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Abstract We study the approach towards equilibrium in a dynamic Ising model, the Q2R
cellular automaton, with microscopic reversibility and conserved energy for an infinite
one-dimensional system. Starting from a low-entropy state with positive magnetisation,
we investigate how the system approaches equilibrium characteristics given by statistical
mechanics. We show that the magnetisation converges to zero exponentially. The reversibility
of the dynamics implies that the entropy density of the microstates is conserved in the time
evolution. Still, it appears as if equilibrium, with a higher entropy density is approached.
In order to understand this process, we solve the dynamics by formally proving how the
information-theoretic characteristics of the microstates develop over time. With this approach
we can show that an estimate of the entropy density based on finite length statistics within
microstates converges to the equilibrium entropy density. The process behind this apparent
entropy increase is a dissipation of correlation information over increasing distances. It is
shown that the average information-theoretic correlation length increases linearly in time,
being equivalent to a corresponding increase in excess entropy.

Keywords Non-equilibrium - Microscopic reversibility - Entropy - Ising model - Information
theory - Excess entropy - Q2R

1 Introduction

The apparent contradiction between the reversibility of the microscopic equations of motions

and the irreversibility of macroscopic processes has been a problem since the development
of statistical mechanics by Maxwell, Boltzmann and Gibbs, see, e.g., refs. [6,11]. How can

B Kiristian Lindgren
kristian.lindgren @chalmers.se

Department of Space, Earth and Environment, Chalmers University of Technology,
41296 Goteborg, Sweden

Max Planck Institute for Mathematics in the Sciences, Inselstrafe 22, 04103 Leipzig, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-017-1833-8&domain=pdf
http://orcid.org/0000-0002-8577-9775
http://orcid.org/0000-0002-3987-1271

920 K. Lindgren, E. Olbrich

microscopic reversibility be consistent with macroscopically irreversible phenomena like
the second law of thermodynamics? This contradiction is often resolved by describing the
approach to equilibrium in terms of coarse-graining of phase space or related approaches.

In this paper we take a microscopic perspective on the development of statistical properties
of a system that follows a time evolution that is microscopically reversible. In what way can
one understand how such a system “approaches” equilibrium? What is the role of internal
correlations of the microstate and how do these change in the time evolution?

As an illustrative model we have chosen the energy conserving Ising dynamics model Q2R
[14] in one dimension. We consider the system in the thermodynamic limit, i.e., an infinite
sequence of spins, and it is assumed that the initial microstate is generated by a Bernoulli
process with a dominating spin direction so that a magnetised and ordered (low entropy)
configuration serves as the starting point for the dynamics.

The Q2R rule employs a parallel update according to a checkerboard pattern alternating
between the white and black sites. This leads to a dynamics over a sequence of microstates,
with (in general) changing internal statistical properties. Formally, we study how the dynamics
changes the stochastic process that characterises the ensemble of microstates at the given time.
The initial microstate is spatially ergodic, since it is a Bernoulli process. The same holds for
any finite time step, even though a cellular automaton rule in general changes the process so
that it becomes a hidden Markov model already after the first iteration.

We characterise the internal disorder (entropy) of a microstate at time 7 by the entropy
density of the corresponding generating process. This entropy is also directly derived from
the internal statistics of the microstate by taking into account all possible internal correlations.
This can then be viewed as an internal measure of disorder of the microstate—a microscopic
entropy [9].

Since the dynamics is microscopically reversible, the entropy density is conserved even
if the stochastic process that generates the microstates changes [8]. The aim with this paper
is to gain a full understanding on how this can be consistent with the apparent picture of a
dynamics that brings the magnetised initial state of low entropy density into a state with zero
magnetisation and a seemingly higher entropy density.

We solve exactly the dynamics of Q2R in one dimension, starting with a Bernoulli gen-
erated microstate, by deriving the statistical properties of the hidden Markov models that
generate the microstates at any time 7.

The picture that emerges is one where some correlations remain at short distance — in fact,
exactly those that make sure that the energy is conserved. It is useful to discuss this in terms of
ordered information, or negentropy (as the difference between full disorder and actual entropy
density). This ordered information contains information in all correlations in the system, as
well as density information, i.e., spin frequencies deviating from {1/2, 1/2}. Except for
the nearest neighbour correlations, all other information is transferred to ever increasing
distances. This leads to three observations: (i) the magnetisation quickly approaches zero, (ii)
the local correlations approach those that characterise an equilibrium microstate at the given
energy, (iii) the rest of the correlations (the negentropy) becomes more and more difficult to
detect as they require larger and larger blocks of spins and their exact characteristics for their
detection.

The focus of the present paper is to examine to what extent this process can be quantified,
and whether we can make a more precise statement on how equilibrium is approached on the
microscopic level.

In [13] microscopic reversibility and macroscopic irreversibility for the Q2R automaton
was discussed looking at how the period length growth with the system size and thus showing
that the recurrence time goes to infinity in the thermodynamic limit. In the present study we
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want to understand the approach to equilibrium from an information-theoretic point of view.
The aim is to show and quantify how information in correlations are spread out over increasing
distances so that, when observing configurations over shorter length scales, it appears as if
the system is approaching equilibrium.

In [5] it is discussed in what way reversible and, more generally, surjective cellular
automata exhibit mixing behaviour in the time evolution, i.e., whether there are cellular
automata that in some way can be said to approach a random distribution (Bernoulli distri-
bution with equal probabilities). The most well studied example is the XOR rule, see, e.g.,
[7,8,10], in which there is a randomization even though there are also recurrent, locally
detectable, low entropy states, even for an infinite system. It is stated as an open question
whether there are more physically relevant models that allow for a mathematical treatment
of how such a mixing may occur, which then would imply a mixing modulo the energy
constraint of the system, i.e., a maximization of the entropy density given the energy density
[5]. We contribute to that question by providing the exact solution of the one-dimensional
Q2R model as an example of a physically relevant model showing relaxation towards equi-
librium.

The plan of the paper is the following: In Sect. 2 we introduce the model system—the
Q2R cellular automaton—and discuss some of its known properties. In Sect. 3 we provide the
analytical solution for the time evolution of a specific non-equilibrium probability distribution
starting from independent spins in the one-dimensional Q2R cellular automaton. We use this
solution to investigate the time evolution of the information-theoretic quantities and how they
are consistent with the system achieving thermodynamic equilibrium. In particular we show
that the correlation information can be divided into two different contributions—one part that
reflects the equilibrium properties of the system (within interaction distance), and one part
with an average correlation length that increases linearly in time. In Sect. 4, we discuss how
the information-theoretic analysis explains how an equilibrium distribution is approached,
even though the micro dynamics is reversible. The paper is then concluded by a discussion
in Sect. 5.

2 Q2R: A Microscopically Reversible Ising Dynamics

We consider the Q2R model [14] in one dimension and in the limit of an infinite system. This
means that we describe the spatial state (infinite sequence of spins) at a certain time as the
outcome of a stationary stochastic process. The system is described as an infinite sequence
of states, spin up or spin down, 1 and |, respectively. In addition to this a state also holds
the information whether to be updated or not in the current time step. The updating structure
is such that every second spin is updated at ¢, and then at the next time step the other half
of the lattice is updated, and so forth. The updating rule flips a spin when the spin flip does
not change the energy, and it changes the state from updating to quiescent and vice versa.
Normal nearest neighbour Ising interaction is assumed with an energy —1 for parallel spins
(11 or | |) and +1 for anti-parallel spins (1] or | 1). This means that the Q2R model is a
micro canonical simulation of the Ising model, with conserved energy. It is also clear that
the rule is reversible.

We assume that the initial state is generated by a Bernoulli process, and the aim is to give
a statistical analysis of how spatial configurations change over time. Each time step is thus
characterised by a certain stochastic process, and the Q2R rule transforms this process from
one time step to the next.
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Since the Q2R rule is reversible this implies that the entropy density 4 (¢) of the ensemble
at a given time step ¢, or, equivalently, the entropy rate of the stochastic process that generates
the ensemble at time step ¢, is a conserved quantity under the Q2R dynamics. This follows,
for example, from the observation that there is a local rule (also Q2R, but with a state shift)
that runs backwards in time. Since both of these rules are deterministic and thus imply a
non-increasing entropy density, the entropy density for an infinite system is conserved under
Q2R.

Furthermore, we assume that the stochastic process is ergodic. Note that this is a spa-
tial ergodicity, which implies that for almost all microstates in the ensemble (at any point
in time), we have the sufficient statistics to calculate any information-theoretic properties
depending on finite length subsystems of the microstate. This means that we can characterise
a single microstate, at any time ¢, and identify its internal entropy density and correlation
characteristics, which is identical to the same characteristics for the whole ensemble. This is
conceptually appealing, since we can then identify an entropy density quantity as a property
of a single microstate.

3 Analysis of the Time Evolution Starting from a Bernoulli Distribution

We assume that the initial spatial state is described by, or generated by, a Bernoulli process
with probability 0 < p < 1/2 for spin up. In addition to this we augment our state variable
with a second binary variable which marks every second lattice site being in an updating
state (0 or 1), and the others in quiescent states (0 or 1), where the spin direction is denoted
by 0 and 1 (with or without the underline mark) for spin up and down, respectively. Thus the
spin up probability is p(1) = p(1) + p(1), and similarly for spin down.

The entropy density, i.e., the entropy per site, of such an initial state is simply the entropy
of the Bernoulli process,

1 1
h=S[{p,1—p}l=plog—+ (1 —p)log—— (1)
p I—p

since the updating state structure of quiescent and updating states is completely ordered and
does not contribute to the entropy density. (The function S is the entropy of the probability
distribution, as indicated by the equation.)

With an energy contribution from parallel and anti-parallel spins of —1 and 1, respectively,
we get the energy density u = —(1 —2p)? of the initial state. The system is not in equilibrium
since the entropy density 4 is not in a maximum given the energy density u. This is obvious
already from the fact that the initial magnetisation is positive.

Does the time evolution bring the system closer to the maximum entropy description in
some sense, and how? The answer to these questions is the focus of the presented analysis
and discussion.

3.1 Time Evolution of the Magnetisation

The Q2R rule in one dimension can be expressed as a simple addition modulo 2 rule for the
updating states, s, ,, at position i € Z and time ¢, and just a copying of the spin state for the
quiescent states, s/, at j € Z, so that at time ¢ + 1 we get

Si 41 = Sit &

Sji4l =8j—110+8;,; +5j41, (mod2) . 3)
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The addition modulo 2 for the updating states is the operation that flips the spin (0 or 1)
whenever that does not change the local energy. This allows us to express the local states at
any time, as a sum over initial spin states, using the following Proposition.

Proposition 1 Updating and quiescent states, s; , and s, respectively, at time t > 0 can
be expressed as sums modulo 2 of initial spin states, & (withi' € 7Z), over certain intervals,

s = Y & (mod2), )
i'el; ;1

sje= Y Ep(mod2), )
j/EIj',

where I; , = {i —n, ..., i, ...i +n} denotes the (2n 4 1)-length interval of positions centred
around i. A local updating state s; , at position i and time t thus depends on 2t — 1 initial
stochastic variables, while a quiescent state s j ; depends on 2t +1 initial stochastic variables.

Proof We prove this by induction. Attime ¢t = 1 the Q2R rule, Egs. (2, 3), resultsin s i1 = &,
ands; | = &;_1+&;+&;+1 (modulo 2). (The addition should here be understood as operating
on the spin states, 0 and 1.) Thus Eqgs. (4, 5) hold forr = 1.

If we assume that the Proposition holds for time 7, then we can use the Q2R rule, Egs. (2, 3),
to find the expression for the states at time # 4+ 1 (where all summations are assumed to be
modulo 2),

S =Sie= Y &, (6)
i’EI,'_;

Sjatl =Sj—1p T8, + i1

DooEt D &t ) &

Jelj—1: J€lji- J'€ljvie
=& 1+& + 3( Z S,//) +&i + &t
J'€lji—1
T @)
J'€lj i+
which are Eqgs. (4, 5) of the Proposition for ¢ 4 1. O

This means that we get the distribution for local states, P;(¢), i.e., single site distribution,
for t > 0 determined by

1 1
P =3 PO =35 = p(n), ®)
_ ey _1
PAD = fai ). PO =3 —pUn). )

Here f(fgc)l (p) is the probability for getting an odd number of 1’s from a process generating
n independent symbols (0 or 1) with probability p for each 1, i.e.,

1
AOEEY (Z)pk(l —p = (1-a-2p)"). (10)

2
odd ke{0,...,n}
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The derivation makes use of ((1—p) — p)" =Y (}) (—p)ka—pyFk = —fo(gg(p) +(1—-
fo(;’s(p)). The length of the sequence that affects a spin state at # is ~2¢. An odd number
of 1’s in the sequence at t+ = O results in a 1 at the position at time f. As ¢ increases, the
probability for spin up, p(1,t) = p(1,t) + p(1,¢t) — 1/2. Since the rule transforms an
ergodic stochastic process description of configurations at time ¢ to a unique new such process
at time ¢ + 1, this implies that the magnetisation approaches 0. We define the magnetisation
by the difference in spin probabilities, i.e., the average of upward spins (with direction +1)

and downward spins (with direction —1),

m(t) = p(t. 1) —p.0) =2p(t,0) - 1. an

The approach to zero magnetisation is then given by the following proposition.

Proposition 2 The magnetisation, m(t), is given by
1 _
m() == (1 =2p)* " + (1 =2p)**). (12)

Proof The frequency of state 1 at time ¢ is given by two binomial distributions (for updating
and quiescent states, respectively) and their corresponding probabilities for having an odd
number of 1’s,

_ 1 1 B 1
p(t, 0 =5+ 5T (p) = 5= =2 = sa =2 a3

where we have used Eq. (10). This proves the Proposition. O
Thus we have an exponential convergence towards zero magnetisation. The frequency

of spin up (and down) quickly approaches 1/2. For example, with an initial frequency of
p = 0.2, we have after r = 10 time steps, p(1, t) = 0.499979... .

3.2 Time Evolution of Information-Theoretic Characteristics

In order to analyse how the Q2R dynamics transform the initial state (distribution of states)
to states that in some way resemble equilibrium states, we make an information-theoretic
analysis of the spatial configurations at the different time steps 7, i.e., the stochastic processes
that characterise those configurations.

3.2.1 Information Theory for Symbol Sequences

The basis for the information-theoretic formalism is the set of probability distributions for
m-length sequences at time ¢, determined by the corresponding stochastic process character-
ising the spatial configuration, Py, (t) = {p(x1, ..., Xm)}x;€{0,1,0,1}- All the key quantities for
characterising order and disorder can be expressed in terms of block entropies, H,, (),

Hy (t) = S[Pn ()] = — Z (X1, ooy Xm) log p(x1, oy Xm) - 14
The entropy density

h(t)=h= mle Hn® , (15)

o m
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expressing the randomness of the stochastic process generating microstates at time ¢, is
conserved since the dynamics is reversible. The conditional entropy

hn(1) == D" PE1, ey X) 10g POt IXT, ooty X)) - (16)

can be expressed as the difference of two block entropies
hin(t) = Hp (t) — Hp—1 (1) a7

and can be interpreted as a finite length estimate of the entropy density. The full entropy
density is recovered in the infinite length limit, because of the spatial stationarity. The entropy
density /& can thus be expressed as

h= lim hn(t) . (18)
m—0oQ

The decrease in the estimate of the entropy density 4,, () as m increases quantifies correlation
information k,, (¢) in blocks over length m,

km(t) = hmfl(t) - hm(t)
=—Hy, + 2I_Imfl —Hy 2> 0. (19)

Here we define, ky(t) = —H»(t) + 2H; () representing neighbouring pair correlation infor-
mation (which is equal to the mutual information [1]), and k1 () = log 4 — H(¢) representing
density information. It is sometimes useful to work with the Kullback-Leibler form of the
correlation information, based on conditional probabilities [3,8],

X | X1y oovy X
p( m| 1 m 1) >
PXm|x2, ooy Xi—1)

kn@® =Y pEL o Xm1) Y pGim|X1, s X1) log 0.

XlseeesXm—1 Xm

(20)

Note that k,, (t) is also the conditional mutual information between x; and x, given
X2, ..., Xm—1 which quantifies the additional amount of information that x| provides about
the mth symbol, on average, given that one knows already x2, .. ., x,,—1. Withn = 4 possible
states per lattice site, the total information of log n = log 4 can be fully decomposed into the
introduced quantities,

o0
logd =h+keor=h+ Y kn(0) . 2Dh

m=1

where we have introduced the total correlation information, k¢qyr, as the sum over all contri-
butions k&, (¢), including the density information k1 (#). This means that the estimate of the
entropy density &, (¢), based on blocks of length up to m, can be written

h(t) =log4 =Y " k;(t) . (22)
j=1

The most common information-theoretic quantity for characterising complexity is the excess
entropy [2,12] or effective measure complexity [4], n(¢),

n(0) = lim Hy () —mh. (23)
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926 K. Lindgren, E. Olbrich

The excess entropy can be expressed as a weighted sum over correlation information terms,

() =y (m—Dkn(1) , (24)

m=2

and thus it reflects an average information-theoretic correlation length [8]. Since the entropy
density % is conserved in the time evolution, so is also the correlation information k¢q. But
the lengths at which correlation information is located may change over time, and thus we
would in general expect the excess entropy, or the average correlation length, to change over
time.

3.2.2 Some Special Properties for the Q2R Model in One Dimension

Let P™ be the distribution over an odd or an even number of 1’s in a sequence of n inde-
pendently generated 0’s or 1’s (with probability p for 1), i.e.,

PO = {11 - ) (25)

with £) defined by Eq. (10).

Because we have a system with a strong periodic order of updating and quiescent states, it
is convenient to split the correlation information quantities into two different types, k,S;) and
k,(,lX ), respectively, depending on whether the last state in the block over which correlations

are considered is updating or quiescent (s,, or s,),
ki = k;(n_) + kl(nX) : (26)

We introduce a corresponding notation for the block entropies, H,Sf) and H,ﬁlx), referring to

blocks ending with an updating and a quiescent state, respectively. This means that H,ﬁl_) is
defined by

HS) = - Z Z p(X1, .o, xp) log p(x1, .0y X)) 27N

X1y Xm—1 X €{0,1}

which means that every second x; to the left of x,, also needs to be an updating state for the
corresponding term to contribute. The block entropy H,f1x) is defined similarly. Then k,(n_)
and k,(nX ) can be written

KD = —H +HD + O - 1Y, 28
K = —H + B + B - H, 29

where we have used Eqgs. (14, 19, 20, 27). We observe that, for a spatially symmetric system,

H) = HYY (30)

2m

since an even length sequence that ends with an updating state needs to start with a quiescent
state.
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3.2.3 Correlation Characteristics of the Q2R Model in One Dimension

The following propositions assume that the initial state at time ¢ = 0 is generated as described
above: The spin states are generated by a Bernoulli process with probability p for spin
up. Then the alternating order of updating and quiescent states are added on top of this.
The entropy density at any ¢ is then determined by the initial entropy density, i.e., h =
—plogp — (1 — p)log(1 — p). The goal is to derive expressions that describe how the
different contributions to the correlation information may change over time, and how that
affects the estimates of the entropy density A, (¢).

Proposition 3 There is no correlation information over even length blocks larger than 2.
Form > 2,

kom (1) = 0. 3D
Proof We start with the following observation. Observation:
k(1) =0form > 2. (32)

This follows from the fact that, at any 7, the conditional probability of a quiescent state s,
does not change when adding new information in states beyond (to the left of) s, ; ;. From
Eqgs. (4,5) we see that s, ; = &, + ... + &4+ (mod 2), while Syl = Em—t+ .o+ Emtr—2
(mod 2), i.e.,

Smit =Syt +Emri—1 + &nys (mod 2). (33)

But the two stochastic variables &,,4;_1 and &,,; are not part of any of the states s, , further
left (with position m’ < m — 1). This means that p(sp | ... Sm—2., gm_“) = p(sm,,|§m_l’,),
which with Eq. (20) proves the observation.

Thus we know that, for m > 2, k$)(r) = 0. From Egs. (28, 29, 30) we see that kS, () =
kérxn) (t) = 0, and the Proposition then follows from Eq. (26). ]

Proposition 4 A correlation information quantity at distance 2m — 1, for m > 1, is trans-
ferred to a correlation information quantity at distance 2m + 1 in the next time step. Thus,
fort >0andm > 1,

kom41 () = kom—1(t — 1) . (34)

Proof Since, from Eq. (32), ké:ll_l (t) = 0, we need to show that k§;1)+1 (t) = kér_n)_l (t—1).

We start with the observation that, for m > 3,
HY =H + H —H (35)

which follows from the fact that the probability in the block entropy can be written, in the
case of even m, p(sy, ..., 8,1, Sm) = P o0 Sp_)PGmlSy, ..y S,y _1). From the previ-
ous observation, Eq. (32), we find that p(sy, ..., $,,_1: Sm) = P(S1s «os S;y—1) PSpu_1>Sm) /
p(s,,_1), and this results in the entropy above. The same argument goes for odd m.

We now rewrite the correlation information k!’ (t) in terms of the block entropies,

2m+1
(=) (=) (=) (x) (x)
kypy1®) = —Hy, oy + Hy "+ Hy, " — Hy,”
(=) (x) (=) (x) (=)
= —H,,\ +2H,,) — (Hy, ,+ H,” —H, )
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928 K. Lindgren, E. Olbrich

= —Hy, )+ 2(H,) + H = HT) = (Hy, s+ 2(H = 1)

m
_ (=) (=) (=)
=—-H,y,\, +2H,," | —H,), 5. (36)

where we have used Egs. (30, 35).

The block entropies are now in a form that makes it possible to transfer the expression to
a corresponding one for the previous time step ¢+ — 1. We denote the block entropies at that
time step with H,,. The symbol sequences considered in Eq. (36) are all of odd length and of
the form (s, 52, ..., S2m, S5, 1)- Since the end states in the sequence are quiescent states at
t — 1, they are just copied, and we note that there is a one-to-one mapping from the sequence
at time ¢ to a corresponding (2m + 1)-length sequence at time ¢ — 1: (1, 5’2, s g/zm, S2m+1),
but with the opposite arrangement of updating and quiescent states. The updating states at
time ¢t — 1 may of course have different spin states. The one-to-one mapping, though, results
in that the corresponding block entropies are the same, i.e., Hz(,;irl = H2/£nX+)1 . The correlation
information kér_n)_H (t) can then be expressed in terms of block entropies at  — 1,

(=) _ 1(x) /(X) /(X)
Kyt (1) = —Hyp 0y +2H,, —y — Hy, —5 (37)

As above, we can reduce the block length of H () entropies,
Kyl (0 = —Hy” — BP0+ B 4 2(Hy, 0y + B — 1)) —
=~y +2H;, 0 — Hy Oy 1 — 1
=—H ) +2H, ) — Hy
=k =1y, (38)
where we have used Egs. (28, 30, 35). This concludes the proof. O

Lemma 1 The entropy H\(t) of a single site is given by:
Hi(0) = S[PV] +1og2 =h +1log?2, (39)
1 1
Hi(t) = 5S[P<2f+1>] + ES[P(Z””] +1log2 , fort > 0. (40)

Proof The single site distribution is given by the {1/2, 1/2} distribution for updating and

quiescent states multiplied with the distribution giving the probability for spin state O or 1 for
the updating and quiescent states, P~1 = {1V (p) 1 — Q=D (py) and p@+D =

{f(fgéH)(p), 1- fo(géﬂ)(p)} , respectively, in the case when ¢t > 0. For t = 0, we instead

have PV = {p, 1 — p} for the spin state. This directly results in the Lemma. O
Lemma 2 The 2-length block entropy Hy(t) is given by:
Hy(0) = 2S[PD] +log2 = 2h 4 log2 , 1)
Hy (1) = S[PP] + S[PP D] +1log2 , fort > 0. (42)
Proof Fort = 0, we directly get the result of Lemma 2
H>(0) =2h +1log2, (43)

with the 2/ from the Bernoulli process and the log 2 from the periodic structure, i.e., the two
updating/quiescent possibilities (—, x) and (x, —) for pairs.

We can express probabilities for a pair of adjacent states, (s;_;,s;), at time ¢, by
pi(s;_1,8:) = pi(sils;_y) p:(s;_1). By symmetry, the other order, (s;_1,s;), gives the
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same contribution to the block entropy. The resulting entropy can then be expressed as the
sum of a conditional entropy and a single cell entropy,

Hz(t)—z(st, I)sz(m;, 1>1og%+2pt(s, ) log (1 ;)
S; i—1

Si—1
(44)
Qt—1) 1 Qt—1)
The last sum uses p; (s) being a non-normalized distribution { Sodd 32— 3 f }, from

Eq. (9), resulting in 5 L (log2 + S[P?~D]). The conditional probablhtles of the ﬁrst sum are
derived from Eq. (33), showing that p;(s;|s;_;) is a distribution determined by the sum of
two independent stochastic variables, which results in an entropy S[P®], regardless of s i1
The sum over s;_ then gives a factor of % This results in

Hy (1) = 2( S[PD] + — 10g2 +- S[P(z’ ") (45)
which gives us the Lemma. O

Proposition 5 The pair correlation between neighbour states ko (t) is given by
k2(0) =log2, (46)
kr(t) = S[PP D) — S[PP )+ log2, fort > 0. (47)

Proof Fort = 0, we only have correlation from the alternating updating and quiescent cells
structure, i.e., log2. For t > 0 we use the definition, k, = —H> + 2H;. Lemmas 1 and 2
then immediately result in the Proposition. O

Proposition 6 The correlation k3 (t) over blocks of length 3 is given by,

k3(0) =0, (48)
ks(1) = —%S[P“)] + [P — %S[P(“] , (49)
k(1) = —%S[P(z’“)] + S[PR=D1 = %S[P(Zt’”] fort > 1. (50)

Proof Fort = 0, there is obviously no correlation over blocks larger than 2.

For larger time steps, we use the fact that in total all correlation information is conserved
in the time evolution (since the entropy density 7 is). Propositions 3 and 4 imply that all cor-
relation information from blocks of length m, with m > 3, is transferred to longer distances,
m —+ 2, in the next time step. Therefore, the correlation of blocks over length 3, k3(¢), must
come from the change in k; + k> in the last time step, so that k.o is conserved,

ky(@) =ki(t = 1) +ko(t — 1) — k1 (t) — ka(2) . (51)
For t = 1, Lemma 1 and Proposition 5 results in
k3(1) = log4 — H;(0) +log?2 — (log4 — Hy(1) 4+ S[P®] — S[PP] + log 2)

1 1
=—S[PV]—log2 + 5S[P<3>] + ES[P“>] +log2 — S[PP] + S[PP)

= —%S[PG)] +S[PP] - %S[P(l)] : (52)
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Finally, for > 1, Lemma 1 and Proposition 5, gives us,
k() = SIPP=D] = SPPD] + Hy(1) — Hi(t — 1) =
=—%mP@”“y+ﬂP0““y—%ﬂP@“$], (53)
which concludes the proof. O

We note that Propositions 3—6 imply that the state at time 7 is characterized by a maximum
information-theoretic correlation length of 2¢ 4 1, and thus a Markov process of memory 2z.
Since we now have closed form expressions for all correlation information contributions, we
can derive a closed form expression also for the excess entropy.

Proposition 7 The excess entropy, n(t), is linearly increasing in time after the first time step.
n(0) =log2, (54)
n(t)=Q2t —1)¢ +1log2, fort >0, (55)
where the constant ¢ is determined by

¢ =S[PP]—sPV]. (56)

Proof We use the form of n which is a weighted sum over correlation information con-
tributions, Eq. (24), i.e., n = Zm (m — 1)k;,. For t = 0 we only have contribution from
k2(0) = log 2, which gives n(0) = log 2.

For t = 1, Propositions 5 and 6 result in

n(1) = ka(1) + 2k3(1) = S[PP] — S[PP] + log2
+2(— %S[PG)] + S[P@] — %S[P(l)])
= S[PP)—S[PV]+1log2 = +log2 . (57)

For t > 1, we note from Propositions 3 and 4 that the excess entropy, using Eq. (24), is a
weighted sum over k> () and all k3(¢") up to the current time step (1 < ¢ < 1),

n(1) = ka(t) + 2k3(t) + 4ks(t) + 6k7(t) + ... + 2tka 41 (1)

!
=ka()+2) (1 —1' + Dks(r)) (58)

t'=1

where we have used the result from Proposition 4 that k»,,, 11 () = k3(t —m + 1). We can
then derive an expression for the change of 7 in one time step (for ¢ > 1),

i+1
n(t+1) —nt) =k +1) —k®)+2> k(). (59)

=1
By using Propositions 5 and 6, we find that this sum results in
n(t+1) —n(0) =2(S[PP1 - s[pV)) =2¢ . (60)
In combination with Eq. (57), we then get Eq. (55) of the Proposition. This concludes the

proof. O
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This result shows that we have an average correlation length (in the information-theoretic
sense), cf. Eq. (24), that increases linearly in time. The immediate implication is that some
of the information that was initially detectable by looking at statistics over subsequences of
shorter lengths is not any longer found at those length scales. How this relates to the approach
towards a distribution closer to an equilibrium one is discussed in the following section.

4 The Microscopically Reversible Approach Towards the Equilibrium
Distribution

The equilibrium distribution for a one-dimensional system can be derived by finding the
distributions P,,, over m-length blocks, that maximise the entropy density %, Eq. (15), under
an energy constraint. Here the initial density p of spin up implies an energy density per site
u=—(1-2p)p32

Because of the dual relation between entropy density # and correlation information kcopr,
as is seen in Eq. (21), the equilibrium can also be determined by minimisation of k,,. With
nearest neighbour interaction only, we can always choose k,, = 0 for m > 2, since the
constraint need not give rise to higher order correlations [8]. As is well known, this results in
magnetisation 0, or p(1) = p(}) = 1/2. With a normalization constraint this implies that
p(tt) = pdl)) = 1/2(0 — 2p(1))), which with the energy constraint fully determines
the distribution over pairs of spins. The solution is simply that p(1{) = p(1 — p), i.e., the
same as the initial one determined by the Bernoulli process. This follows from the fact that
if energy is to be conserved, then p(11) + p(J{) as well as p(1]) must be conserved.

So, in equilibrium, we have that p(1}) = p(1—p)and p(11) = (p*+(1—p)?)/2, and the
same for the corresponding symmetric configurations. This distribution then determines the
2-block entropy H ¢q and a single state entropy H eq = log 2. This results in an equilibrium
entropy density, Aeq,

heq = HZ,eq - Hl.eq
= =2p(1 = p)log(p(1 = p)) = (p* + (1 = p)*) log((p* + (1 = p)*)/2) — log2
= s[p?q, (61)
where we have used Eq. (25). Note that the initial entropy density, and hence the entropy

density at any time, of the studied Q2R systemis A = S[{p, 1 — p}] = S[PV] < S[P?P] =
heg.

4.1 Approaching the Equilibrium Characteristics

‘We have shown that the magnetisation converges to 0 exponentially, see Proposition 2, reflect-
ing that p(11) and p({ |) converge to the same value. Since p (1) is conserved, this implies
that the estimate of the entropy density based on blocks of length 2, h,(#), approaches the
equilibrium entropy density, Zeq,

ho(t) = heq ast — 00 . (62)
But the convergence towards the equilibrium distribution characteristics goes beyond the

pairs of symbols. Even if we would estimate the entropy density by using the m-length block
statistics, also that would converge towards /¢q. This follows from the following observations.
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We can calculate the entropy density estimate /,, from log4 — Z’]"Zl kj(t), where k; (1)
are the correlation information contributions, see Eq. (22). This can be rewritten as

() = ha(t) + ) k(1) , (63)

j=3

where we have used that s, (t) = log4 — k1 (t) — ka(¢).

From Propositions 3, 4, and 6, we see that for finite m > 2 all correlation information
terms k, (t) will eventually decay towards 0. This means that for finite m, the entropy density
estimate, &, (t), converges to the equilibrium entropy density value, /eg,

i (t) = heq ast — o0 . (64)

This process that brings us towards equilibrium characteristics for any finite block length
is illustrated in Figs. 1 and 2.

In Fig. 1, the entropy density estimate, h,,(¢), as a function of the block length m, is
depicted for the first four time steps as well as for time steps = 10 and ¢t = 11. Here it is
clear that, for the first time steps, we will be able to detect the correct entropy density of the
system, but as time proceeds the finite length estimates £, () will converge towards a larger
one, i.e., the equilibrium entropy density as we have shown above in Eq. (64).

The corresponding picture for the contributions to the correlation information, as a function
of block length m, is shown for the same time steps ¢ as above in Fig. 2. We note that,
even though correlation information in total is conserved, a certain part of it is transferred
to longer and longer blocks, as is stated by Proposition 4. Only one contribution remains
at short length scales, kp(¢), which is determined by the 0 magnetisation and the energy
constraint. The figure clearly illustrates that all correlation information, except k> (t), will
eventually become undetectable if finite block statistics is used which explains why finite
length estimates of £, (t) converges to heq.

5 Discussion

In this paper we have investigated how, and in what sense, a microscopically reversible
process can bring a system towards equilibrium. We have considered spatial configurations
as generated by stationary ergodic stochastic processes, which has allowed us to study the
characteristics of infinite systems directly from the beginning. Moreover, due to the ergodicity,
a single microstate can be considered as a typical representative of the whole ensemble. We
note that the reversible dynamics, given by the Q2R rule, implies that the (spatial) entropy
density is conserved. We assume an initial state of independent spins generated by a Bernoulli
process and non-zero magnetisation, i.e., p(1,t = 0) # % We have shown that under the
reversible Q2R dynamics the system converges exponentially towards zero magnetisation —
the equilibrium value.

The analysis of the conditional entropies &,,(t), the correlation information k,, (¢), and
the excess entropy 1(t) as it is depicted in Figs. 1 and 2 provides a clear picture of how
the approach towards equilibrium characteristics can be understood: The loss of local infor-
mation, i.e., short-length correlation information, and the corresponding increase of local
entropy, i.e., short-length estimates of entropy density 4, (), is compensated for by building
up long-range correlations. The dynamics leads to two different kinds of correlation infor-
mation. First, there is the “thermodynamic” pair correlation information, k2 () — k2,eq, i.€.,
the mutual information between neighbouring spins, which characterizes the thermodynamic
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Fig.1 Temporal evolution of the of the entropy density estimate /,, for blocks of length m (with 1 < m < 31)
at different time steps ¢. For finite time ¢, if sufficiently long blocks m are used for the entropy density estimate
hm (1), then the correct entropy density 4 is found. But, as time goes on, any finite block length estimate
will converge to the equilibrium entropy density, heq. (In this calculation of /(1) we have not included the
constant contribution of log 2 to the pair correlation information k7 (7) that comes from the regular periodic
pattern of updating and quiescent states)

equilibrium. This term would also arise in a stochastic dynamics of thermalization such as
the Glauber dynamics. This term is directly related to the equilibrium value of the thermo-
dynamic entropy density which is given by the plateau of the conditional entropy /4, (t), for
large t and m < 2t + 1 and, from Eq. (64), this can be expressed formally as

heq = lim lim Ay, (1) . (65)

m—00 t—00
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Fig.2 Temporal evolution of the correlation information k, (¢), for | < m < 31, at different time steps 7. The
total correlation information is conserved, but a certain part is transferred to longer and longer blocks. (Here
we have subtracted the constant contribution of log 2 to the pair correlation information k7 (¢) that comes from
the regular periodic pattern of updating and quiescent states)

Second, there is a correlation information quantity that directly reflects the reversible nature
of the microscopic dynamics: the non-zero terms for &, (¢), with dominating contributions
around m = 2t — 1 and ¢ > 1. The spatial distance on which these dependencies occur
increases linearly with time which leads to a linearly increasing excess entropy. These terms
are directly related to the difference between the thermodynamic or equilibrium entropy
density and the entropy density of the studied system. And this implies that taking the limits
of Eq. (65) in the different order we get the lower entropy density as determined by the initial
state,

h=lim lim h,@t) < he - (66)

11— 00 m— 00
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The difference between these two expression, i.e., heq — £, is the entropy increase when an
initial non-equilibrium state is brought to equilibrium. As we have formally shown in this
paper, this entropy increase is the amount of correlation information that is being spread out
over increasing distances in the time evolution, leading to a linearly increasing information-
theoretic correlation length. Note also that this difference, heq —h = § [PP]—S[PD7is
the linear rate by which the information-theoretic correlation length (or the excess entropy)
increases over time as stated in Proposition 7.
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