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Abstract In this paper we study typical distances in the configuration model, when the
degrees have asymptotically infinite variance. We assume that the empirical degree distribu-
tion follows a power law with exponent τ ∈ (2, 3), up to value nβn for some βn � (log n)−γ

and γ ∈ (0, 1). This assumption is satisfied for power law i.i.d. degrees, and also includes
truncated power-law empirical degree distributions where the (possibly exponential) trun-
cation happens at nβn . These examples are commonly observed in many real-life networks.
We show that the graph distance between two uniformly chosen vertices centers around
2 log log(nβn )/| log(τ − 2)| + 1/(βn(3 − τ)), with tight fluctuations. Thus, the graph is an
ultrasmall world whenever 1/βn = o(log log n). We determine the distribution of the fluc-
tuations around this value, in particular we prove these form a sequence of tight random
variables with distributions that show log log-periodicity, and as a result it is non-converging.
We describe the topology and number of shortest paths: We show that the number of short-
est paths is of order n fnβn , where fn ∈ (0, 1) is a random variable that oscillates with n.
We decompose shortest paths into three segments, two ‘end-segments’ starting at each of
the two uniformly chosen vertices, and a middle segment. The two end-segments of any
shortest path have length log log(nβn )/| log(τ − 2)|+tight, and the total degree is increasing
towards the middle of the path on these segments. The connecting middle segment has length
1/(βn(3 − τ))+tight, and it contains only vertices with degree at least of order n(1− fn)βn ,
thus all the degrees on this segment are comparable to the maximal degree. Our theorems
also apply when instead of truncating the degrees, we start with a configuration model and
we remove every vertex with degree at least nβn , and the edges attached to these vertices.
This sheds light on the attack vulnerability of the configuration model with infinite variance
degrees.
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1 Introduction and results

Many real-world networks are claimed to be small worlds, meaning that their graph distances
are quite small. In social networks, such small distances go under the nameof the ‘six-degrees-
of-separation’ paradigm and have attracted attention due to the interesting experiments by
Milgram [41,59]. See also Pool andKochen [55] aswell as [17], where a related experiment is
described on the basis on email messages. After this start in social sciences, the small-world
nature of many other networks was first described by Strogatz and Watts [62]. A popular
account of small-world aspects of networks can be found in the book by Watts [61]. See also
the surveys by Newman [49] and Albert and Barabási [2] on real-world networks.

The reported small-world nature of many real-world networks has incited a deep and
thorough study of typical distances in random graphs. See the highly influential paper by
Newman, Strogatz and Watts [51], who pioneered this line of research. There is a deep
relation between the small-world nature of networks and their other often reported common
feature, the scale-free paradigm, which states that the proportion of vertices of degree k in
many networks scales as an inverse power of k for k large. This scale-free nature implies
that there are many vertices with very high degrees, and these hubs drastically shrink graph
distances. The common picture in many random graph models is that graph distances are
asymptotically logarithmic in the graph size when the degrees have finite-variance degrees
[23,30,51], while they are doubly logarithmic or ultrasmall when the graphs have infinite-
variance degrees [11,12,15,18,31,52]. See also [29] for a discussion of many of the available
results. The conclusion is that typical distances in random graphs are closely related to their
degree structure, and larger degrees significantly shrink graph distances.

In many real-world networks, not only power-law degree sequences are observed, but also
power laws with a so-called exponential truncation. This means that, even though the degree
distribution for small values is close to a power law, for large values the tail distribution
becomes exponentially small. This occurs e.g. in sexual networks [39], the Internet Movie
Data base [4], and in scientific collaboration networks [47,48]. Of course, it is not easy
to guess whether a distribution has a power law, or rather a power law with exponential
truncation. Newman and collaborators give sensible suggestions on how to approach these
issues in real-world networks [13,50].

The value above which the exponential decay starts to set in is the truncation parameter.
Naturally, when the degrees already had finite variance before truncation, they will remain
to have so after truncation, so nothing much happens and graph distances ought to behave
as in the finite-variance setting in [30]. Further, any power-law distribution with exponential
truncation with a bounded truncation parameter has all moments, and thus distances ought
to become logarithmic as in the finite-variance case in e.g., [30], accounting to ‘strictly’
small-world networks [62]. The situation changes dramatically when dealing with infinite-
variance degrees, that is, when the power-law exponent is below 3. Indeed, in this setting,
it is well known that typical paths realizing the graph distance pass through the vertices
of highest possible degrees (i.e., the hubs) and typical distances grow much slower, doubly-
logarithmicallywith the size of the graph, accounting to ultrasmall worlds [31,53]. However,
truncating the degrees could possibly have a dramatic effect, and could possibly increase
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When is a Scale-Free Graph Ultra-Small? 225

the graph distances rather substantially. In fact, even though the asymptotic variance of
the degrees remains infinite after truncation, distances might grow substantially with the
truncation and the graph might fail to be an ultra-small world.

The main aim of this paper is to quantify the effect of truncation of the degrees in random
graphs models, in particular, in the configuration model that we define below. For simplicity,
we state our result as a theorem without bothering to explain the somewhat tedious details
and conditions. Below, we give several more accurate and detailed versions of this theorem.

Theorem Let us consider the configuration model on n vertices with empirical degree dis-
tribution that follows a power law with exponent τ ∈ (2, 3), satisfying some appropriate
regularity assumptions and truncated at degrees nβn , where βn(log n)γ → ∞ for some
γ ∈ (0, 1). Let dG(vr , vb) denote the graph distance between two uniformly chosen vertices
vr , vb. Then

dG(vr , vb) − 2
log log(nβn )

| log(τ − 2)| − 1

(3 − τ)βn
(1.1)

is a tight sequence of random variables.

For the precise result see Theorem 1.8 below. In that theorem, we also identify the distri-
butional limit of the tight sequence of random variables along subsequences. This was first
done in [31] using different methods for the special case βn ≡ 1/(τ −1). We show in Section
6 that the seemingly different formulations, Theorem 1.8 and the result in [31] are actually
the same.

Note that as soon as βn = o(1/ log log n), the term containing 1/βn becomes dominant,
and the second order term is of order log log n. Thus, the randomgraph fails to be an ultrasmall
world in a strict sense as soon as the truncation happens at degrees at most no(1/ log log n).
However, when βn log log n → ∞, the dominant term is the first one, of order log log n.
This theorem shows that distances in truncated power-law graphs with infinite asymptotic
variance interpolate between ultrasmall worlds and small worlds.

This sheds light to a discussion in the physics literature [15,19,24,25,33,51] about the
validity of the formula derived using generating function methods or n-dependent branching
process approximations, stating that

dG(vr , vb) = log n

log νn
+ tight = 1

(3 − τ)βn
+ tight (1.2)

with νn standing for the empirical second moment1 of the degrees and βn is the truncation
exponent. Compare this formula to the one in (1.1) and note that this formula yields the first
order term if and only if βn = o(1/ log log n), while even in this case it fails to capture the
second order term, which is of order log log n.

While [51] questions the validity of this formula for τ ∈ (2, 3), [24,25,33] argue that a
constant βn ≡ β for the truncation exponent yields bounded typical distances in this regime,
in agreement with what (1.2) suggests. This contradicts the arguments in [15] where the
authors show that the smallest achievable order for typical distances is log log n.

Closest to our result is the work of Dorogovtsev et al. [19], who, using (non-rigorous) gen-
erating function methods, study typical distances in the configuration model with truncated
power-law distributions of the form P(D = k) ∼ k−τ ζ k , for constant ζ < 1, and derive that

1 We show in Claim 2.6 and (4.2) below that νn ∼ nβn(3−τ), thus, log n/ log νn in (1.2) yields 1/(βn(3− τ)),
justifying the equality between the two expressions.
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dG(vr , vb) = log n

(3 − τ)| log(1 − ζ )| + 2 log | log(1 − ζ )|
| log(τ − 2)| + tight,

= 1

(3 − τ)βn
+ 2 log log(nβn )

| log(τ − 2)| + tight, (1.3)

where we took the liberty to set ζ := exp{−1/nβn } to obtain the second line. Observe that
our (rigorous) result in (1.1) above is in perfect agreement with this. The region of validity
of their approach [19, (106)] translates to the requirement that βn = o(1/ log log n), can be
interpreted that their method requires that the first term is the leading order term in (1.3). We
explain below in Sect. 1.3 why the term log log n is missing from (1.2) and where it comes
from.

Let us make a comparison: two models with the same maximal degree, a truncated and
an un-truncated one. More precisely, take a model with power-law exponent τ ∈ (2, 3)
and truncation at βn = β < 1/(τ − 1) fixed. In a model with power-law exponent τ̃ and
natural truncation (that is, ˜β = 1/(̃τ − 1)), the maximal degree is n1/(̃τ−1). Setting the
maximal degrees in the two models, – nβ and n1/(̃τ−1), respectively – to be equal yields
the relation τ̃ = 1 + 1/β. Comparing distances in the two models, we see an interesting
phenomenon. When βn < 1/2, the un-truncated model has τ̃ = 1+ 1/β > 3, implying that
limn→∞ E[(D′

n)
2] < ∞, which, in turn, implies that distances jump up to logarithmic order.

In the truncatedmodel distances are of order log log n, as described by (1.1).When βn > 1/2,
the leading order of distances in the truncated model is log log n/| log(τ −2)|+tight, while in
the un-truncatedmodel it is log log n/| log(̃τ−2)|+tight = log log n/| log(1/β−1)|+tight .
Since β < 1/(τ − 1) by assumption, 1/β − 1 > τ − 2 and hence the distances in the latter
model are larger. This means that ‘re-parametrizing’ the truncated model by another power-
law (τ ′) that would more naturally reflect the maximal degree is not the same as truncating,
even the leading term changes. This effect is extreme when β < 1/2, in which case the
truncated and the un-truncated models do not even belong to the same universality class
(ultrasmall versus small world).

Let us comment on the choice of model as well. We expect that the same result is true for
the giant component of the Chung-Lu or Norros-Reitu model when the power law exponent
is τ ∈ (2, 3). These models behave qualitatively similarly to the configuration model. In fact,
the ultrasmall nature of these networks were pointed out in [52,53]. The independence of
the edges conditioned on vertex-weights even makes path-counting methods easier, in fact,
we expect that the same proof that we provide here could be applied for these models as
well.

Attack vulnerability The removal of all vertices above a certain degree in a network is called
a targeted attack or deliberate attack. An immediate corollary (see Corollary 1.17 below) of
our work is that our results remain valid when instead of truncating the degrees, we remove
all vertices with degree at least n˜βn from a configurationmodel. In particular, distances after a
targeted attack are described by (1.1), with βn replaced by˜βn . This theorem also sheds light to
how distances gradually grow from ultrasmall to small world when vertices with smaller and
smaller degree are gradually removed. A similar analysis have been carried out for a variant
of the preferential attachment model in [20], for the special case when all degrees above
order log n (equivalently, the oldest εn vertices for small small ε > 0) are removed. They
show that distances in this case grow logarithmically, giving a strong base for our conjecture
that the formula in (1.1) should also be valid for βn = �(1/ log n), which is, at least with
the methods of this paper, beyond our reach.
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When is a Scale-Free Graph Ultra-Small? 227

1.1 The Model and the Main Result

In this paper we work under the setting of the configuration model CMn(d). In this random
graph model, there are n vertices, with prescribed degrees dv, v ∈ {1, 2, . . . , n} := [n]. To
each vertex v ∈ [n] we assign dv half-edges and the half-edges are then paired uniformly at
random to form edges. We assume that the total number of half-edges 	n := ∑

v∈[n] dv is
even. We denote the outcome - a graph-valued random variable - by CMn(d).

1.1.1 Setting and Assumptions

We study the case when the empirical degree distribution follows a possibly truncated power
law, with an exponent that gives rise to empirical variance tending to infinity with n and when
the truncationhappens at somepolynomial ofn. Tomake this precise,we impose the following
three assumptions on the empirical degree distribution, Fn(x) := 1

n

∑

v∈[n] 1{dv≤x}:

Assumption 1.1 (Power-law tail behavior) There exists a βn ∈ (0, 1/(τ − 1)] such that for
all ε > 0, Fn(x) = 1 for x ≥ nβn(1+ε), while for all x ≤ nβn(1−ε),

1 − Fn(x) = Ln(x)

xτ−1 , (1.4)

with τ ∈ (2, 3), and a function Ln(x) that satisfies for some constant C1 > 0 and η ∈ (0, 1)
that

exp{−C1(log x)
η} ≤ Ln(x) ≤ exp{C1(log x)

η}. (1.5)

Assumption 1.2 (Minimal degree at least 2) minv∈[n] dv ≥ 2.

See Remark 1.12 for an extension of our results in the case when minv∈[n] dv = 1. We
write Dn for a random variable having distribution Fn . Then Dn is the degree of a uniformly
chosen vertex from [n]. We introduce D�

n :=(the size-biased version of Dn) − 1 by

P(D�
n = j) := j + 1

	n

∑

v∈[n]
1{dv= j+1} = ( j + 1)P(Dn = j + 1)

E[Dn] , j ≥ 0. (1.6)

We write F�
n (x) for the distribution function of D�

n . Note that for all x ≤ nβn(1−ε),

1 − F�
n (x) = 1

E[Dn]
∑

j≥x

( j + 1)P(Dn = j + 1) ≥ 1

E[Dn] x(1 − Fn(x)),

and similarly, under Assumption 1.1,

1 − F�
n (x) ≤ (x + 1)(1 − Fn(x + 1)) +

∑

j≥x

(1 − Fn(x))

≤ 2

E[Dn]
Ln(x + 1)

xτ−2 + 1

E[Dn]
∑

j≥x

Ln( j)

jτ−1 .

By a Karamata-type theorem (see [9, Proposition 1.5.10]) the latter sum on the rhs is at most
2Ln(x)/(xτ−2(τ − 2)) for all large enough x . Further, for x ≥ nβn(1+ε) it is obvious from
the definition (1.6) that 1− F�

n (x) = 0. Thus, it follows that for all ε > 0 and x ≤ nβn(1−ε),
F�
n satisfies that

1 − F�
n (x) = L�

n(x)

xτ−2 , (1.7)

123



228 R. van der Hofstad, J. Komjáthy

with a function L�
n(x) satisfying (1.5) again (possibly with a different constant C

�
1 instead of

C1 in the exponent in (1.5) for L�
n).

To be able to state convergence results, we will need an assumption that relates the behav-
ior of Fn and F�

n for different values of n to a limiting distribution function. We write
dTV(F,G) := 1

2

∑

x∈N |F(x + 1) − F(x) − (G(x + 1) − G(x))| for the total variation dis-
tance between two (discrete) probability measures. The weakest form of such assumption
that we can pose is captured in the following assumption:

Assumption 1.3 (Convergence to limiting distributions) We assume that there exist distri-
bution functions F(x), F�(x) such that Fn(x) → F(x) and F�

n (x) → F�(x) in all continuity
points of F(x), F�(x). We assume that there exists a κ > 0,

max{dTV(Fn, F), dTV(F
�
n , F�)} ≤ n−βnκ . (1.8)

Let uswrite D, D� for randomvariables following the limitingdistributions F, F� inAssump-
tion 1.3, respectively. Since total variation convergence equals weak convergence for discrete

random variables, Dn
d−→ D and D�

n
d−→ D�. Using (1.6), we further obtain that

P(D� = j) = ( j + 1)P(D = j)

E[D] , (1.9)

thus D� is the (size-biased version−1) of D. Further note that F can be written in the
form (1.4), and F� as in (1.7) with limiting L , L� that satisfies (1.5). Note that the limit
variables are not truncated. Further, the bound n−βnκ in Assumption 1.3 is best possible since
dTV(Fn, F) ≥ P(D > nβn ) ≥ n−βn(τ−1)	(n−βn(τ−1)) ≥ n−βn(τ−1−δ). It is also reasonable,
e.g. it can be shown that it is satisfied in Examples 1.18-1.21 below.

Under Assumptions 1.1 and 1.2, the graph almost surely has a unique connected compo-
nent of size n(1 − oP(1)) see e.g. [28, Vol II., Theorem 4.1] or [42,43], or the recent paper
[22].

We provide three examples in Sect. 1.2 below (i.i.d. degrees, exponential and hard trun-
cation) that satisfy Assumption 1.1, see Examples 1.18, 1.20, 1.21 below, as well as collect
some references to networks following such empirical degree distributions.

In this paper we study typical distances, that is, the graph distance dG between two
uniformly chosen vertices in the graph. For the sake of the proof, we denote these vertices
by vr and vb and think of them as being red and blue, respectively.

Definition 1.4 (With high probability)We say that a sequence of events En happenswith high
probability under the measure Q (and abbreviate this as Q-whp), if Q(En) → 1 as n → ∞.
We write simply ‘whp’ when the measure is the annealed measure of the configuration model
and the two uniformly chosen vertices vr , vb.

We emphasize that in the setting of this paper, whp statements should be read as follows: for
asymptotically almost every realizations of the random graph CMn(d) and almost all pairs
of vertices (vr , vb), the statement is true.

Definition 1.5 (∼ notation)We use the shorthand notation Xn ∼ an if there exists a constant
θ ∈ (0, 1) such that

Xn ∼ an ⇐⇒ P

(

Xn ∈
[

ane
−(log an)θ , ane

(log an)θ
])

→ 1. (1.10)

We call vertices with degree at least ∼ n(τ−2)βn hubs.

123



When is a Scale-Free Graph Ultra-Small? 229

Note that Xn ∼ na is somewhat stronger than stating that Xn = na(1+oP(1)).
The statement of the main theorem uses some knowledge about infinite-mean branching

processes, as well as their coupling to the local neighborhood of the two vertices vr , vb.
So, before stating the result, we have to do a small excursion into defining these objects. In
particular, Lemma 2.2 andCorollary 2.3 below, based on [7, Proposition 4.7], states that under
Assumption 1.3, whp, the number of vertices and their forward degrees in an exploration of
the neighborhood of vr , vb can be coupled to two independent branching processes (that
are embedded in the graph disjointly, and have offspring distribution F� for the second and
further generations, and with offspring distribution given by F for the first generation), as
long as the total number of vertices of the explored clusters does not exceed n� for some small
� > 0. Let us do the exploration in a breadth-first-search manner, and then the exploration at
time t contains all the vertices with at most distance t away from C(r)

0 := {vr } and C(b)
0 := {vb}.

We shall denote these clusters by C(r)
t , C(b)

t (i.e., the vertices and their graph structure), and
think of them as being colored red and blue, respectively. Similarly, we denote the number
of vertices in the kth generation of the coupled branching processes by (Z (r)

k , Z (b)
k )k>0. The

next definition, describing the double-exponential growth rates of these neighborhoods, uses
this coupling:

Definition 1.6 (Double-exponential growth rates of local neighborhoods) Let (Z (r)
k , Z (b)

k )

denote the number of individuals in the kth generation of the two independent copies of a
Galton-Watson process, coupled to the breadth-first-search exploration process of the neigh-
borhoods of vr and vb in the configuration model. In these branching processes, the size of
the first generation has distribution F , and all further generations have offspring distribution

F� from Assumption 1.3. Then, for some �′
n < (τ − 2)min

{

βnκ, (1 − βn(1 + ε))/2, (τ −
2 − 2ε)/(2(τ − 1))

}

, let us define

Y (n)

r := (τ − 2)t (n
�′
n ) log

(

Z (r)

t (n�′
n )

)

, Y (n)

b := (τ − 2)t (n
�′
n ) log

(

Z (b)

t (n�′
n )

)

, (1.11)

where t (n�′
n ) = infk{max{Z (r)

k , Z (b)
k } ≥ n�′

n }. Let us further introduce
Yr := lim

k→∞(τ − 2)k log
(

Z (r)
k

)

, Yb := lim
k→∞(τ − 2)k log

(

Z (b)
k

)

. (1.12)

Note that the limit variables in (1.12) are independent of ρ′
n . Further, note that (Y (n)

r , Y (n)

b )

is a subsequence of the convergent sequence
(

(τ − 2)k log(Z (r)
k ), (τ − 2)k log(Z (b)

k )
)

, taken

at the subsequence kn := t (nρ′
n ). Since for any ρ′ > 0, t (nρ′

n ) → ∞ as n → ∞, under

Assumption 1.3 we shall obtain that (Y (n)
r , Y (n)

b )
d−→ (Yr , Yb) as n → ∞. When (and only

when) βn = 1/(τ − 1), we shall need one more assumption that concerns the limiting
distribution of Yr , Yb:

Assumption 1.7 (No pointmass of the measure of Y ) We assume that the limiting random
variable Y := limk→∞(τ − 2)k log(max{Zk, 1}) of the branching process in Definition 1.6
has no point-mass on (0,∞).

The criteria on F in Assumption 1.3 required for this assumption to hold are not obvious.
According to our knowledge, no necessary and sufficient condition for no point mass or
absolute continuity can be found in the literature. A sufficient criterion for absolute continuity
of Y is given in [56,57].
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To be able to state the results shortly, let us define the σ -algebra generated by the induced
subgraph on C(r)

t (n�′
n )

∪ C(b)

t (n�′
n )
:

F�′
n

:= σ
(

C(r)

t (n�′
n )

∪ C(b)

t (n�′
n )

)

(1.13)

and introduce the shorthand notation2

PY (·) := P(·|F�′
n
), EY (·) := E(·|F�′

n
) (1.14)

Further define, for q ∈ {r, b},

Tq(βn) :=
⌊

log log(nβn ) − log(Y (n)
q )

| log(τ − 2)|

⌋

− 1, b(q)
n (βn) :=

{

log log(nβn ) − log(Y (n)
q )

| log(τ − 2)|

}

,

(1.15)

where �x� denotes the largest integer that is atmost x and {x} = x−�x� denotes the fractional
part of x . Further, let �x� denote the smallest integer that is larger than x .

1.1.2 Typical Distances

Theorem 1.8 (Distances in truncated power-law configurationmodels)Consider the config-
uration model with empirical degree distribution satisfying Assumptions 1.1-1.3 with some
βn ∈ (0, 1/(τ − 1)] such that βn(log n)γ → ∞ for some γ ∈ (0, 1). When βn → 1/(τ − 1)
then we require that Assumption 1.7 holds additionally.

dG(vr , vb) = Tr (βn) + Tb(βn) +
⌈

1/βn − (τ − 2)b
(r)
n (βn) − (τ − 2)b

(b)
n (βn)

3 − τ

⌉

+ 1.

(1.16)

The sequence Y (n)
q in Tq(βn), b

(q)
n (βn) converges in distribution as n → ∞. It is straight-

forward to show that for a sequence of random variables Xn converging in distribution, the
transforms �log log(nβ)+ Xn� and {log log n+ Xn} do not converge, since their distribution
shifts along as log log(nβ)moves from one integer to the next. We can rephrase the statement
of Theorem 1.8 in terms of convergence in distribution by filtering out the parts that show
loglog-periodicity.

Corollary 1.9 The following distributional convergence holds:

dG(vr , vb) − 2 log log(nβn )

| log(τ − 2)| −
⌈

1/βn − (τ − 2)b
(r)
n (βn) − (τ − 2)b

(b)
n (βn)

3 − τ

⌉

+ b(r)
n (βn) + b(b)

n (βn)
d−→ −1 + − log(YrYb)

| log(τ − 2)| .
(1.17)

Alternatively, we obtain weak convergence along (double-exponentially growing) subse-
quences (nk)k∈N satisfying log log(nβn

k ) = k + c + o(1) for every c ∈ [0, 1).

2 The notation comes from the fact that Y (n)
r , Y (n)

b ∈ F�′
n
.
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When is a Scale-Free Graph Ultra-Small? 231

Remark 1.10 The criterion that βn(log n)γ → ∞ for some γ ∈ (0, 1) is just slightly stronger
than requiring that the empirical second moment of the degrees in the graph tends to infinity.
Indeed, we give in (2.44) in Claim 2.6 the upper bound n(3−τ)βn on the empirical second
moment of the degrees. A similar lower bound can be proved as well. This expression tends
to infinity whenever βn log n → ∞.

Remark 1.11 The message of Theorem 1.8 is that typical distances are centered around
approximately 2 log log(nβn )/| log(τ − 2)| + 1/(βn(3 − τ)), when the truncation of the
degrees happens at a value nβn , with tight fluctuations around this value. As pointed out
before, the threshold for the dominance of the two terms is at βn = �(1/ log log n). Indeed,
as soon as βn = o(1/ log log n), the term containing 1/βn in (1.17) becomes dominant, and
the second order term3 is of order log log n. On the other hand, when βn log log n → ∞, the
dominant term is log log n.

Remark 1.12 (Dropping the condition on the minimal degree) With slightly more work it is
possible to drop Assumption 1.2 from the assumptions in Theorems 1.8. Under Assumption
1.1 but without Assumption 1.2, the graph has a unique giant component of linear size,
ζn(1 − oP(1)) for some ζ > 0, see Janson and Luczak [34]. In this case, the statement of
Theorem 1.8 remain valid conditioned on the event that both vr , vb are in the giant component
of the graph. This conditioning can be done similarly as described in [31]. To keep our paper
short, we omit to provide the proof here, since this is not the main focus of this paper.

1.1.3 Structure and Number of Shortest Paths

The next two theorems are by-products of the proof of Theorem 1.8. They reveal the structure
of shortest paths and thus shed light on the topology of the graph in more detail. Let us denote
a path connecting vertices u, v by Pu,v , and let us denote any path that realizes the graph
distance dG(u, v) by P�

u,v . We write w ∈ Pu,v if w is a vertex �= u, v that is on the path Pu,v .
We write dG(u, v|�) for the length of the shortest path between two vertices u, v restricted
to contain vertices in a set �. Finally, let us write

�≤z := {

v ∈ [n] : dv ≤ nz
}

, (1.18)

and for a triplet (z, x1, x2) of numbers let us define the ‘upper’ and ‘lower’ fractional-part of
the following expression:

f u(z, x1, x2) :=
⌈

1/z − x1 − x2
3 − τ

⌉

− 1/z − x1 − x2
3 − τ

, (1.19)

f 	(z, x1, x2) := 1/z − x1 − x2
3 − τ

−
⌊

1/z − x1 − x2
3 − τ

⌋

. (1.20)

Note that either f u = f 	 = 0 or f u = 1 − f 	 ∈ (0, 1).

Theorem 1.13 (Structure and number of shortest paths between hubs) Under the same con-
ditions as Theorem 1.8, let ˜βn ≤ βn be such that ˜βn(log n)γ → ∞. Let x1, x2 > τ − 2 and
v1, v2 be two vertices with degrees dv j ∼ nx j ˜βn for j = 1, 2. Then, the distance between

v1, v2 restricted to paths Pv1,v2 that contain only vertices with degree at most n˜βn is whp

dG(v1, v2 | �≤˜βn ) =
⌈

1/(˜βn) − x1 − x2
3 − τ

⌉

+ 1, (1.21)

3 Note that in (1.17), the terms containing log log n and − logβn both compete to be the second order term,
but under the criterion on βn , − logβn = O(log log n).
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while the number of shortest paths4 between v1, v2 within �≤˜βn satisfies whp

#
{

P�
v1,v2

| �≤˜βn
}

∼ n
˜βn f u(˜βn ,x1,x2), (1.22)

where f u(˜βn, x1, x2) is defined in (1.19). Further, whp all vertices on any shortest path in
�≤˜βn connecting v1, v2 have degree at least n

˜βn f 	(˜βn ,x1,x2). I.e., for all ε > 0,

P

(

∃P�
v1,v2

∈ �≤˜βn , w ∈ P�
v1,v2

: dw ≤ n
˜βn f 	(˜βn ,x1,x2)(1−ε)

)

→ 0. (1.23)

Interpreting Theorem 1.13, first note that setting ˜βn < βn in (1.21) reveals the distance
between the two vertices when the path must avoid vertices with degree at least n˜βn . While
(1.21) for ˜βn ≡ βn shows that the generating function approximation known from physics
- the formula described in (1.2)—is valid when instead of typical distances, we consider
distances between very high-degree vertices. The second statement, (1.22) shows that the
number of shortest paths between hubs concentrate on a logarithmic scale, since the statement

log
(

#{Pv1,v2 ∈ �≤˜βn }
)

f u(˜βn, x1, x2)˜βn log n
P−→ 1. (1.24)

is a direct consequence of (1.22). This implies that there are many shortest paths,
n˜βn f

u (˜βn ,x1,x2) many. Note however that as soon as any of ˜βn, x1, x2 depends on n, the
upper fractional part f u starts to oscillate in the interval [0, 1). Similarly, the statement in
(1.23) shows that all these shortest paths use relatively high degree vertices - just a factor f 	

multiplies the exponent of the maximally allowed degree n˜βn . Keep in mind that f u and f 	

are does not necessarily are bounded away from 0.
Note again that as soon as any ofβn, x1, x2 depends on n, f 	(βn, x1, x2) oscillates together

with this fractional part.
Comparing (1.22) and (1.23), one notes that f u + f 	 = 1 unless both of them are 0. One

can avoid integer values by slightly changingβn or x1, x2 by pushing some n-dependent terms
into the dv j ∼ nx jβn relation. Further, it is not hard to extend the proof of Theorem 1.13 to

show that there is at least one shortest path that uses a vertexwith degree∼ n˜βn f
	(˜βn ,x1,x2)(1+ε)

for arbitrary small ε > 0. Thus, we arrive to the following observation.

Observation 1.14 Let v1, v2 be two hubs with dv j ∼ nx jβn for x j > τ − 2, j ∈ {1, 2}. Then
the number of shortest paths between v1, v2 times the lowest degree that these paths use gives
approximately5 the maximal degree in the graph, i.e., ∼ nβn .

We provide a sketch proof of this observation in Section 5. Our next theorem analyses the
number and structure of shortest paths between two uniformly chosen vertices vr , vb:

Theorem 1.15 (Structure and number of shortest paths) Under the same conditions as in
Theorem 1.8, there is a shortest path between vr , vb that has the following structure, whp:

(1) (Degree-increasing phase)For both q ∈ {r, b}, starting from vq , a path segment of length
Tq(βn) = log log(nβn )/| log(τ − 2)| + �P(1) as in (1.15) ends with a vertex v�

q with
degree

4 Here, overlaps between paths are allowed. We consider two paths different if they have at least one different
edge.
5 up to error terms of order at most exp{±(log nβn )θ }, for some θ < 1.
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dv�
q

∼ nβn(τ−2)b
(q)
n (βn )

, (1.25)

where b(q)
n (βn) is from (1.15). The vertex v�

q can be chosen to be the maximal degree
vertex among all vertices that are reachable from vq on a path of length Tq(βn). For
any k < i�(q)(βn), the degree of the (Tq(βn) − k)th vertex on the path between vq , v

�
q

is ∼ nβn(τ−2)b
(q)
n (βn )+k

, where i�(q)(βn) are tight random variables given below in (2.34)
and (2.36).

(2) (Connection among high-degree vertices phase) A path of length
⌈

1/βn − (τ − 2)b
(r)
n (βn) − (τ − 2)b

(b)
n (βn)

3 − τ

⌉

+ 1 (1.26)

connects v�
r , v

�
b using only vertices with degree at least nβn f 	

n , where, in agreement

with Theorem 1.13, f 	
n := f 	(βn, (τ − 2)b

(r)
n (βn), (τ − 2)b

(b)
n (βn)). Further, Phase (2) is

valid for all shortest paths, whp. That is, whp, for any shortest path P�
vr ,vb

, the segment
between the Tr (βn)th and the |P�

vr ,vb
| − Tb(βn)th vertex has length as in (1.26), and it

only contains vertices with degree at least nβn f 	
n .

Finally, as a consequence of Theorem 1.13, the number of shortest paths between vr , vb
satisfies PY − whp

#{P�
vr ,vb

} ∼ nβn f un ,

where f un := f u(βn, (τ − 2)b
(r)
n (βn), (τ − 2)b

(b)
n (βn)) ∈ [0, 1) fluctuates with n.

Theorem1.15 sheds light on the true structure of the shortest path between two uniformly cho-
sen vertices: both ends of the path start with a segment where after a short initial randomness,
degrees are essentially increasing in a deterministic fashion: each degree is asymptotically a
power 1/(τ −2) of the previous degree on the path. This phase ends with a vertex v�

q that has

degree in the interval [n(τ−2)βn , nβn ], for q ∈ {r, b}. The precise (random) prefactors of βn

for q ∈ {r, b} in the exponent of n of the degree dv�
q
determines the precise length of the next

phase, that establishes a connecting path between v�
r , v

�
b. For this path segment, Theorem

1.13 can be applied, which means that the length of this path is at most a constant �2/(3−τ)�
away from 1/(βn(3 − τ)), and all vertices on this path have relatively high degree.

We can turn Observation 1.14 to hold for two uniformly chosen vertices as well: the non-

integer condition holds whp under Assumption 1.7 with (x1, x2) = ((τ − 2)b
(q)
n (βn))q∈{r,b},

so we arrive to the following observation:

Observation 1.16 Let vr , vb be two uniformly chosen vertices. Then whp under Assumption
1.7, the number of shortest paths between vr , vb times the lowest degree that these paths use
in Phase (2) in Theorem 1.15 is approximately the maximal degree in the graph, i.e., it is
∼ nβn .

1.1.4 Attack Vulnerability

Let us mention that when we remove some set of vertices � from a configuration model
and the edges attached to them (called an attack), the remaining graph is still a configuration
model on [n] \ �, with a new empirical degree distribution that might become random,
depending on the type of the attack. Observe that the shortest path between two vertices in
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the remaining graph is the same as the shortest path in the original graph restricted to stay
among vertices in [n] \ �. When the attack is so that it removes all vertices above a certain
degree, we call it a targeted attack or deliberate attack. This is themeaning of setting˜βn < βn

in Theorem 1.13 above.
An immediate corollary of the proof of Theorems 1.8 and 1.13 is that our results remain

valid in the configurationmodelwith targeted attack aswell, that is,when instead of truncating
the degrees, we remove all vertices with degree at least n˜βn from a configuration model.
Equivalently, we can consider the length of the shortest path restricted to stay among vertices
with degree at most n˜βn .

Corollary 1.17 Let us consider the configuration model under the same assumptions as the
ones in Theorem 1.8. For a sequence ˜βn with ˜βn(log n)γ → ∞ for some γ < 1, let us
remove all vertices with degree at least n˜βn and the edges attached to them from the graph on
n vertices. Then, the typical distance between two vertices vr , vb chosen uniformly at random
from the remaining set of vertices satisfies whp

dG(vr , vb|�≤˜βn ) − 2 log log(n˜βn )

| log(τ − 2)| −
⌈

1/(˜βn) − (τ − 2)b
(r)
n (˜βn) − (τ − 2)b

(b)
n (˜βn)

3 − τ

⌉

+ b(r)
n (˜βn) + b(b)

n (˜βn)
d−→ −1 + − log(YrYb)

| log(τ − 2)| . (1.27)

Further, Theorem 1.15 also remains valid in this setting, with βn replaced by ˜βn everywhere.

This corollary sheds light on the effect of a targeted attack - commonly known as the attack
vulnerability of the network. In fact, Corollary 1.17 describes the way typical distances grow
when we (gradually) remove the ‘core’ of the graph, meaning all vertices with degree at least
n˜βn . For example, starting with a configuration model with i.i.d. degrees, (corresponding to
βn ≡ 1/(τ − 1)), one has to go as far as to choose ˜βn = o(1/ log log n) to change the order
of magnitude of the length of shortest paths.

An alternative proof of this corollary could be the following: It can be shown that the
number of vertices in �≤˜βn = o(n), so, only o(n) many vertices are removed. Then, one can
show that – even though these are the highest degree vertices – the total number of half-edges
attached to the removed vertices is still o(n). When considering the degree of a remaining
vertex in the remaining graph, the half-edges that were matched to removed vertices should
also be removed. This results in a thinning of the degrees. This thinning is not independent
for different half-edges and vertices. However, by a stochastic domination argument one can
still show that the resulting new degree distribution still satisfies the conditions of Theorem
1.8, with now βn replaced by ˜βn . This makes clear why all expressions in (1.27) depend only
on ˜βn and not on the original βn .

1.2 Examples

Note that Assumption 1.1 is satisfied in the following cases that we keep in mind to study:

Example 1.18 The first example arises when the degrees are independent and identically
distributed from a background power-law distribution F that satisfies (1.4) and (1.5) (for all
x ∈ R). In this case, it is not hard to see that the order of magnitude of the maximal degree
in the graph is n(1+oP(1))/(τ−1) whp. Further, using the concentration of binomial random
variables (see [31] for the computations) shows that whp the empirical degree distribution
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satisfies Assumption 1.1, with βn = 1/(τ −1), with a possibly larger constantC in the bound
on Ln(x) than the one in the background distribution F .

Pure power-law degrees were found for example in the internet backbone network [21], in
metabolic reaction networks [35], in telephone call graphs [46], and most famously, in the
world-wide-web [5,10,37].

Remark 1.19 (Fluctuations of typical distances in the i.i.d. degree case) In the special case of
i.i.d. degrees as in Example 1.18, the value βn = 1/(τ −1). Under Assumption 1.7, the upper
integer part in (1.16) simplifies to either 0 or 1, and typical distances in this case become

dG(vr , vb) = Tr (βn) + Tb(βn) + 2 − 1
{

τ − 1 < (τ − 2)b
(r)
n (βn) + (τ − 2)b

(b)
n (βn)

}

.

(1.28)

Weemphasize thatTheorem1.8 implies that the typical distances in the graph are concentrated
around 2 log log n/| log(τ − 2)| with bounded fluctuations, a result that already appeared
in [31] for the i.i.d. degree case. The statement of Corollary 1.9 ‘filters out’ the bounded
oscillations arising from fractional part issues that oscillate with n. We emphasize here that
the statement of Theorem 1.8 applied to i.i.d. degrees and [31, Theorem 1.2] are essentially
the same. However, they provide a different description of typical distances. The current
proof here is much shorter than the one in [31] as well as it allows to treat the truncated
degree case at the same time. We show in Section 6 that the two theorems are indeed the
same.

Example 1.20 (Exponential truncation) The degrees are generated i.i.d. from an n-dependent
truncated power law distribution F (n) that can be written in the form

1 − F (n)(x) = L(n)(x)

xτ−1 exp{−cx/nβn }, (1.29)

with L(n) satisfying (1.5). In this case, the empirical distribution Fn(x) satisfies Assumption
1.1 for all sufficiently large n, since for any x ≤ nβn(1−ε), the exponential term is at least 1/2,
say, while for any x ≥ nβn(1+ε), F (n)(x) = O(1/n2), thus we shall not actually see vertices
with such high degree in the graph for large enough n. A special case arises when (di )i∈[n]
are i.i.d. with di = min{Xi ,Gi }, where Gi are i.i.d. geometric random variables with mean
exp{c/nβn }, and Xi i.i.d. as in Example 1.18.

Power-law degrees with exponential truncation were proposed e.g. in [45], and are observed
for instance in themovie actor network [4], air transportation networks [27] and co-authorship
networks [48,58], brain functional networks [1], ecological networks [44] such as coevolu-
tionary networks of plant-animal interactions [36].

Example 1.21 (Hard truncation) The degrees are generated i.i.d. from an n − dependent
truncated power-law that can be written in the form

F (n)(x) = L(n)(x)

xτ−1 1x<nβn , (1.30)

with L(n) satisfying (1.5). A special case again arises when (di )i∈[n] are i.i.d. with di =
min{Xi , nβn }, where Xi are i.i.d. as in Example 1.18.
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Probably the most important example for hard truncation is a targeted attack, since in this
case every vertex above a certain degree in the network is removed. Scale-free graphs are
often called attack vulnerable, see e.g. [3,14,32]. A theoretical example where the authors
use a network model with hard truncation can be found in [26] or [40].

Perhaps surprisingly, the online social network of Facebook does not seem to follow a
truncated power-law [60], even though the total number of friends of a person was limited
to 5000 at the time of the measurement. Nevertheless, we would like to emphasize that our
theorem allows for many possible truncations functions, among which the hard truncation is
possibly the most strict.

1.3 Discussion and Open Questions

Heuristic explanation of the formula in Theorem 1.8.

In Theorem 1.8, we have determined that the distances are centered around

2 log log(nβn )

| log(τ − 2)| + 1

βn(3 − τ)

with tight fluctuations. Here we give a heuristic explanation of this formula. For graphs with
locally tree-like structure, the usual BP approximation says that the number of vertices that
are reachable on a path of length k from vr , is approximately Z (n)

k , the size of generation
k of a BP with offspring Dn in the first and D�

n in the consecutive generations. Generating
function methods then yield that E[Z (n)

k ] = E[Dn]νk−1
n , with νn = E[D�

n] ∼ nβn(3−τ) as
in (4.2) below, and then the approximation Z (n)

k ≈ E[Z (n)

k ] is often used. Unfortunately, for
heavily skewed distributions like that of D�

n , it does not hold that Z (n)

k ≈ E[Z (n)

k ]. This is so
because E[D�

n] is characterised by the highest degree vertices, of degree nβn , while, on the
other hand, low degree vertices are typically not connected to these hubs in the graph, and
thus Z (n)

k � E[Z (n)

k ].
It is true however that

Z (n)

k ≈ C1/(τ−2)k , (1.31)

for some random constant C [16]. Thus, as long as the BP approximation is valid, we see
a ‘degree-increasing phase’ within the exploration clusters of the vertices vr , vb. From the
approximation (1.31) it already follows that it takes log log(nβn )/|(log(τ−2))|+tight number
of steps to reach a hub v�

q in the graph, for q ∈ {r, b}. Extreme value theory tells us that any
hubwill have some neighbors that are also hubs, and thus the approximation that D�

n ≈ E[D�
n]

and consequently Z (n)

k ≈ E[Z (n)

k ] suddenly becomes valid when considering the number of
vertices of distance k away from v�

q . This means that it takes an additional log n/ log νn =
1/βn(3−τ)+tight number of steps to connect the two hubs v�

r , v
�
b to each other. This explains

the formula in Theorem 1.8.

Comment About ‘Structural Cutoff’

Often in physics literature, βn = 1/2 is called ‘structural cut-off’ [54]. When βn > 1/2,
verticeswith degree at leastn1/2+ε forma complete subgraph of the graph,while forβn < 1/2
this complete subgraph is not present. Further, when βn > 1/2, a growing number ofmultiple
edges appears, while for βn < 1/2, the number of multiple edges in the graph stays bounded.
Our theorems show that there is no significantly different behavior of typical distances when
the truncation happens below versus above the structural cutoff n1/2.
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Open Questions

Webelieve the criterionβn(log n)γ → ∞ for someγ ∈ (0, 1) canbe relaxed to beβn log n →
∞, at least when one imposes more strict bounds on the slowly varying function Ln(x) in
(1.4). The criterion βn log n → ∞ is the weakest form that is necessary for the empirical
second moment to tend to infinity. Provided one can generalize our results to hold whenever
βn log n → ∞, we obtain a perfect interpolation between doubly logarithmic and logarithmic
distances. When βn log n = θ(1), the empirical second moment remains bounded and thus a
finite mean BP approximation becomes available.

Notation

We write [n] for the set of integers {1, 2, . . . , n}. As usual, we write i.i.d. for independent

and identically distributed, lhs and rhs for left-hand side and right-hand side. We use
d−→

,
P−→,

a.s.−→ for convergence in distribution, in probability and almost surely, respectively.
We use the Landau symbols o(·), O(·),�(·) in the usual way. For sequences of random
or deterministic variables Xn, Yn we further write Xn = oP(Yn) and Xn = OP(Yn) if the

sequence Xn/Yn
P−→ 0 and is tight, respectively.

Constants are typically denoted by c in lower and C in upper bounds (possible with
indices to indicate which constant is coming from which bound), and their precise values
might change from line to line. We introduce (C(r), C(b)) := (C(r), C(b)). At some time t
along the matching or the exploration, for a set of vertices At we denote the set of unpaired
half-edges at that moment attached to vertices in At as H(At ) and its size by H(At ). Thus
H(At ) = ∑

v∈At

∑

s half-edge attached to v 1s not paired yet. When the time is set to be 0, H(A) =
∑

v∈A dv . We write dv for the degree of vertex v.

1.4 Overview of the Proof

To determine the distance between vr , vb, we start growing two clusters that we call red and
blue, respectively, in a breadth-first-search manner, and see how these two clusters reach the
highest degree vertices. As long as the two clusters are disjoint, the growth is not necessarily
simultaneous, i.e., we might stop the growth of one color earlier. To describe the growing
clusters, we extensively use the fact that in the configuration model half-edges can be paired
in an arbitrarily chosen order. This allows for a joint construction of the graph together with
the growing of the two colored clusters. In Proposition 2.1 (Section 2) below, we show that
the highest degree vertex v�

q , q ∈ {r, b} that is reached by this path is of degree

dv�
q

∼ nβn(τ−2)b
(q)
n (βn )

, (1.32)

for q ∈ {r, b}, respectively. The total length of this path from vq is Tq(βn) as in (1.15)
for q ∈ {r, b}. The proof of this proposition has the following ingredients: We couple the
initial stages of the growth to two independent branching processes (BPs) (Section 2.1). The
coupling fails when one of the colors (wlog we assume it is red) reaches size n�′

n for some
�′
n > 0 sufficiently small. From the half-edges attached to the BP cluster of vq , q ∈ {r, b},

we build a path through higher and higher degree vertices to a vertex with degree at least
∼ n(τ−2)βn . In Lemma 2.5 we give an upper bound on the degree of the maximal-degree
vertex reached at any time t (n�′

n ) + i of the exploration, implying that in Tq(βn) hops no

vertex of degree higher than ∼ nβn(τ−2)b
(q)
n (βn )

is reached from vq . Thus, this lemma serves
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also as a building block for the proof of Proposition 2.1, but beyond that, it also enables us
to show two other important things, that form the content of Proposition 3.1 (Section 3):

(1) An early meeting is highly unlikely, i.e., the clusters C(q)

Tq (βn)
are PY -whp disjoint.

(2) The quantity in (1.32) bounds also the total number of half-edges attached to the explored
cluster C(q)

Tq (βn)
.

Finally, in Sect. 4 we finish the proof of Theorem 1.8. For the lower bound, we count the
number of z-length paths between the two disjoint clusters C(q)

Tq (βn)
. Here, we use a first

moment method (i.e., we show that the expected number of paths is o(1)) when z is less than
the expression in (1.26). For the upper bound, we establish the existence of a path of length
as in (1.26) between v�

r , v
�
b. We do this using a second moment method. This completes the

proof of Theorem 1.8. We prove Theorems 1.13 and 1.15 in Sect. 5. In Sect. 6 we compare
Theorem 1.8 in the special case βn ≡ 1/(τ − 1) to the result in [31].

2 Distance from the Hubs

In this section we analyse the distance of vr , vb from the highest-degree vertices. The con-
struction is similar to that of [6, Sect. 3], however, since Assumption 1.1 on Fn is weaker
than the one in [6], we need to modify the proof. Recall that we call the vertices with degree
at least nβn(τ−2) hubs and recall Tq(βn), b

(q)
n (βn) from (1.15) More precisely, let us define

hubs := {v ∈ [n] : dv ≥ nβn(τ−2)}, (2.1)

and for a set of vertices A ⊆ [n] and a vertex v ∈ [n],
dG(v,A) := min

a∈A dG(v, a). (2.2)

The next proposition determines the distance of the uniformly chosen vertices vr , vb from
the hubs:

Proposition 2.1 (Distance from the hubs) Let us consider the configuration model on n
vertices with empirical degree distribution that satisfies Assumption 1.1, and let vr , vb be
two uniformly chosen vertices. Then, for q ∈ {r, b}, PY -whp,

dG(vq , hubs) = Tq(βn) = log log n + log
(

βn/Y
(q)
n
)

| log(τ − 2)| − 1 − b(q)

n (βn).

More precisely, PY -whp there is a vertex v�
q ∈ hubs at distance Tq(βn) away from vq with

degree

dv�
q

∼ nβn(τ−2)b
(q)
n (βn )

, (2.3)

while all vertices at distance at most Tq(βn) − 1 from vq are not hubs.

The main goal of this section is to prove this proposition. To show the upper bound, the
proof has two main steps: the initial stage of the breadth-first-search exploration (BFS) is
coupled to branching process trees (Sect. 2.1), while the later stage uses a decomposition of
the vertices with degrees that are polynomial in n into shells (Sect. 2.2). To show the lower
bound, we provide an upper bound on the degrees reached by the BFS in any shell at the
time of first reaching that particular shell, see Lemma 2.5 (Sect. 2.3). This method is novel
compared to the one in [31].
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2.1 Coupling the Initial Stages of BFS to Branching Processes

In this sectionwe investigate the initial stage of the spreading cluster of vr , vb. In the construc-
tion of the configuration model, at any time that we construct the matching of the half-edges,
we are allowed to choose one of the not-yet-paired half-edges arbitrarily, and pair it to a
uniformly chosen other not-yet-paired half-edge. Hence, we can do the pairing in an order
that corresponds to the breadth-first-search (BFS) exploration started from vr , vb. That is,
first we pair all the outgoing half-edges from the sources vr , vb (distance 1), then we pair
the outgoing half-edges from the neighbors of the source vertices (distance 2), and so on,
in a breadth-first-search manner. Whenever we finish pairing all the half-edges attached to
vertices at a given graph distance from the source vertices, we increase the distance by 1.
This process of joint construction of the BFS exploration and graph building is often called
the exploration process in the literature.

Recall that C(r)
t , C(b)

t denotes the subgraph that is at distance at most t from vr , vb. [7,
Proposition 4.7] (see also [6, Lemma 2.2]) shows that that the number of vertices and their
forward degrees6 in the exploration process can be coupled to i.i.d. degrees having distribution
function F�

n from (1.6) as long as the total number of vertices of the colored clusters is not
too large. There, a different assumption is posed on the maximal degree in the graph, so
we shortly adjust the proof of [7, Proposition 4.7] to our setting below in Lemma 2.2. The
distribution F�

n arises from the fact that as long as the set of explored vertices is relatively
small, a forward degree j is generated when the uniformly chosen half-edge of a pairing
belongs to a vertex with degree j + 1. The probability of choosing a half-edge that belongs
to a vertex with degree j + 1 is approximately equal to ( j + 1)P(Dn = j + 1)/E[Dn], and
thus F�

n and thus F� are the natural candidates for the forward degrees in the exploration
process.

Lemma 2.2 (Coupling error of the forward degrees) Consider the configuration model with
degree sequence that satisfies Assumption 1.1. Then, in the exploration process started from
two uniformly chosen vertices vr , vb, the forward degrees (X (n)

k )k≤sn of the first sn newly
discovered vertices can be coupled to an i.i.d. sequence D�

n,k from distribution D�
n with the

following error bound

P(∃k ≤ sn, D
�
n,k �= X (n)

k ) ≤ Cs2nn
βn(1+ε)−1 + Cn−(τ−2−2ε)/(τ+ε)s2(τ−1+ε/2)/(τ+ε)

n (2.4)

If further Assumption 1.3 holds, then there is a coupling of (X (n)

k , D�
n,k, D

�
k )k≤sn with

P(∃k ≤ sn, D
�
n,k �= X (n)

k or D�
n,k �= D�

k ) ≤ snn
−βnκ + Cs2nn

βn(1+ε)−1

+ Cn−(τ−2−2ε)/(τ+ε)s2(τ−1+ε/2)/(τ+ε)
n .

(2.5)

By choosing sn in Lemma 2.2 so that the rhs of the bound in (2.5)still tends to zero, we obtain
the following corollary:

Corollary 2.3 (Whp coupling of the exploration to two BPs) In the configuration model
satisfying Assumptions 1.1 and 1.3, let t be such that

|C(r)
t ∪ C(b)

t | ≤ min{nβn(κ−δ), n(1−βn(1+ε)−δ)/2, n−(τ−2−ε−δ)/(2(τ−1+ε/2))} (2.6)

6 Forward degree means the number of newly available half-edges when a new vertex is discovered, that will
be paired to new vertices later on.
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for some δ > 0. Then (C(r)
t , C(b)

t ) can be whp coupled to two i.i.d. BPs with generation sizes
(Z (r)

k , Z (b)
k )k>0 with distribution F� for the offspring in the second and further generations,

and with distribution F for the offspring in the first generation.

Proof of Lemma 2.2 We would like to couple the forward degrees (X (n)

k )k≤sn in the explo-
ration to an i.i.d. sample of size sn from distribution D�

n as in (1.7)as well as to D� and
estimate the coupling error. The idea of the coupling is to achieve size-biased sampling with
and without replacement of the vertices at the same time: this is [8, Construction 4.2] that
we informally recall here. Let us write Ln for the list of half-edges.

We use a sequence of uniform random variables Uk ∈ [0, 1]. Then, we sample a uniform
half-edge hk fromLn , namelywe set hk to be the j th element ofLn ifUk ∈ (( j−1)/	n, j/	n].
We sample the i.i.d. D�

n,k by setting D�
n,k to be dv(hk ) − 1, where v(h) denotes the vertex that

h is incident to.
At the same time, we keep a list of already sampled vertices Sk := {vr , vb, v(h1), . . . ,

v(hk)}. As long as v(hk) /∈ Sk−1, we can set B(n)

k := dv(hk ) − 1, this quantity describes the
number of brother half-edges of a newly discovered vertex via a pairing. Note that in this
sampling procedure there is no pairing of the half-edges yet. To ensure that the exploration
cluster is a tree, at each step k we yet have to check if any of these B(n)

k = dv(hk )−1 half-edges
create cycles when being paired, i.e., they shall be paired to vertices in Sk−1. We write X (n)

k
to be B(n)

k minus those half-edges that shall be paired to vertices in Sk−1.
Thus, the coupling to a BP tree with offspring distribution D�

n can fail in two ways:
either v(hk) ∈ Sk−1 and the coupling between B(n)

k , D�
n,k fails (depletion-of-points effect),

or X (n)

k < B(n)

k and some of the B(n)

k half-edges create cycles (cycle-creation effect).
Introducing the σ -algebra Gk generated by vr , vb and the first k draws, [8, Lemma 4.3]

bounds the coupling error between B(n)

k , D�
n,k :

P
(

B(n)

k �= D�
n,k | Gk−1

) ≤ 1

	n

(

dvr + dvb +
k−1
∑

s=1

(B(n)

s + 1)

)

, (2.7)

while [8, Lemma 4.3] estimates the probability of creating a cycle at step k:

P
(

X (n)

k < B(n)

k | Gk−1
)

≤ B(n)

k

	n − 1 −
(

dvr + dvb +∑k
s=1

(

B(n)
s + 1

)

)

(

dvr + dvb +
k
∑

s=1

(B(n)

s + 1)

)

. (2.8)

Under Assumption 1.1 the maximal degree is at most nβn(1+ε) in the graph, and 	n = E[Dn]n
is of order n. Combining these observations, (2.7)is at most Cknβn(1+ε)−1. Summing this
bound over k ≤ sn , we obtain that

P

(

∃k ≤ sn, B
(n)

k �= D�
n,k

)

≤ Cs2nn
βn(1+ε)−1. (2.9)

Then, on the event {∀k ≤ sn : B(n)

k = D�
n,k}, B(n)

s in (2.8)can be replaced by the i.i.d. D�
n,s .

Taking expectations of the rhs (2.8)does not work, since E[D�
n] is infinite. Thus we apply a

truncation argument. Take ε > 0 so that s(τ−1+ε)/(τ−2)
n = o(n). Then the denominator on

the rhs of (2.8)is at least cn for some c > 0. Further, for some truncation value Kn to be
chosen later that satisfies that snKn = o(n),
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P

(

∃k ≤ sn, X
(n)

k �= B(n)

k | ∀k ≤ sn, B
(n)

k = D�
n,k

)

≤ P

(

∃ j ≤ sn, D
�
n, j > Kn

)

+ 1

cn

sn
∑

k=1

k
∑

s=1

E

[

D�
n,k D

�
n,s1{∀ j≤sn :D�

n, j≤Kn}
]

. (2.10)

where we used that on the event that
{∀k ≤ sn : B(n)

k = D�
n,k, D

�
n,k ≤ Kn,

}

the denominator
on the rhs of (2.8) is at least cn for some c > 0. Using (1.7) the first term on the rhs is at
most sn L�

n(Kn)K
−(τ−2)
n ≤ snK

−(τ−2)+ε
n for arbitrarily small ε > 0 for sufficiently large n,

while the second term is at most Cn−1K 2
n s

2
n . Making the order of the two error terms to be

equal yields that the best choice of truncation value is at

Kn := (n/sn)
1/(τ+ε). (2.11)

Note that the initial criterium that snKn = o(n) is satisfied for all sn = o(n), while Kn is a
polynomial of n with strictly positive exponent whenever sn = o(n(1−ε)/(τ−1)). With Kn in
(2.11) the sum of the error terms in (2.9) becomes

P

(

∃k ≤ sn, X
(n)

k �= B(n)

k | ∀k ≤ sn, B
(n)

k = D�
n,k

)

≤ Cn−(τ−2−2ε)/(τ+ε)s2(τ−1+ε/2)/(τ+ε)
n

(2.12)

which tends to zero as long as sn = o
(

n(τ−2−ε)/2(τ−1+ε/2)
)

for some arbitrarily small ε > 0.
Note that we have neglected coupling the forward degree of vr , vb to two i.i.d. copies

of Dn . This coupling can be done in a very similar way, by choosing with and without
replacement two uniform numbers from [n], with a coupling error at most 1/n, which is
negligible compared to the rhs of (2.9) The probability that any of the dvr or dvb half-edges
form cycles is at most of order nβn(1+ε)/	n , which again can be merged into the rhs of (2.9)
This finishes the proof of (2.4)

Next we extend the coupling between
(

X (n)

k , D�
n,k

)

to additionally couple D�
k to them,

using Assumption 1.3. On the event that X (n)

k = D�
n,k = 	, we use the optimal coupling that

realizes the total variation distance between D�
n and D�. Namely,

P

(

D�
k = 	 | X (n)

k = D�
n,k = 	

)

:= min
{

P(D� = 	), P
(

D�
n = 	

)}

P
(

D�
n = 	

)

= min

{

1,
P (D� = 	)

P
(

D�
n = 	

)

}

. (2.13)

One can set the other possible values of D�
k as described e.g. in [38, Chapter 1]. Nevertheless,

the coupling error equals

P
(

D�
k �= D�

n,k

) =
∑

	≥1

(

1 − min
{

P(D� = 	), P
(

D�
n = 	

)}

)

= dTV

(

F�, F�
n

)

.

One can realize this coupling by using another independent uniform variable ˜Uk to set the
value of D�

k once the value of D
�
n,k is determined. Thus, we obtain that

P
(∃k ≤ sn, D

�
n,k �= D�

k

) ≤ dTV

(

F�
n , F�

) ≤ snn
−κ . (2.14)

Similarly, we can couple dvr , dvb to two i.i.d. copies of D with a coupling error at most
2dTV(Fn, F). This finishes the proof of (2.5) ��

123



242 R. van der Hofstad, J. Komjáthy

A theorem by Davies [16] describes the growth rate of a branching process with a given
offspring distribution G that satisfies (1.7) that we describe here informally. Let ˜Zk denote
the k-th generation of a branching process with offspring distribution given by a distribution
function G, that can be written in the form7 as in (1.7) and (1.5) for some τ ∈ (2, 3) and
some x0 > 0 for all x ≥ x0. Then (τ −2)k log

(

˜Zk ∨ 1
)

converges almost surely to a random
variable ˜Y . Further, the variable ˜Y has exponential tails: if J (x) := P(˜Y ≤ x), then

lim
x→∞

− log(1 − J (x))

x
= 1. (2.15)

We can apply Davies’ theorem to each subtree of the two roots of the two i.i.d. BPs from
Corollary 2.3, to obtain that the corresponding convergence in (1.12) in Definition 1.6. See
[6, Lemma 2.4] for more details.

Recall from Corollary 2.3 that the coupling of the forward degrees in the BP and in the
exploration fails when the total size of the BPs is too large, i.e., when (2.6)is not satisfied.
Thus let us set8

�′
n := (τ − 2)min {βnκ, (1 − βn(1 + ε))/2, (τ − 2 − ε)/(2(τ − 1 + ε/2))} . (2.16)

Without loss of generality we assume that the cluster of vr reaches size n�′
n first (otherwise

we switch the indices r, b). Thus, let us define

t
(

n�′
n

)

= inf
{

k : Z (r)
k ≥ n�′

n

}

. (2.17)

From the definition (1.11) an elementary rearrangement yields that (conditioned on Y (n)
r ),

t (n�′
n ) = log

(

�′
n/Y

(n)
r
)+ log log n

| log(τ − 2)| + 1 − a(r)
n , (2.18)

where

a(r)
n =

{

log
(

�′
n/Y

(n)
r
)+ log log n

| log(τ − 2)|

}

. (2.19)

Note that 1 − a(r)
n in (2.18) is there to make t (n�′

n ) equal to the upper integer part of the
fraction on the rhs of (2.18). Due to this effect, the last generation has a bit more vertices
than n�′

n , namely

Z (r)

t (n�′
n )

= n�′
n(τ−2)a

(r)
n −1 =: mr , (2.20)

We obtain this expression by rearranging (1.11) and using the value t (n�′
n ) from (2.18). The

definition of �′
n in (2.16) and a

(r)
n ∈ [0, 1) implies that the exponent �′

n(τ −2)a
(r)
n −1 is still so

small that the condition (2.6) in Corollary 2.3 is satisfied. Similarly, from (1.11) and (2.18),
the blue cluster at this moment has size

Z (b)

t (n�′
)
= n�′

n(τ−2)a
(r)
n −1Y (n)

b /Y (n)
r =: mb, (2.21)

7 Actually the theorem by Davies in [16] is somewhat more general, since it allows for a slightly larger class
of slowly-varying functions than the criterion in (1.5) Nevertheless, the theorem applies for the case described
in (1.7)and (1.5)
8 The only reason to denote this quantity by �′

n is to be consistent with the notation in [6].
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where the assumption that red reaches size n�′
n first is equivalent to the assumption that

Y (n)

b /Y (n)
r ≤ 1. This assumption together with (2.20) as well as the double-exponential growth

apparent from (1.12) ensures that the total size of the two BPs is less than n�n and thus
Corolllary 2.3 still holds. Note that mr ,mb are random variables that are measurable wrt
F�′

n
.

2.2 Short Path to the Hubs Through Shells

To provide an upper bound on the distance of vq and the hubs for q ∈ {r, b}, as well as to
show (2.3) we build a path from C(q)

t (n�′
n )

to the hubs. Let us set C2 := max{C1,C�
1}, where

C1,C�
1 are the constants in the exponent in (1.5) for Ln, L�

n , respectively, and define the
function

h(x) := exp

{

2C2

(τ − 2)γ
(log x)γ

}

. (2.22)

We shall repeatedly use that for any possible Ln, L�
n satisfying (1.5) as x → ∞,

min
{

Ln

(

x1/(τ−2)
)

, L�
n

(

x1/(τ−2)
)}

h(x) → ∞, (2.23)

max
{

Ln

(

x1/(τ−2)
)

, L�
n

(

x1/(τ−2)
)}

/h(x) → 0. (2.24)

Recall mq from (2.20), (2.21) and that they are measurable wrt F�′
n
. Generally in the rest of

the paper, random variables measurable wrt F�′
n
are denoted by small letters, since they can

be treated as constants under the measure PY in (1.14), and this is the meaure wemostly work
with. In order to build the path, for both q ∈ {r, b} we decompose the high-degree vertices
in the graph into the following sets, that we call shells:

�
(q)

i := {

v : dv > u(q)

i

}

, (2.25)

where u(q)

i is defined recursively by

u(q)

i+1 =
(

u(q)

i

h(u(q)

i )

)1/(τ−2)

, u(q)

0 :=
(

mq

h(mq)

)1/(τ−2)

. (2.26)

Setting u(q)

−1 := mq , we obtain by iteration

u(q)

i = m(τ−2)−(i+1)

q /

i+1
∏

k=1

h
(

u(q)

i−k

)(τ−2)−k

.

Clearly, u(q)

i ≤ m(τ−2)−(i+1)

q . Using this upper bound to estimate the arguments of the function
h in the denominator, as well as (2.22), the following lower bound holds with Kγ = 1 −
(τ − 2)−(1−γ ):

u(q)

i ≥ m(τ−2)−(i+1)

q exp

{

− 2C2

Kγ (τ − 2)γ
(τ − 2)−(i+1)(logmq)

γ

}

. (2.27)

Sincemq tends to infinity with n (see (2.20), (2.21) and γ < 1, the second factor is of smaller
order than the first factor for all sufficiently large n. This observation together with the upper
bound yields that for any fixed i ,
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u(q)

i ∼ m(τ−2)−(i+1)

q , (2.28)

in the sense of (1.5). Note that (τ − 2)−1 > 1, thus u(q)

i is growing and �
(q)

i ⊃ �
(q)

i+1.
To show that the initial stage (coupling to BPs) and the paths through shells has nonzero

intersection, we will use the following claim:

Claim 2.4 Let Xi , i = 1, . . . ,m be i.i.d. random variables from distribution F�
n or F�.

Then

P

(

max
i∈[m] Xi <

( m

h(m)

)1/(τ−2)
)

≤ exp
{

− exp
{ C�

1

(τ − 2)γ
(logm)γ

}}

→ 0. (2.29)

Proof We show it for F�
n . The proof for F

� is identical. Clearly

P

(

max
i∈[m] Xi <

( m

h(m)

)1/(τ−2)
)

= F�
n

(

( m
h(m)

)1/(τ−2)
)m

≤ exp
{

m
(

1 − F�
n

(

( m
h(m)

)1/(τ−2))
)}

,

and the rest follows by using the function h from (2.22) as well as the form of F�
n from (1.7),

in particular the relation in (2.23).

Proof of Proposition 2.1, upper bound By the coupling established in Corollary 2.3, condi-
tioned on the size of the last generation thatwe denote bymq , the degrees in the last generation
of the two BPs are an i.i.d. (either from F�

n or from F�). Claim 2.4, applied conditionally on
mq , ensures that whp there are vertices with degree at least u(q)

0 = (mq/h(mq))
1/τ−2 in the

last generation of the two BPs, establishing that PY -whp

C(q)

t (n�′
n )

∩ �
(q)

0 �= ∅. (2.30)

The next step is to show that PY -whp for all i such that �(q)

i+1 �= ∅,

�
(q)

i ⊂ N (�
(q)

i+1), (2.31)

where N (S) stands for the set of vertices that are neighbors of S (Fig. 1).
This statement can be obtained by a modification of [6, Lemma 3.4] that we provide here

for the reader’s convenience. Recall that H(A) denotes the number of half-edges attached to
vertices in a set A.

The algorithm to generate the configuration model makes it possible that when checking
the connection of a vertex v ∈ �

(q)

i , we can start by pairing the half-edges of v one after
another. Given H(�

(q)

i+1), the probability that a half-edge is not connected to any of the half-
edges attached to vertices in�

(q)

i+1 is at most 1−H(�
(q)

i+1)/	n . Since we can pair at least u
(q)

i /2
half-edges before all the half-edges of v are paired9, by a union bound for all v ∈ H(�

(q)

i ),

PY

(∃v ∈ �
(q)

i : v � �
(q)

i+1 | H(�
(q)

i+1)
) ≤ |�(q)

i |
(

1 − H(�
(q)

i+1)

	n

)u(q)
i /2

≤ n exp
{−Cu(q)

i u(q)

i+1(1 − Fn(u
(q)

i+1))
}

. (2.32)

By using the lower bound in (1.5) as well as the upper bound u(q)

i+1 ≤ (

u(q)

i

)1/(τ−2)
, (see also

(2.23)),

u(q)

i u(q)

i+1

(

1 − Fn(u
(q)

i+1)
) = h(u(q)

i )Ln
(

u(q)

i+1

) ≥ exp
{

˜C(τ − 2)−i (logmq)
γ
}

,

9 This is since in the worst case scenario the first u(q)

i /2 half-edges are paired all back to half-edges of the
same vertex v.
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Fig. 1 An illustration of the
layers and the mountain climbing

phase at time t (n�′
n ) + 3.

Disclaimer: the degrees on the
picture are only an illustration

t = t(n�′) + 3
n1/(τ−1)

u0

u1

u2

u3

u4

u5

n
τ−2
τ−1

for some ˜C > 0. Since mq ((2.20), (2.21)) tends to infinity with n, the bound in (2.32) tends
to zero as n → ∞ even when we sum over i ≥ 1. This establishes (2.31).

The coupling to two BPs combined with (2.30) and (2.31) establishes the existence of a
path to the hubs. This provides an upper bound on the distance between vr , vb and the hubs.
It remains to calculate the length of these paths.

We write i�(q) for the last index when �
(q)

i is nonempty, i.e., by (1.4),

i�(q) := sup
{

i : u(q)

i ≤ nβn
}

. (2.33)

Some calculation using the value of mq from (2.20), combined with (2.28) and (2.27) shows
that

i�(r) = −1 +
log
(

βn/
(

�′
n(τ − 2)a

(r)
n −1

) )

| log(τ − 2)| − b(r)
n (βn) + oPY (1), (2.34)

where b(r)
n (βn) is the fractional part of the previous term on the rhs. Using the value of a(q)

n

from (2.19), plus the fact that {x − 1 + {y}} = {x + y}, we get that

b(r)
n (βn) =

{

log(βn/�
′
n)

| log(τ − 2)| + a(r)
n − 1

}

=
{

log(βn/Y
(n)
r ) + log log n

| log(τ − 2)|

}

, (2.35)

exactly as defined in (1.15). Similar calculation for q = b yields

i�(b) = −1 + log(βn/�
′
n(τ − 2)a

(r)
n −1)) + log(Y (n)

r /Y (n)

b )

| log(τ − 2)| − b(b)
n (βn) + oPY (1), (2.36)

where b(b)
n (βn) is the fractional part of the previous term on the rhs. Again, some calculation

yields that b(b)
n (βn) is exactly as in (1.15). Note that the definition of �′

n in (2.16) guarantees
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that the ratio βn/�
′
n is bounded, and hence i�(q) is a tight random variable (measurable wrt

F�′
n
). From (2.28) and (2.34) and (2.36) respectively, one can calculate that

u(q)

i�(q)
∼ nβn(τ−2)b

(q)
n (βn )

, (2.37)

and the error factor as in (2.27) is oPY (1), since i�(q) does not tend to infinity with n. Thus,
the total length of the constructed path is, for q ∈ {r, b},

Tq(βn) = t (n�′
n ) + i�(q) = log log(nβn ) − log Y (q)

n

| log(τ − 2)| − 1 − b(q)

n (βn), (2.38)

establishing the upper bound on dG(vq , hubs) in Proposition 2.1. Note that Tq(βn) only
depends on the value �′

n through the approximating variables Y (q)
n , and b(q)

n (βn) is exactly the

fractional part of the expression on the rhs of Tq(βn). Since also Y
(q)
n

d−→ Yq irrespective of
the choice of �′

n , this establishes that the choice of �′
n is not relevant in the proof (at least not

in the limit), but more a technical necessity. ��
2.3 Upper Bound on the Degrees in the BFS

Now we turn towards providing a matching lower bound for the distance from the hubs.
Similarly as in (2.26), let us define, for q ∈ {r, b},

û(q)

0 := (mqh(mq))
1/(τ−2),

û(q)

i+1 := (

û(q)

i h(̂u(q)

i )
)1/(τ−2)

,

̂�
(q)

i := {v ∈ CMn(d) : dv ≥ û(q)

i },
(2.39)

Note that û(q)

i grows faster than u(q)

i since here we multiply by h instead of dividing by it.
The next lemma handles the upper bound on the maximal-degree vertex reached at any

time t (n�′
n ) + i , but first some definitions. We say that a sequence of vertices and half-edges

π := (π0, s0, t1, π1, s1, t2, . . . , tk, πk) forms a path in CMn(d), if for all 0 < i ≤ k, the
half-edges si , ti are incident to the vertex πi and (si−1, ti ) forms an edge between πi−1, πi .

For q ∈ {r, b}, we say that a path is q-good if deg(πi ) ≤ û(q)

i holds for every i . Otherwise
we call it q-bad. We further decompose the set of q-bad paths in terms of where they ‘turn’
q-bad:

BadP (q)

k :=
{

(π0, s0, t1, π1, s1 . . . , tk, πk) is a path,

π0∈C(q)

t (n�′
n )

, deg(πi )≤ û(q)

i ∀i ≤ k − 1, deg(πk)> û(q)

k

}

.
(2.40)

The following lemma shows that q-bad paths PY -whp do not occur:

Lemma 2.5 For some constant C > 0, the following bound on the probability of having any
bad paths holds for color q ∈ {r, b}:

PY

(∃k ∈ [0, i�(q)] : BadP (q)

k �= ∅
) ≤ C exp

{−C(logmq)
γ
}

. (2.41)

Before we prove this lemma, we need the following technical claim:

Claim 2.6 Let
(

D�
n,i

)

i≤m
be i.i.d. from distribution F�

n or F�. Then there exists a 0 < C <

∞, so that

PY

(

m
∑

i=1

D�
n,i ≥ (mh(m))1/(τ−2)

)

≤ exp
{−C(logm)γ

}

. (2.42)
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Further, for any y ∈ [0, nβn ],
∑

dπ≥y

dπ

	n
≤ L�,up

n (y)y2−τ (2.43)

where we denote by L�,up
n the upper bound in (1.5) on L�

n. Next, the empirical truncated
second moment satisfies for all yn → ∞ and large enough n that

∑

π :dπ≤yn

dπ (dπ − 1)

	n
≤ 2

3 − τ
(yn)

3−τ L�,up
n (yn). (2.44)

Proof The proof of (2.43) is the probably the easiest. Namely, by the definition of the empir-
ical distribution as well as F�

n the sum can be rewritten as follows:

∑

dπ≥y

dπ

	n
=
∑

j≥y

∑

v∈[n] j1{dv= j}
	n

= 1 − F�
n (y − 1), (2.45)

and an application of (1.7) establishes (2.43). Next, (2.44) can be rewritten similarly,

∑

π :dπ≤yn

dπ (dπ − 1)

	n
=
∑

j≤yn

( j − 1)

∑

v∈[n] j1{dv= j}
	n

=
∑

j≤yn

( j − 1)P(D�
n = j − 1)

≤
∑

j≤yn

(

1 − F�
n ( j)

) ≤
∑

j≤yn

L�
n( j)

jτ−2 ≤
∑

j≤yn

L�,up
n ( j)

jτ−2 . (2.46)

To obtain the second line, we used the usual trick to relate the expectation to the tail of a
distribution, namely,
∑

j≤yn

( j − 1)P
(

D�
n = j − 1

) =
∑

j≤yn

∑

s≤ j−1

P
(

D�
n = j − 1

)=
∑

s≤yn−1

∑

s< j≤yn

P
(

D�
n = j−1

)

≤
∑

s≤yn−1

P
(

D�
n ≥ s

) =
∑

s≤yn

(

1 − F�
n (s)

)

.

The condition that yn → ∞ as n → ∞ enables us to apply the direct half of Karamata’s
theorem10 (see [9, p. 26]), and obtain that for all large enough n, the following bound holds
on the rhs of (2.46):

∑

j≤yn

L�,up
n ( j)

jτ−2 ≤ 2

3 − τ
(yn)

3−τ L�,up
n (yn), (2.47)

finishing the proof of (2.44). The proof of (2.42) is the trickiest, we handle it with a truncation
method. Let us shortly write Mm := (mh(m))1/(τ−2). First we use a union bound:

PY

(

m
∑

i=1

D�
n,i ≥ Mm

)

≤ P
(∃i ≤ m : D�

n,i ≥ Mm
)

+P

(

m
∑

i=1

D�
n,i1{D�

n,i<Mm } ≥ Mm

)

. (2.48)

10 Here we use that the upper bound L
�,up
n on the function L�

n is slowly varying.
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Then, we estimate the first term on the rhs of (2.48) again by a union bound:

P
(∃i ≤ m : D�

n,i ≥ Mm
) ≤ m

(

1 − F�
n (Mm)

) = L�
n(Mm)/h(m). (2.49)

We can use Markov’s inequality on the second term on the rhs of (2.48):

PY

(

m
∑

i=1

D�
n,i1

{

D�
n,i<Mm

} ≥ Mm

)

≤
mE

[

D�
n,i1

{

D�
n,i<Mm

}

]

Mm
≤ C

mM3−τ
m L�

n(Mm)

Mm
,

(2.50)

where we have used that the expectation in the numerator equals precisely the truncated
empirical second moment as in (2.44) with yn := Mm , thus this expectation can be handled
in the same way as the rhs of (2.46). After elementary calculation, the sum of rhs of (2.49)
and (2.50) equals

(C + 1)
L�
n(Mm)

h(m)
≤ (C + 1) exp

{

− C2

(τ − 2)γ
(logm)γ

}

. (2.51)

This, together with (2.48) establishes (2.42). ��
Proof of Lemma 2.5 The statement can be proved by path-countingmethods in the sameway
as [6, Lemma 5.2] in the Appendix of that paper. Some minor modifications are needed to
that proof, for two reasons: First, Assumption 1.1 imposes an assumption on the empirical
degree distribution Fn and the degrees are no longer i.i.d.. This makes certain estimates about
truncated empirical moments easier (i.e., (2.43) and (2.44)). On the other hand, Assumption
1.1 is weaker than the assumption on the degrees there, compare to [6, (1.1)]. As a result, the
recursion of û(q)

i uses the function h as a multiplier instead of the constant function C log n.
To make the argument easy to follow here, we recall the main steps in the proof and highlight
differences only.

First of all, formulas [6, (A.3)–(A.5)] that count the expected number of bad paths apply
word-for-word. That is, the expected number of paths in CMn(d) through a fixed sequence
of vertices (π0, π1, . . . , πk) equals

k
∏

i=1

1

	�
n − 2i + 1

dπ0

(

k−1
∏

i=1

dπi (dπi − 1)

)

dπk , (2.52)

where 	�
n denotes the number of unpaired half-edges at the moment of counting these paths.

It is not hard to see (using the sizes mq in (2.20) (2.21)) that 	�
n = 	n(1 − oP(1)) when we

apply this to a path emanating from C(q)

t (n�′
n )
.

This formula holds for any fixed sequence of vertices. We can count the expected number
of q-bad paths in BadP (q)

k when we impose the same restrictions on πi as in (2.40), and sum
over all possible such options:

EY

[

BadP (q)

k |] ≤ eCk2/	n
∑

π0∈C(q)

t (n�′
n )

dπ0

k−1
∏

i=1

(

∑

πi :dπi ≤û(b)
i

dπi (dπi − 1)

	�
n

)(

∑

πk∈[n]
dπk ≥û(b)

k

dπk

	�
n

)

.

(2.53)

The next step is to estimate the different factors on the rhs of (2.53): here, the two proofs
separate. In fact, we can use the bounds in Claim 2.6, and then we can spare all the arguments
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between [6, (A.6)–(A.9)]. Let En :=
{

∑mq
i=1 D

�
i ≤ û(q)

0

}

, so that En holds PY -whp by Claim

2.6, with m := mq . Using the estimates (2.43) and (2.44) in Claim 2.6 with yn = û(q)

i , (2.53)
turns into

EY

[

∣

∣BadP (q)

k

∣

∣ | En
]

≤ û(q)

0 · (û(q)

k

)2−τ
L�,up
n

(

û(q)

k

) ·
k−1
∏

i=1

(

û(q)

i

)3−τ 2

3 − τ
L�,up
n

(

û(q)

i

)

.

(2.54)

This formula replaces [6, (A.11)]. It is an elementary calculation using the defining recursion

(2.39) that û(q)

j ·
(

û(q)

j+1

)3−τ

h
(

û(q)

j

)

= û(q)

j+1. Applying this equation to j = 0, . . . , k − 2

sequentially, we arrive at the identity

û(q)

0 · (û(q)

k

)2−τ
h
(

û(q)

k−1

) ·
k−1
∏

i=1

(

û(q)

i

)3−τ
h
(

û(q)

i−1

) = 1. (2.55)

Comparing (2.54) to (2.55), we see that11

EY

[|BadP (q)

k | | En
] ≤

k−1
∏

i=0

2

3 − τ

L�,up
n

(

û(q
i+1

)

h
(

û(q)

i

) . (2.56)

Next we show that for all n large enough, the rhs of (2.56) tends to zero even when summed
over all k ≥ 1. For this, using the recursion on û(q)

i in (2.39) as well as the function h in
(2.22),

L�,up
n

(

û(q
i+1

) = exp
{

C�
1

(

log
(

û(q)

i

)1/(τ−2) + 2C2

(

log
(

û(q)

i

)1/(τ−2)
)γ )γ }

= exp

{

C�
1

(

log
(

û(q)

i

)1/(τ−2)
)γ
(

1 + 2C2

(

log
(

û(q)

i

)1/(τ−2)
)γ−1

)γ}

≤ exp

{

3C�
1

2

(

log
(

û(q)

i

)1/(τ−2)
)γ
}

, (2.57)

where in the inequality we have used that since γ < 1 and û(q)

i tends to infinity with n, for all
n large enough the last factor in the rhs of the second line is at most 3/2. The denominator
of the i th factor in (2.56) has the exact same form, except there the constant multiplier in the
exponent is at least 2C�

1. Thus, the rhs of (2.54) is at most

EY

[|BadP (q)

k | | En
] ≤

k−1
∏

i=0

2

3 − τ
exp

{

−C�
1

2

(

log
(

(

û(q)

i

)1/(τ−2)
))γ

}

≤ 2k

(3 − τ)k
exp

{

−C�
1

2

k−1
∑

i=0

(τ − 2)−(i+2)γ (logmq
)γ

}

, (2.58)

where we used the lower bound û(q)

i ≥ m(τ−2)−(i+1)

q that follows from the recursion (2.39) (see
also (2.60) below) to obtain the second line. Since (τ − 2)−γ > 1, the sum in the exponent

11 Let us compare the inequality (2.56) with the bound O((log n)−k ) on EY [|C(b)adP(q)

k | in [6] that can be
found in the second formula after [6, (A.11)]. In [6] the recursion in (2.39) was used with the special choice
h(x) ≡ C log n, and L�

n was assumed to be a bounded function. Using these, the bound O((log n)−k ) is a
special case of the bound here in (2.56). Thus, (2.56) is a generalisation of the bound in [6] for general choice
of h in the recursion (2.39). The generalisation was necessary since in this paper we allow a wide range of Ln
in (1.4) while in [6] the more restrictive 0 < c ≤ Ln ≤ C < ∞ assumption was set.
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is of order (τ − 2)−kγ (logmq)
γ . So, by Markov’s inequality we obtain for some constant

C > 0 that

PY

(∃k ≥ 1, BadP (q)

k �= ∅
) ≤

∞
∑

k=1

EY

[∣

∣BadP (q)

k

∣

∣

] ≤ C exp
{−C

(

logmq
)γ } → 0

(2.59)

as n → ∞, since mq is a positive power of n under PY (see (2.20), (2.21)). We yet have
to add the case k = 0: note that BadP (q)

0 �= ∅ means that there exists a vertex in the last
generation of the BP with degree at least û(q)

0 . We have already estimated this probability in
(2.49), and the error term obtained in (2.51) can be merged into the rhs of (2.59), establishing
the statement of the lemma in (2.41). ��

Proof of Proposition 2.1, lower bound We argue that Tq(βn) is also whp a lower bound to
reach the hubs, that is, there is whp no path to the hubs shorter than Tq(βn).

On the event
{∀k ∈ [0, i�(q)] : BadP (q)

k = ∅, q ∈ {r, b}}, that occurs PY -whp by Lemma

2.5, we can use the upper bound û(q)

i on the degrees at time t (n�′
n ) + i for all i ≤ i�(q). Hence

we obtain that the time it takes to reach a vertex of degree at least n(τ−2)/(τ−1) is at least

̂i�(q) := inf
{

i : û(q)

i ≥ nβn(τ−2)
}

,

which, considering the double exponential growth of û(q)

i by powers of 1/(τ − 2), is similar
to the definition of i�(q) in (2.33). The lower bound follows once we show that̂i�(q) = i�(q)

holds PY -whp. For this it is enough to show that (2.28) holds also for û(q)

i . From the recursion
(2.39),

û(q)

i = m(τ−2)−(i+1)

q

i+1
∏

k=1

h
(

û(q)

i−k

)(τ−2)−k

. (2.60)

After a somewhat lengthy calculation, using a similar argument as in the second and third
line of (2.57) recursively, we obtain that the product on the rhs is at most

exp

{

2C2

(

log
(

m1/(τ−2)
q

))γ 1

(τ − 2)i+1

i
∑

k=1

1

(τ − 2)k(γ−1)

}

≤ exp

{

˜C
(

log
(

m1/(τ−2)
q

))γ 1

(τ − 2)i+1

}

,

since γ < 1. Recall that mq tends to infinity with n and comparing this to (2.60) as well as
to the definition of ∼ in (1.5). Nevertheless, the product in (2.60) is of much smaller order

than the main termm(τ−2)−(i+1)

q and thus we obtain that (2.28) holds and also that̂i�(q) = i�(q)

PY -whp. This finishes the proof of the lower bound. ��

3 Early Meeting is Unlikely

For the lower bound of Theorem 1.8, we crucially use the following proposition that shows
that the two explorations are disjoint, i.e., the vertices at distance at most Tb(βn) away from
vb are all different from the vertices that are distance at most Tr (βn) away from vr :
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Proposition 3.1 Let us consider the configuration model on n vertices with empirical degree
distribution that satisfies Assumption 1.1, and let vr , vb be two uniformly chosen vertices.
The event

C(r)
Tr (βn)

∩ C(b)
Tb(βn)

= ∅ (3.1)

holds PY -whp. Further, the total number of half-edges attached to vertices in C(r)
Tr (βn)

, C(b)
Tb(βn)

is the same order of magnitude as the degree of v�
q in Proposition 2.1 up to smaller order

correction terms. That is, PY -whp,

H
(

C(r)
Tr (βn)

)

∼ nβn(τ−2)b
(r)
n (βn )

and H
(

C(b)
Tb(βn)

)

∼ nβn(τ−2)b
(b)
n (βn )

. (3.2)

Proof Recall that we write PY (·), EY [·] for probabilities of events and expectations of ran-
dom variables conditioned on F�′

n
. Recall from Lemma 2.5 that the event NoBad :=

{

BadP (q)

k = ∅ ∀k ≤ i�(q) for q ∈ {r, b}} holds PY -whp. Since for any event A, PY (A) ≥
PY (A | NoBad)PY (NoBad), it is enough to show that the event in (3.1) holds with probabil-
ity tending to 1 when conditioned on NoBad.

To prove the proposition we first calculate the total number of free (unpaired) half-edges

going out of the set C(r)
Tq (βn)−	, (that we denote by H

(

C(r)
Tq (βn)−	

)

), for any 	 ∈ [0, i�(q)], q ∈
{r, b}. We do this by counting the number of paths with free ends: we say that a sequence
of vertices and half-edges (π0, s0, t1, π1, s1, t2, . . . , tk, πk, sk) forms a free-ended path of
length k in CMn(d), if for all 0 < i ≤ k, the half-edges si , ti are incident to the vertex πi and
(si−1, ti ) forms an edge between vertices πi−1, πi . Clearly, since the same vertex might be
approached on several paths, the total number of free half-edges in C(q)

Tq (βn)−	 can be bounded
from above by the number of free-ended paths of length Tq(βn)− 	, starting from vr . By the
definition of BadP (q)

k in (2.40), on the event NoBad at time t (n�′
n ) + i , û(q)

i defined in (2.39)
is an upper bound on the degrees of color q vertices. We write Nk(A, free) for the set of,
and Nk(A, free) for the total number of, k-length free-ended paths starting from an unpaired
half-edge that belongs to the set A. Then, since Tq(βn) = t (n�′

n ) + i�(q) (see (2.38)), for any
	 ≤ i�(q),

H
(

C(r)
Tq (βn)−	

)

≤ Ni�(q)−	

(

C(r)

t (n�′
n )

, free
)

, (3.3)

and recall that C(r)

t (n�′
n )

is coupled to the branching process described in Sect. 2.1. Hence, the

degrees in the last generation of the BP phase are i.i.d. having distribution D�
n satisfying

(1.7). When counting free-ended paths through fixed vertices (π0, . . . , πk), (2.52) should be
modified so that we have to choose two half-edges also from the end vertex πk , thus there is
an additional factor dπk − 1 that should multiply (2.52). The effect of this on (2.53) is that
the factor containing πk can be merged into the previous factor:

EY

[

Ni�(q)−	

(

C(r)
t (n�), free

)

| NoBad
]

≤ eCi
2
�(q)

/	n
∑

π0∈C(q)

t (n�′
n )

dπ0 ·
i�(q)−	
∏

i=1

⎛

⎝

∑

πi∈�i

dπi (dπi − 1)

	n

⎞

⎠ , (3.4)

where we have applied the restriction that is valid under the event NoBad: πi ∈ �i , with
�i = {

v ∈ [n] : Dv ≤ û(r)
i

}

. Note that we could use again that 	�
n = 	n(1 − oP(1)) by the
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same argument that was used after formula (2.52). Using (2.42) and (2.44) from Claim 2.6,
we obtain that

EY

[

Ni�(r)−	

(

C(r)
t (n�), free

)

| NoBad
]

≤ û(r)
0 ·

⎛

⎝

i�(r)−	
∏

i=1

2

3 − τ

(

û(q)

i

)3−τ
L�up
n
(

û(q)

i

)

⎞

⎠ e2i
2
�(q)

/	n .

(3.5)

Note that this is similar to (2.54). Indeed, we again sequentially apply the identity û(q)

j ·
(̂u(q)

j+1)
3−τh(̂u(q)

j ) = û(q)

j+1, and then (3.5) turns into

EY

[

Ni�(r)

(

C(r)
t (n�), free

)

| NoBad
]

≤ û(q)

i�(r)−	

⎛

⎝

i�(r)−	−1
∏

i=0

2

3 − τ

L�,up
n

(

û(q
i+1

)

h
(

û(q)

i

)

⎞

⎠ e2i
2
�(q)

/	n .

(3.6)

Combining this with Markov’s inequality and a union bound gives

PY

(

∃	 ≤ i�(q) : H
(

C(r)
Tq (βn)−	

)

≥ û(q)

i�(r)−	 | NoBad
)

≤ e2i
2
�(q)

/	n

i�(q)
∑

	=0

⎛

⎝

i�(r)−	−1
∏

i=0

2

3 − τ

L�,up
n

(

û(q
i+1

)

h
(

û(q)

i

)

⎞

⎠ . (3.7)

Recall again that i�(q) is a tight random variable measurable wrt F�′
n
(see (2.34) and (2.36)),

and 	n = E[Dn]n is of order n. Thus the first factor on the rhs is 1 + oPY (1). Further, in the
analysis below (2.56) we have showed that the sum in the rhs of (3.7) is at most the rhs of
(2.59). Thus we obtain

PY

(

∃	 ≤ i�(q) : H
(

C(r)
Tq (βn)−	

)

≥ û(q)

i�(q)−	 | NoBad
)

≤ C exp
{−C(logmq)

γ
}

. (3.8)

Now, to see that C(r)
Tr (βn)

and C(b)
Tb(βn)

are disjoint, we apply the following procedure: It is easy

to see that H
(

C(r)
Tr (βn)−	

)

is maximised at 	 = 0. Hence, we grow the red cluster first until

time Tr (βn), and then stop it. Then, we grow the blue cluster step by step, looking at the pairs

of half-edges12 inH
(

C(b)
1

)

,H
(

C(b)
2

)

, . . . ,H
(

C(b)
Tb(βn)−1

)

, and at each step we check whether

any of the half edges paired are actually paired to a red half-edge. If this happens for any
time before or at Tb(βn) − 1, then an early connection happens and the distance is at most
Tb(βn) + Tr (βn). (Note that the distance is Tr (βn) + i if we pair a blue half-edge attached to
C(b)
i−1 to a red half-edge.)

The probability that there is a connection before or at t (n�′
n ) is of the same order of

magnitude as the probability that there is a connection at time t (n�′
n ), since the total degree

in the whole BP is the same order of magnitude as the total degree in the last generation,

thus it is enough to investigate the probability that H
(

C(b)
Tb(βn)−	

)

connects to H
(

C(r)
Tr (βn)

)

for some 	 ≤ i�(b). This probability is at most

PY

(

C(b)
Tb(βn)−	 ↔ C(r)

Tr (βn)
| H

(

C(b)
Tb(βn)−	

)

, H
(

C(r)
Tr (βn)

))

≤
H
(

C(b)
Tb(βn)−	

)

H
(

C(r)
Tr (βn)

)

	n(1 + o(1))
.

(3.9)

12 Recall that H(A), H(A) denote the set and number of half-edges attached to vertices in the set A.
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Let us write Dn :=
{

H
(

C(b)
Tb(βn)−	

)

≤ ûi�(b)−	,∀	 ∈ [i�(b)]
}

. Then by (3.7), Dn happens

PY -whp. Using this, we sum the bound on the rhs over 	 ∈ [i�(b)], using (2.28), to obtain that

PY

(

C(r)
Tr (βn)

∩ C(b)
Tb(βn)

�= ∅ | Dn

)

≤
û(r)
i�(r)

	n

i�(b)
∑

	=1

û(q)

i�(b)−	 � nβn(τ−2)b
(r)
n (βn )

	n

i�(b)
∑

	=1

nβn(τ−2)b
(b)
n (βn )+	

,

(3.10)

where we recall that � means inequality up to multiplicative factors that are of order at most
exp{(log n)θ } for some θ ∈ [0, 1), as in Definition 1.5. Since 	n = E[Dn]n is of order n, the
exponent of n in the dominant term in the numerator is

βn

(

(τ − 2)b
(r)
n (βn) + (τ − 2)b

(b)
n (βn)+1

)

< 1,

as long as βn < 1/(τ − 1), since b(b)
n (βn), b

(r)
n (βn) ∈ [0, 1). When βn = 1/(τ − 1), the

strict inequality still holds as long as (b(b)
n (βn), b

(r)
n (aβn)) �= (0, 0), an event that happens

with probability 1 under Assumption 1.7, since b(q)
n (βn) = 0 is only possible if Y (n)

q takes
values in a measure 0 discrete set, see (1.15). The probability of this event tends to 0 under
Assumption 1.7.

For large enough n the multiplicative factors hidden in the ∼ sign on the rhs of (3.10)
are negligible, thus the rhs of (3.10) tends to zero with n. This finishes the proof of the
proposition.

4 Distances in the Graph

Proof of Theorem 1.8 The lower bound is easier, since we can use the first moment
method (i.e., Markov’s inequality) on the number of paths emanating from H(RTr (βn)) and
H(BTb(βn)) and connecting to each other to obtain a lower bound. Thus, let us start counting

paths of length z + 1 (that is, z vertices in between) connecting H
(

C(q)

Tq (βn)

)

, for q ∈ {r, b}.
Starting with (2.52), the restriction now is that π0 ∈ C(r)

Tr (βn)
, while πz+1 ∈ C(b)

Tb(βn)
, and there

are no restrictions on the in-between vertices. Thus, we obtain a similar formula as in (2.53),
except that the restrictions on the vertices πi are now different:

EY

[

Nz
(

C(r)
Tr (βn)

, C(b)
Tb(βn)

) | NoBad
]

≤ eCz2/	n
∑

π0∈C(r)
Tr (βn )

dπ0 ·
z
∏

i=1

⎛

⎝

∑

πi∈[n]

dπi (dπi − 1)

	�
n

⎞

⎠ ·
∑

πz+1∈C(b)
Tb(βn )

dπz+1

	�
n

.
(4.1)

We have to check that in this case 	�
n = 	n(1− oP(1)) is still satisfied. This follows from the

proof of Proposition 3.1 and the fact that Lemma 2.5 holds and thus the total number of used
half-edges can be bounded from above as the sum of ∼ û(q)

i over i ≤ i�(q) and q ∈ {r, b}.
The first and last sum are handled by (3.2) in Proposition 3.1. We would like to estimate

the sums within the product sign on the rhs. For this, recall that D�
n stands for the (degree-1)

of a vertex that a uniformly chosen half-edge in 	n is attached to. D�
n then follows distribution
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F�
n , see (1.6). By Claim 2.6, (2.44), the size-biased empirical moment of D�

n is

E[D�
n] =

∑

v∈[n]
dv≤nβn

dv(dv − 1)

	n
≤ nβn(3−τ)L�,up

n (nβn ) � nβn(3−τ). (4.2)

Applying this inequality on the rhs of (4.1) yields that

EY

[

Nz

(

C(r)
Tr (βn)

, C(b)
Tb(βn)

)

| NoBad
]

� n−1nβn(τ−2)b
(r)
n (βn )

nβn(τ−2)b
(r)
n (βn )

nzβn(3−τ). (4.3)

By Markov’s inequality, the probability that there is at least one path connecting
C(r)
Tr (βn)

, C(b)
Tb(βn)

with z + 1 edges can be bounded from above by the expected number of
connections, so we obtain the bound

PY

(

dG
(

C(r)
Tr (βn)

, C(b)
Tb(βn)

)

≤ z + 1 | NoBad
)

� n
−1+βn

(

(τ−2)b
(r)
n (βn )+(τ−2)b

(b)
n (βn )+z(3−τ)

)

.

(4.4)

So, the two clusters are PY -whp disjoint as long as this quantity tends to zero. The smallest
value of z ∈ N when the rhs of (4.4) does not tend to zero is

z�n := inf
{

z ∈ N : (τ − 2)b
(r)
n (βn) + (τ − 2)b

(b)
n (βn) + z(3 − τ) > 1/βn

}

=
⌈

1/βn − (τ − 2)b
(r)
n (βn) − (τ − 2)b

(b)
n (βn)

3 − τ

⌉

.

(4.5)

Since z�n counts the number of vertices needed between C(r)
Tr (βn)

and C(b)
Tb(βn)

, and we would

like to count the number of edges13, as long as the number of edges between C(r)
Tr (βn)

and

C(b)
Tb(βn)

is at most z�n , the bound in (4.4) tends to zero as n → ∞. This in turn means that
PY -whp there is no path of length Tr (βn) + Tb(βn) + z�n connecting vr , vb. Thus, we obtain
that PY -whp:

dG(vr , vb) ≥ Tr (βn) + Tb(βn) +
⌈

1/βn − (τ − 2)b
(r)
n (βn) − (τ − 2)b

(b)
n (βn)

3 − τ

⌉

+ 1.

(4.6)

This completes the proof of the lower bound on dG(vr , vb) in Theorem 1.8. For the upper
bound on dG(vr , vb), we expect the existence of a path of length as the rhs of (4.6). To be able
to show this, we apply the second moment method. Recall that we have already constructed
paths of length Tq(βn) between vq and a vertex v�

q , where dv�
q
as in (2.37). We calculate the

expected number and variance of paths of length z� + 1 connecting v�
r to v�

b, with certain
restrictions. Namely, the formula for the variance turns out to be simpler and easier if we
count paths where the i th vertex on the path falls into a different (and disjoint) set for all
i ≥ 0. The reason why the variance is easier to calculate is that two possible paths can overlap
only in fairly simple ways (see [6, Figure 7]).

Note that since b(b)
n , b(r)

n ∈ [0, 1),

z�n + 2 ≤
⌈

1/βn − 2(τ − 2)

3 − τ

⌉

+ 2 =: Mβn . (4.7)

13 The number of edges on a path with k in-between vertices is k + 1.
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Now we divide the set of vertices into Mn many roughly equal disjoint sets. We denote
the i th set by �i . By roughly equal we mean that the following inequalities hold for some
0 < c1 < c2 < ∞

νnewi :=
∑

v∈�i

di (di − 1)

	n
∈
[

c1
Mβn

,
c2
Mβn

]

· E[D�
n] (4.8)

κnew
i :=

∑

v∈�i

di (di − 1)(di − 2)

	n
∈
[

c1
Mβn

,
c2
Mβn

]

· E[D�
n(D

�
n − 1)]. (4.9)

This can be done as long as we distribute the vertices in the intervals [nβn(1−ε), nβn ] in an
approximately uniform way. We require that v�

r ∈ �0 and v�
b ∈ �Mβn

in the partitioning. We
will count the paths on vertices (v�

r := v0, v1, . . . , vz, vz+1 := v�
b) that satisfy the property

that the j th vertex falls into � j when j ≤ z/2 and it falls into �Mβn+1− j when j > z/2.14

As a result of the restriction, the proof of [6, Lemma 7.1, (7.5)] applies word by word. This
proof bounds the expected number and variance of restricted paths between vertices a, bwith
k vertices in between. In this proof, we only need to replace νi by νnewi as in (4.8) and κi by
κnew
i as in (4.9). In our case the degree of vertex a := v�

r is da := u(r)
i�(r)

while the degree of

vertex b := v�
b is db := u(b)

i�(b)
.

First we need a lower bound on the expected number of paths of length z + 1 between
v�
r , v

�
b. We expect it to be of a similar order of magnitude as the upper bound in (4.3). The

differences between a lower and an upper bound (see (4.1)) are the following: (1) the first
and last factor in (4.1) in lower bound changes, since we only count the degree of v�

q , (2) in
the middle factor in (4.1) we have to apply the restriction that π j ∈ � j for j < z/2 while
π j ∈ �Mβn− j for j > z/2 instead of summing over all vertices in [n].

Using (2.3), combined with (4.8) yields that we have the upper and lower bound

EY [Nz�n (v
�
r , v

�
b)]

∈∼ nβn(τ−2)b
(b)
n (βn )

nβn(τ−2)b
(r)
n (βn )

	n
nzβn(3−τ) · [(c1/Mβn )

z, (c2/Mβn )
z] ,

(4.10)

where
∈∼ means containment in an interval, where an additional factor of order at most

exp{±(log nβn )θ } for some θ < 1, as defined in Definition 1.5, might multiply the pref-
actors of the interval. This additional factor comes from v�

q not being precisely equal to

nβn(τ−2)b
(q)
n (βn )

, as well as E[D�
n] in (4.2) is not precisely equal to nβn(3−τ).

By the definitions of Mβn and z�n in (4.7) and (4.5) and the bound βn ≥ (log n)−γ for
some γ < 1, for i ∈ {1, 2}, for all z ≤ z�n ,

(ci/Mβn )
z ≥ exp

{−γ log log n · (log n)γ + log ci (log n)γ
} ≥ exp{−(log n)θ }

for any θ ∈ (γ, 1) and n sufficiently large, so the lower bound on EY [Nz� (v
�
r , v

�
b)] in (4.10)

fits the Definition 1.5 when we use that 	n is of order n. Combining this with the upper bound
in (4.3), we arrive at the desired

EY [Nz(v
�
r , v

�
b)] ∼ n−1nβn(τ−2)b

(b)
n (βn )

nβn(τ−2)b
(r)
n (βn )

nzβn(3−τ). (4.11)

The smallest value of z for which this expression tends to infinity (and not to 0) as n → ∞
is precisely z�n defined in (4.5).

14 This somewhat weird containment is needed since z + 2 < Mβn can also occur.
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By Chebyshev’s inequality,

PY (Nz�n (v
�
r , v

�
b) = 0) ≤ VarY [Nz�n (v

�
r , v

�
b)]

EY [Nz�n (v
�
r , v

�
b)]2

(4.12)

and thus, to show the PY -whp existence of at least 1 path of length z�n + 1, it is enough to
show that the variance is of smaller order than the expectation squared.

Thus nextwe calculate the variance of Nz�n (v
�
r , v

�
b). Herewe rely on the proof of [6, Lemma

7.1]. Unfortunately here the appendix of the paper does not state the variance independently
of the statement of [6, Lemma 7.1]. However, one can word-by-word follow the derivation of
the variance, starting from the formula before [6, (A.19)] until [6, (A.25)]. The first occurence
where the setting of this paper deviates from that paper is [6, (A.26)]: in this equation, in the
last error factor (1 + ε)k , ε can be set to 0. This can be done since the events in E ′

n defined
in [6, (A.15)] hold for ε = 0 under Assumption 1.1.

A crucial observation in the proof there is the inequality in [6, (A.27)] stating that κi/ν2i ≤
κ1/ν

2
1 . This allows us to replace every occurrence of κi/ν

2
i by κ1/ν

2
1 in that proof. Note that

this inequality in our case is not valid, however, with our choice of the �i it is true that

κnew
i

(νnewi )2
≤ C

κnew
1

(νnew1 )2
,

with C := c2/c21 from (4.8). Thus when following the proof, we are allowed to replace every
occurrence of κi/ν

2
i by Cκnew

1 /(νnew1 )2. Similarly, 1/νk−1 can be replaced by ˜C/νnew1 . If we
do this replacement in [6, (A.28)], and thus the geometric sums in the formula before [6,
(A.29)] yield that in [6, (A.29)] we should replace the two occurrences of νk−1/(νk−1 − 1)
in [6, (A.29)] by

νnew1

νnew1 − ˜C

From here on, the arguments work word-by-word again and thus we obtain that the argu-
ments as well as the formulas until [6, (A.32)] remain all true when implementing these
modifications.

Ultimately, the final estimate for the variance is the sum of the rhs of [6, (A.19),(A.20),
(A.29) and (A.32)] with the addition of the prefactor C at places where one sees κ1/ν

2
1 and

modifying νk−1 in numerators to ν1 and 1/(νk−1 − 1) to 1/(ν1 − ˜C). Using that dv�
q

≥ u(q)

i�(q)
,

we thus obtain that (ignoring the ‘new’ superscript everywhere for brevity now):

VarY [Nz�n (v
�
r , v

�
b)] ≤ EY [Nz�n (v

�
r , v

�
b)]

+ EY [Nz�n (v
�
r , v

�
b)]

2
(

ν1

ν1 − ˜C

Cκ1

ν21

( 1

u(r)
i�(r)

+ 1

u(b)
i�(b)

)

+ ν21

(ν1 − ˜C)2

C2κ2
1

ν41

1

u(r)
i�(r)

u(b)
i�(b)

+ 8(z�n)
2

	n
+
(

1 + Cκ1ν1

ν21u
(r)
i�(r)

)(

1 + Cκ1ν1

ν21u
(b)
i�(b)

)

z�

ν1 − C

(

2
(z�n)

2ν1

	n

C2κ2
1

ν41

))

(4.13)

where EY [Nz�n (v
�
r , v

�
b)] stands for the upper bound on EY [Nz�n (v

�
r , v

�
b)] in (4.3). Recall that

EY [Nz�n (v
�
r , v

�
b)] and EY [Nz�n (v

�
r , v

�
b)] are all given by (4.11) up to smaller order correction

terms. So, in order to show that the rhs of (4.12) tends to zero, it is enough to analyse the

factor multiplying EY [Nz�n (v
�
r , v

�
b)]

2
in (4.13) and show that it tends to zero as n → ∞. We

carry out this now.
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By the same method as the one in Claim 2.6, (i.e., using Karamata’s theorem) it is not
hard to show that

E[D�
n(D

�
n − 1)] =

∑

v∈[n]
dv≤nβn

dv(dv − 1)(dv − 2)

	n
≤ nβn(4−τ)CL�,up

n (nβn ) � nβn(4−τ).

(4.14)

This together with (4.9) implies that κ1 ∼ nβn(4−τ). From (4.2) and (4.8), ν1 ∼ nβn(3−τ), and

finally from (2.37), (see also (2.3)) u(q)

i�(q)
∼ nβn(τ−2)b

(q)
n (βn )

. This implies that for q ∈ {r, b}
κ1

ν21

1

u(q)

i�(q)

∼ nβn((τ−2)−(τ−2)b
(q)
n (βn )) → 0, (4.15)

as n → ∞, since b(b)
n (βn), b

(r)
n (βn) < 1, and the error terms hidden in the ∼ sign are at most

exp{±(log nβn )θ } for θ < 1, and are thus of smaller order of magnitude. Thus, both the first
and second termmultiplyingEY [Nz� (v�

r , v
�
b)] in (4.13) tends to zero as n → ∞. Note that for

(4.16) to tend to zero it is crucial that dv�
q

> nβn(τ−2), i.e., that v�
q is a hub. When distributing

the product in the second line of (4.13), using that ν1/(ν1 − ˜C) is a constant factor, we see
that the main contribution comes from the terms

κ1

ν1u
(q)

i�(q)

· 1

	n

κ2
1

ν41
∼ nβn(1−(τ−2)b

(q)
n (βn )) · n−1 · n2βn(τ−2) = nβn(τ−1+τ−2−(τ−2)b

(q)
n (βn ))−1.

(4.16)

Note that since b(q)
n (βn) ∈ [0, 1), (τ − 2) − (τ − 2)b

(q)
n ≤ 0, and thus the exponent is always

negative when βn < 1/(τ − 1). When βn = 1/(τ − 1), the exponent is always nonpositive
and equals 0 if and only if b(q)

n (βn) = 0. This is only possible if Y (n)
q takes values in a measure

0 discrete set, see (1.15). The probability of this event tends to 0 under Assumption 1.7.
Combining the estimates in (4.15) and (4.16), we obtain that the variance of Nz�n (v

�
r , v

�
b)

is of smaller order than its expectation squared, hence the rhs of (4.12) tends to zero. This
establishes that whp there is a path of length z�n + 1 connecting v�

r to v�
b. Thus, we obtain

the existence of a path of length as in (1.16). This proves the upper bound on dG(vr , vb) and
thus completes the proof of Theorem 1.8. ��

5 Extensions and By-products

In this section prove Theorems 1.13 and 1.15 and sketch the proof of Observation 1.14.

Proof of Theorem 1.13 The proof of the first statement of the theorem, that is, (1.21) follows
from the proof of Theorem 1.8 in Section 4. Recall that wewrite�≤z = {w ∈ [n] : dw ≤ nz}.
Note that in this case, Claim 2.6 yields that the empirical secondmoment restricted to degrees
at most n˜βn is� n˜βn(3−τ). The proof of Theorem 1.13 is even simpler than the one in Section
4: here, one does not need to estimate the number of half-edges attached to v1, v2, since
these are given, so there is no need to condition on the sigma algebra F�′

n
or on the good

event (NoBad) either. Thus, below in this proof, we can use the ‘usual’ probability measure
P instead of PY . Let us write Pv1,v2(z) for a path of length z connecting v1, v2. Counting
paths restricted to the set �

˜βn
, the restriction in the sum in the middle factor in (4.1) is that

123



258 R. van der Hofstad, J. Komjáthy

πi ∈ �≤˜βn , thus, (4.3) turns into

E

[

#
{

Pv1,v2(z) ∈ �≤˜βn
}]

� n−1nx1
˜βn+x2 ˜βn nz

˜βn(3−τ) (5.1)

and (4.4) becomes

P

(

∃Pv1,v2(z) ∈ �≤˜βn : |Pv1,v2 | ≤ z + 1
)

� n−1n
˜βn(x1+x2+z(3−τ)). (5.2)

From here, the proof of the upper bound in Section 4 can be repeated with βn replaced by
˜βn , (τ − 2)b

(q)
n (βn) replaced by x j , yielding (1.21). The proof of the lower bound in Sect. 4 is

again valid word-by-word. It is important to note that the second moment method in (4.12)
works only if the variance is of smaller order than the expectation squared, which, in turn, is
equivalent to the quantities in (4.15) and (4.16) tending to zero, which is the case whenever
x j > τ − 2. (Thus, for non-hub vertices the method does not work.) Next we show (1.22)
and (1.24). Note that (1.24) is equivalent to

P

({

#P�
v1,v2

∈ �≤˜βn
}

/∈
[

n
˜βn f u (˜βn ,x1,x2)(1−ε), n

˜βn f u(˜βn ,x1,x2)(1+ε)
])

→ 0. (5.3)

We prove this statement using Chebyshev’s inequality. Let us shortly write

ζn :=
{

#P�
v1,v2

∈ �≤˜βn
}

. (5.4)

First, when we writeE[ζn], E[ζn] for the lower and upper bounds onE[ζn], respectively, then
these are handled in (4.11), and equal ∼ n˜βn f

u(˜βn ,x1,x2) by elementary calculations using the
value z�n from (4.5) and f u from (1.19).

Next, Var[ζn] is handled in (4.13), where consecutively in (4.15) and (4.16) it is established
that

Var[ζn] ≤ CE[ζn]2 max
j=1,2

max

{

κ1

ν21dv j

,
κ3
1

ν51	ndv j

}

. (5.5)

Comparing the rhs of (4.15) to the rhs of (4.16) with βn replaced by ˜βn , it is elementary to
check that the dominating expression is the rhs of (4.15) unless ˜βn = 1/(τ − 1), in which
case both terms are of the same order. Nevertheless, we arrive to

max
j=1,2

max

{

κ1

ν21dv j

,
κ3
1

ν51	ndv j

}

∼ n−˜βn(min(x1,x2)−(τ−2)). (5.6)

Note that this is the point where it becomes clear why the assumption x1, x2 > τ − 2 was
necessary: only in this case can we expect any concentration of the variable ζn . Chebyshev’s
inequality yields that for any c(n, ε) that depends on n and some ε > 0 to be chosen later

P (|ζn − E[ζn]| ≥ E[ζn]c(n, ε)) ≤ Var(ζn)

E[ζn]2c(n, ε)2
� E[ζn]2

E[ζn]2
1

c(n, ε)2
n−˜βn(min(x1,x2)−(τ−2))

∼ 1

˜βn
2

1

c(n, ε)2
n−˜βn(min(x1,x2)−(τ−2)), (5.7)

where we have used that E[ζn]/E[ζn] is 1/˜βn times a factor that can be merged in the∼ sign.
By the assumption that βn(log n)γ → ∞, for some γ < 1, setting

c(n, ε) := n−(1−ε)˜βn(min(x1,x2)−(τ−2))/2 → 0,
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the rhs tends to zero for any fix ε > 0. Note that we only have upper and lower bounds on
the expected value, thus we obtain that

P(ζn /∈ [(1 − c(n, ε))E[ζn], (1 + c(n, ε))E[ζn]]) → 0. (5.8)

The interval in (5.3) is certainly wider than the one excluded here. This finishes the proof of
(1.24). Further note that both the lower as well as the upper ends of the interval in (5.8) are
still ∼ n˜βn f

u(˜βn ,x1,x2). This finishes the proof of (1.22).
We turn to the proof of (1.23), which is essentially Markov’s inequality. Indeed, when

we require for some δ < 1 that one of the vertices on a path must fall in �≤δ˜βn
(but not its

location), we obtain that the expected number of such paths connecting v1, v2 is at most

E

[

#
{

Pv1,v2(z) : ∃i ≤ z, πi ∈ �≤δ˜βn

}]

� zn−1n
˜βn(x1+x2+(z−1)(3−τ)+δ(3−τ)). (5.9)

Let us denote by z�n(δ) the smallest z for which this quantity does not tend to zero, which is
exactly

z�n(δ) =
⌈

1/˜βn − x1 − x2
3 − τ

+ (1 − δ)

⌉

On the other hand, without any restriction, the shortest path uses

z�n(1) =
⌈

1/˜βn − x1 − x2
3 − τ

⌉

many in-between vertices, by (1.21). As long as δ is such that z�(δ) > z�(1), the rhs of (5.9)
tends to 0 for z = z�(1). Thus, there will be no connecting paths of length z�(1) that have a
vertex in �≤δ˜βn

. Finally, the largest δ that we can achieve, δmax := sup{δ : z�(δ) > z�(1)}
is precisely the lower fractional part of the expression within the upper-integer-part in z�(1),
in other words, δmax = f 	(˜βn, x1, x2), establishing (1.23). ��
Sketch proof of Observation 1.14. From the proof of Theorem 1.13 it follows that all shortest
paths use degree at least ∼ n˜βn f

	(˜βn ,x1,x2) while the Chebyshev’s inequality in (5.7) shows
that the number of shortest paths is ∼ n˜βn f

u (˜βn ,x1,x2). Multiplying these two together yields
one part of the observation. The full statement is finished when we show that there is at least
one shortest path that actually uses a vertex with degree ∼ n˜βn f

	(˜βn ,x1,x2)(1+ε) for arbitrary
small ε > 0. This can be done using Chebyshev’s inequality again in the same way as for ζn
in (5.4), now counting paths with at least one vertex in �≤˜βn f 	(˜βn ,x1,x2)(1+ε) and the rest of
the vertices in�≤˜βn . In this case, the variance vs expectation squared method carries through
the same way. ��
Proof of Theorem 1.15 The proof of this theorem is essentially the upper bound – the con-
struction of the connecting path – of the proof of Theorem 1.8. For the first statement, about
the segments with increasing degrees, Proposition 2.1 shows that there is a path of length
Tq(βn) that connects vq to a vertex v�

q with degree as in (1.25), while Proposition 3.1 ensures
that the total degree in the exploration clusters of depth Tq(βn) is the same order of magnitude
as the degree of v�

q , and that the two exploration clusters are disjoint.

By Lemma 2.5, the (Tq(βn) − k)th vertex on this path has degree at least u(q)

i�(q)−k and at

most û(q)

i�(q)−k , both of them ∼ nβn(τ−2)b
(q)
n (βn )+k

.

Thus, when connecting the two clusters C(r)
Tr (βn)

and C(b)
Tb(βn)

, Theorem 1.13 can be applied
to show that there is a path that connects v�

r , v
�
b of length as in (1.26), using vertices of degree
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at least nβn f 	
n . By the bound on the total degrees in Proposition 3.1, we can identify all the

vertices in C(q)

Tq (βn)
, and apply Theorem 1.13 once more to see that no shorter path is possible

between C(r)
Tr (βn)

and C(b)
Tb(βn)

than the one with length (1.26), and any of these shortest paths

uses vertices with degrees at least nβn f 	
n . ��

6 Comparison of Typical Distances

In this section we compare the result of Theorem 1.8 applied to the βn = 1/(τ − 1) setting
to [31, Theorem 1.2] in more detail. Here we argue that the two formulations - namely the
one in [31, Theorem 1.2] and the one in (1.28) - are indeed the same, by describing the core
idea of the proof of [31, Theorem 1.2], and relate quantities (events, random variables, etc.)
appearing in that proof to quantities in this paper. In this section ≈ means equality up to a
(1 + oP(1)) factor.

The proof of [31, Theorem 1.2] goes through a minimisation problem, where the two BFS
clusters of vr and vb should connect the first time such that a coupling (to two branching
processes) should be maintained. More precisely, suppose k1 is a random variable that is
measurable w.r.t. {C(q)

s }ms=1, for some m (in this paper we take m = t (n�′
n )). Suppose we run

the BFS started from vr for k1 steps, and from vb for k−k1−1 steps. There are Z (r)
k1+1, Z

(b)
k−k1

many half edges attached to the vertices in the two clusters, respectively. The distance between
vr , vb is then larger than k if these sets of half-edges do not connect to each other, and the
probability of this event is approximately

P

(

H
(

C(r)
k1

)

∩ H
(

C(b)
k−k1−1

)

= ∅ | Z (r)
k1+1, Z

(b)
k−k1

)

≈ exp
{

−cZ (r)
k1+1Z

(b)
k−k1

/	n

}

(6.1)

A branching process approximation similar to the one in Section 2.1 is performed to approx-
imate the numerator in the exponent. However, this BP approximation is only valid until
none of the colors have more half-edges than n(1−ε)/(τ−1) for some small ε > 0, i.e., they
do not reach the highest-degree vertices in the graph yet. This criterion is established in [31,
Proposition 3.2]. The set T i,n

m in [31, (3.3)] exactly describes those values of 	 for which
{	 ≤ Tq + 1}, q ∈ {r, b} holds (where Tq = Tq(1/(τ − 1)), defined in (1.15), or in (2.38), is
the time to reach the hubs). The +1 is added to Tq since the half-edges attached to vertices
in the BFS cluster at time Tq can be described as the next generation, they have size Z (q)

Tq+1.

Now, from (6.1), we see that {dG(vr , vb) > k} happens whp if Z (r)
k1+1 · Z (b)

k−k1
= o(n) and

also that both k1 + 1 ∈ T r,n
m and k − k1 ∈ T b,n

m holds. These latter conditions are described
in the set of indices Bn in [31, (4.57)]:

Bn := {k1 ∈ N : k1 + 1 ≤ Tr + 1, k − k1 ≤ Tb + 1} .

Using the BP approximation similar as in (1.11), and the rhs of (6.1),

P(dG(vr , vb) > k)

≈ max
k1∈Bn

exp
{

−C exp
{

(τ − 2)−(k1+1)Y (n)

r + (τ − 2)−(k−k1)Y (n)

b − log n
}}

.

With the event

En,k(δ) :=
{

∃k1 ∈ Bn, (τ − 2)−(k1+1)Y (n)

r + (τ − 2)−(k−k1)Y (n)

b < (1 − δ) log n
}
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it is obvious from (6.1) that for any δ > 0, limn→∞ P(dG(vr , vb) > k | En,k(δ)) → 1, while
P(dG(vr , vb) > k | Ec

n,k(δ)) → 0. Hence, we get that

PY (dG(vr , vb) > k) ≈ P

(

min
k1∈Bn

(τ − 2)−(k1+1)Y (n)

r + (τ − 2)−(k−k1)Y (n)

b < log n

)

.

(6.2)

The paper shows that mink1∈Bn can be replaced by mink1≤k in the minimum in (6.2) above.
Next we show that the formulation of (6.2) gives the same distances as our statement for

typical distances in Theorem 1.8, that is,

dG(vr , vb) = Tr + Tb + 2 − 1{(τ − 2)b
(b)
n + (τ − 2)b

(r)
n > τ − 1}. (6.3)

To be able to show that the two formulation are the same, we use (6.2) to show that

(a) P(dG(vr , vb) > Tr + Tb) → 1,

(b) P(dG(vr , vb) > Tr + Tb + 1) → P(1{(τ − 2)b
(b)
n + (τ − 2)b

(r)
n > τ − 1} = 0) and

finally that
(c) P(dG(vr , vb) > Tr + Tb + 2) → 0.

From (2.38) and for βn = 1/(τ − 1), it is an elementary calculation to check that that for
any i ∈ Z, q ∈ {r, b}

(τ − 2)−(Tq+1+i) Y (n)

q = log n
(τ − 2)b

(r)
n −i

τ − 1
. (6.4)

First, we check that (6.2) gives (a). For this we set k = Tr + Tb, and let us write k1 := Tr − 	

for some 	 ∈ Z, then k − k1 = Tb + 	. Hence, we can rewrite (6.2) using (6.4) with i = −	

and i = 	 − 1, and get

PY (dG(vr , vb) > Tr + Tb) ≈ P

(

min
	

(τ − 2)b
(r)
n +	 + (τ − 2)b

(b)
n +1−	

τ − 1
< 1

)

.

It is clear now that setting 	 = 0 shows that the inequality is satisfied for all b(r)
n , b(b)

n ∈ [0, 1),
since the expression after the min	, for 	 = 0 is at most (1+ (τ −2))/(τ −1) = 1. Moreover,
note that for 	 = 0, k1 = Tr and k − kr = Tb, so both k1 + 1 ≤ Tr + 1 and k − k1 ≤ Tb + 1
hold, hence, we found an index k1 in Bn .

Next, we check that (6.2) gives (b). For this, we set k = Tr+Tb+1, againwrite k1 = Tr−	,
so that k − k1 = Tb + 1+ 	. Hence, we can rewrite (6.2) using (6.4) with i = −	 and i = 	

and get

PY (dG(vr , vb) > Tr + Tb + 1) ≈ P

(

min
	

(τ − 2)b
(r)
n +	 + (τ − 2)b

(b)
n −	

τ − 1
< 1

)

.

It is clear now that setting 	 = 0 yields (b). Moreover, note that for 	 = 0 k1 ∈ Bn holds
as well. We argue that 	 = 0 is indeed the minimizer of the expression after the min. Wlog
we can assume that 	 ≥ 1, the case when 	 ≤ −1 can be treated similarly. Then, we need to
show that for all 	 ≥ 1,

(τ − 2)b
(r)
n +	 + (τ − 2)b

(b)
n −	 > (τ − 2)b

(r)
n + (τ − 2)b

(b)
n . (6.5)

Rearranging this inequality yields

(τ − 2)b
(b)
n
(

(τ − 2)−	 − 1
)

> (τ − 2)b
(r)
n (1 − (τ − 2)	)
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Since for all 	 > 1,

(τ − 2)b
(b)
n
(

(τ − 2)−	 − 1
)

> (τ − 2)−	+1 − (τ − 2) ≥ 1 − (τ − 2)	 ≥ (τ − 2)b
(r)
n
(

1 − (τ − 2)	
)

,

the claim is established.
Finally, we check (c). For this, we set k = Tr + Tb + 2, again write k1 = Tr − 	, so that

k − k1 = Tb + 2+ 	. Hence, we can rewrite (6.2) using (6.4) with i = −	 and i = 	 + 1 and
get

PY (dG(vr , vb) > Tr + Tb + 2) ≈ P

(

min
	

(τ − 2)b
(r)
n +	 + (τ − 2)b

(b)
n −	−1

τ − 1
< 1

)

.

(6.6)

We need to show that no 	 ∈ Z satisfies this minimisation problem and thus the probability
tends to 0. For this, we use again that b(r)

n , b(b)
n ∈ [0, 1) implies that

(τ − 2)b
(r)
n +	 + (τ − 2)b

(b)
n −	−1 > (τ − 2)	+1 + (τ − 2)−	,

and it is elementary to show again that the rhs is at least τ − 1 for all 	 ∈ Z and τ ∈ (2, 3),
thus, the inequality on the rhs of (6.6) cannot be satisfied.

These calculations show that the statement of Theorem 1.8 yields - through a non-trivial
rewrite - the statement of [31, Theorem 1.2]. The final formula of [31, Theorem 1.2], i.e., the
distribution of the fluctuation of the typical distance around 2 log log n/| log(τ − 2)| is then
obtained by solving analytically the minimisation problem on the rhs of (6.2) with k1 ∈ C(b)

n

replaced by k1 ≤ k.
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