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Abstract Decoherence has been the basis for understanding the emergence of the classical
world from its quantum underpinnings. Unfortunately the calculations establishing decoher-
ence overshoot and, based on assumptions that break down, predict that with the passage of
time the off-diagonal elements of the density matrix become arbitrarily small. It has been
recognized by some authors that the thermal state, assumed to hold for systems in equi-
librium, places a bound on off diagonal terms. In this article we establish—preserving the
conservation of energy, as is not the case for previous work—that indeed the thermal state is
an attractor under scattering. Moreover, the bound on the off-diagonal terms present in the
thermal state does not contradict everyday experience.

Keywords Decoherence · Density matrix · Thermal state · Classical world

1 Introduction

The book of Giulini et al. [1] deals with some of the most fundamental questions one can
ask about the world around us. The response to some of those questions is based on earlier
calculations of Joos and Zeh [2,3] as well as work by Tegmark [4]. The essential feature,
on which all else depends, is that the environment—meaning the myriad of tiny interactions
that every observed particle experiences, makes the density matrix (ρ) of that particle nearly
diagonal in coordinate space. And the longer you let your test particle interact with the
environment, the more diagonal ρ becomes. There is no lower bound for the range of off-
diagonal terms in coordinate space.
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As recognized by Joos and Zeh [3] these conclusions are only valid under a no-recoil
assumption on the quantum scattering and are ultimately superseded. Such an assumption
of course violates energy conservation. In actuality, one presumes that eventually a gas
arrives at a thermal state, with a density matrix given by ρ ∼ exp(−βH) (here β is the
inverse temperature and H the total Hamiltonian). Regularizing ρ by confining the system
to a finite volume, V , this implies the long-time presence of off-diagonal coordinate space
matrix elements. It is presumed (but not proved as a consequence of scattering theory in
[2,3]) that these off-diagonal elements must extend to distances on the order of the thermal
wavelength, ∼ h̄

√
β/m. (Definitions are more precise below.) Note too that it is not clear to

us whether with energy conservation the earlier calculations would avoid the paradox of an
ever-more-diagonal density matrix.)

In the present article we prove, with one technical assumption, that under the true
dynamics—not assuming zero recoil—the thermal state is an attractor. In this we assume
that the bath is itself in a thermal state. Other attempts have been made to maintain energy
conservation in this calculation [4] but unfortunately they are not correct, as we will explain.

2 The Thermal State

Consider the reduced one-particle density matrix for a free-particle in a gas of many particles.
The temperature is T , Boltzmann’s constant kB and the inverse temperature β = 1/kB T . The
volume available is V . Although the particle is nominally designated “free” it is assumed to
have small interactions with others so that it is at equilibrium (the usual story for an “ideal
gas”1). The single particle Hamiltonian is p2/2m and the density matrix2

ρ = 1

V
exp(−βH) , or 〈x |ρ|y〉 = 1

V
exp

(
−m(x − y)2

2βh̄2

)
. (1)

x, y ∈ R
3 label the matrix ρ and as such give precise information on ρ’s off-diagonal

behavior. In particular Eq. (1) shows that the drop-off as you move away from the diagonal
(x = y) is governed by

λ = h̄√
mkB T/2

= 1√
π

λth, (2)

with λth the thermal wavelength [6]. Thus off-diagonal elements do decay, but have a finite
distance scale. As remarked, the calculations in the cited references, by virtue of their assump-
tions, are unable to reach this conclusion.

1 This equilibration is the usual fairy tale that one accepts when presenting the assumptions of statistical
mechanics. We too accept it, although as we have commented when examining the notion of ergodicity [5]
(see especially the response to Gaspard’s comments), the foundations of physics can be considered to be “faith
based.”
2 Some technical issues intrude here, since the trace of exp

(
const(x − y)2

)
is infinite if x and y are unre-

stricted inR3. One can confine the system to a volume V with periodic boundary conditions. ρ is then a Jacobi
theta function, and one immediately can check that except near the boundaries of the box the extra terms are
negligible. Alternatively the entire system can be put in a weak harmonic oscillator potential mω2x2/2 and
one can take ω → 0. Again, except for large x (such that mω|x | is significant) one recovers the result given
in Eq. (1). Some of these cutoff methods will be used explicitly below.
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References [2] and [3] point out that true isolation of a system from its environment
is impossible. For them the shrinkage of the off-diagonal matrix elements of ρ(r, r ′) is a
consequence of small scatterings, which according to them and to [4], are sufficient to reduce
the off-diagonal values. But one should bear in mind that the thermal wavelength has nothing
to do with external scatterings (e.g., the movement of matter on the star Sirius, as mentioned
by Borel [7]). It is a quantity entirely dependent on contact with a thermal reservoir at some
given temperature. As a result the idea that collisions with external sources other than the
heat bath ultimately lead to the thermal wavelength has not been justified.

We will show that collisions, at the given temperature, can lead to the thermal state and
as a consequence to the dropoff of the off diagonal elements of the density matrix with the
correct value, i.e., the thermal wavelength.

3 Formal Scattering Theory

There is a test particle, of mass M , having an initial density matrix. It is immersed in a bath
of particles of mass m also possessing a so-far unspecified density matrix. The initial total
density matrix is assumed to be the product. They scatter, yielding a final overall density
matrix that in general has them entangled. The reduced density matrix of the test particle is
the trace of the overall matrix over the bath particle coordinates and we assume that this is
to be used in product form with any further interactions. This is repeated, thereby using the
assumption that correlations from successive scatterings can be neglected.

Joos and Zeh [2] (see also [8]) proceeded in this fashion with one additional assumption:
there is no recoil.3 They found that each successive scattering made the density matrix closer
to being diagonal in coordinate space, so that with a long series of similar scatterings the
approach to zero of the off-diagonal elements is exponential (in time).

The details of the proof appear to us sound, and we have checked their calculations by
examining the M → ∞ limit of our own calculations. Nevertheless, the assumption violates
energy conservation. In the absence of recoil the test particle energy will tend to increase.
Thus a group of test particles at the same temperature as the bath would, as their off-diagonal
elements shrunk, have a higher temperature, per our calculation of the thermal wavelength.
Thus a system in equilibriumwould not stay that way, contradicting thermodynamics as well.

The demonstration of Tegmark [4] claims not to use this assumption and has been quoted
as if it were correct. Unfortunately it is not, and it violates energy conservation. The claim is
made in [4]’s “Assumption 1” which is not about energy, only momentum. The breakdown
in energy conservation comes from [4]’s “Assumption 2” which posits that a pk, which, aside
from a δ-function, is the T -matrix, is independent of p. With this assumption a (bath) particle
striking a low energy (test) particle or a high energy (test) particle do the same thing. Another
way to see this is by the thermodynamic argument used earlier: in a gas of two masses
particles would scatter off one another, shortening off-diagonal matrix elements until they
were smaller than the thermal wavelength, spontaneously heating the gas.

3 “No recoil” means that the particle struck does not move, although—and this is the point of Ref. [2]—its
density matrix can change. For large mass objects this is reasonable, but breaks down for objects small enough
for Brownian motion to be significant, surely at the level of 10−15 kg. (The latter is based on [9]. A water
molecule has a mass of about 3 × 10−26kg).
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3.1 Kinematics

3.1.1 Kinematics of Collisions

Consider the collision of a test particle ofmassM with a bath particle ofmassm. The collision
is elastic. Define the following momenta4:

Notation Description
p laboratory momentum of particle of mass M
k laboratory momentum of particle of mass m
Pcm center of mass momentum
� relative momentum

(3)

so that

Pcm = p + k , � = m p − Mk
m + M

(4)

and

p = M Pcm
m + M

+ � , k = mPcm
m + M

− � . (5)

Moreover

d pdk = d Pcmd� . (6)

Quantities prior to the collision carry the subscript 0, post collision, 1. Thus

Pcm,1 = Pcm,0 , |�1| = |�0| (7)

(thereby inducing an implicit δ-function in integrals over �1 and � ′
1, where the prime is

usually used for the second argument of ρ). Let ψ(r) be the position representation wave
function of the mass-M particle and ψ̂( p) its momentum representation wave function.
Taking h̄ = 1, we have ψ(r) = ∫

ψ̂( p) exp(i pr)d p/(2π)3/2, with similar relations for ψ̂ ,
|ψ〉, |r〉 and | p〉 (we write pr for the inner product of the vectors).

Itwill be assumed that the collision is instantaneous,meaning short on a time scale inwhich
other time evolution takes place. Our full quantum treatment ensures that the conservation
laws for momentum and energy are valid (see Eq. (7)).

3.1.2 The Partial Trace

The reduced final density matrix, ρ1, of the mass-M test particle is obtained by tracing
|	1〉〈	1| over the coordinates of the bath particle,

ρ1 =
∫

dk1〈k1|	1〉〈	1|k1〉, (8)

where the scalar product is partial, to wit, only over the test particle degrees of freedom.

4 The symbol 
 is not common in the physics literature and is a variant form of lower case pi. It is not
omega-bar.
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3.1.3 The S-Matrix

In the center of mass-system we write the elements of the S-matrix as a(�1|�0), which
because of unitarity satisfy

∫
d�0 a(�1|�0)a

∗(� ′
1|�0) = δ(�1 − � ′

1). (9)

3.1.4 The Reduced Density Matrix

When all the above material is used, the final result is an expression for the reduced density
matrix, namely

ρ1 =
(
m + M

M

)6 ∫
d p1d p′

1

∫
d�0d� ′

0

∫
d�1a(�1|�0)

∫
d� ′

1a
∗(� ′

1|� ′
0)

× ρtest
0

(
p1 − �1 + �0, p′

1 − � ′
1 + � ′

0

)
ρbath
0

( m

M
( p1 − �1) − �0,

m

M
( p′

1 − � ′
1) − � ′

0

)

× δ

(
m

M
( p1 − p′

1) − m + M

M
(�1 − � ′

1)

)
| p1〉〈 p′

1|. (10)

4 Collisions of Thermally Distributed Particles

4.1 Normalization of the Thermal State (Free Particle)

The thermal state of a free particle in empty space is not normalizable. As in Eq. (1), the cure
is to put the particle in a box of volume V . Thus

ρm,β( p, p′) = 1

Zm
〈 p′|e−βH | p〉 = 1

Zm
δK ( p′ − p)e−β p2/2m . (11)

where δK is the Kronecker symbol, used for discrete momenta. Here, taking V = L3, one
writes

Zm =
∑

n=(nx ,ny ,nz)

exp

(
−β

n2π2

2mL2

)
≡ V zm, (12)

where Zm ≡ V zm is a normalization factor and zm is independent of V (and contains only
β, m and constants). Similarly we define ZM and zM .

4.2 Reduced Density Matrix After Collision

We now show that if one starts with particles in equilibrium at inverse temperature β, it stays
that way. With this assumption both bath and test particles have the corresponding initial
density matrices. For the initial states this is assumed, but for the final density matrix of the
test particle we must calculate.

Combining Eq. (10) with the state definitions given earlier we arrive at an expression for
the reduced density matrix, following a collision. (Note that henceforth ρ1 by itself is the
reduced density matrix of the test particle alone.)
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ρ1( p1, p′
1) =

(
m + M

M

)6 1

V 2

1

zm

1

zM

∫
d�0d� ′

0d�1d� ′
1

× a(�1|�0)a
∗(� ′

1|� ′
0)δ

(
m

M

(
p1 − p′

1

) − m + M

M

(
�1 − � ′

1

))

× δ
(
p1 − �1 + �0 − (

p′
1 − � ′

1 + � ′
0

))
× δ

( m

M

(
p1 − �1 − p′

1 + � ′
1

) − �0 + � ′
0

)

× exp

(
− β

2M
| p1 − �1 + �0|2

)
exp

(
− β

2m

∣∣∣ m
M

( p1 − �1) − �0

∣∣∣2
)

.

(13)

The δ-functions imply that

�1 − � ′
1 = m

m + M

(
p1 − p′

1

)
(14)

p1 − p′
1 − (

�1 + � ′
1

) + �0 − � ′
0 = 0 (15)

m

M

(
p1 − p′

1 − (
�1 − � ′

1

)) + � ′
0 − �0 = 0. (16)

It follows that �0 = � ′
0, p1 = p′

1 and �1 = � ′
1. The product of the three δ-functions is

therefore equivalent to
(

m

m + M

)3

δ( p1 − p′
1)δ(�

′
0 − �0)δ(�

′
1 − �1). (17)

The combined exponent in the Gaussian expressions in Eq. (13) is

−β

2

(
| p1 − �1 + �0|2

M
+ 1

m

∣∣∣ m
M

( p1 − �1) − �0

∣∣∣2
)

= −β

2

(
m + M

M2
| p1 − �1|2 + m + M

mM
|�1|2

)

= −β | p1|2
2M

−
β

∣∣∣�1 − p1 m
M+m

∣∣∣2
2m

(
M + m

M

)2

, (18)

using |�1| = |�0| (see Eq. (7)). Note that the exponentials are independent of �0 so that
one can perform this integral in Eq. (13). Because of unitarity (Eq. (9)), Eq. (13) now has the
square of δ(�1 − � ′

1) (the other δ-function comes from Eq. (17)). In Appendix A we deal
with this issue by working with a finite box and using the Kronecker delta, for which there
is no problem. Here we summarize those results.

Recall that in principlewe are in a (large but) finite boxof volumeV = L3, so thatmomenta
are discrete and finely separated. The normalized wave functions are exp(i�0r)/

√
V and

the action of the S-matrix is

S
ei�0 r
√
V

=
∑
�1

a(�1|�0)
ei�1r
√
V

. (19)

Unitarity implies

1 =
(
S
ei�0 r
√
V

∣∣∣∣S e
i�0 r
√
V

)
= 1

V

∫
V
d r

∑
�1,�

′
1

a(�1|�0)a
∗(� ′

1|�0)e
i(�1−� ′

1)r (20)
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and

0 =
(
S
ei�

′
0 r√
V

∣∣∣∣S e
i�0 r
√
V

)
= 1

V

∫
V
d r

∑
�1,�

′
1

a(�1|�0)a
∗(� ′

1|� ′
0)e

i(�1−� ′
1)r . (21)

The integral
∫
V d r/V gives δK (�1−� ′

1), where the “K ” indicates aKronecker delta (taking
values 0 and 1). Thus

∑
�1

a(�1|� ′
0)a

∗(�1|�0) =
{
1 if � ′

0 = �0

0 if � ′
0 �= �0.

(22)

The foregoing is equivalent to taking, in the integral (9), “d r” = �n
V = 1

V .
Assembling all our results, we obtain

ρ1( p1, p′
1) =

(
m + M

M

)3 1

V

1

zm

1

zM
δ
(
p1 − p′

1

)
exp

(
−β | p1|2

2M

)

×
∫

d�1 exp

(
− β

2m

(
M + m

M

)2 ∣∣∣∣�1 − m p1
M + m

∣∣∣∣
2
)

= 1

V zM
δ
(
p1 − p′

1

)
exp

(
−β | p1|2

2M

)
≡ ρM,β( p1, p′

1). (23)

We have thus shown that when particles in thermal states having the same β collide they
remain in the thermal state. This has been demonstrated at the level of the density matrix. It
follows that the notion that the off-diagonal elements in coordinate space decrease indefinitely
is untenable.

4.3 Convergence to ρth with Many Collisions

In the previous subsectionwehave shown that the thermal state is a fixed point of the scattering
process. Now we show that (subject to the assumption below) it is an attractor.

It would be natural to assume that the bath particles are already at equilibrium, but we will
be more general and only assume the initial density matrix of the bath particle to be diagonal
in p-space. Thus we take

Bath density matrix = ρm,β( p, p′) = δ( p − p′)g0( p)/V . (24)

Suppose that after n independent collisions with bath particles the test particle has reduced
density matrix ρn( p + q/2, p − q/2). From Eq. (10) one obtains (note the slight change in
notation for the arguments of the density matrix)

ρn+1( p + q/2, p − q/2) = 1

V

(
m + M

M

)3 ∫
d�0 d�1 a(�1|�0)a

∗(� ′
1|� ′

0)

× ρn( p + q/2 − �1 + �0, p − q/2 − �1 + �0)

× g0
( m

M

(
p + q

2
− �1

)
− �0

)
. (25)

with� ′
k = �k −mq/(m+M). Between collisions ρ picks up a phase factor exp (−i pqt/m)

(where t is the time between collisions) which does not affect the magnitude of the off-
diagonal term and will not be noted further.
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Equation (25) implies that the values of ρn+1( p+ q/2, p− q/2) depend only on ρn with
the same q value. In particular, the diagonal elements of ρn+1 depend only on the diagonal
elements of ρn . This has two consequences:
(1) Integrating Eq. (25) over p yields∫

d p|ρn+1( p + q/2, p − q/2)| ≤
∫

d p|ρn( p + q/2, p − q/2)|C( p, q), (26)

with

C( p, q) = 1

V

(
m + M

M

)3 ∣∣∣∣
∫

d�0 d�1 a(�1|�0)a
∗(� ′

1|� ′
0)

× g0

(
m

M

(
p + q

2

)
− m + M

M
�0

)∣∣∣∣
{

= 1 if q = 0

< 1 (strictly) if q �= 0.
(27)

To establish Eq. (27) use the Cauchy-Schwarz inequality for the a’s (which integrate to 1)
and Eq. (22).

From Eq. (26) we deduce that in momentum space the non-diagonal elements of ρn go to
zero.
(2) We next focus on the diagonal terms ρn( p, p). For each collision with a bath particle the
probability distribution function ρn( p, p) becomes the function ρn+1( p, p) so that Eq. (25)
is a master equation for a Markov chain in momentum space.

We next prove this assertion. Returning to Sec. 3.1, the momentum p is the momentum
of the M-particle after collision, and p − �1 + �0 is its momentum before collision, the
latter being the argument of ρn in Eq. (25). Moreover, the argument of g0 in that equation
(for q = 0) is m

M ( p − �1) − �0 and is the momentum of the bath particle before collision
(called k in Sec. 3.1). Thus from Eq. (25) after the nth collision the next momentum is

pn+1 = pn + δ p, with δ p = �1 − �0 = (Rn − 1)
(
m pn − Mkn

M + m

)
, (28)

where Rn is a rotation in 3-space, 1 is the identity and kn is themomentum of the bath particle.
The rotations, Rn , are distributed according to |a(Rn�0|�0)|, which yields the probability
distribution for δ p.

As a consequence the sequence pn represents the successive steps of a Markov chain in
the momentum space of the M-particle. If this Markov chain is irreducible, its stationary
distribution, if it exists, is unique and ρn( p, p) converges to the stationary distribution. In
the case where g0 is the thermal state of the bath particle we proved that Eq. (25) has a
fixed point which is the thermal distribution of M-particle. As a consequence the density
matrix ρn converges to the thermal state ρM,β . As to irreducibility (assumed earlier), this is
equivalent to the assumption that the rotations R are not the identity, which is guaranteed by
the scattering not being trivial. (g0( p) is also assumed to be positive for all p.)

5 Conclusions

Understanding the emergence of the classical world from the quantum has been a subject of
interest—and contention. The concept of decoherence has been widely claimed to explain
this phenomenon and to a large extent this conclusion has been based on calculations that
demonstrate that the density matrix becomes effectively diagonal in coordinate space. As
recognized in [2,3], this is not quite true. In particular, the t → ∞ limit of the off-diagonal
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configuration space density matrix does not vanish. In fact, these matrix elements do not
become smaller than the thermal wavelength (λth = h̄/

√
2π/mkB T ). Now λth can be quite

small (of the order of angstroms for a gas at room temperature and pressure) but it is not zero.
What is interesting is that this is sufficient. To the extent that decoherence establishes

that there are “definite” positions for the particles, the smallness of λth already provides for
the desired degree of localization. There is no need to have ρ purely diagonal in coordinate
space.

In this article we have shown that the thermal state is indeed preserved under scattering,
andmoreover, with technical assumptions, is in fact an attractor: a gas with internal scattering
will tend toward the thermal state. The delicacy of our demonstrations suggests that sharper
bounds on the convergence would depend on details of the scattering.

A traditional derivation of the Boltzmann factor for the thermal state starts with a system
and reservoir, assuming that they pass only energy and that the reservoir’s temperature is
not affected by the small amount of energy it gives to or takes from the system. One then
assigns a probability to each particular state of the system proportional to the multiplicity of
states in the reservoir, given the energy of the system state. Then, with a certain amount of
hand-waving (including assumptions about additivity of entropy), one arrives at the thermal
state. What does this have to do with scattering?

The short answer is we don’t know. It is likely that our assuming that the gas of scattering
particles (of mass m) is already in the thermal state prejudices the final result. Whether the
derivation only works with that assumption, or whether the final state of the mass-M particle
(the test particle) follows that of the gas, is something that is beyond the scope of this paper.5

Finally, in Appendix B we provide a heuristic discussion of an alternative view of the
entire scattering process. It reflects the perspective that a gas consists of a large number of
particles that occasionally scatter off one another and is characterized by quantities such as
the mean free path, �. (All this is inherent in our previous work, but is not explicit.) The result
of that Appendix is that if one were to treat the atoms as Gaussians (or coherent states)—a
natural assumption—then the spread of those wave functions is not simply λth as one might
have guessed, but is

δ = const
√

�λth, (29)

where δ is the wave packet spread and the constant is order unity. We present this Appendix
as a further attempt to unify classical and quantum views, but, as indicated, the relation is
not rigorous.
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Appendix A: Appendix to Sect. 4.2.

The calculations of Sec. 4.2 are delicate because formally they lead to squares of delta
functions. To define them precisely we consider the case of a finite volume V (= L3) and

5 We do know that having the density matrix of the gas be diagonal in momentum space (but not necessarily
in the thermal state) is enough to give the same property to that of the test particle. See Sect. 4.3.
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make use of discrete momenta.

p = nπ

V 2/3 , n = (nx , ny, nz). (A1)

In this situation, Eq. (13) should be replaced by its discretized version, namely

1. replace the integrals over momenta by discrete sums,
2. replace a(�1|�0) by ã(�1|�0) ≡ 1

V a(�1|�0) with

S
1√
V
ei�0 r =

∑
�1

ã(�1|�0)
1√
V
ei�1r , (A2)

3. replace ρ by ρ̃ = 1
V ρ, and

4. replace g0 by 1
V g̃0.

By the unitarity of the S matrix we then have

∑
�1

ã(�1|� ′
0)ã

∗(�1|�0) = δK (�0 − � ′
0), (A3)

where δK is the Kronecker symbol. Eq. (A3) gives

1

V

∑
�1

a(�1|� ′
0)a

∗(�1|�0) = δ(�0 − � ′
0), (A4)

or ∫
d�1a(�1|� ′

0)a
∗(�1|�0) = δ(�0 − � ′

0). (A5)

Moreover, in the continuum limit for �0 and � ′
0

V δK (�0 − � ′
0) = δ(�0 − � ′

0), (A6)

and formally

δ(0) = V . (A7)

With this relation, Eq. (24) acquires meaning.
We return to Eq. (13) where a → ã and the integrals over momenta are replaced by

discrete sums. Then all delta functions are replaced by Kronecker symbols in Eqs. (17) and
(13), so that

ρ̃1( p1, p′
1) =

(
m + M

M

)3 1

V 2zmzM

∑
�0�

′
0�1�

′
1

ã(�1|�0)ã
∗(� ′

1|� ′
0)

× δK
(
p1 − p′

1

)
δK

(
� ′

0 − �0
)
δK

(
� ′

1 − �1
)

× exp

(
− β

2M
| p1|2

)
exp

(
− β

2m

(
M + m

M

)2 ∣∣∣∣�1 − p1
m

M + m

∣∣∣∣
2
)

,

(A8)
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where we have used Eq. (18). In Eq. (A8) the sum over �0 and � ′
0 reduces to δK (�1 − � ′

1)

and the square of δK poses no problem. Therefore

ρ̃1( p1, p′
1) =

(
m + M

M

)3 1

V

1

zm

1

zM
δK

(
p1 − p′

1

)
exp

(
− β

2M
| p1|2

)

× 1

V

∑
�1

exp

(
− β

2m

(
M + m

M

)2 ∣∣∣∣�1 − p1
m

M + m

∣∣∣∣
2
)

. (A9)

This reduces to

ρ1( p1, p′
1) = 1

zM
δ( p1 − p′

1) exp
(−β| p21 |/2M

)
, (A10)

as desired and making use of Eq. (A7) to interpret δ(0).
As an example,

ρ̃n+1( p + q/2, p − q/2) = 1

V

(
m + M

M

)3 ∑
�0,�1

ã(�1|�0)ã
∗(� ′

1|� ′
0)

× ρ̃n( p + q/2 − �1 + �0, p − q/2 − �1 + �0)

× g̃0
( m

M

(
p + q

2
− �1

)
− �0

)
. (A11)

An apparently difficult calculation is the one that proves that C( p, 0) = 1, because it leads
formally to δ(0) in the continuous calculation. But the discrete calculation, starting from
Eq. (A11), poses no problem.

Appendix B: Heuristic Discussion of a Particle View of Scattering

In this Appendix we abandon rigor and present a heuristic justification of the formula δ =
const

√
�λth, where δ is the wave packet spread, � is the scattering length, and the constant

is order unity. In the forthcoming discussion we usually take h̄ and m equal to 1, so that
λth ∼ √

β .
Our discussion reflects the tension between classical and quantum viewpoints. Quantum

mechanically the density matrix reflects one’s knowledge of the particle wave function, but
it does not demand a particular wave function. Thus one can write

ρ(x, y) ∼ exp

(
−m(x − y)2

2βh̄2

)
∼

∫
dk exp

(
−2βh̄2k2

m
+ ik(x − y)

)
(B1)

(x, y, k ∈ R
3), in which case the density matrix could represent a superposition of plane

waves. But this is in sharp contrast to the classical picture of little balls bouncing around and
scattering off each other. In the latter picture one would expect the semi-classical picture to
be little wave packets, also occasionally scattering off each other (we assume the temperature
and pressure of the gas to be such that particle identity can be ignored). After all there is a
concept of mean free path (�) for particles in a gas, and there is a relation between that and
the quantum scattering cross section (σ ), namely,

� = 1

nσ
, (B2)

with n the particle density, per unit volume. Let us therefore picture our (monatomic) gas
as a bunch of Gaussian wave packets occasionally scattering off each other. One thus writes
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the same density matrix as a superposition of such packets. The individual wave packets are
thus of the form

ψ(x) ∼ exp

(
− (x − x0)2

2δ2
+ ikx

)
. (B3)

One might identify the particle spread—δ—with λth but this would neglect an effect that
until now was not necessary to take into account. Specifically, between scatterings the packet
spreads. Thus a free particle that has the wave function of Eq. (B3), after a time t becomes

ψ(x, t) ∼ exp

(
− (x − x0 − kt)2

2(δ2 + i t/2)
+ ikx

)
. (B4)

We next assume that the scattering shrinks the spread in the wave function back to its orig-
inal value, reflecting the assumption of equilibrium. (More complicated scenarios can be
envisioned, but we’re being both rough and simple.) Thus

δ2 = 1

α

√
δ4 + t2/4, (B5)

for some factor α. It is implicit that we still have roughly a Gaussian, as derived—with
assumptions—in [10]. Note too that α is not the “effective value” of C of Eq. (27). The
quantity α depends on details of the scattering matrix, but should be of order unity, so that

α =
√

δ4 + t2/4

δ2
= O(1). (B6)

The time, t , is the interval between scatterings, namely �/v where � is the mean free path and
v is a characteristic velocity. In a gas at temperature 1/β this velocity is

√
1/β (we also take

Boltzmann’s constant to be 1). Thus the velocity is essentially λth and (after a bit of algebra)
we have

α2 − 1 = �2λ2th/δ
4, (B7)

or up to constants of order unity

δ = √
λth�. (B8)

Of course this discussion totally lacks rigor, but it does provide some way of recovering
the usual picture one has of an interacting gas, plus an observation that the wave packet
spread and the thermal wavelength are related by the mean free path for scattering.6
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