a proof of Theorem 1. Some of the numerical data used in the proof of
Theorem 3 is collected as an Appendix.

2 Preliminaries

2.1 Ergodic Theory of Expanding Interval Maps

Suppose the unit interval X = [0, 1] is partitioned as X = X1 ∪ · · · ∪ Xl , l ≥ 2, where
Xi = [xi−1, xi ], and 0 = x0 < x1 < · · · < xl = 1. Given T : X → X , we shall always
assume that T |Xi is real analytic, for each 1 ≤ i ≤ l. We say T is piecewise expanding if
there exists λ > 1 such that |T ′| |Xi ≥ λ for all 1 ≤ i ≤ l. We say that T is Markov if there
exists a d × d matrix A (the transition matrix for T ) with each entry either 0 or 1, such that
T (Xi ) = ∪ j :A(i, j)=1X j for each 1 ≤ i ≤ l. The collection {Xi }li=1 is called the Markov
partition for T . T is topologically mixing if some power of the transition matrix A is a strictly
positive matrix.

It is well known (see [9]) that any topologically mixing piecewise Cω expanding Markov
map admits a unique ergodic absolutely continuous invariant probability measure, and we
shall denote this measure byμ. Our results are valid for all such maps, though to simplify the
expositionwe shall always assume that T is a full branch expandingmap. In otherwords, each
T |Xi is assumed to be a surjection onto X , or, equivalently, every entry of the corresponding
transition matrix A is a 1. For each 1 ≤ i ≤ l we write τi := (T |Xi )

−1, referring to {τi }li=1
as the collection of inverse branches of T . Since T is expanding, each inverse branch is a
contraction mapping on X ; indeed the real analyticity9 of T ensures that the inverse branches
have a holomorphic extension to some common complex neighbourhood of X on which they
are all contraction mappings.

Notation 1 Let On := {x = (x, T (x), . . . , T n−1(x)) ∈ Xn : T n(x) = x} denote the
collection of periodic orbits of (not necessarily least) period n, considered as ordered n-
tuples. For x ∈ On and g : X → R, define

gx :=
n−1∑
i=0

g(T i x) , mx := (T n)′(x) =
n−1∏
i=0

T ′(T i x) = exp
(
(log T ′)x

)
,

9 As noted previously, by this we mean that T is piecewise real analytic, i.e. each T |Xi is real analytic, or in
other words each τi is real analytic.
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and for n ≥ 1, t ∈ C, define

an(t) := ag,n(t) = 1

n

∑
x∈On

exp(tgx )

mx − 1
. (4)

For a continuous function f : X → R, its pressure P( f ) = P( f, T ) is defined (see
e.g. [13]) by

P( f ) = P( f, T ) = lim
n→∞

1

n
log

∑
x∈On

e fx .

2.2 The Diffusion Coefficient

Suppose g : X → R is real analytic. Its diffusion coefficient (or variance) σ 2
μ(g) is defined

by

σ 2
μ(g) = lim

n→∞
1

n

∫ (
n−1∑
i=0

g ◦ T i − n
∫

g dμ

)2

dμ.

The diffusion coefficient can be expressed in terms of pressure as follows:

Lemma 1 Let T : X → X be a real analytic expanding interval map with absolutely
continuous invariant probability measure μ, and suppose g : X → R is real analytic. If
p(t) := P(tg − log |T ′|), then the integral of g with respect to μ is given by

μ(g) =
∫

g dμ = p′(0), (5)

and the diffusion coefficient is given by

σ 2
μ(g) = p′′(0). (6)

Proof For (5) see e.g. [11, p. 60], [13, p.133]), and for (6) see e.g. [11, p. 61], [13, p.133]). 
�
2.3 Holomorphic Extensions

As noted in Sect. 2.1, the inverse branches of the real analytic expanding map T extend as
contraction mappings to some common (simply connected) complex neighbourhood U of
X . If g : X → R is real analytic then U may be chosen so that g is holomorphic on a
neighbourhood of U . By the Riemann mapping theorem, no generality is lost by assuming
that U can be chosen to be a disc D, and henceforth we make this assumption: an open
disc D ⊂ C containing X will be called admissible (for the map T and function g) if g
has a holomorphic extension to a neighbourhood of D, and each inverse branch τi has a

holomorphic extension to D such that ∪l
i=1τi (D) ⊂ D. This will allow consideration of

transfer operators acting on certain Hilbert spaces of holomorphic functions.
Let D ⊂ C be an open disc of radius r , centred at c. The Hardy space H2(D) consists

of those holomorphic functions ϕ : D → C with sup	<r

∫ 1
0 |ϕ(c + 	e2π i t )|2 dt < ∞. This

is a Hilbert space, with inner product given by (ϕ, ψ) = ∫ 1
0 ϕ(c + re2π i t )ψ(c + re2π i t ) dt ,

which is well-defined since members of H2(D) extend as L2 functions on the boundary ∂D;
the norm of ϕ ∈ H2(D) will be written as ‖ϕ‖ = (ϕ, ϕ)1/2. Equivalently, H2(D) is the set
of those holomorphic functions ϕ on D such that if mk(z) = r−k(z − c)k for k ≥ 0, then
{(ϕ,mk)} ∈ l2(C) (see e.g. [14]), so that ‖ϕ‖ = (

∑∞
k=0 |(ϕ,mk)|2)1/2.
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Rigorous Computation of Diffusion Coefficients 227

2.4 Transfer Operators and Determinants

For a real analytic function g : X → R, an important ingredient in our method of approxi-
mating the diffusion coefficient σ 2

μ(g) is the function 
g : C2 → C defined by


g(z, t) = exp

(
−

∞∑
n=1

ag,n(t)z
n

)
(7)

for sufficiently small values of z, and by analytic continuation to the whole of C2. It can be
shown that (7) defines an entire function (see Corollary 4), with Taylor series expansion


g(z, t) = 1 +
∞∑
n=1

cg,n(t)z
n = 1 +

∞∑
n=1

cn(t)z
n (8)

(where we write cn(t) for cg,n(t) whenever g is understood), from which we deduce the
recurrence relation

cN (t) = cg,N (t) = − 1

N

N−1∑
k=0

ag,k(t) · cg,N−k(t). (9)

For T and g with holomorphic extensions to D as in Sect. 2.3, the corresponding transfer
operator Lg,t : H2(D) → H2(D) is defined by

Lg,tv(z) =
∑
T y=z

v(y)e f (y),

for z ∈ X , and by holomorphic continuation for z ∈ D, where f = tg − log |T ′|. The
function 
g is the determinant det(I − zLg,t ) (see [12]), and its zeros are precisely the
reciprocals of the eigenvalues of Lg,t . The leading (i.e. largest in modulus) eigenvalue of
Lg,t is ep(t) = eP(tg−log |T ′|).

3 The algorithm

3.1 The Diffusion Coefficient in Terms of Derivatives of the Determinant

The reformulation (6) of the diffusion coefficient σ 2
μ(g) in terms of pressure, together with

the fact that e−p(t) is a zero of 
g(·, t), suggests the possibility of representing σ 2
μ(g) in

terms of partial derivatives of 
g . In order to establish such a representation, as Proposition
1 below, we first adopt the following notational conventions:

Notation 2 We write first partial derivatives as

D1
g(z, t) = ∂

∂z

g(z, t) , D2
g(z, t) = ∂

∂t

g(z, t),

and second partial derivatives as

D11
g(z, t) = ∂2

∂z2

g(z, t) , D22
g(z, t) = ∂2

∂t2

g(z, t) , D12
g(z, t) = ∂2

∂z∂t

g(z, t).
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Proposition 1 If T : X → X is a real analytic expanding map with absolutely continuous
invariant probabilitymeasureμ, the function g : X → R is real analytic, and the determinant

g is defined by (7), then the diffusion coefficient σ 2

μ(g) can be expressed as

σ 2
μ(g) = μ(g)2 + D11
g(1, 0)μ(g)2 − 2D12
g(1, 0)μ(g) + D22
g(1, 0)

D1
g(1, 0)
. (10)

Proof Let z(t) = e−p(t) where p(t) = P(tg − log |T ′|), so that p(0) = 0 and therefore

z(0) = 1. (11)

Differentiating gives

z′(t) = −p′(t)e−p(t),

so Lemma 1 gives
z′(0) = −μ(g). (12)

Differentiating again gives

z′′(t) = p′(t)2e−p(t) − p′′(t)e−p(t),

so evaluating at t = 0 and using Lemma 1 gives

z′′(0) = z′(0)2 − σ 2
μ(g), (13)

or in other words

z′′(0) =
(∫

g dμ

)2

− σ 2
μ(g). (14)

The zeros of
g(·, t) are the reciprocals of the eigenvalues ofLg,t , and since ep(t) = z(t)−1

is the leading eigenvalue of Lg,t then


g(z(t), t) = 0, (15)

so differentiating (15) with respect to t gives

D1
g(z(t), t)z
′(t) + D2
g(z(t), t) = 0, (16)

and therefore

z′(0) = −D2
g(1, 0)

D1
g(1, 0)
. (17)

Combining (12) and (17) gives

μ(g) = D2
g(1, 0)

D1
g(1, 0)
. (18)

Differentiating (16) with respect to t gives

D1
g(z(t), t)z
′′(t) + D11
g(z(t), t)z

′(t)2 + 2D12
g(z(t), t)z
′(t) + D22
g(z(t), t) = 0

(19)
and evaluating this at t = 0 then using (11), (12) and (14), gives

D1
g(1, 0)(μ(g)2 − σ 2
μ) + D11
g(1, 0)μ(g)2 − 2D12
g(1, 0)μ(g) + D22
g(1, 0) = 0,
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Rigorous Computation of Diffusion Coefficients 229

in other words

σ 2
μ = μ(g)2 + D11
g(1, 0)μ(g)2 − 2D12
g(1, 0)μ(g) + D22
g(1, 0)

D1
g(1, 0)
,

which is the required expression (10). 
�
Definition 1 If g : X → R is real analytic, with 
g(z, t) = 1 + ∑∞

n=1 cn(t)z
n , then for

N ≥ 1 define

σ 2
N : =

( ∑N
n=1 c

′
n(0)∑N

n=1 ncn(0)

)2

+
∑N

n=1 n(n − 1)cn(0)

( ∑N
n=1 c

′
n (0)∑N

n=1 ncn (0)

)2
−2

∑N
n=1 nc

′
n(0)

( ∑N
n=1 c

′
n (0)∑N

n=1 ncn (0)

)
+∑N

n=1 c
′′
n (0)

∑N
n=1 ncn(0)

.

(20)

Corollary 1 Under the same hypotheses as Proposition 1,

(a) The diffusion coefficient σ 2
μ(g) can be expressed as

σ 2
μ(g) =

(
D2
g(1, 0)

D1
g(1, 0)

)2

+
D11
g(1, 0)

(
D2
g(1,0)
D1
g(1,0)

)2 − 2D12
g(1, 0)
(
D2
g(1,0)
D1
g(1,0)

)
+ D22
g(1, 0)

D1
g(1, 0)
.

(b) The diffusion coefficient σ 2
μ(g) can be expressed as

σ 2
μ(g) =

( ∑∞
n=1 c

′
n(0)∑∞

n=1 ncn(0)

)2

+
∑∞

n=1 n(n − 1)cn(0)

( ∑∞
n=1 c

′
n (0)∑∞

n=1 ncn (0)

)2
− 2

∑∞
n=1 nc

′
n(0)

( ∑∞
n=1 c

′
n (0)∑∞

n=1 ncn (0)

)
+ ∑∞

n=1 c
′′
n (0)

∑∞
n=1 ncn(0)

.

(c) The sequence of approximations (20) converges, with σ 2
N → σ 2

μ(g) as N → ∞.

(d) If g : X → R is real analytic such that
∫
g dμ = 0, then σ 2

μ(g) can be expressed as

σ 2
μ(g) = D22
g(1, 0)

D1
g(1, 0)
=

∑∞
n=1 c

′′
n(0)∑∞

n=1 ncn(0)
.

(e) If g : X → R is real analytic such that
∫
g dμ = 0, and σ̂ 2

N is defined by

σ̂ 2
N :=

∑N
n=1 c

′′
n(0)∑N

n=1 ncn(0)
, (21)

then σ̂ 2
N → σ 2

μ(g) as N → ∞.

Proof Part (a) follows from Proposition 1, by substituting (18) into (10). Since the Taylor
series around 0 for 
g(·, t) is written (cf. (8)) as 
g(z, t) = 1 + ∑∞

n=1 cn(t)z
n , termwise

differentiation yields (b). Part (d) is a special case of formula (10) in Proposition 1, together
with (b), while parts (c) and (e) follow directly from the definitions of σ 2

N and σ̂ 2
N . 
�
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Remark 1 A consequence of Corollary 1 is that if g is known to have integral zero with
respect to the absolutely continuous invariant probability measure μ, then there is a choice
of sequence of approximants to the corresponding diffusion coefficient: both the sequence
σ 2
N and the sequence σ̂ 2

N converge to σ 2
μ(g).

3.2 Periodic Orbit Formulae

The quantities σ 2
N approximating the diffusion coefficient σ 2

μ(g) are accessible to us in terms
of those periodic points of T of period up to N . Recall from (4) that

an(t) = ag,n(t) = 1

n

∑
x∈On

exp(tgx )

mx − 1
,

so that the kth order derivative a(k)
n (t) is given by

a(k)
n (t) = 1

n

∑
x∈On

gkx exp(tgx )

mx − 1
. (22)

We are interested in derivatives up to order 2, evaluated at t = 0, so for n ≥ 1 define

αn := an(0), βn := a′
n(0), γn := a′′

n (0),

in other words

αn = 1

n

∑
x∈On

1

mx − 1
, βn = 1

n

∑
x∈On

gx
mx − 1

, γn = 1

n

∑
x∈On

g2x
mx − 1

. (23)

3.3 Computer Implementation

Although in certain special cases (e.g. the doubling map of Sect. 4) the periodic points of T
are rational and known explicitly, more generally a non-trivial aspect of our algorithm is to
locate these periodic points (towithin a specified precision). 10 For this, note that for 1 ≤ i ≤ l
the inverse branch τi : X → Xi , defined as τi = (T |Xi )

−1, is uniformly contracting. For
each ξ ∈ {1, . . . , l}n the composition τ := τξ1 ◦ . . . ◦ τξn is also uniformly contracting, and
the set of period-n points for T is precisely the set of fixed points of such compositions τ .
The fixed point for the contraction mapping τ can be determined using standard techniques
(e.g. choose x0 ∈ X and evaluate x := τ k(x0) for suitably large k, such that |τ(x) − x | < δ,
where δ is appropriately small; provided τ(x + ε) − τ(x) > η and τ(x) − τ(x − ε) > η for
ε, η > 0 satisfying η > δ + ε, an intermediate value argument guarantees that x is within ε

of the true fixed point of τ ).
Having located the period-n points of T , and formed the collectionOn , for all 1 ≤ n ≤ N ,

the calculation of orbit sums an(0) and their derivatives a′
n(0), a

′′
n (0) is then possible (using (4)

and (22)) for n = 1, . . . , N . Differentiation of the recurrence relation (9) yields recurrence
relations for the derivatives c′

n(0) and c
′′
n(0) which can then be computed for n = 1, . . . , N ,

and substitution into (20) gives the approximant σ 2
N .

10 Specifically, we say that the chosen precision is 10−m if any number ε such that |ε| < 10−m is assumed
to be zero; in particular, if we are working with precision 10−m then x is declared to be a point of period n
for T if |T n(x) − x | < 10−m . In our computer programs the various data (T , g, and the τi ) are approximated
with very high precision, of 10−999, and this precision is maintained during the process of locating periodic
points; the points themselves are computed with guaranteed precision of 10−250.
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4 Test Cases: Approximation of Known Diffusion Coefficients

For certain combinations of map T and function g, the diffusion coefficient is known exactly.
While for these cases there is clearly no need for a numerical algorithm to approximate σ 2

μ(g),
it is nonetheless instructive to consider them, by way of a warm-up exercise.

4.1 Perfect Approximation of the Diffusion Coefficient via Periodic Orbits

As a simple first example we describe here an expanding map T and function g whose
diffusion coefficient σ 2

μ(g) is exceedingly well approximated by the sequence σ 2
n : in fact it

turns out that each σ 2
n is equal to σ 2

μ(g).
Let T : X → X be the doubling map, defined by T (x) = 2x (mod 1) on [0, 1) and

T (1) = 1, its absolutely continuous invariant probabilitymeasureμ being Lebesguemeasure
itself. Consider the function g : X → R defined by g(x) = 2x − 1, which clearly satisfies∫
g dμ = 0. In fact g is cohomologous to the function h defined by

h(x) =
{

−1 if x ∈ [0, 1/2)
+1 if x ∈ [1/2, 1],

and it is easily seen that 1
n

∫
(
∑n−1

i=0 h ◦ T i )2 dμ = 1 for all n ≥ 1, so the corresponding
diffusion coefficient is given by the exact formula

σ 2
μ(g) = σ 2

μ(h) = lim
n→∞

1

n

∫ (
n−1∑
i=0

h ◦ T i

)2

dμ = 1.

While the existence of an exact formula for σ 2
μ(g) means there is no need for numerical

approximations, this example has the noteworthy feature that our approximations σ 2
n are

perfect for each value of n:

Proposition 2 For T : X → X the doubling map, and g(x) = 2x − 1,

c′′
g,n(0) = ncg,n(0) for all n ≥ 1, (24)

so in particular

σ 2
n =

∑n
i=1 c

′′
g,i (0)∑n

i=1 icg,i (0)
= 1 = σ 2

μ(g) for all n ≥ 1. (25)

Proof If n ≥ 1 and x ∈ On then mx = 2n , and On has cardinality 2n , so αn = 2n
n(2n−1) .

Since g(1 − x) = −g(x), and the set On is invariant under x �→ 1 − x , (23) implies that

βn = 0 for all n ≥ 1, (26)

while

γn = nαn = 2n

2n − 1
for all n ≥ 1. (27)

Now 
g(z, t) = exp
(−∑∞

n=1 ag,n(t)z
n
)
for z of sufficiently small modulus, therefore

∂2

∂t2

g(z, t) =

( ∞∑
n=1

a′
g,n(t)z

n

)2


g(z, t) −
( ∞∑
n=1

a′′
g,n(t)z

n

)

g(z, t),
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and setting t = 0, so that a′
g,n(0) = βn = 0 for all n ≥ 1 by (26), gives

∂2

∂t2

g(z, t)

∣∣∣∣
t=0

=
(

−
∞∑
n=1

γnz
n

)

g(z, 0) (28)

for z of sufficiently small modulus.
Now ∂

∂z
g(z, t) = (−∑∞
n=1 nag,n(t)z

n−1
)

g(z, t), so that by (27),

∂

∂z

g(z, t)

∣∣∣∣
t=0

=
(

−
∞∑
n=1

nαnz
n−1

)

g(z, 0) =

(
−

∞∑
n=1

γnz
n−1

)

g(z, 0). (29)

Comparing (28) and (29), which are valid for z of sufficiently small modulus, gives

∂2

∂t2

g(z, t)

∣∣∣∣
t=0

= z
∂

∂z

g(z, t)

∣∣∣∣
t=0

(30)

which is in fact valid for all z ∈ C, by analytic continuation, since both sides of the equation
are entire functions of z. Writing 
g(z, t) = 1+ ∑∞

n=1 cg,n(t)z
n we deduce from (30) that

∞∑
n=1

c′′
g,n(0)z

n =
∞∑
n=1

ncg,n(0)z
n,

and the required equality (24), and hence (25), follows by comparing coefficients. 
�

Remark 2 The setting of Proposition 2 allows an explicit illustration of the quadratic expo-
nential decay of the coefficients cn(0) (and hence of the c′′

n(0) = ncn(0)). Writing


g(z, 0) = exp
(
−

∞∑
n=1

zn

n

2n

2n − 1

)
= exp

( ∞∑
j=0

log
(
1 − z

2 j

))
=

∞∏
j=0

(
1 − z

2 j

)
,

we see that

cn(0) = (−1)n
2n∏n

i=1(2
i − 1)

,

and therefore11

|cn(0)| = 2n∏n
i=1(2

i − 1)
≤ 2n∏n−1

k=1 2
k

= 2n

2n(n−1)/2
=

(
1√
2

)n2−3n

, (31)

so in particular

cn(0) = O(κn2) as n → ∞, for all κ >
1√
2
. (32)

4.2 Rapid Approximation

Suppose, as in Sect. 4.1, that T : X → X is the doubling map, and now define g : X → R

by g(x) = x2. Clearly the integral of g is known explicitly, namely
∫
g dμ = 1/3, and if

11 In fact a slight sharpening of (31) gives |cn(0)| ≤ K (1/
√
2)n

2−n for K = ∏∞
i=1(1−2−i )−1 ≈ 3.462746.
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f = g−1/3 then
∫

f dμ = 0, and σ 2
μ(g) = σ 2

μ( f ), and the equivalent form of the diffusion
coefficient σ 2

μ( f ) = ∫
f 2 dμ + 2

∑∞
n=1

∫
f ◦ T n f dμ (see e.g. [3]) gives

σ 2
μ(g) =

∫
f 2 dμ + 2

∞∑
n=1

∫
f ◦ T n f dμ = 1

45

(
4 + 2

∞∑
n=2

23+n − 2n−1 + 1

4n

)
= 7

27
.

(33)
More generally, for T the doubling map, we note in passing that there are exact formulae

for the diffusion coefficient of monomials xk (e.g. for g(x) = x3 it can can be shown that
σ 2

μ(g) = 2783
11760 ), and indeed for general polynomials, which can be derived from the following

result:

Proposition 3 Let T : X → X be the doubling map, andμ Lebesgue measure. If Bk denotes
the k-th Bernoulli polynomial, then its diffusion coefficient is given by

σ 2
μ(Bk) =

(
2k + 1

2k − 1

)
(k!)2
(2k)! |β2k |

where β2k = B2k(0) is the 2k-th Bernoulli number.

Proof The Bernoulli polynomial Bk is an eigenvector of the Perron-Frobenius operator L,
with corresponding eigenvalue 2−k , since it is readily checked that the generating function

G(x, y) = yexy

ey − 1
=

∞∑
n=0

Bn(x)
yn

n

satisfies LG(x, y) = G(x, y/2) (see [6]). Now σ 2
μ(Bk) = ∫

B2
k dμ + 2

∑∞
n=1

∫
Bk ◦

T n Bk dμ, and

∫
Bk ◦ T n Bk dμ =

∫
BkLn Bk dμ = 2−kn

∫
B2
k dμ = 2−kn (k!)2

(2k)! |β2k |

since
∫
B2
k dμ = (k!)2

(2k)! |β2k | (see e.g. [1]), so the result follows. 
�

For the purpose of observing the speed of approximation of our algorithm, the first six
approximations12 σ 2

n are σ 2
1 = 1/4, σ 2

2 ≈ 0.200617, σ 2
3 ≈ 0.321554, σ 2

4 ≈ 0.191905,
σ 2
5 ≈ 0.262566, σ 2

6 ≈ 0.259167, which after a slow start show signs of approaching σ 2 =
7/27 = 0.2592̇59̇. The successive approximants shown in Table 1 illustrate the quadratic
exponential convergence, which as in Sect. 4.1 is O(κn2) as n → ∞ for any κ > 1/

√
2,

with the integer parts ln of log1/
√
2 |σ 2

n − σ 2
μ(g)| also tabulated, and observed to satisfy

n2 − 11 ≤ ln ≤ n2 − 8 for 7 ≤ n ≤ 20.

12 In this example we could equally well exploit the fact that
∫
g dμ = 1/3 is known precisely, and use

the approximations σ̂ 2
n given in Corollary 1(e), for the function f = g − 1/3 (which has zero mean). For

example σ̂ 2
1 ≈ 0.27777, σ̂ 2

2 ≈ 0.43827, σ̂ 2
3 ≈ 0.38515, σ̂ 2

4 (g) = 0.22228, σ̂ 2
5 ≈ 0.26163, σ̂ 2

6 ≈ 0.25918,

σ̂ 2
7 ≈ 0.259260, σ̂ 2

8 ≈ 0.2592592530, σ̂ 2
9 ≈ 0.259259259277, σ̂ 2

10 ≈ 0.259259259259232, and more

generally the sequences σ 2
n and σ̂ 2

n converge to σ 2 = 7/27 at the same rate.
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Table 1 Quadratic exponential convergence of approximations σ 2
n (formed using periodic points of period up

to n) to the diffusion coefficient σ 2
μ(g) = 7/27 for T the doublingmap and g(x) = x2. Convergence is O(κn

2
)

as n → ∞ for any κ > 1/
√
2, with ln := [log1/√2 |σ 2

n − σ 2
μ(g)|] tabulated (note that n2 − 11 ≤ ln ≤ n2 − 8

for 7 ≤ n ≤ 20)

n σ2
n ln

7 0.2592 6043769067826947393267112262663116939168486481809969132 39
8 0.25925925 204436123648088652153817588245883502977988965009816 54
9 0.2592592592 8044946963297173564707938908379066357005434712266 70
10 0.2592592592592 2920165588728570045103044970940476420045080830 89
11 0.2592592592592592 7995766665750877478547938238966664497426822 110
12 0.25925925925925925925 231122434472300165656411496230961424753 133
13 0.2592592592592592592592 6039994958602742793206134750195100492 159
14 0.259259259259259259259259259 16741839472832935929572240739708 186
15 0.2592592592592592592592592592592 6289380219067410638708410596 215
16 0.259259259259259259259259259259259259 18842625999409134711672 246
17 0.259259259259259259259259259259259259259259 94017594431303195 280
18 0.25925925925925925925925925925925925925925925925 602612899772 315
19 0.2592592592592592592592592592592592592592592592592592 6685093 352
20 0.25925925925925925925925925925925925925925925925925925925925 392

5 The Lanford Map: Computed Approximations to the Diffusion
Coefficient

Let T : X → X be the Lanford map, introduced in [8] and defined by

T (x) = 2x + 1

2
x(1 − x) (mod 1).

As in [2], we shall be interested in approximating the diffusion coefficient σ 2
μ(g)where the

function g : X → R is defined by g(x) = x2. Table 2 gives the sequence of approximations
σ 2
n to σ 2

μ(g), using points of period up to n = 25.

We note that |σ 2
25−σ 2

24| ≤ 10−50, strongly suggesting that |σ 2
25−σ 2

μ(g)| ≤ 10−50, though
of course this does not constitute a rigorous proof. The remainder of this article is devoted
to the development of techniques for rigorously deriving an error bound for approximations
of this kind; the approach is valid in the general context of real analytic T and g, and in the
particular case of our model problem (the Lanford map T , and g(x) = x2), it turns out that
we can rigorously prove |σ 2

25 − σ 2
μ(g)| < 1.48 × 10−18 (see Theorem 3).

Notation 3 Writing the Lanford map T as

T (x) =

⎧⎪⎨
⎪⎩

5x
2 − x2

2 for x ∈ X0 :=
[
0, 5−√

17
2

)

5x
2 − x2

2 − 1 for x ∈ X1 :=
[
5−√

17
2 , 1

]
,

(34)

we see that its real analytic inverse branches τi : X → Xi are given by13

τ0(x) = 1

2

(
5 − √

25 − 8x
)

, τ1(x) = 1

2

(
5 − √

25 − 8(x + 1)
)

. (35)

13 Note that when discussing the Lanford map, our indexing of the intervals Xi and inverse branches τi differs
from that used in the rest of the article (where i = 1, . . . , l for some l ≥ 2).
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Table 2 Quadratic exponential convergence of approximations σ 2
n (formed using periodic points of period up

to n) to the diffusion coefficient σ 2
μ(g) for the Lanford map T (x) = 2x + 1

2 x(1− x) (mod 1) with absolutely

continuous invariant probability measure μ and function g(x) = x2. Convergence is O(κn
2
) as n → ∞

for some κ < 1, and it appears that κ may be chosen to be approximately equal to
√
2/3; the quantities

ln := [log√
2/3 |σ 2

n − σ 2
25|] are tabulated

n σ2
n ln

5 0.758952899740951117289050379204640628558539620626312810772873 4
6 0.197308632855131955295248351242175440134141168057749343595655 8
7 0.3 69358110165438698087894292076038462203989053463605038232170 23
8 0.3 59726860572647647166355095586883486801678160823100080553030 38
9 0.3 60119513886829472800814356315023056103035487654360736238916 56
10 0.3601 09316739022418987224588456622015209559108690908744627894 76
11 0.360109 488057981893593934226218468806113624400705497746276066 99
12 0.36010948 6185859588343561990599828878966607691239152388199536 123
13 0.3601094861 99222993644688357957828705184562158699412145912511 149
14 0.360109486199 160481163645430040654615882458267775416396263478 178
15 0.360109486199160 673287014050839470838927840191836038181843789 209
16 0.36010948619916067 2898306093693521789682071899149118320835685 241
17 0.360109486199160672898 824643277247080597474593298682526056684 276
18 0.360109486199160672898824 186562820134550885626934057465459723 313
19 0.360109486199160672898824186 828679098981571382241772652080312 351
20 0.360109486199160672898824186828 576723147913766774713709905523 392
21 0.3601094861991606728988241868285767 49246076750137553904058580 435
22 0.36010948619916067289882418682857674924 1669504536317250742499 480
23 0.360109486199160672898824186828576749241669 997833840690090818 527
24 0.360109486199160672898824186828576749241669997 797227061606200 576
25 0.36010948619916067289882418682857674924166999779722 8864417886 ∞

Remark 3 (a) As mentioned in Sect. 3.3, the fact that the τi are contractions facilitates the
location of the period-n points for T , since they are fixed points of suitable compositions
τξ1 ◦· · ·◦τξn . The computational procedure for locating the collection of period-n points is
very swift for smaller values of n; high level software packages such as Mathematica
or Matlab may be used for this purpose, though the exponential growth in the number
of period-n points makes it advantageous to use an imperative programming language for
larger n. For this paper the location of periodic points for the Lanfordmapwas carried out
on a personal computer with Fortran F07 compiler using MPFUN MPFR packages
by D. Bailey (allowing for thread-safe arbitrary precision computations), for all periods
n up to n = 25, following the algorithm as described in Sect. 3.

(b) It is noteworthy that in all cases studied (those of Sect. 4 as well as this section), the
approximations to σ 2

μ(g) are rather inaccurate (e.g. not correct to 2 decimal places) until
points of period at least 5 are incorporated into the approximation.

(c) In [2, §4.6], a non-rigorous experiment is performed, which seems to suggest that σ 2
μ(g)

lies in [0.361, 0.363]. This contrasts with our sequence of approximations in Table 2,
and in particular with our best approximation σ 2

25. It follows from Theorem 3 that the
approximation error of the experiment in [2] is at least 10−3.

(d) Note that minx∈X T ′(x) = T ′(1) = 3/2, corresponding to the fact that 2/3 is the largest
value attained on X by the derivatives of the inverse branches τi . The value 2/3 appears
to be significant concerning the rate at which the approximants σ 2

n approach the diffu-
sion coefficient σ 2

μ(g). Assuming σ 2
25 to be approximately equal to σ 2

μ(g), so that δn :=
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|σ 2
n − σ 2

25| ≈ |σ 2
n − σ 2

μ(g)|, we note that the values εn := exp(n−2 log δn) are close to√
2/3 (e.g. ε22 ≈ √

0.668617, ε23 ≈ √
0.667478, ε24 ≈ √

0.666508), and we therefore
tabulate ln := [log√

2/3 |σ 2
n − σ 2

25|] in Table 2 to illustrate the quadratic exponential con-
vergence. In view of this, it is unsurprising that the value

√
2/3 (or some value rather close

to it) also appears to dictate the quadratic exponential decay of the coefficients cn(t) of the
determinants 
g(z, t) = 1 + ∑∞

n=1 cn(t)z
n : for example the cn(0) in Appendix Table 7

are such that the terms κn := exp(n−2 log |cn(0)|) appear to be converging to a value
close to, or equal to,

√
2/3 (e.g. for 20 ≤ n ≤ 25 the κn are approximately

√
0.674246,√

0.673346,
√
0.672570,

√
0.671899,

√
0.671313,

√
0.670801 respectively). On the

basis of the observed behaviour for the Lanford map, and for the doubling map in Sect. 4,
one might speculate that for more general real analytic maps T : X → X and functions
g : X → R, if κT := (inf{m1/n

x : x ∈ On, n ∈ N})−1/2 then |σ 2
n − σ 2

μ(g)| = O(κn2) as
n → ∞ for all κ > κT , and that limn→∞ exp(n−2 log |cg,n(t)|) = κT for all t ∈ C. This
would constitute a strengthening of our results that if θ ∈ (κ2

T , 1) is the contraction ratio

for an admissible disc, then |σ 2
n − σ 2

μ(g)| = O(κn2) as n → ∞ for all κ > θ1/2, and
lim supn→∞ exp(n−2 log |cg,n(t)|) ≤ θ1/2 for all t ∈ C.

6 Eigenvalues and Approximation Numbers

In this section we recall the definition of approximation numbers sn(Lg,t ) for the transfer
operator Lg,t , and introduce a sequence αn(t) of upper bounds for sn(Lg,t ), which we call
approximation bounds. By then defining the associated contraction ratio θ ∈ (0, 1) we are
able to establish (see Corollary 2) the exponential bound sn(Lg,t ) ≤ αn(t) ≤ Ktθ

n , for a
certain explicit constant Kt > 0, which in particular will facilitate (see Corollary 3 in Sect.
7) a proof of the quadratic exponential decay of the Taylor coefficients for the associated
determinant.

Let D ⊂ Cbe an open disc of radius	 centred at c, and let {λn(t)}∞n=1 denote the eigenvalue
sequence for the operator Lg,t : H2(D) → H2(D), with the convention that eigenvalues are
ordered by decreasing modulus and repeated according to their algebraic multiplicities. The
Taylor coefficients cn(t) of 
g(·, t) then satisfy (see e.g. [15, Lem. 3.3]) the identity

cn(t) =
∑

i1<...<in

n∏
j=1

λi j (t).

For i ≥ 1, the i th approximation number of Lg,t : H2(D) → H2(D) is defined to be the
value

si (Lg,t ) := inf{‖Lg,t − M‖ : rank(M) < i},
and the well known relation

∣∣∣∑i1<...<in

∏n
j=1 λi j (t)

∣∣∣ ≤ ∑
i1<...<in

∏n
j=1 si j (Lg,t ) (see

e.g. [7, Cor. VI.2.6]) implies that

|cn(t)| ≤
∑

i1<...<in

n∏
j=1

si j (Lg,t ). (36)

If, for k ≥ 0, we define mk : D → C by

mk(z) = 	−k(z − c)k, (37)
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then {mk}∞k=0 constitutes an orthonormal basis for H2(D). For n ≥ 1 we can define the
corresponding nth approximation bound αn(t) by

αn(t) =
( ∞∑
k=n−1

‖Lg,t (mk)‖2
)1/2

, (38)

and these values yield a simple upper bound on the approximation numbers of the transfer
operator:

Lemma 2 For n ≥ 1, the nth approximation number of Lg,t : H2(D) → H2(D) satisfies

sn(Lg,t ) ≤ αn(t). (39)

Proof If f ∈ H2(D) then {( f,mk)}∞k=0 ∈ l2(C). Defining L(n)
g,t := Lg,t Pn , where Pn :

H2(D) → H2(D) is defined by Pn( f ) = ∑n−2
k=0( f,mk)mk , we obtain the estimate

‖(Lg,t − L(n)
g,t ) f ‖ = ‖

∞∑
k=n−1

( f,mk)Lg,t (mk)‖ ≤
∞∑

k=n−1

|( f,mk)|‖Lg,t (mk)‖,

and the Cauchy–Schwarz inequality then implies

‖(Lg,t − L(n)
g,t ) f ‖ ≤

( ∞∑
k=n−1

‖Lg,t (mk)‖2
)1/2 ( ∞∑

k=n−1

|( f,mk)|2
)1/2

≤
( ∞∑
k=n−1

‖Lg,t (mk)‖2
)1/2

‖ f ‖,

and hence ‖Lg,t −L(n)
g,t‖ ≤ (∑∞

k=n−1 ‖Lg,t (mk)‖2
)1/2 = αn(t). But L(n)

g,t has rank n − 1, so
the required inequality (39) follows. 
�
Definition 2 Let D′ be the smallest disc, concentric with D, such that ∪l

i=1τi (D) ⊂ D′, and
	, 	′ the respective radii of D, D′. The corresponding contraction ratio θ = θD is defined to
be θ = θD := 	′/	.

Lemma 3 Let D be an admissible disc, with contraction ratio θ = θD. If g : (0, 1) → R has
a holomorphic continuation to a bounded function on D, and each |τ ′

i (·)| has a holomorphic
continuation to a bounded function on D, then for all k ≥ 0,

‖Lg,t (mk)‖ ≤ θk
l∑

i=1

‖wi,t‖∞. (40)

Proof Defining wi,t : D → C by wi,t (z) = etg(τi (z))|τ ′
i (z)|, we can write Lg,t =∑l

i=1 Mi,tCi , where Ci , Mi,t : H2(D) → H2(D) are given by Ci f := f ◦ τi and
Mi,t f := wi,t f . It follows that

‖Lg,t (mk)‖ ≤
l∑

i=1

‖Mi,tCi (mk)‖ ≤
l∑

i=1

‖wi,t‖∞‖Ci (mk)‖. (41)

Now each τi (D) is contained in the disc D′, with the same centre c as D, and of radius
	′ = θ	, therefore |Ci (mk)(z)| = 	−k |τi (z)− c|k < 	−k(	′)k = θk for all z ∈ D. It follows
that ‖Ci (mk)‖ ≤ θk and combining this with (41) gives the required inequality (40). 
�
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Corollary 2 Under the hypotheses of Lemma 3, if Kt :=
∑l

i=1 ‖wi,t‖∞
θ
√
1−θ2

then

sn(Lg,t ) ≤ αn(t) ≤ Ktθ
n for all n ≥ 1. (42)

Proof Combining (38) and Lemma 3 gives

αn(t) ≤
( ∞∑
k=n−1

θ2k

)1/2 l∑
i=1

‖wi,t‖∞ = θn−1

√
1 − θ2

l∑
i=1

‖wi,t‖∞ = Ktθ
n,

while the inequality sn(Lg,t ) ≤ αn(t) is the content of Lemma 2. 
�

7 Euler Bounds and Computed Bounds

In this section we introduce two different kinds of bound on the Taylor series coefficients
of the determinant 
g(·, t). The first of these, the Euler bound, has a simple closed form
and is readily seen to converge to zero at a quadratic exponential rate. This implies the
quadratic exponential decay of the Taylor coefficients (see Corollary 3), and hence that
the determinant is an entire function (see Corollary 4); importantly, the inequality proved
in Corollary 3 is subsequently used in Sect. 8 to rigorously bound one part of the error
term in our diffusion coefficient approximation. The second kind of bound on the Taylor
coefficients of the determinant is based on the approximation boundsαn(t) introduced in Sect.
6, and motivated by the recognition (see the comments in Sect. 1) that despite the quadratic
exponential decay of the Euler bounds, for practical purposes theymay be insufficiently sharp
even for moderately large values of n. By first defining an upper computed approximation
bound αn,N ,+(t) (the large integer N plays the role of a proxy for ∞ in the definition (38) of
αn(t)), the inequality (36) then motivates our definition of the upper computed Taylor bound
(53), and the resulting Taylor coefficient bound in Proposition 4 provides a key ingredient
for the validated approximation of the diffusion coefficient σ 2

μ(g) described in Sect. 8.
Let us write

En(r) := rn(n+1)/2∏n
i=1(1 − r i )

=
∑

i1<...<in

r i1+...+in . (43)

In view of the following bound (44), and the fact that the identity in (43) was first given by
Euler (cf. [5, Ch. 16]), we shall refer to the quantity Kn

t En(θ) as the Euler bound on the nth

Taylor coefficient of the determinant 
g(·, t).
Corollary 3 Under the hypotheses of Lemma 3, if 
g(z, t) = 1 + ∑∞

n=1 cn(t)z
n then

|cn(t)| ≤ Kn
t En(θ) for all n ≥ 1. (44)

Proof From (36) and (42), |cn(t)| ≤ ∑
i1<...<in

∏n
j=1 si j (Lg,t ) ≤ Kn

t
∑

i1<...<in θ i1+...+in .

�

Corollary 4 Under the hypotheses of Lemma 3, if 
g(z, t) = 1 + ∑∞
n=1 cn(t)z

n, and κ ∈
(θ1/2, 1), then

cn(t) = O(κn2) as n → ∞ (45)

for all t ∈ C, and in particular the determinant 
g(·, t) is an entire function.

Proof The asymptotic (45) is immediate from (44), and this in particular implies that the
Taylor coefficients of 
g(·, t) tend to zero faster than any exponential, hence the function is
entire. 
�
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In order to exploit Lemma 2, which asserts that

sn(Lg,t ) ≤ αn(t) =
( ∞∑
k=n−1

‖Lg,t (mk)‖2
)1/2

,

we require a practical means of computing the approximation bound αn(t). This will con-
sist of bounding

∑∞
k=n−1 ‖Lg,t (mk)‖2 by the sum of an exactly computed long finite sum∑N

k=n−1 ‖Lg,t (mk)‖2 (the H2(D) norms of the summands can be evaluated using numerical
integration,14 since each Lg,tmk is known in closed form) and a rigorous upper bound on∑∞

k=N+1 ‖Lg,t (mk)‖2 using (40).
With this inmind, for n, N ∈ Nwith n ≤ N , we define the lower computed approximation

bound

αg,n,N ,−(t) = αn,N ,−(t) :=
(

N∑
k=n−1

‖Lg,t (mk)‖2
)1/2

, (46)

and the upper computed approximation bound

αg,n,N ,+(t) = αn,N ,+(t) :=
⎛
⎝αn,N ,−(t)2 +

(
l∑

i=1

‖wi,t‖∞

)2
θ2(N+1)

1 − θ2

⎞
⎠

1/2

. (47)

Lemma 4 For t ∈ C, and n, N ∈ N with n ≤ N,
αn,N ,−(t) ≤ αn(t) ≤ αn,N ,+(t) ≤ Kt (1 + θ2(N+2−n))1/2θn . (48)

Proof The inequality αn,N ,−(t) ≤ αn(t) is clear. To prove αn(t) ≤ αn,N ,+(t) we use (40)
to give αn(t)2 = ∑N

k=n−1 ‖Lg,t (mk)‖2 + ∑∞
k=N+1 ‖Lg,t (mk)‖2 ≤ ∑N

k=n−1 ‖Lg,t (mk)‖2 +(∑l
i=1 ‖wi,t‖∞

)2
θ2(N+1)

1−θ2
, and the inequality follows. To prove that αn,N ,+(t) ≤ Kt (1 +

θ2(N+2−n))1/2θn , note that combining (42) with αn,N ,−(t) ≤ αn(t) gives αn,N ,−(t) ≤ Ktθ
n ,

so (47) gives

αn,N ,+(t) ≤
⎛
⎝(Ktθ

n)2 +
(

l∑
i=1

‖wi,t‖∞

)2
θ2(N+1)

1 − θ2

⎞
⎠

1/2

=
(
(Ktθ

n)2 + K 2
t θ2(N+2)

)1/2
,

and the result follows. 
�
The αn,N ,+(t) can now be used to give rigorous upper bounds on the Taylor coefficients of


g(·, t). For t ∈ C, and n, M, N ∈ N with n ≤ M ≤ N , define the Taylor bound βM
n,N ,+(t)

by
βM
g,n,N ,+(t) = βM

n,N ,+(t) :=
∑

i1<...<in

n∏
j=1

αM
i j ,N ,+(t), (49)

where the sum is over those i = (i1, . . . , in) ∈ N
n which satisfy i1 < i2 < . . . < in , and the

sequence (αM
n,N ,+(t))∞n=1 is defined by:

αM
n,N ,+(t) :=

{
αn,N ,+(t) for 1 ≤ n ≤ M,

Ktθ
n for n > M.

(50)

14 e.g. for the computations in Sect. 8 these integrals were computed with 70 digit accuracy using
Mathematica.
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Note that from (42), (48) and (50) we have sn(Lg,t ) ≤ αM
n,N ,+(t), which combined with

(36) establishes that the Taylor bounds βM
n,N ,+(t) are indeed bounds on the modulus of the

nth Taylor coefficient of 
g(·, t):
|cn(t)| ≤ βM

n,N ,+(t). (51)

As computable approximations to βM
n,N ,+(t) we then define the lower computed Taylor

bound by

β
M,−
g,n,N ,+(t) = β

M,−
n,N ,+(t) :=

∑
i1<...<in≤M

n∏
j=1

αi j ,N ,+(t), (52)

and for Q ∈ N with n ≤ Q ≤ M ≤ N we define the upper computed Taylor bound by

β
M,+
g,n,N ,+(t) = β

M,+
n,N ,+(t) := β

M,−
n,N ,+(t)

+
n−1∑
l=0

β
M,−
l,N ,+(t) θM(n−l)En−l(θ)Kn−l

t

(
1 + θ2(N+2−Q)

)(n−l)/2
. (53)

In practice the sum on the righthand side of (53) will be extremely small, though is
sufficient for the upper computed Taylor bound to be an upper bound on |cn(t)|:

Proposition 4 For t ∈ C, and Q, M, N ∈ N with Q ≤ M ≤ N,

|cn(t)| ≤ β
M,+
n,N ,+(t) for all 1 ≤ n ≤ Q. (54)

Proof If In := {i = (i1, . . . , in) ∈ N
n : i1 < . . . < in} then In = ⋃n

l=0 I(l)
n is a disjoint

union, where the I(l)
n are defined by I(l)

n = {i = (i1, . . . , in) ∈ In : il ≤ M < il+1} for
1 ≤ l ≤ n − 1 and I(0)

n = {i = (i1, . . . , in) ∈ In : M < i1}, I(n)
n = {i = (i1, . . . , in) ∈

In : in ≤ M}. If we define β
M,(l)
n,N ,+(s) := ∑

i∈I(l)
n

∏n
j=1 αM

i j ,N ,+(s) for 0 ≤ l ≤ n, so that

β
M,(n)
n,N ,+(s) = β

M,−
n,N ,+(s), we obtain

βM
n,N ,+(s) − β

M,−
n,N ,+(s) =

n−1∑
l=0

β
M,(l)
n,N ,+(s). (55)

Setting J := Kt
(
1 + θ2(N+2−Q)

)1/2
, Lemma 4 gives αn,N ,+(t) ≤ Jθn for all 1 ≤

n ≤ Q, and this can be used to bound each β
M,(l)
n,N ,+(s) = ∑

i∈I(l)
n

∏n
j=1 αM

i j ,N ,+(s) ≤
Jn−l ∑

i∈I(l)
n

θ il+1+...+in
∏l

j=1 αM
i j ,N ,+(s), or in other words β

M,(l)
n,N ,+(s) ≤ Jn−l

(
∑

i∈I(l)
l

∏l
j=1 αM

i j ,N ,+(s))(
∑

ι∈In−l
θ(n−l)Mθι1+...+ιn−l ), and therefore β

M,(l)
n,N ,+(s) ≤ Jn−l

β
M,−
l,N ,+(s) θM(n−l) En−l(θ), and substituting these bounds into (55) gives

βM
n,N ,+(t) − β

M,−
n,N ,+(t) ≤

n−1∑
l=0

β
M,−
l,N ,+(t) θM(n−l)En−l(θ)Jn−l for all 1 ≤ n ≤ Q. (56)

Now (53) and (56) together give βM
n,N ,+(t) ≤ β

M,+
n,N ,+(t), which combined with (51) gives

(54). 
�
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8 Validated Numerics: The Lanford Map

With the theory of Sects. 6 and 7 in hand, we are finally in a position to rigorously justify
the quality of our computed approximation (see Sect. 5) to the diffusion coefficient σ 2

μ(g)
in the case of our model problem, namely the case of T the Lanford map, μ its absolutely
continuous invariant probability measure, and g : X → R the function g(x) = x2. In Sect.
8.1 we choose a suitable disc D, compute the associated contraction ratio θ and constants
Kt , and make choices of the natural numbers M, N , Q which arise in connection with the
computed Taylor bounds of Sect. 7. In Sect. 8.2 we establish (see Proposition 5) rigorous
bounds on the tails of five series which arise in the formula for σ 2

μ(g) derived in Corollary 1;
each series represents a certain derivative of the determinant, and the bounds are established
via our Euler bounds and computed Taylor bounds on its Taylor coefficients cn(t). In Sect. 8.3
these tail estimates are combined with the exact evaluations of the corresponding truncated
series obtained via periodic point calculations (as described in Sect. 5) to prove a rigorous
bound on σ 2

μ(g) (see Theorem 3). In Sect. 8.4 we prove Theorems 1 and 2, which were stated
in Sect. 1; Theorem 2 is seen to be a minor variant of Theorem 3, while the more abstract
Theorem 1 is established by combining the techniques used to prove Theorem 3 with the
Taylor series asymptotic (45) from Corollary 4.

8.1 Computed Approximation Bounds and Computed Taylor Bounds

Choosing15 D to be the open disc centred at c = 0.664, of radius 	 = 0.87, we note
that both image discs τ0(D) and τ1(D) are contained in the disc D′ centred at c, of radius
	′ = τ1(c + r) − c, and the corresponding contraction ratio can be computed as

θ = 	′

	
= 918 − 10

√
2955

435
= 0.860691685064194628752049570062144712194108488685514534 . . . (57)

For i = 0, 1 we have

wi,t (z) = etg(τi (z))τ ′
i (z) = et (τi (z))

2
τ ′
i (z).

We shall be particularly interested in the choices t = 0 and16 t = 1/20, and in these
cases the supremum norm on D for both functions w0,t and w1,t is attained by evaluating at
z = c + 	,

‖w0,0‖∞ = τ ′
0(c + 	) = 10

√
5

1591
= 0.56059589378465950773976123712854581727310648803927 . . . ,

‖w1,0‖∞ = τ ′
1(c + 	)

= 10

√
5

591
= 0.91979546023193796360889752457354830828352420883553 . . . ,

‖w0,1/20‖∞ = exp

(
1

20
g(τ0(c + 	))

)
τ ′
0(c + 	)

15 We make this choice so as to minimise the error estimates arising from the computed Taylor bounds.
16 The choice t = 1/20 is close to optimal for the purpose of estimating c′n(0) and c′′n (0) via Cauchy’s
integral formula in the proof of Proposition 5. This involves, respectively, the integration of cn(ζ )ζ−2 and
cn(ζ )ζ−3 over a circular contour centred at 0, and for both integrands there is a tension between the bound
on |cn(ζ )|,which increases with |ζ |, and the bound on |ζ−k | (for k = 2, 3), which decreases with |ζ |.
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= 0.575158859780423676330133482123073962520 . . . ,

‖w1,1/20‖∞ = exp

(
1

20
g(τ1(c + 	))

)
τ ′
1(c + 	)

= 1.016328356027323344809430682923765554385 . . . .

We can then compute K0 and K1/20 to be

K0 = ‖w0,0‖∞ + ‖w1,0‖∞
h
√
1 − θ2

= 3.378338827972047629989286401578445782815 . . .

K1/20 = ‖w0,0‖∞ + ‖w1,0‖∞
h
√
1 − θ2

= 3.6318660202903086618402475203542507816 . . .

We know that |cn(t)| ≤ Kn
t En(θ) for all n ≥ 1, and will be interested in those n which

are large enough for this bound to be effective, for the cases t = 0 and t = 1/20. It is
easily computed that in both of these cases, the Euler bound Kn

t En(θ) does not even become
smaller than 1 until n > 20, and when n = 26 (the smallest value of n for which we do not
have access to the period-n points) it is of the order of 10−5 for small t , so the Euler bound by
itself would only permit a bound on σ 2

μ(g) which is accurate to around 1 decimal place. It is
therefore crucial that we use the computed Taylor bounds in order to yield the high accuracy
bound on σ 2

μ(g) given in Theorem 3, and in the proof of that result we use the Euler bounds
only for n > 40.

Henceforth let Q = 40, M = 300, N = 400 (so that in particular Q ≤ M ≤ N , as was
assumed throughout Sect. 7), and consider the two cases t = 0 and t = 1/20.

We first evaluate the H2(D) norms of the monomial images Lg,t (mk) for 0 ≤ k ≤ N =
400. These norms are decreasing in k, andAppendix Table 3 contains the first few evaluations,
for 0 ≤ k ≤ 10. Using these norms ‖Lg,t (mk)‖ we then evaluate, for 1 ≤ n ≤ M = 300,
the upper computed approximation bounds αn,N ,+(t) = αn,400,+(t) defined (cf. (47)) by17

αn,N ,+(t) =
⎛
⎝ N∑

k=n−1

‖Lg,t (mk)‖2 +
(

2∑
i=1

‖wi,t‖∞

)2
θ2(N+1)

1 − θ2

⎞
⎠

1/2

.

These bounds are decreasing in n; Appendix Table 4 contains the first few evaluations, for
1 ≤ n ≤ 10.

The upper computed approximation bounds αn,400,+(t) are then used to form the upper
computedTaylor bounds18 β

M,+
n,N ,+(t) = β

M,−
n,N ,+(t)+∑n−1

l=0 Jn−l
Q,N ,t β

M,−
l,N ,+(t) θM(n−l)En−l(θ),

where

β
M,−
n,N ,+(t) = β

300,−
n,400,+(t) =

∑
i1<...<in≤300

n∏
j=1

αi j ,400,+(t),

which are listed in Appendix Tables 5 and 6.

17 Note that h ≈ 0.860691 and N = 400, so θ2(N+1)

1−θ2
< 2.2 × 10−52. Moreover

∑2
i=1 ‖wi,t‖∞ < 1.7

for both t = 0 and t = 1/20, thus (
∑2

i=1 ‖wi,t‖∞)2 θ2(N+1)

1−θ2
< 6.4 × 10−52. Combining these bounds

with the values taken by αn,N ,+(t), it follows that for 1 ≤ n ≤ 300, the approximation bound αn(t) =
(
∑∞

k=n−1 ‖Lg,t (mk )‖2)1/2 agrees with both computed approximation bounds αn,N ,−(t) and αn,N ,+(t) to
well beyond the desired 70 decimal place precision used in these calculations.
18 The difference β

M,+
n,N ,+(t) − β

M,−
n,N ,+(t) = ∑n−1

l=0 Jn−l
Q,N ,t β

M,−
l,N ,+(t) θM(n−l)En−l (θ) is small enough that

the upper and lower computed Taylor bounds, and the Taylor bound βM
n,N ,+(t), agree to well beyond the 70

decimal place precision used in these computations.
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8.2 A Tale of Five Tails: The Ingredients for Validating the Diffusion Coefficient

The following Proposition 5 gives rigorous bounds on the tails of five series appearing in the
formula for σ 2

μ(g) derived in Corollary 1.

Proposition 5
∣∣∣∣

∞∑
n=26

ncn(0)

∣∣∣∣ ≤ 6.8 × 10−22 =: ε1, (58)

∣∣∣∣
∞∑

n=26

n(n − 1)cn(0)

∣∣∣∣ ≤ 1.7 × 10−20 =: ε2, (59)

∣∣∣∣
∞∑

n=26

c′
n(0)

∣∣∣∣ ≤ 3.4 × 10−21 =: ε3, (60)

∣∣∣∣
∞∑

n=26

nc′
n(0)

∣∣∣∣ ≤ 8.7 × 10−20 =: ε4, (61)

∣∣∣∣
∞∑

n=26

c′′
n(0)

∣∣∣∣ ≤ 6.7 × 10−20 =: ε5. (62)

Proof Now |cn(0)| ≤ β
M,+
n,N ,+(0), and |cn(0)| ≤ Kn

0 En(θ), therefore

∣∣∣∣
∞∑

n=26

ncn(0)

∣∣∣∣ ≤
40∑

n=26

nβM,+
n,N ,+(0) +

∞∑
n=41

nKn
0 En(θ), (63)

and using the values in Appendix Table 5 we readily compute the finite sum19

40∑
n=26

nβM,+
n,N ,+(0) ∈ (

6.761 × 10−22 ± 10−24) , (64)

while the closed form expression for the Euler bound Kn
0 En(θ) means we also readily com-

pute that
∞∑

n=41

nKn
0 En(θ) ∈ (

1.376 × 10−29 ± 10−31) . (65)

Combining (63)–(65) gives
∣∣∣∣

∞∑
n=26

ncn(0)

∣∣∣∣ ≤ 6.772 × 10−22,

which is the required (58).
In a similar way, Appendix Table 5 gives the finite sum

40∑
n=26

n(n − 1)βM,+
n,N ,+(0) ∈ (

1.691 × 10−20 ± 10−22) (66)

19 Note that the n = 26 term dominates, since 26×β
M,+
26,N ,+(0) ≈ 26 · (2.572 . . .) · 10−23 ≈ 6.687× 10−22.
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while the closed form expression for Kn
0 En(θ) means we also readily compute that

∞∑
n=41

n(n − 1)Kn
0 En(θ) ∈ (

5.505 · 10−28 ± 10−30) (67)

so adding the above two quantities gives
∣∣∣∣

∞∑
n=26

n(n − 1)cn(0)

∣∣∣∣ ≤ 1.7 × 10−20,

which is the required bound (59).
Next we require an estimate on the terms c′

n(0). From Cauchy’s integral formula

c′
n(0) = 1

2π i

∫
�p

cn(t)

t2
dt,

where �p is the positively oriented circle of radius p centred at 0, we see that |c′
n(0)| ≤

1
p maxt∈�p |cn(t)|, and making the choice p = 1/20 gives |c′

n(0)| ≤ 20maxt∈�1/20 |cn(t)|.
Therefore ∣∣∣∣

∞∑
n=26

c′
n(0)

∣∣∣∣ ≤ 20

(
40∑

n=26

β
M,+
n,N ,+(1/20) +

∞∑
n=41

Kn
1/20En(θ)

)
, (68)

and using the values in Appendix Table 6 we can evaluate the finite sum

20
40∑

n=26

β
M,+
n,N ,+(1/20) ∈ (

3.336 × 10−21 ± 10−23) , (69)

while the closed form expression for Kn
1/20En(θ) allows the computation

20
∞∑

n=41

Kn
1/20En(θ) ∈ (

1.304 × 10−28 ± 10−30) . (70)

Combining (68)–(70) gives
∣∣∣∣

∞∑
n=26

c′
n(0)

∣∣∣∣ ≤ 3.34 × 10−21,

which is the required bound (60).
Similarly,

∣∣∣∣
∞∑

n=26

nc′
n(0)

∣∣∣∣ ≤ 20

(
40∑

n=26

nβM,+
n,N ,+(1/20) +

∞∑
n=41

nKn
1/20En(θ)

)
, (71)

and the values in Appendix Table 6 give
∣∣∣∣∣20

40∑
n=26

β
M,+
n,N ,+(1/20)

∣∣∣∣∣ ≤ 8.679 × 10−20, (72)

while the closed form expression for Kn
1/20En(θ) allows the computation

20
∞∑

n=41

nKn
1/20En(θ) ∈ (

5.35 · 10−27 ± 10−29) . (73)
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Combining (71)–(73) gives

∣∣∣∣
∞∑

n=26

nc′
n(0)

∣∣∣∣ ≤ 8.68 × 10−20,

which is the bound (61).
To bound c′′

n(0), Cauchy’s integral formula gives

c′′
n(0) = 1

2π i

∫
�p

cn(t)

t3
dt,

so |c′′
n(0)| ≤ 1

p2
maxt∈�p |cn(t)|, and again choosing p = 1/20 we have

|c′′
n(0)| ≤ 400 max

t∈�1/20
|cn(t)|,

so that ∣∣∣∣
∞∑

n=26

c′′
n(0)

∣∣∣∣ ≤ 400

(
40∑

n=26

β
M,+
n,N ,+(1/20) +

∞∑
n=41

Kn
1/20En(θ)

)
. (74)

The values in Appendix Table 6 then give

400
40∑

n=26

β
M,+
n,N ,+(1/20) ∈ (

6.673 × 10−20 ± 10−22) (75)

while (70) implies

400
∞∑

n=41

Kn
1/20En(θ) ∈ (

2.609 × 10−27 ± 10−29) . (76)

Combining (74)–(76) gives

∣∣∣∣
∞∑

n=26

c′′
n(0)

∣∣∣∣ ≤ 6.68 × 10−20

which is the required bound (62). 
�
8.3 The Rigorous Bound on the Diffusion Coefficient

In the proof of Theorem 3 we shall make repeated use of the following simple lemma, in
settings where A and B are quantities which cannot be computed precisely, but where a and
b are computable approximations, and errors α and β can be derived.

Lemma 5 If A, B, a, b ∈ R and α, β > 0 satisfy |A − a| ≤ α and |B − b| ≤ β, then

|AB − ab| ≤ (|b| + β)α + |a|β, (77)

and ∣∣∣∣ 1A − 1

a

∣∣∣∣ ≤ α

|a|(|a| − α)
. (78)

We can now justify the quality of our computed approximation to σ 2
μ(g) as follows:
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Theorem 3 If T is the Lanford map, μ is its absolutely continuous invariant probability
measure, and g(x) = x2, then the diffusion coefficient σ 2

μ(g) can be approximated by σ 2
25,

which is derived using T -periodic points of period up to 25, so that

|σ 2
μ(g) − σ 2

25| < 1.48 × 10−18. (79)

Proof For economy of notation, let us write

RN =
N∑

n=1

ncn(0) , SN =
N∑

n=1

n(n − 1)cn(0) , (80)

TN =
N∑

n=1

c′
n(0) , UN =

N∑
n=1

nc′
n(0) , VN =

N∑
n=1

c′′
n(0) , (81)

where for our purposes N will equal either 25 or ∞, so in particular Corollary 1(b) gives

σ 2
μ(g) =

(
T∞
R∞

)2

+
S∞

(
T∞
R∞

)2 − 2U∞
(
T∞
R∞

)
+ V∞

R∞
. (82)

Our periodic orbit calculations (as described in Sect. 5) yield the following:

R25 =
25∑
n=1

ncn(0) ∈ (−0.121872639684483619872 ± 10−20) (83)

S25 =
25∑
n=1

n(n − 1)cn(0) ∈ (
0.684579623068217935744 ± 10−20) (84)

T25 =
25∑
n=1

c′
n(0) ∈ (−0.046788840783927713075 ± 10−20) (85)

U25 =
25∑
n=1

nc′
n(0) ∈ (

0.404063585125598237926 ± 10−20) (86)

V25 =
25∑
n=1

c′′
n(0) ∈ (

0.183427185483761853214 ± 10−20) (87)

Using (78) with A = R∞ and a = R25,∣∣∣∣ 1

R∞
− 1

R25

∣∣∣∣ ≤ ε1

|R25|(|R25| − ε1)
=: η1 ∈ (

4.578 × 10−20 ± 10−22) . (88)

Combining (88) with (85) and (60), and using (77), we obtain
∣∣∣∣ T∞
R∞

− T25
R25

∣∣∣∣ ≤ (|R25|−1 + η1)ε3 + |T25|η1 =: η2 ∈ (
3.004 × 10−20 ± 10−22) . (89)

Using (77) again gives

∣∣∣∣
(
T∞
R∞

)2

−
(
T25
R25

)2 ∣∣∣∣ ≤
(
2

∣∣∣∣ T25R25

∣∣∣∣ + η2

)
η2 =: η3 ∈ (

2.306 × 10−20 ± 10−22) . (90)
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Using (77) again we see that∣∣∣∣S∞
(
T∞
R∞

)2

−S25

(
T25
R25

)2 ∣∣∣∣ ≤ (|S25|+ε2)η3+
∣∣∣∣ T25R25

∣∣∣∣
2

ε2 =: η4 ∈ (
1.829 × 10−20 ± 10−22).

(91)
Using (77) again we see that∣∣∣∣U∞

(
T∞
R∞

)
−U25

(
T25
R25

) ∣∣∣∣ ≤ (|U25|+ε4)η2+
∣∣∣∣ T25R25

∣∣∣∣ε4 =: η5 ∈ (
4.553 × 10−20 ± 10−22).

(92)
Writing

WN = SN

(
TN
RN

)2

− 2UN

(
TN
RN

)
+ VN ,

we use (91) and (92) to see that

|W∞ − W25| ≤ η4 + 2η5 + ε5 =: η6 ∈ (
1.763 × 10−19 ± 10−21) , (93)

and hence∣∣∣∣W∞
R∞

− W25

R25

∣∣∣∣ ≤ (|R25|−1 + η1)η6 + |W25|η1 =: η7 ∈ (
1.437 × 10−18 ± 10−20) . (94)

Now

σ 2
μ(g) =

(
T∞
R∞

)2

+ W∞
R∞

, σ 2
25 =

(
T25
R25

)2

+ W25

R25
,

so from (90) and (94) we deduce

|σ 2
μ(g) − σ 2

25| ≤ η3 + η7 ≤ 1.48 × 10−18,

and the desired bound (79) follows. 
�
8.4 Conclusion

We conclude by proving the two theorems stated in Sect. 1, beginning with Theorem 2, which
follows readily from Theorem 3:

Proof of Theorem 2 Our algorithm (see Table 2) gives

σ 2
25 ∈ (

0.3601094861991606728988 ± 10−20)

and Theorem 3 gives |σ 2
μ(g) − σ 2

25| < 1.48 × 10−18, therefore

σ 2
μ(g) ∈ (0.36010948619916067143, 0.36010948619916067435),

which in particular implies the required result.

Finally, the more abstract Theorem 1 can be proved using ideas similar to those used in
the proof of Theorem 3:

Proof of Theorem 1 Writing 
g(z, t) = 1+∑∞
n=1 cn(t)z

n , the asymptotic (45) implies that

each of cn(0), c′
n(0) and c

′′
n(0) is O(κn2) as n → ∞, for some κ ∈ (0, 1). For the sums defined

in (80), (81), it then follows that each of the five tails |R∞ − Rn |, |S∞ − Sn |, |T∞ − Tn |,
|U∞ −Un |, |V∞ − Vn | is O(κn2) as n → ∞. Using Lemma 5 we then successively deduce,
via arguments analogous to those used in the proof of Theorem 3, that the intermediate

123



248 O. Jenkinson et al.

quantities |1/R∞ −1/Rn |, |T∞/R∞ −Tn/Rn |, |(T∞/R∞)2 − (Tn/Rn)
2|, |S∞(T∞/R∞)2 −

Sn(Tn/Rn)
2|, |U∞(T∞/R∞) − Un(Tn/Rn)|, |W∞ − Wn |, |W∞/R∞ − Wn/Rn | are also all

O(κn2) as n → ∞. Since

σ 2
μ(g) =

(
T∞
R∞

)2

+ W∞
R∞

, σ 2
n =

(
Tn
Rn

)2

+ Wn

Rn
,

we then deduce that |σ 2
μ(g) − σ 2

n | = O(κn2) as n → ∞, as required. 
�

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Numerical Data for the Model Problem

Here we include data (presented in truncated form) for various quantities used in the com-
putation of the diffusion coefficient σ 2

μ(g) for T the Lanford map and g(x) = x2.

Table 3 H2(D) norms ‖Lg,t (mk )‖ for Lanford map transfer operator Lg,t for g(x) = x2, with t = 0 and
t = 1/20, for disc D centred at c = 0.664, of radius 	 = 0.87

k ‖Lg,0(mk )‖ ‖Lg,1/20(mk )‖
0 1.072230506759545960034369362057 1.104172678680527349319786186152

1 0.596049717149185539323469146180 0.620723147283434643992316098783

2 0.369763875353908620799790724929 0.391166259479521916734808474235

3 0.276119593229594517922547820447 0.294425025977306244191853146578

4 0.227958491432695605245256206959 0.243204075162724802921362562931

5 0.190220640114195164926195507651 0.202979268290409813682614341952

6 0.157555706161007126216732351954 0.168328947218208073434709811106

7 0.130346940510248254547131671735 0.139478565402897511685346267479

8 0.108292842592902764391596660436 0.116036335936760027044425349805

9 0.090419617507249250203174802637 0.096984795408680571918324496924

10 0.075776600475413904133208619148 0.081344472381130192060647906273

Table 4 Upper computed approximation boundsαn,N ,+(t) for Lanfordmap transfer operatorLg,t for g(x) =
x2, with t = 0 and t = 1/20, for disc D centred at c = 0.664, of radius 	 = 0.87, with N = 400

n αn,N ,+(0) αn,N ,+(1/20)

1 1.373917067043466452425251967170 1.427638696131557424132789994351

2 0.859051714093795610515690567921 0.904961293287001451810486961337

3 0.618623134205199498661411971713 0.658526929422198922934937003214

4 0.495952879472559770705729997203 0.529760959508181474382332373956

5 0.411979646210643105413017982909 0.440409557454526223835417989155

6 0.343164909446721117383095192041 0.367168021648856750761912948529

7 0.285619087510134990387118189296 0.305960410455054090995726782844

8 0.238231951270665058019616852773 0.255493910483664743663872215393

9 0.199409472457670207966369603912 0.214062766700294085737845205391

10 0.167441924108017577833206337586 0.179884509699295419905710072835
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Table 5 Upper computed Taylor bounds β
M,+
n,N ,+(t) for Lanford map transfer operator Lg,t with t = 0,

g(x) = x2, M = 300, N = 400, and disc D centred at c = 0.664, of radius 	 = 0.87

n β
M,+
n,N ,+(0)

0 1.00000000000000000000000000000000000000000000000000000000000000000000

1 5.91638169450327064883976456644941924161928830677363819808060713539812

2 15.5930056102352819935534233140316517118382599986298995283355433265137

3 24.4736698639000709743844193449874942721011409850977481543023124773696

4 25.7754808258198078216455439547621024386170650161794423308493443983097

5 19.4469054872453784049349390698326933609483810493437472532611644864792

6 10.9521106238726346156568796927347289533024574453173311671485824407656

7 4.73540458221471556223636638770483729911053037108254251152025488489004

8 1.60412835316935512560742467899726193208922561294836648618663181927698

9 0.43227019694704976367374985472246979377359534967354408439065009492980

10 0.09375908154725806062303320968739024457872407061926883003524399861986

11 0.01652150342101168996424088686783098220114453369280456250511074495407

12 0.00238293237948001749697274680572517696435951680662097428497778020760

13 0.00028304269463672625512060912147671161988441921765835179658913188285

14 0.00002782677155849364747420872094284640017560258716690718789367793928

15 2.27392403136506520702724564410473340446650639579722032205330246 × 10−6

16 1.55001252830385066339340115927214700511589047296031298506903537 × 10−7

17 8.83999766101668028957629529487694836331978784991495390797963332 × 10−9

18 4.22910735620174411941773831057180480980291549806736590593484206 × 10−10

19 1.70094619827541573471532294812274420039877275633876944149746895 × 10−11

20 5.76253574844793924863326504428979970720822216845679266337327572 × 10−13

21 1.64719543361358736487381155317306660980894721531616471482462791 × 10−14

22 3.97851343969582857919989434542234955671337278329883396694974188 × 10−16

23 8.13015813907035571457013570353731056069789743557218471587901060 × 10−18

24 1.40725206079897102652397486145471051771037644337044022147968721 × 10−19

25 2.06526294831298446834304647553465436309716315513236215167585825 × 10−21

26 2.57215243104667105215824167841697542562499595143189055321291537 × 10−23

27 2.72070490994043636692628731754208142998380316685815821651703231 × 10−25

28 2.44590093688207448627993621838824589670936482665024996736095949 × 10−27

29 1.87002244040068058743646064182298912700729836481886839796879296 × 10−29

30 1.21662223061110407539286299080285544487051750134294707706848536 × 10−31

31 6.73894859299114408105902864970222134509197580734796373553489611 × 10−34

32 3.17951954702135581037427993130825377583766175736565112414287832 × 10−36

33 1.27835316671718885749177319622144884560379835925694002589279209 × 10−38

34 4.38158222578128011907566552141075137983249232012587406086472299 × 10−41

35 1.28073190382903792751606572170641919527714030160004122585114832 × 10−43

36 3.19356882118247708913130052922372437303467184375302002671812072 × 10−46
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Table 5 continued

n β
M,+
n,N ,+(0)

37 6.79543778777729442805037570050636716580086586696826218847684626 × 10−49

38 1.23425230994365846085219734895268399165400230577981026871766096 × 10−51

39 1.91403130218947580428297036198227018700547685312967193646613596 × 10−54

40 2.53488275012643454408402888067456803151862774782787701968600395 × 10−57

Table 6 Upper computed Taylor bounds β
M,+
n,N ,+(t) for Lanford map transfer operator Lg,t with t = 1/20,

g(x) = x2, M = 300, N = 400, and disc D centred at c = 0.664, of radius 	 = 0.87

n β
M,+
n,N ,+(1/20)

0 1.00000000000000000000000000000000000000000000000000000000000000000000

1 6.27842519703334406022340033748927178829675608493814980507714608797459

2 17.6003362119988183866754213426824373437028159179692389550954549117423

3 29.4366898216927944152313565661448722215928824631400913757149291269852

4 33.0867611911634920240882205854397496498017624116086418773855567059626

5 26.6753356435110348555530771923660527098027868636067429378252055347670

6 16.0710965899538078436477208145810313529265723398946425024786919332663

7 7.44063666302454054383943558694860088009355060221952940348668203608729

8 2.70127094064217596236351990259358495525841780837765629213799111450263

9 0.78071782310801484862526127910162690666654602643063005600755159227045

10 0.18174627347531441236057904915305258962787959831002794386840974964700

11 0.03439486702274223053770708403705609182708982722820690472000498696375

12 0.00533095477056366674311114131747398500384802945013153524121964534649

13 0.00068082190626498655702769374902264509667584958345813328144351285726

14 0.00007200388275841965360071435691243740847574318817522346898702039135

15 6.33271392110873459655379479015310649620066560990384843859282266 × 10−6

16 4.64800848470789807590971030856240671418742805942662945873297418 × 10−7

17 2.85553568027041612564729759621742273463462761215038353862022367 × 10−8

18 1.47219033472979293213438915492415236429139393490859859980761806 × 10−9

19 6.38341105718717757915909774574402061895030645318360898190706892 × 10−11

20 2.33228685756150438219265787953400833864987726565924390772235464 × 10−12

21 7.19235908955625772063753408644833359500811213574185949878327842 × 10−14

22 1.87477911111247179179899643900730715712136223446850276009517444 × 10−15

23 4.13590334226334088615441884060439848738610606398417273687178495 × 10−17

24 7.73070140894702140522209504941473132524640938008515421479045415 × 10−19

25 1.22553689288336734377055577029417960323883309163815462793346801 × 10−20

26 1.64920824712133774857887341667964355887802022954017778167641175 × 10−22

27 1.88541699764734059705504785147513397623798878093845816667050018 × 10−24

28 1.83243033954492300016575720796250290917142059356438926786130103 × 10−26
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Table 6 continued

n β
M,+
n,N ,+(1/20)

29 1.51499027117462581296207671180385128334726539966767247928642535 × 10−28

30 1.06610892290501996421078468465905043866340941985470001595680173 × 10−30

31 6.38889899955948918993224875553710714558745184415119687576651408 × 10−33

32 3.26201347689449394139927031534076848195196188267851020944823308 × 10−35

33 1.41959703603586750328152045570639202099993714044440242822016384 × 10−37

34 5.26783612982327434661909624961672214739725086799900939911078203 × 10−40

35 1.66740574038123727102261424406832509052875443488407531926208542 × 10−42

36 4.50332846038763649055145870908682675097043038881690772288865126 × 10−45

37 1.03810074880453070195009955535972632680521900405212333475588763 × 10−47

38 2.04305109106193115584629645721971197363097686254964237369887319 × 10−50

39 3.43371464442528749462619173440602768944065612071967642619009054 × 10−53

40 4.92944333332153669605064037563063626241759423036425615345390256 × 10−56

Table 7 Lanford map: quantities En(θ), Euler bounds Kn
0 En(θ) ≥ |cn(0)| and Kn

1/20En(θ) ≥ |cn(1/20)|,
for disc D centred at c = 0.664 of radius 	 = 0.87 (so θ ≈ 0.860691), and coefficients cn(0) of determinant

g(z, 0) = 1 + ∑∞

n=1 cn(0)zn for 1 ≤ n ≤ 25

n En(θ) Kn
0 En(θ) Kn

1/20En(θ) cn(0)

1 6.178322417156 20.872466513610 22.438839249268 −2.6666666666666

2 17.65689470317 201.52119806742 232.90240067474 2.7671447514335

3 31.06413807670 1197.7575633058 1488.1570459342 −1.4795873463144

4 37.77912144494 4921.1281303006 6573.1134807116 0.4548595107266

5 33.81588669461 14881.160574758 21368.295194231 −0.0850094435255

6 23.16343104695 34436.746764748 53159.612067142 0.0099728366537

7 12.46666302384 62614.173627336 103910.38491503 −0.0007489690661

8 5.372126671547 91153.192091602 162624.05897399 0.0000364631148

9 1.879626036050 107745.78610040 206652.10008498 −1.160290 × 10−6

10 0.539728880137 104521.99820457 215513.18595829 2.426597 × 10−8

11 0.128260613487 83912.867873119 186003.58802690 −3.347923 × 10−10

12 0.025393003771 56124.506215835 133743.26007194 3.055073 × 10−12

13 0.004210820328 31441.870270393 80547.925161555 −1.847222 × 10−14

14 0.000587419646 14818.127696936 40809.937890039 7.410060 × 10−17

15 0.000069186089 5896.1273174416 17456.857546576 −1.973903 × 10−19

16 6.900312 × 10−6 1986.6439509659 6323.3303122469 3.493983 × 10−22

17 5.842164 × 10−7 568.23539709633 1944.3781298067 −4.111689 × 10−25

18 4.207596 × 10−8 138.25848435416 508.59355192450 3.217996 × 10−28

19 2.582298 × 10−9 28.666012024725 113.36342306436 −1.675484 × 10−31
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Table 7 continued

n En(θ) Kn
0 En(θ) Kn

1/20En(θ) cn(0)

20 1.352474 × 10−10 5.0721615997794 21.563803644473 5.804730 × 10−35

21 6.052600 × 10−12 0.7668479758598 3.5048398385881 −1.338407 × 10−38

22 2.316879 × 10−13 0.0991685458492 0.4872585410565 2.054103 × 10−42

23 7.592813 × 10−15 0.0109793456797 0.0579947377200 −2.098636 × 10−46

24 2.131922 × 10−16 0.0010414738636 0.0059140789758 1.427503 × 10−50

25 5.132067 × 10−18 0.0000846978646 0.0005170562827 −6.465176 × 10−55

26 1.059758 × 10−19 5.908676 × 10−6 0.0000387777099

27 1.878111 × 10−21 3.537593 × 10−7 2.495896 × 10−6

28 2.857674 × 10−23 1.818454 × 10−8 1.379264 × 10−7

29 3.734497 × 10−25 8.028327 × 10−10 6.546314 × 10−9

30 4.192848 × 10−27 3.045126 × 10−11 2.669338 × 10−10

31 4.045340 × 10−29 9.925545 × 10−13 9.353613 × 10−12

32 3.354789 × 10−31 2.780787 × 10−14 2.817211 × 10−13

33 2.391781 × 10−33 6.697725 × 10−16 7.294669 × 10−15

34 1.466203 × 10−35 1.387085 × 10−17 1.624083 × 10−16

35 7.729370 × 10−38 2.470337 × 10−19 3.109479 × 10−18

36 3.504471 × 10−40 3.783885 × 10−21 5.120307 × 10−20

37 1.366704 × 10−42 4.985320 × 10−23 7.252333 × 10−22

38 4.584986 × 10−45 5.650148 × 10−25 8.836315 × 10−24

39 1.323263 × 10−47 5.508981 × 10−27 9.262096 × 10−26

40 3.285698 × 10−50 4.621211 × 10−29 8.352576 × 10−28

41 7.019503 × 10−53 3.335322 × 10−31 6.480805 × 10−30

42 1.290338 × 10−55 2.071276 × 10−33 4.326691 × 10−32

43 2.040971 × 10−58 1.106814 × 10−35 2.485531 × 10−34

44 2.777937 × 10−61 5.089363 × 10−38 1.228667 × 10−36

45 3.253667 × 10−64 2.013804 × 10−40 5.226549 × 10−39
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