
J Stat Phys (2018) 170:421–435
https://doi.org/10.1007/s10955-017-1928-2

Discrete Approximations of Determinantal Point
Processes on Continuous Spaces: Tree Representations
and Tail Triviality

Hirofumi Osada1 · Shota Osada1

Received: 21 August 2017 / Accepted: 21 November 2017 / Published online: 28 November 2017
© The Author(s) 2017. This article is an open access publication

Abstract We prove tail triviality of determinantal point processes μ on continuous spaces.
Tail triviality has been proved for such processes only on discrete spaces, and hence we have
generalized the result to continuous spaces. To do this, we construct tree representations,
that is, discrete approximations of determinantal point processes enjoying a determinan-
tal structure. There are many interesting examples of determinantal point processes on
continuous spaces such as zero points of the hyperbolic Gaussian analytic function with
Bergman kernel, and the thermodynamic limit of eigenvalues of Gaussian random matrices
for Sine2,Airy2,Bessel2, and Ginibre point processes. Our main theorem proves all these
point processes are tail trivial.
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1 Introduction

Let S be a locally compact, complete, separable metric space with metric d(·, ·). We assume
S is unbounded.We equip S with a Radonmeasurem such thatm(O) > 0 for any non-empty
open set O in S. Let S be the configuration space over S (see (2.1) for definition). S is a
Polish space equipped with the vague topology.
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A determinantal point process μ on S is a probability measure on (S,B(S)) for which the
m-point correlation function ρm with respect to m is given by the determinant

ρm(x) = det[K(xi , x j )]mi, j=1. (1.1)

Here K : S × S→C is a measurable kernel and x = (x1, . . . , xm). We refer to Sects. 2 and
e.g. [1,3,10] for the definition of correlation functions and related notions. μ is said to be
associated with (K,m) and also a (K,m)-determinantal point process.

We set K f (x) = ∫
S K(x, y) f (y)m(dy). We regard K as an operator on L2(S,m)

and denote it by the same symbol. We say K is of locally trace class if KA f (x) =∫
1A(x)K(x, y)1A(y) f (y)m(dy) is a trace class operator on L2(S,m) for any compact

set A.
Throughout this paper, we assume that K satisfies:

(A1) K is bounded, Hermitian symmetric, of locally trace class, and Spec(K) ⊂ [0, 1].
From (A1) we deduce that the associated determinantal point process μ = μK,m exists

and is unique [7,10,12].
In the last two decades, determinantal point processes have been extensively studied.

They contain many interesting examples; e.g., spanning trees and Schur measures on
discrete spaces, zero points of the hyperbolic Gaussian analytic function with Bergman
kernel, and thermodynamic limits of eigenvalues of Gaussian random matrices such as
Sine2,Airy2,Bessel2, and Ginibre point processes on continuous spaces [1,5,10].

Determinantal point processes on discrete spaces have a well-behaved algebraic structure;
as a result, some important facts are only known for discrete determinantal point processes
[4,6–8,12]. One such example is tail triviality, which says that each event of a tail σ -field
Tail(S) takes value 0 or 1. We refer to (2.3) for the definition of Tail(S).

The purpose of this paper is to prove that the tail σ -field Tail(S) ofS is trivial with respect
to μ. If the space S is discrete, then tail triviality has been proved by Shirai-Takahashi [11]
for Spec(K) ⊂ (0, 1), and by Russell Lyons [7] for Spec(K) ⊂ [0, 1]. If the space S is
continuous, the problem remained open [8].

To prove tail triviality we introduce a discrete approximation for determinantal point
processes, called the tree representation. This representation has a determinantal structure,
and so belongs to determinantal point processes on discrete spaces.

A m-partition Δ = {Ai }i∈I of S is a countable collection of disjoint relatively compact,
measurable subsets of S such that ∪iAi = S and that m(Ai ) > 0 for all i ∈ I . For two
partitions Δ = {Ai }i∈I and Γ = {B j } j∈J , we write Δ ≺ Γ if for each j ∈ J there exists
i ∈ I such that B j ⊂ Ai . We assume:
(A2) There exists a sequence of m-partitions {Δ(�)}�∈N satisfying (1.2)–(1.4).

Δ(�) ≺ Δ(� + 1) for all � ∈ N, (1.2)

σ

[
⋃

�∈N
F�

]

= B(S), (1.3)

#{ j;A�+1, j ⊂ A�,i } = 2 for all i ∈ I (�) and � ∈ N, (1.4)

where we set Δ(�) = {A�,i }i∈I (�) and F� := FΔ(�) = σ [A�,i ; i ∈ I (�)]. Furthermore, #{·}
denotes the cardinality of {·}.

Condition (1.4) is just for simplicity. This condition implies that the sequence {Δ(�)}�∈N
has a binary tree-like structure. We remark that (A2) is a mild assumption and, indeed,
satisfied if S is an open set in R

d and m has positive density with respect to the Lebesgue
measure. We now state one of our main theorems:
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Theorem 1 Assume (A1) and (A2). Let μ be the (K,m)-determinantal point process. Then
μ has a trivial tail. That is, μ(A) ∈ {0, 1} for all A ∈ Tail(S).

Many interesting determinantal point processes arise from random matrices such as
Sine2,Airy2, and Bessel2 point processes in R and the Ginibre point process in R

2. Apply-
ing Theorem 1 to these examples we obtain that all have trivial tails. We shall present these
examples in Sect. 6.

We now explain the idea of the proof. We have two candidates for the discrete approxi-
mations of μ. One is the approximation of the kernel K. Let K�(x, y) be the discrete kernel
on I (�) such that

K�(x, y) = 1

m(A�(x))m(A�(y))

∫

A�(x)×A�(y)
K(u, v)m(du)m(dv),

whereA�(x) is such that x ∈ A�(x) ∈ Δ(�). Then K� can be regarded as a discrete kernel on
I (�). IfK� satisfies (A1), thenK� generates determinantal point fieldμK�

. Indeed, Spec(K�) ⊂
[0, 1] follows fromSpec(K) ⊂ [0, 1] and the Fubini theorem.One can expect the convergence
of the kernelK� toK, and as a result, the weak convergence ofμK�

toμ, at least for continuous
K. BecauseμK�

is a determinantal point process on the discrete space, its tail σ -field is trivial.
Such weak convergence, however, does not suffice for the convergence of the values on the
tail σ -field Tail(S).

Taking the above into account, we consider the second approximation given by μ(·|G�)

below. Let G� be the sub-σ -field of B(S) given by

G� = σ [{s ∈ S; s(A�,i ) = n}; i ∈ I (�), n ∈ N]. (1.5)

Combining (1.2) and (1.3) with (1.5), we obtain

G� ⊂ G�+1, σ [G�; � ∈ N] = B(S). (1.6)

Let μ(·|G�) be the regular conditional probability of μ with respect to G�. Using (1.6), we
shall prove in Lemma 6 that for all U ∈ B(S)

lim
�→∞ μ(U |G�)(s) = 1U (s) for μ-a.s. s. (1.7)

We see that the convergence in (1.7) is stronger than the weak convergence. In particular, the
convergence in (1.7) is valid for all U ∈ Tail(S) because Tail(S) ⊂ B(S).

We can naturally regard Δ(�) = {A�,i }i∈I (�) as a discrete, countable set with the inter-
pretation that each element A�,i is a point. Thus, μ(·|G�) can be regarded as a point process
on the discrete set Δ(�).

If μ(·|G�) were a determinantal point process for each �, then Theorem 1 would follow
from (1.7) immediately because determinantal point processes on discrete spaces always
have trivial tails, and as discussed above, μ(·|G�) is naturally regarded as a determinantal
point process on the discrete space Δ(�). This is clearly not the case because determinantal
point processes are supported on single configurations and

μ({s; s(A�,i ) ≥ 2}|G�) > 0. (1.8)

Hence we introduce a sequence of fiber bundle-like sets I(�) (� ∈ N) in Sect. 2 with base
space Δ(�) with fiber consisting of a set of binary trees. We further expand I(�) to Ω(�)

in (2.27), which has a fiber whose element is a product of a tree i and a component B�,i of
partitions. See notation after Theorem 2.

Let μ|G�
denote the restriction of μ on G�. By construction μ|G�

(A) = μ(A|G�) for all
A ∈ G�. In Theorems 2 and 3, we construct a lift νF(�) 	 mF(�) of μ|G�

on the fiber bundle
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Ω(�), and prove tail triviality of the lift νF(�) 	 mF(�) in Theorem 5, which establishes tail
triviality of μ|G�

in Theorem 6. Combining Theorem 6 with the martingale convergence
theorem in Lemma 6, we obtain Theorem 1.

The key point of the construction of the lift νF(�) 	mF(�) is that we construct a consistent
family of orthonormal bases F(�) = { f�,i }i∈I(�) in (2.15) and (2.16), and that we introduce
the kernel KF(�) on I(�) in (2.21) such that

KF(�)(i, j) =
∫

S×S
K(x, y) f�,i (x) f�, j (y)m(dx)m(dy). (2.21)

We shall prove in Lemma 2 that KF(�) is a determinantal kernel on I(�), and present νF(�) as
the associated determinantal point process on I(�). To some extent, νF(�) is isometric to μ|G�

through the orthonormal basis F(�) = { f�,i }i∈I(�). We shall indeed prove in Theorem 2 that
their correlation functions ρm

G�
and ρm

F(�)
satisfy the identity:

∫

A

ρm
G�

(x)mm(dx) =
∑

i∈I�(A)

ρm
F(�)(i), (2.26)

which is a key to construct the lift νF(�) 	 mF(�).
While preparing themanuscript, we have heard that Professor A. Bufetov has proved inde-

pendently tail triviality of determinantal point processes on continuous spaces independently
of us (a seminar talk at Kyushu University in October 2015). His method is completely dif-
ferent from ours and requires a restriction on an integrability condition of the determinantal
kernel K(x, y). An improved version of the work is now available in [2].

The organization of the paper is as follows. In Sect. 2, we introduce definitions and
concepts and state the main theorems (Theorems 2–6). We give tree representations of μ.
In Sect. 3, we prove Theorem 2. In Sect. 4, we prove Theorems 3–6. In Sect. 5, we prove
Theorem 1. In Sect. 6, we present motivational examples such as Sine2,Airy2, and Bessel2,
and Ginibre point processes.

2 Set Up and Main Results

In this section, we recall various essentials and present the main theorems (Theorems 2–6)
other than Theorem 1.

A configuration space S over S is a set consisting of configurations on S such that

S =
{

s ; s =
∑

i

δsi , {si } ⊂ S, s(K ) < ∞ for any compact K

}

, (2.1)

where δsi denotes the delta measure at si . A probability measure μ on (S,B(S)) is called a
point process, also called random point field. A symmetric function ρm on Sm is called the
m-point correlation function of a point process μ with respect to a Radon measure m if it
satisfies

∫

S

j∏

i=1

s(Ai )!
(s(Ai ) − ki )!μ(ds) =

∫

A
k1
1 ×···×A

k j
j

ρm(x)mm(dx). (2.2)

Here A1, . . . , A j ∈ B(S) are disjoint and k1, . . . , k j ∈ N such that k1 + · · · + k j = m. If
s(Ai ) − ki ≤ 0, we set s(Ai )!/(s(Ai ) − ki )! = 0.
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Discrete Approximations of Determinantal Point Processes· · · 425

We fix a point o ∈ S as the origin, and set Sr = {x ∈ S ; d(o, x) < r}. Each Sr is assumed
to be relatively compact, and thus s(Sr ) < ∞ for all s ∈ S and r ∈ N. In this sense, each
element s ofS is a locally finite configuration.We note that this notion depends on the choice
of metric d on S.

For a Borel set A we set πA :S→S by πA(s)(·) = s(· ∩ A). We set πScr :S→S such that
πScr (s) = s(· ∩ Scr ). We denote by Tail(S) the tail σ -field such that

Tail(S) =
∞⋂

r=1

σ [πScr ]. (2.3)

If we replace Sr by any increasing sequence {Or} of relatively compact open sets such that
∪∞
r=1Or = S, then Tail(S) defines the same σ -field. Thus Tail(S) is independent of the choice

of {Or}.
Let Δ(�) = {A�,i }i∈I (�) be as in (A2), where � ∈ N. We set Δ = {Ai }i∈I such that

Δ = Δ(1), Ai = A1,i I = I (1).

In consequence of (1.4), we assume without loss of generality that each element i of the
parameter set I (�) is of the form

I (�) = I × {0, 1}�−1. (2.4)

That is, each i ∈ I (�) is of the form i = ( j1, . . . , j�) ∈ I × {0, 1}�−1. We take a label
i ∈ ∪∞

�=1 I (�) in such a way that, for � < �′, i ∈ I (�), and i ′ ∈ I (�′),

A�,i ⊃ A�′,i ′ ⇔ i = ( j1, . . . , j�) and i
′ = ( j1, . . . , j�, . . . , j�′).

We denote by Ĩ the set of all such parameters:

Ĩ =
∞⋃

�=1

I (�) =
∞⋃

�=1

I × {0, 1}�−1. (2.5)

We can regard Ĩ as a collection of binary trees and I is the set of their roots.

Example 1 (Binary partitions of R) Typically we can take S = R,m(dx) = dx , and I = Z.
For i = ( j1, . . . , j�) ∈ I (�), we set J1,i = j1 and, for � ≥ 2,

J�,i = j1 +
�−1∑

n=1

jn
2n

. (2.6)

We take A�,i = [J�,i , J�,i + 2−�+1).

For i = ( j1, . . . , j�) ∈ Ĩ, we set rank(i) = �. For i with rank(i) = �, we set

Bi =
{
A1,i � = 1,

A�−1,i− � ≥ 2,
(2.7)

where i− = ( j1, . . . , j�−1) for i = ( j1, . . . , j�) ∈ I (�). Let I ⊂ Ĩ such that

I = I ∪
{ ∞⋃

�=2

{i ∈ I (�); j� = 0}
}

, (2.8)

where i = ( j1, . . . , j�) ∈ I (�).
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Let F = { fi }i∈I be an orthonormal basis of L2(S,m) satisfying

σ [ fi ; i ∈ I, rank(i) = �] = F� for each � ∈ N, (2.9)

supp( fi ) = Bi for each i ∈ I, (2.10)

fi (x) = 1Ai (x)/
√
m(Ai ) for rank(i) = 1. (2.11)

For a given sequence of m-partitions satisfying (A2), such an orthonormal basis exists. We
present here an example.

Example 2 (Haar functions) We make the same assumptions as in Example 1. Let i =
( j1, . . . , j�) ∈ I. We set for, � = 1 and i = ( j1),

fi (x) = 1[ j1, j1+1)(x)

and, for � ≥ 2 and i = ( j1, . . . , j�) ∈ I,

fi (x) = 2(�−1)/2{1[J�,i ,J�,i+2−�+1)(x) − 1[J�,i+2−�+1,J�,i+2−�+2)(x)}.
We can easily see that { fi }i∈I is an orthonormal basis of L2(R, dx). We remark that j� = 0
because i = ( j1, . . . , j�) ∈ I as we set in (2.8).

We next introduce the �-shift of above objects such as I,Bi , and F = { fi }i∈I. Let Ĩ(1) = Ĩ

and, for � ≥ 2,

Ĩ(�) :=
∞⋃

r=1

I (�) × {0, 1}r−1, (2.12)

where I (�) = I × {0, 1}�−1 is as in (2.4). For �, r ∈ N, we set θ�−1,r : Ĩ→ Ĩ(�) such that
θ0,r = id (� = 1) and, for � ≥ 2,

θ�−1,r (( j1, . . . , j�+r−1)) = (j�, j�+1, . . . , j�+r−1) ∈ I (�) × {0, 1}r−1, (2.13)

where j� = ( j1, . . . , j�) ∈ I (�). For � = 1, we set I(1) = I. For � ≥ 2, we set

I(�) = I (�) ∪
{ ∞⋃

r=2

θ�−1,r (I)

}

. (2.14)

We set rank(i) = r for i ∈ I (�)×{0, 1}r−1. By construction rank(i) = r for i ∈ θ�−1,r (̃I).
Let F(�) = { f�,i }i∈I(�) such that, for r = rank(i),

f�,i (x) = 1A�,i (x)/
√
m(A�,i ) for r = 1, (2.15)

f�,i (x) = f
θ−1
�−1,r (i)

(x) for r ≥ 2, (2.16)

where Δ(�) = {A�,i }i∈I (�) is given in (A2). Then F(�) = { f�,i }i∈I(�) is an orthonormal basis
of L2(S,m). This follows from assumptions (2.15) and (2.16) and the fact that F = { fi }i∈I
is an orthonormal basis.

Remark 1 (1) We note that f�,i ∈ F(�) is a newly defined function if rank(i) = 1, whereas
f�,i ∈ F(�) is an element of F if rank(i) ≥ 2. In particular, we see that

{ f�,i }i∈I(�), rank(i)≥2 ⊂ { fi }i∈I, rank(i)≥2. (2.17)
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(2) Let j = ( j1, . . . , j�+r−1) ∈ I and i = (j�, j�+1, . . . , j�+r−1) ∈ I(�). Then

j = θ−1
�−1,r (i).

Furthermore, f�,i ∈ F(�) and f j ∈ F satisfy f�,i = f j for r = rank(i) ≥ 2.
(3) By construction, we see that

σ [ f�,i ; i ∈ I(�), rank(i) = r ] = F�−1+r for each �, r ∈ N, (2.18)

supp( f�,i ) = B�,i for all i ∈ I(�), (2.19)

where we set, for j = θ−1
�−1,r (i) such that rank(i) = r ,

B�,i = B j . (2.20)

Using the orthonormal basis F(�) = { f�,i }i∈I(�), we set KF(�) on I(�) by

KF(�)(i, j) =
∫

S×S
K(x, y) f�,i (x) f�, j (y)m(dx)m(dy). (2.21)

Let λI(�) be the counting measure on I(�). We shall prove in Lemma 2 that (KF(�), λI(�))

satisfies (A1). Hence we obtain the associated determinantal point process νF(�) on I(�) from
general theory [10,12].

For i ∈ I(�), letm f�,i (dx) be the probability measure on S such that

m f�,i (dx) = | f�,i (x)|2m(dx). (2.22)

For i = (in)mn=1 ∈ I(�)m and x = (xn)mn=1, where m ∈ N ∪ {∞}, we set

m f�,i(dx) =
m∏

n=1

| f�,in (xn)|2m(dxn). (2.23)

By (2.16)m f�,i is a probability measure on Sm . By (2.19), we have

m f�,i

(
m∏

n=1

B�,in

)

= 1. (2.24)

Let G� be the sub-σ -field as in (1.5). Let νF(�) be the (KF(�), λI(�))-determinantal point
process as before. Let ρm

G�
and ρm

F(�)
be the m-point correlation functions of μ|G�

and νF(�)

with respect to m and λI(�), respectively. We now state one of our main theorems:

Theorem 2 Let I�(A) = {i ∈ I(�) ; B�,i ⊂ A}. For A = A1 × · · · × Am, we set

I�(A) = I�(A1) × · · · × I�(Am). (2.25)

Assume that An ∈ Δ(�) for all n = 1, . . . ,m. Then
∫

A

ρm
G�

(x)mm(dx) =
∑

i∈I�(A)

ρm
F(�)(i). (2.26)

Let I(�) be the single configuration space over I(�). We write i ∈ i if i({i}) = 1. Each
i = ∑

i∈i δi ∈ I(�) can be regarded as a subset of I(�) by the correspondence of i to {i}i∈i.
Let

Ω(�) :=
⋃

i∈I(�)
{i} × B�,i . (2.27)
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Let Ω(�) be the single configuration space over Ω(�). Then by definition each element
ω ∈ Ω(�) is of the form ω = ∑

i∈i δ(i,si ) such that si ∈ B�,i . Hence

Ω(�) ⊂
{

ω =
∑

i∈i
δ(i,si ) ; i =

∑

i∈i
δi ∈ I(�), si ∈ B�,i

}

. (2.28)

Letm f�,i be as in (2.22). We set

mF(�) =
∏

i∈I(�)
m f�,i , m f�,i =

∏

i∈i
m f�,i . (2.29)

Remark 2 Let i = (i1, . . . , im) and i = ∑m
n=1 δin ≡ ∑

i∈i δi . By definition m f�,i in (2.29) is
a product measure on the product space

∏
i∈i B�,i with (unordered) parameter i ∈ i, whereas

m f�,i in (2.23) is a product measure on the product space Bi1 × · · · × Bim with (ordered)
parameter i = (i1, . . . , im).

We set ι� : Ω(�) → I(�) such that ι�(ω) = i, and κ�,i : Ω(�) → ∏
i∈i B�,i such that

κ�,i(ω) = (si )i∈i, where ω = ∑
i∈i δ(i,si ), i =

∑
i∈i δi , and si ∈ B�,i .

Let νF(�) 	 mF(�) be the probability measure on Ω(�) given by

(νF(�) 	 mF(�)) ◦ ι−1
� (d i) = νF(�)(d i), (2.30)

νF(�) 	 mF(�)(κ�,i(ω) ∈ ds|ι�(ω) = i) = m f�,i(ds), s = (si )i∈i. (2.31)

Remark 3 (1) We can naturally regard the probability measures in (2.31) as a point process
on

∏
i∈i B�,i supported on the set of configurationswith exactly oneparticle configuration

s = δs on
∏

i∈i B�,i , that is, s = (si )i∈i is such that si ∈ B�,i for each i ∈ i.
(2) We can regard νF(�) 	mF(�) as a marked point process as follows: The configuration i is

distributed according to νF(�), while the marks are independent and for each i the mark
s is distributed according to m f�,i . Thus the space of marks depends on i.

Theorem 3 Let u� :Ω(�)→S be such that u�(ω) = ∑
i∈i δsi , where ω = ∑

i∈i δ(i,si ). Then

μ|G�
= (νF(�) 	 mF(�)) ◦ u−1

� |G�
. (2.32)

Remark 4 Theorem 3 implies that νF(�) 	mF(�) is a lift of μ|G�
onto Ω(�). We can naturally

regard Ĩ(�) as binary trees. Hence we call νF(�) 	 mF(�) a tree representation of μ of level �.

We present a decomposition of μ|G�
, which follows from Theorem 3 immediately. Let

mu
f�,i

= m f�,i ◦ u−1
�,i , where u�,i :

∏
i∈i B�,i →S is the unlabel map such that u�,i((si )i∈i) =

∑
i∈i δsi .

Theorem 4 For each A ∈ G�,

μ(A) =
∫

I(�)
νF(�)(d i)mu

f�,i
(A). (2.33)

Let I(�)p = {i ∈ I(�); r ≤ p, | j1| ≤ p}, where i = (j�, j�+1, . . . , j�+r−1), r = rank(i),
and j� = ( j1, j2, . . . , j�). Let πc

p(i) = i(· ∩ I(�)cp). Then we set Tail(I(�)) = ∩∞
p=1σ [πc

p].
From this we can define the tail σ -field Tail(Ω(�)) of Ω(�) because Ω(�) is a subset of
I(�) × S.

Theorem 5 νF(�) 	 mF(�) is trivial on Tail(Ω(�)) ∩ u−1
� (G�). That is,

νF(�) 	 mF(�)(A) ∈ {0, 1} for all A ∈ Tail(Ω(�)) ∩ u−1
� (G�). (2.34)
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We remark that μ|G�
is not a determinantal point process. Hence we exploit νF(�) 	mF(�)

instead of μ|G�
. As we have seen in Theorem 3, νF(�) 	 mF(�) is a lift of μ|G�

in the sense
of (2.32), from which we can deduce nice properties of μ|G�

. Indeed, an application of
Theorem 3 combined with Theorem 5 is tail triviality of μ|G�

:

Theorem 6 μ|G�
is tail trivial. That is,

μ|G�
(B) ∈ {0, 1} for all B ∈ Tail(S) ∩ G�. (2.35)

We shall apply Theorem 6 to prove Theorem 1 in Sect. 5.

3 Proof of Theorem 2

The purpose of this section is to prove Theorem 2. In Lemma 1, we present the identity of
kernelsK andKF(�) using the orthonormal basisF(�), whereKF(�) is the kernel given by (2.21)
and F(�) is as in (2.15) and (2.16). In Lemma 2, we prove (KF(�), λI(�)) is a determinantal
kernel and the associated determinantal point process νF(�) exists. We will lift the the identity
between K and KF(�) to that of correlation functions of μ|G�

and νF(�) in Theorem 2.
By definition F(�) = { f�,i }i∈I(�) satisfies

∫

S
| f�,i (x)|2m(dx) = 1 for all i ∈ I(�), (3.1)

∫

S
f�,i (x) f�, j (x)m(dx) = 0 for all i �= j ∈ I(�). (3.2)

Lemma 1 (1) Let P(x) = ∑
i ξ(i) f�,i (x) and Q(y) = ∑

j η( j) f�, j (y). Suppose that the
supports of ξ and η are finite sets. Then

∫

S×S
K(x, y)P(x)Q(y)m(dx)m(dy) =

∑

i, j

KF(�)(i, j)ξ(i)η( j). (3.3)

(2) We have an expansion of K in L2
loc(S × S,m × m) such that

K(x, y) =
∑

i, j∈I(�)
KF(�)(i, j) f�,i (x) f�, j (y). (3.4)

Proof From (2.21) we deduce that
∫

S×S
K(x, y)P(x)Q(y)m(dx)m(dy)

=
∫

S×S
K(x, y)

∑

i

ξ(i) f�,i (x)
∑

j

η( j) f�, j (x)m(dx)m(dy)

=
∑

i, j

∫

S×S
K(x, y) f�,i (x) f�, j (y)m(dx)m(dy)ξ(i)η( j)

=
∑

i, j

KF(�)(i, j)ξ(i)η( j). (3.5)
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This yields (3.3). We have thus proved (1). By a direct calculation, we have
∫

S
P(x) f�,i (x)m(dx) =

∫

S

∑

p

ξ(p) f�,p(x) f�,i (x)m(dx) = ξ(i),

∫

S
Q(y) f�, j (y)m(dy) =

∫

S

∑

q

η(q) f�,q(y) f�, j (y)m(dy) = η( j). (3.6)

Combining (3.5) and (3.6) yields
∫

S×S
K(x, y)P(x)Q(y)m(dx)m(dy) =

∫

S×S

∑

i, j

KF(�)(i, j) f�,i (x) f�, j (y)P(x)Q(y)m(dx)m(dy).

This implies (3.4). ��
Let λI(�) be the counting measure on I(�) as before. We can regard KF(�) as an operator

on L2(I(�), λI(�)) such that KF(�)ξ(i) = ∑
j∈I(�) KF(�)(i, j)ξ( j). We now prove that the

(KF(�), λI(�))-determinantal point νF(�) process exists.

Lemma 2 Let Spec(KF(�)) be the spectrum of KF(�). Then

Spec(KF(�)) ⊂ [0, 1]. (3.7)

In particular, there exists a unique, determinantal point process νF(�) on I(�) associated with
(KF(�), λI(�)).

Proof Recall that F(�) = { f�,i }i∈I(�) is an orthonormal basis of L2(S,m). Let U :
L2(S,m) → L2(I(�), λI(�)) be the unitary operator such that U ( f�,i ) = e�,i , where
{e�,i }i∈I(�) is the canonical orthonormal basis of L2(I(�), λI(�)). Then by Lemma 1 we see
that KF(�) = UKU−1. Hence KF(�) and K have the same spectrum. We thus obtain (3.7).
BecauseKF(�) is Hermitian symmetric, the second claim is clear from (3.7), (A1), and general
theory [10–12]. ��
Lemma 3 Let B�,i = supp( f�,i ) be as in (2.19). Then, for i, j ∈ I(�) and A ∈ F�,

∫

A
f�,i (x) f�, j (x)m(dx) =

{
1 (i = j, B�,i ⊂ A)

0 (otherwise)
. (3.8)

Proof We recall that B�,i is the support of f�,i by (2.19). Suppose i = j and B�,i ⊂ A. Then
from (3.1)

∫

A
f�,i (x) f�, j (x)m(dx) =

∫

S
f�,i (x) f�,i (x)m(dx) = 1. (3.9)

Suppose that i = j and that B�,i �⊂ A. Then, using A ∈ F�, (2.7), and (2.20), we deduce
that B�,i ∩ A = ∅. Because B�,i = supp( f�,i ), we obtain

∫

A
f�,i (x) f�, j (x)m(dx) = 0. (3.10)

Finally, suppose i �= j . Because A ∈ F�, we see that B�,i ⊂ A or B�,i ∩ A = ∅. The same
also holds for B�, j . In any case, we obtain (3.10) from (3.2). From (3.9) and (3.10), we obtain
(3.8). ��
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Proof of Theorem 2 LetA = A1×· · ·×Am ∈ An as inTheorem2.Then, becauseAn ∈ Δ(�)

for all n = 1, . . . ,m, we deduce from (1.1) and (3.4) that
∫

A

ρm
G�

(x)mm(dx)

=
∫

A

ρm(x)mm(dx)

=
∫

A

det

⎡

⎣
∑

i, j∈I(�)
KF(�)(i, j) f�,i (xp) f�, j (xq)

⎤

⎦

m

p,q=1

mm(dx), (3.11)

where x = (x1, . . . , xm). From a straightforward calculation and Lemma 1, we obtain

∫

A

det

⎡

⎣
∑

i, j∈I(�)
KF(�)(i, j) f�,i (xp) f�, j (xq)

⎤

⎦

m

p,q=1

mm(dx)

=
∫

A

∑

σ∈Sm

sgn(σ )

m∏

p=1

⎛

⎝
∑

i p, jp∈I(�)
KF(�)(i p, jp) f�,i p (xp) f�, jp (xσ(p))

⎞

⎠mm(dx)

=
∑

σ∈Sm

sgn(σ )

∫

A

m∏

p=1

⎛

⎝
∑

i p, jp∈I(�)
KF(�)(i p, jp) f�,i p (xp) f�, jp (xσ(p))

⎞

⎠mm(dx)

=
∑

σ∈Sm

sgn(σ ) lim
R→∞

∫

A

m∏

p=1

⎛

⎝
∑

i p, jp∈I(�;R)

KF(�)(i p, jp) f�,i p (xp) f�, jp (xσ(p))

⎞

⎠mm(dx)

=
∑

σ∈Sm

sgn(σ ) lim
R→∞

∫

A

⎛

⎝
∑

i, j∈I(�;R)m

m∏

p=1

KF(�)(i p, jp) f�,i p (xp) f�, jp (xσ(p))

⎞

⎠mm(dx),

(3.12)

where I(�; R) = {i ∈ I(�); rank(i) ≤ R} and rank(i) is defined before (2.15). Furthermore,
i = (i1, . . . , im), j = ( j1, . . . , jm) ∈ I(�)m . We note that ∪m

i=1Ai is relatively compact.
Hence the fourth line in (3.12) follows from Lemma 1(2) and the Schwarz inequality. Using
Lemma 3 we obtain

∫

A

⎛

⎝
∑

i, j∈I(�;R)m

m∏

p=1

KF(�)(i p, jp) f�,i p (xp) f�, jp (xσ(p))

⎞

⎠mm(dx)

=
∫

A

⎛

⎝
∑

i, j∈I(�;R)m

m∏

p=1

KF(�)(i p, jp) f�,i p (xp) f�, jσ−1(p)
(xp)

⎞

⎠mm(dx)

=
∫

A

⎛

⎝
∑

i∈I(�;R)m

m∏

p=1

KF(�)(i p, iσ(p))| f�,i p (xp)|2
⎞

⎠mm(dx)

→
∫

A

⎛

⎝
∑

i∈I(�)m

m∏

p=1

KF(�)(i p, iσ(p))| f�,i p (xp)|2
⎞

⎠mm(dx) as R → ∞. (3.13)
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The convergence in the last line follows from Lemma 1(2) and the Schwarz inequality again.
Multiplying sgn(σ ) and taking summation over σ ∈ Sm in the last line, we deduce from
(2.22)–(2.24) that

∑

σ∈Sm

sgn(σ )

∫

A

⎛

⎝
∑

i∈I(�)m

m∏

p=1

KF(�)(i p, iσ(p))| f�,i p (xp)|2
⎞

⎠mm(dx)

=
∫

A

∑

i∈I(�)m
det[KF(�)(i p, iq)

]m
p,q=1

{ m∏

p=1

| f�,i p (xp)|2
}
mm(dx)

=
∫

A

∑

i∈I(�)m
ρm
F(�)(i)m f�,i(dx)

=
∑

i∈∈I�(A)

ρm
F(�)(i). (3.14)

Combining (3.11)–(3.14) we deduce (2.26), which completes the proof.

4 Proof of Theorems 3–6

In this section, we prove Theorem 3–Theorem 6.

4.1 Proof of Theorem 3

Let �m be the m-point correlation function of (νF(�) 	 m f� ) ◦ u−1
� |G�

. Then it suffices for
(2.32) to prove

ρm
G�

(x) = �m(x). (4.1)

From (1.5) and F� = σ [A�,i ; i ∈ I (�)], we see that ρm
G�

and �m are Fm
� -measurable. Let

m = m1 + · · · +mk . Let A = Am1
1 × · · · ×Amk

k ∈ Δ(�)m such that Ap ∩Aq = ∅ if p �= q .
Let i = (in)mn=1 = (i1, . . . , ik) ∈ I(�)m such that in ∈ I(�)mn . From Theorem 2, we see that

∫

A

ρm
G�

(x)mm(dx) =
∑

i∈I�(A)

ρm
F(�)(i). (4.2)

By the definition of correlation functions, (2.30), and (2.31), we see that

∑

i∈I�(A)

ρm
F(�)(i) =

∫

I(�)

k∏

n=1

i(I�(An))!
(i(I�(An)) − mn)!νF(�)(d i)

=
∫

S

k∏

n=1

s(An)!
(s(An) − mn)! (νF(�) 	 m f� ) ◦ u−1

� |G�
(ds)

=
∫

A

�m(x)mm(dx). (4.3)

Combining (4.2) and (4.3), we deduce that
∫

A

ρm
G�

(x)mm(dx) =
∑

i∈I�(A)

ρm
F(�)(i) =

∫

A

�m(x)mm(dx). (4.4)
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From (4.4), we obtain (4.1). This completes the proof of Theorem 3. ��
4.2 Proof of Theorem 4

Theorem 4 follows from Theorem 3 immediately. ��
4.3 Proof of Theorem 5

It is known that determinantal point processes on discrete spaces are tail trivial [7,11]. Hence
νF(�) is tail trivial by Lemma 2.

Let u� be as in Theorem 3. Let A ∈ u−1
� (G�). Then there exists a B ∈ B(I(�)) such that

A = ι−1
� (B). From this we deduce that, for each A ∈ Tail(Ω(�)) ∩ u−1

� (G�), there exists a
B ∈ Tail(I(�)) such that A = ι−1

� (B). Hence from (2.30) we deduce

νF(�) 	 mF(�)(A) = νF(�)(B). (4.5)

From (4.5) and tail triviality of νF(�) we deduce that

νF(�) 	 mF(�)(A) ∈ {0, 1} (4.6)

for each A ∈ Tail(Ω(�)) ∩ u−1
� (G�). We easily see that u−1

� (G�) ⊂ σ [ι�]. Hence
Tail(Ω(�)) ∩ u−1

� (G�) ⊂ Tail(Ω(�)) ∩ σ [ι�]. (4.7)

Combining (4.6) and (4.7) completes the proof of Theorem 5. ��
4.4 Proof of Theorem 6

Let B ∈ Tail(S) ∩ G�. Then we deduce that

u−1
� (B) ∈ Tail(Ω(�)) ∩ u−1

� (G�).

Hence from Theorems 3 and 5, we deduce that

μ(B) = μ|G�
(B) = νF(�) 	 mF(�)(u

−1
� (B)) ∈ {0, 1}.

This completes the proof. ��

5 Proof of Theorem 1

In this section, we complete the proof of Theorem 1.

Lemma 4 Let X be a Tail(S)-measurable and integrable random variable. Then Eμ[X |G�]
is Tail(S) ∩ G�-measurable.

Proof Recall that Δ(�) = {A�,i }i∈I (�). Let πTr be the projection with Tr such that

Tr =
⋃

A�,i∩Sr �=∅;
i∈I (�)

A�,i . (5.1)

Then X ∈ L1(S, μ) is σ [πT c
r
]-measurable because X ∈ L1(S, μ) is Tail(S)-measurable and

each A�,i is relatively compact. Hence for each r ∈ N

X (s) = X ◦ πT c
r
(s). (5.2)
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From this we deduce that

Eμ[X |G�] = Eμ[X ◦ πT c
r
|G�]. (5.3)

By construction Sr ⊂ Tr . Then from this and (5.3) we see that Eμ[X |G�] is σ [πScr ]-
measurable for each r ∈ N. Hence Eμ[X |G�] is Tail(S)-measurable because ∩r∈Nσ [πScr ] =
Tail(S). By construction Eμ[X |G�] is ∩r∈Nσ [πScr ]-measurable. Combining these completes
the proof of Lemma 4 ��
Lemma 5 For all A ∈ Tail(S)

μ(A) = μ(A|G�)(s) for μ-a.s. s. (5.4)

Proof From the definition of the conditional probability, we see that

μ(A) =
∫

S
μ(A|G�)(s)μ(ds). (5.5)

From Lemma 4, we deduce that μ(A|G�)(s) = Eμ[1A|G�](s) is Tail(S) ∩ G�-measurable.
Hence from Theorem 6 we obtain that μ(A|G�)(s) is constant μ-a.s.s. This combined with
(5.5) yields (5.4). ��
Lemma 6 For each A ∈ B(S)

lim
�→∞ μ(A|G�)(s) = 1A(s) for μ-a.s. s. (5.6)

Proof From (1.6), we apply the martingale convergence theorem to obtain the convergence
such that, for all A ∈ B(S),

lim
�→∞ μ(A|G�)(s) = lim

�→∞ Eμ[1A|G�](s) = Eμ[1A|B(S)](s) = 1A(s) (5.7)

for μ-a.s. s. We have thus proved (5.6). ��
Proof of Theorem 1 From Lemmas 5 and 6 we deduce that

μ(A) = μ(A|G�)(s) →�→∞ 1A(s) for μ-a.s. s. (5.8)

Hence we obtain μ(A) ∈ {0, 1}. ��

6 Examples Related to Random Matrices

In this section, we give typical examples of determinantal point processes related to random
matrix theory [3,9]. All examples below are tail trivial because of Theorem 1.

All the kernels K(x, y) below are continuous. In Examples 3–5, we define the kernels
only off diagonal. On diagonal, they are defined by continuity.

Example 3 (sine point process) Let S = R and m(dx) = dx . Let

Ksin(x, y) = sin(x − y)

π(x − y)
(x �= y)

be the sine kernel. The associated determinantal point process μsin is called the sine2 point
process.
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Example 4 (Airy point process) Let S = R andm(dx) = dx . Let

KAi(x, y) = Ai(x)Ai′(y) − Ai′(x)Ai(y)
x − y

(x �= y)

be the Airy kernel. Here Ai is the Airy function, and Ai′ is its derivative. The associated
determinantal point process μAi is called the Airy point process [3,9].

Example 5 (Bessel point process) Let S = [0,∞) and m(dx) = dx . Let 1 ≤ α < ∞. Let
KBe,α be the Bessel kernel such that

KBe,α(x, y) = Jα(
√
x)

√
y J ′

α(
√
y) − √

x J ′
α(

√
x)

√
y Jα(

√
y)

2(x − y)
(x �= y).

Let μBe,α be the associated determinantal point process. μBe,α is called the Bessel 2,α point
process.

Example 6 (Ginibre point process) Let S = R
2 and m(dx) = (1/π)e−|x |2dx . Let KGin :

R
2 × R

2→C be the exponential kernel such that

KGin(x, y) = ex ȳ .

Here we identify R
2 as C by the obvious correspondence R

2 � x = (x1, x2) �→ x1 +√−1x2 ∈ C, and ȳ = y1 − √−1y2 is the complex conjugate in this identification. The
associated determinantal point process μGin is called the Ginibre point process.
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