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Abstract Two-species condensing zero range processes (ZRPs) are interacting particle sys-
tems with two species of particles and zero range interaction exhibiting phase separation
outside a domain of sub-critical densities. We prove the hydrodynamic limit of nearest neigh-
bour mean zero two-species condensing ZRP with bounded local jump rate for sub-critical
initial profiles, i.e., for initial profiles whose image is contained in the region of sub-critical
densities. The proof is based on H.T. Yau’s relative entropy method, which relies on the exis-
tence of sufficiently regular solutions to the hydrodynamic equation. In the particular case
of the species-blind ZRP, we prove that the solutions of the hydrodynamic equation exist
globally in time and thus the hydrodynamic limit is valid for all times.

Keywords Hydrodynamic limit · Zero range processes · Condensing zero range processes ·
Comparison principles for systems of PDEs

1 Introduction

In this article, we derive the hydrodynamic limit of a system of two interacting particle sys-
tems, specifically two-species zero range processes (ZRPs). The motivation for this study is
that hydrodynamic limits provide effective descriptions of large scale interacting particle sys-
tems. There is a now good understanding of this limit passage for a range of particle processes
leading to one hydrodynamic limit equation. In particular, Kipnis and Landim [19] estab-
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lish the hydrodynamic behaviour for the one-species zero range process, using the entropy
method of Guo, Papanicolaou and Varadhan [17]. For systems, however, this limit passage is
less well studied, and several tools available for single equations are no longer available, as
explained in more detail below. In particular, many systems where a hydrodynamic passage
would be of interest both in its own right and as a tool to understand the limiting system
of partial differential equations (PDEs) are currently inaccessible to the methods available;
the full Patlak Keller-Segel system [18] modelling the evolution of cells or bacteria guided
by the concentration of a chemical substance is an example. Yet, there are several recent
studies focusing on different models of interacting particle systems. One avenue is to derive
equations which incorporate aspects of underlying models, be it by considering the motion
of cells only in a stationary, but random, environment mimicking the chemical [14], or by an
equation with a singular potential related to a Green’s function describing the solution of a
second equation [11]. The hydrodynamic limit system of an active exclusion process mod-
elling active matter has been recently derived using a two-block estimate and non-gradient
estimates [3].

Another approach is to study systems related to underlying zero-range processes (ZRPs)
of several species to obtain a limiting system, and this is the approach we pursue here. The
focus on ZRPs can be motivated by their nature as a toy model of an interacting particle
system. We consider a system of two zero-range processes but the extension to n types is
straightforward. Each ZRP is a process on a lattice where particles jump from one site to
another according to a jump rate function depending on the number of the two species of
particles on this site only (hence the name zero range).

The hydrodynamic limit in the Eulerian scaling t �→ t N of asymmetric many-species
ZRPs with product and translation invariant equilibrium states has been studied in [16].
The hydrodynamic limit in the parabolic scaling t �→ t N 2 for a class of processes not
satisfying the assumptions of [16] has also recently been studied [26]; there one type of
particles performs a random walk and influences the other type, which is a process of ZRP
type. In general, establishing hydrodynamic limits for systems of equations rigorously is a
hard problem, with few known results so far. To name a few, the hydrodynamic limit of a
two-species simple-exclusion process was first studied in [21], the Leroux system has been
derived as a hydrodynamic limit in [24], and hyperbolic systems have also been studied
in [25].

Here we consider a system of two ZRPs. We show that the hydrodynamic equation is a
quasilinear parabolic system of the form

∂tρ = ��(ρ), ρ = (ρ1, ρ2) : [0, T )×Td → A ⊆ R2+, (1)

where ∂tρ := (∂tρ1, ∂tρ2), ��(ρ) := (��1(ρ),��2(ρ)) and � : A → R2+ is the mean
jump rate of the ZRP at a site x ∈ Td

N under the product and translation invariant equilibrium
state of background density ρ ∈ A ⊆ R2+. Two-species ZRPs, and the phase transition they
exhibit, were first studied in [8]. In condensing ZRPs, the set A of admissible background
densities ρ is a strict subset ofR2+. We call such densities sub-critical.

One challenge of ZRPs is that they can exhibit condensation phenomena, where particles
congregate at the same site [7,9,15]. Even for one-species systems, the hydrodynamic limit
of ZRPs experiencing condensation is presently unknown. We consider parameter regimes
of two-species systems where condensation can occur, but restrict to sub-critical initial
profiles, i.e., initial data that take values in the set of sub-critical densities. For one-species
ZRPs, the analogous result has been established recently [23] and we extend this argument
to the two-species case. Specifically, we apply the relative entropy method of H. T. Yau [28],
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796 N. Dirr et al.

which requires only the one-block estimate proved in Theorem 3.1, not the full replacement
lemma [19, Lemma 5.1.10]. Thus it does not require the equilibrium states of the ZRP to have
full exponentialmoments, a property not satisfied by condensingZRPs. This extension of [23]
is non-trivial, for two reasons. The first difficulty is that the relative entropy method requires
the existence ofC2+θ solutions to (1) for some θ ∈ (0, 1], and that the solution remains in the
sub-critical region. By a result of Amann [1] it is know that, when starting from C2+θ initial
data,C1,2+θ solutions of uniformly parabolic systems exist locally in time, i.e., for small time
intervals, and are unique. Thus there exists a unique maximally defined classical solution of
the parabolic system (1) taking values in the sub-critical region A. So our general result on
the hydrodynamic limit is local in time, being valid for the largest time interval for which
the unique maximal classical C1,2+θ solution with values in the sub-critical region exists.
This result shows that at least for as long as the unique maximal classical solution to the
parabolic system (1) is defined, condensation does not occur. The second difficulty to extend
the results for one species [19,23] is that the phase spaceR2+ is now more complicated, and
the one-dimensional arguments used in [19,23] do not extend directly. In particular, a novel
argument is required to extend [19, Lemma 6.1.10]; see Lemma 4.5 and its proof. Specifically,
we employ a characterisation of the domain of a convex function via the recession function of
its Legendre transform. This characterisation of the domain of convex functions is of interest
in its own right in the context of two-species ZRPs. For example, it immediately yields a
parametrisation of the boundary of the domain of the partition function via the recession
function of the thermodynamic entropy.

Intuitively, condensationmeans on the level of the governing hydrodynamic limit PDE the
formation of singularities where themass concentrates. For scalar equations, the formation of
such singularities can be ruled out by a maximum principle. For systems, however, in general
maximum principles do not hold. In this article, we mainly rely on an existence theory for
local C1,2+θ classical solutions established by Amann and focus on proving the local in time
hydrodynamic limit. However, for a particular example, the so-called species-blind process,
we are able to establish a maximum principle and C1+θ,2+θ regularity for the hydrodynamic
equation. This allows us to obtain thatC1+θ,2+θ solutions exist and remain in the sub-critical
region for all times. So in this particular case, the result on the hydrodynamic limit is global
in time.

Maximumprinciples aremore complicated for non-linear parabolic systems, since one has
to determine the shape of the invariant region in which the solutionwill have to remain [6,27],
while in the scalar case the invariant region is just an interval. For the species-blind process
we find that the invariant region of the hydrodynamic equation coincides with the sub-critical
region of the ZRP. This is not surprising since the species-blind process is obtained from a
one-species ZRP by colouring particles in two colours, say black and white. The dynamics
is the usual ZRP dynamics but at each time of a jump from a site x , we choose the colour of
particle to move with the probabilities given by the ratios of the number of black particles
and white particles at x to the total number of particles at x , ignoring the colour. It would still
be interesting to study the class of parabolic systems arising from two-species ZRPs in order
to determine the largest class of ZRPs that their sub-critical region is an invariant region of
the hydrodynamic limit. This would then provide a way to find the invariant region of the
associated parabolic systems by calculating the phase diagram of the underlying ZRP. The
study of the system of PDEs arising from the ZRP is a different topic and outside of the scope
of this article, which mainly focuses on the passage from the microscopic to the macroscopic
level by applying the relative entropy method.
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1.1 Plan of the Paper

The paper is organised as follows. In Sect. 2 we collect some preliminary material on two-
species ZRPs and describe the particular case of the species-blind ZRP. Section 3 contains
the statements of the main results, and in Sect. 4 we give the proofs.

2 The Particle Model

We briefly give the definition of two-species ZRPs as Markov jump processes (Sect. A.1.2
in [19]) and their equilibrium states.Main references on this preliminarymaterial are [12,13].
We take the discrete d-dimensional N -torusTd

N as underlying lattice. Each particle interacts

only with particles in the same lattice site through a function g = (g1, g2) : N2
0 → R2+. Here

gi (k) is the jump rate of species of type i from any site that contains k ∈ N2
0 particles, i.e.,

ki particles of type i , for i = 1, 2. We impose the natural condition

gi (k) = 0 iff ki = 0, k = (k1, k2) ∈ N2
0 (2)

and require

‖∂i gi‖∞ := sup
k∈N2

0

|gi (k + ei )− gi (k)| < +∞, (3)

where ei = (δi j ) j=1,2, i = 1, 2, are the unit vectors inR2. Note that setting g∗ := ‖∂1g1‖∞∨
‖∂2g2‖∞ < +∞, we have by (2) and (3) that

|g(k)|p ≤ g∗|k|p, for every k ∈ N2
0, (4)

where | · |p denotes the �p-norm in R2, p ∈ [1,+∞].
The state space of a two-species ZRP consists of all configurations η = (η1, η2) : Td

N →
N2

0, so that ηi (x) is the number of i-type particles at site x , for i = 1, 2. For any measurable
space M we denote byP(M) the set of all probability measures on M . We write p ∈ P(Zd)

for the nearest neighbour (n.n.) elementary step distribution given by

p(x) := 1

2d

d∑

j=1
1{−e j ,e j }(x), x ∈ Zd ,

and by pN ∈ P(Td
N ) its projection on Td

N given by pN (x) := p(x + NZd). Also, given a

configuration η ∈ Md;2
N := (N2

0)
Td

N , we will denote by ηi;x;y , i = 1, 2, the configuration
resulting from η by moving a type-i particle from x to y. (If ηi (x) = 0, then we set ηi;x;y =
η.) The two-species n.n. symmetric ZRP with jump rate g on the discrete torus Td

N :=
{0, 1, . . . , N −1}d is the uniqueMarkov jump process on the Skorohod space D(R+;Md;2

N )

of càdlàg paths characterised by the formal generator

LN f (η) =
∑

i=1,2

∑

x,y∈Td
N

{ f (ηi :x,y)− f (η)}gi (η(x))pN (y − x). (5)

Wewill denote by (PN
t )t≥0 the transition semigroup of the n.n. symmetric ZRP. The commu-

nication classes of the stochastic dynamics defined by the generator above are the hyperplanes

Md;2
N ,K :=

{
η ∈Md;2

N

∣∣ ∑

x∈Td
N

η(x) = K
}

123



798 N. Dirr et al.

consisting of a fixed number of particles of each species. Since each set Md;2
N ,K is finite,

for each (N , K ) ∈ N × N2
0 there exists a unique equilibrium distribution νN ,K supported

onMd;2
N ,K . The family {νN ,K }(N ,K )∈N×N2

0
is the so-called canonical ensemble. However, as

proved in [12, Theorem 4.1], in order to have product and translation invariant equilibrium
distributions, it is necessary and sufficient that the following compatibility relations for the
component functions of two-species jump rates hold,

g1(k)g2(k − e1) = g1(k − e2)g2(k), for all k ∈ N2
0 with k1, k2 ≥ 1. (6)

Note that due to the compatibility relations (6) any two-species local jump rate g is uniquely
determined by g1 and the restriction of g2 to the set {0} × N0, since by induction for any
k ∈ N2

0

g2(k) = g2(0, k2)
k1−1∏

i=0

g1(k − ie1)
g1(k − ie1 − e2)

.

An increasing path γ (from 0) to k ∈ N2
0 is any path γ : {0, . . . , k1 + k2} → N2

0 such
that γ (0) = 0, γ (k1 + k2) = k and γ (�) = γ (� − 1) + ei� for some i� ∈ {1, 2} for all
� = 1, . . . , k1+k2. For any increasing path γ to k ∈ N2

0, the factorial of g along γ is defined
as

g!(k; γ ) =
k1+k2∏

�=1
gi� (γ (�))

for k �= 0; we set g!(·) := 1 if k = 0. A two-species local jump rate function g that
satisfies (6) yields a well-defined function g! : N2

0 → (0,∞) by the formula

g!(k) = g!(k; γ ) for some increasing path γ to k.

For instance

g!(k) = g1(1, 0) · . . . · g1(k1, 0) · g2(k1, 1) · . . . · g2(k1, k2)
= g2(0, 1) · . . . · g2(0, k2) · g1(1, k2) · . . . · g1(k1, k2).

According to [12, Theorem 4.1], using the multi-index notation ϕk := ϕ
k1
1 ϕ

k2
2 , with

ϕ, k ∈ R2+, for two-species symmetric n.n. ZRP satisfying (6), the common one-sitemarginal
ν̄1ϕ of the product and translation invariant equilibrium states ν̄N

ϕ is given by the formula

ν̄1ϕ(k) = 1

Z(ϕ)

ϕk

g!(k) , k ∈ N2
0,

for all ϕ ∈ R2+ such that the series

Z(ϕ) :=
∑

k∈N2
0

ϕk

g!(k) (7)

converges. The function Z : R2+ → [1,+∞] defined in (7) is called the partition function.
The main convexity property of Z is that the function Z := Z ◦ exp : R2 → (1,+∞] is
strictly logarithmically convex where exp(μ) := eμ := (eμ1 , eμ2). This can be seen by
applying Hölder’s inequality to the functions k �→ e〈μ,k〉, k �→ e〈ν,k〉 with respect to the
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σ -finite measure λ on N2
0 given by λ(k) := 1

g!(k) and with the pair of conjugate exponents

p = 1
1−t , q = 1

t for t ∈ (0, 1) and μ, ν ∈ R2 such that μ �= ν, which yields

Z(
(1− t)μ+ tν

) =
∫

e(1−t)〈μ,k〉et〈ν,k〉dλ(k) < Z(μ)(1−t)Z(ν)t .

Here and in what follows 〈μ, k〉 = μ1k1+μ2k2 denotes the Euclidean inner product of two
vectors k,μ ∈ R2+. We denote byDZ := {ϕ ∈ R2+

∣∣ Z(ϕ) < +∞} the proper domain of Z,
which is a complete, i.e., [0,ϕ] := [0, ϕ1]×[0, ϕ2] ⊆ DZ for allϕ ∈ DZ , and logarithmically
convex set, that, is the set DZ = log(DZ ∩ (0,∞)2) := {logϕ := (logϕ1, logϕ2)

∣∣ ϕ ∈
DZ ∩ (0,∞)2} is convex. The partition function is C∞ in Do

Z and continuous from below
on DZ , i.e., for all ϕ ∈ DZ , ε > 0 there exists δ > 0 such that |Z(ϕ) − Z(ψ)| < ε for all
ψ ∈ D(0, δ) ∩ [0,ϕ]. Here D(0, δ) denotes the Euclidean open ball of radius δ with centre
0 in R2+, i.e., D(0, δ) = {

ϕ ∈ R2+
∣∣ |ϕ|2 < δ

}
.

The family of the product and translation invariant equilibrium states is the family
{ν̄N

ϕ }ϕ∈DZ . This family is usually referred to as the grand canonical ensemble (GCE). In
order to ensure that DZ is not trivial, i.e., that DZ contains a neighbourhood of zero in R2+,
we must impose the following condition in the definition of two-species local jump rate
functions:

ϕ∗;1 := lim inf
|k|1→+∞

g!(k) 1
|k|1 > 0. (8)

A two-species local jump rate g satisfies (8) iff DZ contains a neighbourhood of 0 inR2+. In
what follows, we consider only two-species local jump rates that satisfy (6) and (8).

It is convenient to have a parametrisation of the GCE by the density. This is done via the
density function R = (R1, R2) : DZ → [0,+∞]2 defined by

R(ϕ) =
∫

Md;2
N

η(0)d ν̄N
ϕ =

( ∫
k1d ν̄1ϕ,

∫
k2d ν̄1ϕ

)
.

The proper domain of R is the set DR :=
{
ϕ ∈ DZ

∣∣ R(ϕ) ∈ R2+
}
and by differentiation of

bivariate power-series, we have that

R(ϕ) = ϕ · ∇(log Z)(ϕ) on the set Do
R = Do

Z , (9)

where ϕ · ψ := (ϕ1ψ1, ϕ2ψ2) denotes the pointwise product of two vectors ϕ,ψ ∈ R2+.
Furthermore, this formula extends to the setDZ ∩ ∂DZ if we interpret the directional deriva-
tives ∂i (log Z) ∈ [0,+∞] as derivatives from the left. With the conventions log 0 = −∞
and e−∞ = 0 the densities ρ ∈ R(DR) can also be parametrised via the chemical
potential by the function R := R ◦ exp : DR → R(DR), where DR = log(DR) :=
{logϕ ∈ [−∞,+∞)2|ϕ ∈ DR}. For the parametrisation via the chemical potentials
R(μ) = ∇(logZ)(μ) for all μ ∈ Do

R ∩ (−∞,+∞)2, where Z = Z ◦ exp.
The density function R : R(DR)→ DR is invertible. Indeed, it is straightforward to check

(e.g., see [13, (4.10)]) that for all ϕ ∈ Do
R ∩ (0,+∞)2,

DR(ϕ) = DR(logϕ)

(
1
ϕ1

0

0 1
ϕ2

)
= Cov(ν̄1ϕ)

(
1
ϕ1

0

0 1
ϕ2

)
,

where Cov(ν̄1ϕ) denotes the covariance matrix

Cov(ν̄1ϕ)i j =
∫

ki k j d ν̄1ϕ −
∫

ki ν̄
1
ϕ

∫
k j ν̄

1
ϕ, i, j = 1, 2.
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800 N. Dirr et al.

This implies that DR(ϕ) is diagonisable with strictly positive eigenvalues for all ϕ ∈ Do
R ∩

(0,+∞)2. Furthermore,

∂1R1(ϕ) ∧ ∂2R2(ϕ) > 0 for all ϕ ∈ Do
R (10)

and for ϕ ∈ Do
R such that ϕ1ϕ2 = 0, the matrix DR(ϕ) is triangular, and thus invertible.

Therefore the density function R : Do
R → R(Do

R) is invertible. The fact that R is invertible on
all of its domain follows by [13, Proposition 2.3], according to which for every ρ ∈ (0,∞)2

there exists a unique maximiser �̄(ρ) ∈ DR ∩ (0,∞)2 for the thermodynamic entropy

S(ρ) := sup
ϕ∈DZ∩(0,∞)2

{〈ρ, logϕ〉 − log Z(ϕ)} = 〈ρ, log �̄(ρ)〉 − log Z
(
�̄(ρ)

)
. (11)

Obviously, for ρ = 0 the supremum is attained at ϕ = 0 (with the convention 0 · (−∞) = 0).
Furthermore, since Z is non-decreasing with respect to each variable separately, for any
ρ ∈ R2+ \ {0} with ρ1ρ2 = 0, say ρ2 = 0, the maximisation problem (11) is reduced to the
corresponding maximisation problem for one of the one-species jump rate ĝ1(k) := g1(k, 0),
k ∈ N0 and the supremum is attained at �̄(ρ1, 0) = (�̂1(ρ1 ∧ ρ̂c,1), 0), where �̂1, ρ̂c,1 are
the mean jump rate and critical density of the one-species jump rate ĝ1 (see [12, Sect. 5.2.1]
for the one-species case). Thus for any ρ ∈ R2+ there exists a unique maximiser �̄(ρ) ∈ DR
for the thermodynamic entropy S(ρ). As in [13, Proposition 2.3] the function� : R2+ → DR

is continuous, � := �̄|R(DR) = R−1 is the inverse of R : DR → R(DR) and

�̄
(
R2+ \ R(DR)

) = DR ∩ ∂DR.

Furthermore R(DR) is closed inR2+ and ∂R(DR) = R(DR∩∂DR). According to this result
�̄ : R2+ → DR is a left inverse for R, i.e., �̄ ◦ R = � ◦ R = idDR and the function

Rc := R ◦ �̄ : R2+ → R(DR)

is a continuous projection on R(DR) with Rc|R(DR) = idR(DR), satisfying

Rc
(
R2+ \ R(DR)

) = R
(DR ∩ ∂DR

) = ∂R(DR).

In particular, R : DR → R(DR) is a homeomorphism and R(DR)o = R(Do
R).

Note that the thermodynamic entropy coincides with the Legendre transform of the convex
thermodynamic pressure logZ : R2 → (0,+∞], that is,

S(ρ) = (logZ)∗(ρ) = sup
μ∈R2

{〈ρ,μ〉 − logZ(μ)
}
. (12)

Since ∇(logZ) =R = R ◦ exp, it follows by the formula for the derivative of the Legendre
transforms that for all ρ ∈ (0,∞)2 ∩ R(Do

R) the supremum in (12) is attained at

∇S(ρ) = (∇ logZ)−1(ρ) =R−1(ρ) = log�(ρ).

Since S is convex the matrix D2S(ρ) = D(log�)(ρ) is symmetric and strictly positive
definite for all ρ ∈ R(Do

R)∩ (0,+∞)2. The symmetry of D2S(ρ), ρ ∈ R(Do
R)∩ (0,+∞)2,

implies the relations

�2(ρ)∂2�1(ρ) = �1(ρ)∂1�2(ρ), (13)

which extend to ρ ∈ R(Do
R) because Ri (ϕ) = 0 if and only if ϕi = 0, i = 1, 2 and DR(ϕ)

is triangular for ϕ ∈ Do
R with ϕ1ϕ2 = 0. Equation (13) can be seen as the macroscopic

analogue of the compatibility relations (6).
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Using the inverse � of R on R(DR), we can parametrise the grand canonical measures
ν̄N
ϕ , ϕ ∈ DR, that have finite density via

νN
ρ := ν̄N

�(ρ), ρ ∈ R(DR), (14)

so that they are parametrised by their density. We will denote by ν∞ρ :=
⊗

x∈Zd ν1ρ , ρ ∈
R(DR), the product measures on the configuration space Md;2∞ := (N2

0)
Zd

over the infinite
lattice Zd . The logarithmic moment-generating function �ρ := �ν1ρ

: R2 → (−∞,+∞] of
the one-site marginal ν1ρ , ρ ∈ DR, is defined by

�1
ρ(λ) := log

∫
e〈λ,k〉dν1ρ(k) = log

Z(eλ ·�(ρ))

Z(�(ρ))
. (15)

Consequently, the product and translation invariant equilibrium states have some exponential
moments for all ρ ∈ R(Do

R). They have full exponential moments iff DZ = R2+.
It is easy to verify that�(ρ)has a probabilistic interpretation as the one-sitemean jump rate

with respect to the product and translation invariant equilibrium state of density ρ ∈ R(DR),
that is

�(ρ) =
∫

g(η(0))dνN
ρ , ρ ∈ R(DR).

Since �̄ = � ◦ Rc, it follows by (4) that for all ρ ∈ R2+
∣∣�̄(ρ)

∣∣
1 ≤

∫ ∣∣g(η(0))
∣∣
1dνN

Rc(ρ) ≤ g∗
∫
|η(0)|1dνN

Rc(ρ) = g∗|Rc(ρ)|1 ≤ g∗|ρ|1. (16)

One says that the 2-species ZRP is condensing when R(DR) �= R2+, in which case there
exist densities ρ ∈ R2+ for which there is no grand canonical equilibrium state of density
ρ. Since R(DR) is non-empty and closed in R2+ it follows that R(DR) �= R2+ if and only
if ∂R(DR) �= ∅, and thus condensation occurs precisely when DR ∩ ∂DR �= ∅. By [13,
Theorem 3.3] it follows that Rc(ρ) ≤ ρ, that is, Rc,i (ρ) := Ri (�̄(ρ)) ≤ ρi , i = 1, 2, for all
ρ ∈ R2.One says that condensation of the i-th species, i = 1, 2, occurs at the densityρ ∈ R2+
if Rc,i (ρ) < ρi . All cases are possible, that is, at a given density ρ ∈ R2+ no condensation,
condensation of exactly one species and condensation of both species simultaneously can
occur. These cases induce an obvious partition of the phase spaceR2+.

As proved in [13], the extension �̄ is the correct one for the equivalence of ensembles in
the sense that Rc gives the correct limiting background density in the thermodynamic limit.
In the case of condensation, i.e., when R(DR) �= R2+, some additional assumption must be
imposed on the jump rate g to ensure that for each ϕ ∈ DR ∩ ∂DR, the one-site marginal ν̄1ϕ
has heavy tails in the direction normal to the set log(DR ∩ ∂DR) := {logϕ|ϕ ∈ DR ∩ ∂DR}
at μ := logϕ. Denoting by nϕ the normal to log(DR ∩ ∂DR) at logϕ (where n(ϕ1,0) = e1,
n(0,ϕ2) = e2), this means that

lim
|kn |2→+∞
kn/|kn |2→nϕ

1

|kn |2 log ν̄1ϕ(kn) = 0. (17)

In case ∂DR is not differentiable at ϕ, (17) is required to hold for the two limiting normal
vectors n+ϕ , n−ϕ at logϕ. As has been proven in [13, Lemma 3.5], a condition on the jump rate
g that guarantees the critical equilibrium states have heavy tails in the direction normal to
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the logarithm of the boundary is the regularity of its tails, in the sense that for any direction
υ ∈ S1+ := S1 ∩R2+,

ϕc;2(υ) := lim inf
|k|2→+∞
k/|k|2→υ

g!(k) 1
|k|2 ∈ (0,∞) (18)

exists as limit and ϕc;2 : S1+ → (0,∞) is a continuous function of the direction υ ∈ S1+.
Note that instead of the exponent p = 2, we could have used any p ∈ [1,+∞], replacing
the Euclidean sphere S1+ with the sphere S1p,+ := {x ∈ R2+

∣∣ |x|p = 1} with respect to the
�p-norm onR2+. According to the equivalence of ensembles [13, Theorem 3.1], if the jump
rate has regular tails when R(DR) �= R2+, then for all ρ ∈ R2+

lim
N ,|K |→+∞
K/Nd→ρ

1

Nd
H

(
νN ,K |νN

Rc(ρ)

)
= 0. (19)

Here H(μ|ν) denotes the relative entropy between two probability measures μ, ν,

H(μ|ν) :=
{∫ dμ

dν
log dμ

dν
dν if μ� ν

+∞ otherwise
.

The translation invariance of canonical and grand canonical ensembles and the super-
additivity of the relative entropy imply convergence for any finite set F ⊆ Zd , i.e.,

lim
N ,|K |→+∞
K/Nd→ρ

H
(
νF
N ,K |νN ,F

Rc(ρ)

)
= 0

where νF
N ,K := pF∗νN ,K , ν

N ,F
Rc(ρ) := pF∗νN

Rc(ρ) are the push-forwards via the natural projec-

tion pF : Md;2
N → (N2

0)
F and Td

N is considered embedded in Zd . In turn this implies that

νN ,K (considered embedded in the larger space Md;2∞ ) converges as K/Nd → ρ to ν∞Rc(ρ)

weakly with respect to bounded cylinder functions f : Md;2∞ → R, that is, such that they
depend on a finite number of coordinates.

Finally,webriefly recall the notions of local equilibriumandhydrodynamic limits and refer
to [19] for more details. We say that a sequence of probability measures {μN ∈ P(Md;2

N )} is
an entropy-local equilibrium of profile ρ ∈ C(Td ; R(DR)) if

lim sup
N→+∞

1

Nd
H

(
μN |νN

ρ(·)
)
= 0. (20)

Here νN
ρ(·) :=

⊗
x∈Td

N
ν1ρ(x/N ) is the product measure with slowly varying parameter associ-

ated to the profile ρ ∈ C(Td ; R(DR)). Given any cylinder function f : Md;2
N → R, we set

f̃ (ρ) := ∫
f dνN

Rc(ρ), ρ ∈ R2+. By a simple adaptation of [19, Corollary 6.1.3], if {μN } is an
entropy-local equilibrium of profile ρ ∈ C(Td ; R(DR)), then

lim
N→+∞EμN

∣∣∣
1

Nd

∑

x∈Td
N

H
( x

N

)
τx f (η)−

∫

Td
H(u) f̃

(
ρ(u)

)
du

∣∣∣ = 0 (21)

for all H ∈ C(Td) and all bounded cylinder functions f : Md;2
N → R, that is, μN is a weak

local equilibrium of profile ρ ∈ C(Td ; R(DR)).
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The hydrodynamic limit (in the diffusive timescale t �→ t N 2) of the n.n. two-species ZRP
is an evolutionary PDE, such that entropy-local equilibria are conserved along its solutions (in
the diffusive time-scale) in the following sense: If we start the process from an entropy local
equilibrium μN

0 ∈ P(Md;2
N ), N ∈ N, of some sufficiently regular initial profile ρ0 : Td →

R2+ at time t = 0 and if there exists a sufficiently regular solution ρ of the hydrodynamic
equation on [0, T )×Td starting fromρ0, thenμN

t := μN
0 PN

tN2 is an entropy-local equilibrium
of profile ρ(t, ·) for each t ∈ [0, T ).

The main goal of this article is to apply the relative entropy method of H.T. Yau in
order to prove the hydrodynamic limit of condensing two-species ZRPs that start from
an initial entropy-local equilibrium {μN

0 } of sub-critical and strictly positive profile ρ0 ∈
C(Td ; R(Do

R) ∩ (0,∞)2), which is stated as Theorem 3.2 below. A main ingredient in
the proof of the hydrodynamic limit is the one-block estimate which is stated as Theo-
rem 3.1. The relative entropymethod also requires the existence of aC1,2+θ

loc classical solution
ρ : [0, T ) ×Td → R(Do

R) ∩ (0,+∞)2 for the hydrodynamic limit and applies the Taylor
expansion for C2+θ functions to the function �(ρt ) of the solution ρt at each time t > 0
(see (45)) in order to estimate the entropy production ∂tH(μN

t |νN
ρt (·)). The sub-criticality of

the solution ρ, i.e., that ρ([0, T ) ×Td) ⊆ R(Do
R), is used in Lemma 4.2 and to obtain the

bound (52), which is essential in the application of Lemma 4.5. The sub-criticality of the
solution ρ is also required for the application of the large deviations Lemma 4.4. Together
with theC2+θ regularity of ρt for each t ≥ 0 it is the main assumption on the solution ρ. Fur-
thermore, in the Taylor expansion the quantities �i (ρt ), i = 1, 2, appear in the denominator,
so we have to assume that the solution ρ is coordinate-wise strictly positive.

As already mentioned in the introduction the expected hydrodynamic limit of the two-
species ZRP with product measures is a quasilinear parabolic system of the form (1), which
in divergence form is given by

∂tρ = divA�(ρ,∇ρ). (22)

Here the divergence with respect to the spatial parameter is applied coordinate-wise, and
∇ρ(t, u) := (∇ρ1(t, u),∇ρ2(t, u)) ∈ R2×d is the gradient of ρ with respect to the spatial
variable u ∈ Td . Furthermore, A� = (A1

�,A2
�) : R(Do

R)×R2×d → R2×d is the function
given by

A�(ρ, V ) = D�(ρ)V ,

that is,

∂tρi = divAi
�(ρ,∇ρ) = div

(∇�i (ρ)∇ρ
) = ��i (ρ), i = 1, 2.

Structural properties of the mobility matrix D� : R(Do
R) → R2×2 can be inferred by the

properties of DR. For example, for all ρ ∈ R(Do
R) ∩ (0,+∞)2,

D�(ρ) =
(

�1(ρ) 0
0 �2(ρ)

)
D2S(ρ),

where D2S(ρ) = D(log�)(ρ) is a strictly positive definite matrix, the second derivative of
the thermodynamic entropy, and for all ρ ∈ R(Do

R), the relations (13) hold and

∂1�1(ρ) ∧ ∂2�2(ρ) > 0.

In particular, D�(ρ) has positive eigenvalues for all ρ ∈ R(Do
R) and is diagonisable for all

ρ ∈ R(Do
R) ∩ (0,+∞)2. For ρ ∈ R(Do

R) with ρ1ρ2 = 0, the matrix D�(ρ) is triangular.

123



804 N. Dirr et al.

It follows that although D�(ρ) is not necessarily symmetric, it is uniformly parabolic away
from the critical densities, that is, for any compact K ⊆ R(Do

R) the exists λK > 0 such that

〈ξ , D�(ρ)ξ〉 ≥ λK |ξ |2, ρ ∈ K , ξ ∈ R2.

By the work [1] of Amann, it is known that for C2+θ initial data, uniformly parabolic
systems in general form have unique maximal C1,2+θ solutions. Thus, since D� is uni-
formly parabolic in any compact subset of R(Do

R), it follows that for initial data ρ0 ∈
C2+θ (Td ; R(Do

R) ∩ (0,+∞)2) there exists a unique maximal classical C1,2+θ
loc solution

ρ : [0, Tmax) × Td → R(Do
R) of the parabolic system (1) taking values in the sub-critical

region R(Do
R). Of course, since we also assume ρ0(T

d) ⊆ (0,+∞)2, by taking if necessary
Tmax to be smaller we can assume that ρ takes values in R(Do

R) ∩ (0,+∞)2. This estab-
lishes the local in time existence of C1,2+θ sub-critical solutions ρ. On the other hand, by the
regularity theory of quasilinear uniformly parabolic systems of the form (22), see [5, Theo-
rem 1.2] and the references therein, it is known that weak solutions to such systems exhibit
singularities on a closed subset Q ⊆ [0, T ] × Td of zero measure. So we can not simply
apply the C2+θ Taylor expansion on the function �(ρt ) for all times t ≥ 0. Furthermore we
do not know whether the sub-critical region R(DR) is an invariant region for the zero range
parabolic system (22). These are the two main reasons that force us to rely on Amann’s local
in time existence of regular solutions, and prove a local in time version of the hydrodynamic
limit. A further study of the PDE system arising as the hydrodynamic limit of a two-species
ZRP, although interesting, is outside of the scope of this article, which is the passage from
the microscopic to the macroscopic description.

However, in the example of the species-blind ZRP one can take into advantage its relation

with a particular one-species ZRP to obtain the global in time existence ofC1+θ,2+θ
loc solutions

and a type ofmaximumprinciple, inwhich the sub-critical regionplays the role of the invariant
domain. We prove this in Theorem 3.3.

2.1 The Species-Blind ZRP

We now consider two-species local jump rate functions of the form

g1(k) = k1h(k1 + k2), g2(k) = k2h(k1 + k2) (23)

for some function h : N0 → R+ satisfying the non-degeneracy condition h(k) > 0 for all
k ∈ N. Any jump rate g of this form satisfies (6) since

g1(k)g2(k − e1) = k1h(k1 + k2)k2h(k1 + k2 − 1) = g1(k − e2)g2(k)

for all k ∈ N2 and the factorial of such a jump rate is given by

g!(k) = 1 · h(1) · . . . · k1 · h(k1) · 1 · h(k1 + 1) · . . . · k2 · h(k1 + k2) = k1!k2!h!(k1 + k2).

The partition function associated to g is given for ϕ ∈ N2
0 with ϕ2 > 0 by

Z(ϕ) =
∞∑

m=0

ϕm
2

h!(m)

m∑

k1=0

(
ϕ1
ϕ2

)k1

k1!(m − k1)! =
∞∑

m=0

ϕm
2

m!h!(m)

(
1+ ϕ1

ϕ2

)m = Ẑ(ϕ1 + ϕ2),

where Ẑ is the partition function associated to the one-species rate function ĝ(k) := kh(k).
So, in what follows, we assume that h is of the form h(k) = ĝ(k)

k , k ≥ 1, for some one-
species local jump rate function ĝ with regular tails, i.e., such that the limit inferior ϕ̂c :=
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lim infk→+∞ ĝ!(k) 1
k > 0 exists as a limit. In this case the function g defined in (23) is

a two-species local jump rate. Indeed, the non-degeneracy condition (2) and the Lipschitz
condition (3) are easy to verify, as we have seen g satisfies the compatibility condition (6)
and obviously DZ = {ϕ ∈ R2+|ϕ1 + ϕ2 ∈ DẐ } and DR = {ϕ ∈ R2+|ϕ1 + ϕ2 ∈ DR̂},
where R̂(ϕ) = ϕ(log Ẑ)′(ϕ) is the density function associated to the one-species jump rate
ĝ. In particular DZ �= ∅ and thus also (8) holds. We will refer to this nearest neighbour
two-species ZRP as the species-blind ZRP corresponding to the 1-species jump rate ĝ. The
density function corresponding to g is given by the formula

R(ϕ) =
(ϕ1 Ẑ ′(ϕ1 + ϕ2)

Ẑ(ϕ1 + ϕ2)
,
ϕ2 Ẑ ′(ϕ1 + ϕ2)

Ẑ(ϕ1 + ϕ2)

)
= R̂(|ϕ|1)
|ϕ|1 ϕ.

We set �̂ := R̂−1 and we will compute the inverse � of R : DR → R2+ in its image R(DR).
Let ρ = R(ϕ). We have to solve the system

ρ1 = ϕ1 Ẑ ′(ϕ1 + ϕ2)

Ẑ(ϕ1 + ϕ2)
, ρ2 = ϕ2 Ẑ ′(ϕ1 + ϕ2)

Ẑ(ϕ1 + ϕ2)
(24)

for (ϕ1, ϕ2). By adding the two equations we obtain that ρ1+ρ2 = R̂(ϕ1+ϕ2). In particular
ρ1 + ρ2 ∈ R̂(DR̂) for all ρ ∈ R(DR) and ϕ1 + ϕ2 = �̂(ρ1 + ρ2). Substituting ϕ1 + ϕ2 with

�̂(ρ1 + ρ2) in both equations in (24), we can solve for (ϕ1, ϕ2) to obtain

ϕi = ρi
Ẑ

(
�̂(ρ1 + ρ2)

)

Ẑ ′
(
�̂(ρ1 + ρ2)

) = ρi
1

(log Ẑ ′
(
�̂(ρ1 + ρ2)

) = ρi
�̂(ρ1 + ρ2)

ρ1 + ρ2
,

where the last equality above follows from the identity R̂(ϕ) = ϕ(log Z)′(ϕ) for the one-
species density and partition functions, since by this identity we have for all ρ ∈ (0, ρ̂c)
that

1

(log Ẑ)′
(
�̂(ρ)

) = �̂(ρ)

R̂(�̂(ρ))
= �̂(ρ)

ρ
,

where ρ̂c is the corresponding critical density of the one-species jump rate ĝ. Consequently,
the inverse � := R−1 : R(DR)→ DR is given by the formula

�(ρ) =
(
ρ1

�̂(ρ1 + ρ2)

ρ1 + ρ2
, ρ2

�̂(ρ1 + ρ2)

ρ1 + ρ2

)
= �̂(|ρ|1)
|ρ|1 ρ. (25)

Thus the expected hydrodynamic equation of the species-blind ZRP is

∂tρi = �
(
ρi

�̂(ρ1 + ρ2)

ρ1 + ρ2

)
, i = 1, 2. (26)

Since (26) is the expected hydrodynamic equation of the species-blind ZRP we will refer to
it as the species-blind parabolic system. A classical solution to the species-blind parabolic
system is a C1,2 function ρ = (ρ1, ρ2) : [0, T ) × Td → R2 satisfying (26) with 0 ≤
ρ1(t, u) + ρ2(t, u) < ρ̂c for all (t, u) ∈ [0, T ) × Td . Note that for any classical solution
ρ = (ρ1, ρ2) of the species-blind parabolic system (26) the sum ρ1+ρ2 satisfies the parabolic
equation ∂tρ = �̂(ρ) corresponding to the 1-species ZRP of jump rate ĝ(k) = kh(k). This
remark will allows us to prove the global in time existence of solutions to the species-blind
parabolic system. A similar argument was used for two-species simple exclusion processes
in [21].
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As an example of the nice properties of the species-blind process, we note that the extended
mean jump rate �̄ : R2+ → DR of the species-blind process can be computed explicitly and
is given by

�̄(ρ) =
¯̂
�(|ρ|1)
|ρ|1 ρ,

where ¯̂�(ρ) = �̂(ρ ∧ ρ̂c), ρ ≥ 0, is the extended mean jump rate of the one-species ZRP
with jump rate ĝ.

3 Main Results

Amain probabilistic ingredient in the proof of the hydrodynamic limit of ZRPs is the so-called
one-block estimate, which is well known under assumptions that exclude condensing ZRPs
(e.g., [19, Sect. 5.4]). Our first result is a version of the one-block estimate for condensing
ZRPs, i.e., R(DR) �= R2+, under the additional assumptions that the local jump rate g is
bounded, has a continuous partition function Z , and has regular tails in the sense of (18).
We note that these extra assumptions in the one-block estimate and the hydrodynamic limit
below are not required in the non-condensing case, i.e., when R(DR) = R2+. In the case
that R(DR) = R2+, but DZ �= R2+, Theorems 3.1 and 3.2 still hold under the (weaker than
boundedness) assumption that g has sub-linear growth at infinity in the sense that

lim sup
|k|1→+∞

|g(k)|1
|k|1 = 0. (27)

In the case that R(DR) = DZ = R2+, no extra assumption is required on g. Given any

(cylinder) function f : Md;2
N → R2 we set

f � := 1

(2�+ 1)d
∑

|x |≤�

τx f ,

where τx f (η) := f (τxη) and τxη(y) := η(x + y) for x, y ∈ Td
N .

Theorem 3.1 (One-block estimate) Suppose that the ZRP is condensing and that the local
jump rate g of the ZRP is bounded, has regular tails in the sense of (18) and its partition
function Z is continuous on DZ ∩ ∂DZ . Then for any sequence of initial distributions μN

0 ∈
P(Md;2

N ) satisfying the O(Nd)-entropy assumption, i.e.,

C(a) := lim sup
N∈N

1

Nd
H

(
μN
0 |νN

a

)
< +∞, (28)

for some (and thus for any) a ∈ R(Do
R) ∩ (0,∞)2, it holds that

lim
�→∞ lim sup

N→∞
EN

∣∣∣∣
∫ T

0

1

Nd

∑

x∈Td
N

〈
F

(
t,

x

N

)
, g(ηt (x))− �̄

(
ηt (x)

�
)〉
dt

∣∣∣∣ = 0 (29)

for all functions F ∈ C([0, T ] ×Td ;R2), T > 0; EN denotes the expectation with respect
to the diffusively accelerated law of the ZRP starting from μN

0 ∈ P(Md;2
N ) and �̄ is the

extension of � given by (11).

We note that the extension �̄ of the mean jump rate is required in the statement of the
one-block estimate, because η�

t can be outside the domain of sub-critical densities. This is
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the correct extension due to the equivalence of ensembles. The proof of this result is given
in Sect. 4.1 below.

Next is the general result regarding the hydrodynamic limit of two-species ZRPs. As
noted in the introduction, in order to take into account condensing ZRPs, we apply the
relative entropy method of H.T. Yau which requires only the one-block estimate and not
the full replacement lemma. But this method relies on the existence of sufficiently regular
classical solutions of parabolic systems which are known to exist only locally in time, and
thus the result is local in time, valid for the time interval that the unique maximal classical
solution of (1) established in [1] exists. We denote by C1+a,2+b([0, T ] ×Td), a, b ∈ [0, 1),
the space of all C1,2-functions f : [0, T ] × Td → R such that ∂t f ∈ Ca([0, T ] × Td) is
a-Hölder continuous and ∂2i j f ∈ Cb([0, T ]×Td) is b-Hölder continuous, where [0, T ]×Td

is equipped with the parabolic metric d given by

d
(
(t, x), (s, y)

) = (dTd (x, y)2 + |t − s|) 1
2 .

As usual, if I ⊆ R is an interval, then we write C1+a,2+b
loc (I × Td) for the space of all

functions f such that f ∈ C1+a,2+b(J ×Td) for any compact sub-interval J ⊆ I . This is
extended coordinate-wise to vector-valued functions; given a subset A ⊆ R2, we denote by
C1+a,2+b
loc (I × Td ; A) the subset of C1+a,2+b

loc (I × Td ;R2) consisting of functions taking
values in A.

Theorem 3.2 (Hydrodynamic limit) Let (SNt )t≥0 be the transition semigroup of the two-
species symmetric n.n. ZRP on the torusTd

N , N ∈ N, with condensing jump rate g satisfying
the assumptions of the one-block estimate above, and let� be the mean jump rate associated
to g. Let

ρ ∈ C1,2+θ
loc

([0, Tmax)×Td ; R(Do
R) ∩ (0,∞)2

)

be the unique maximal solution of the parabolic system (1) with values in the sub-critical
region R(Do

R) ∩ (0,+∞)2 of strictly positive densities. Then any initial entropy local equi-

librium μN
0 ∈ P(Md;2

N ) is conserved along the solution ρ. In other words, if {μN
0 } is an

entropy-local equilibrium of profile ρ0 := ρ(0, ·) ∈ C2+θ (Td) then μN
t := SN

tN2μ
N
0 , with

N ∈ N, is an entropy local equilibrium for all t ∈ [0, Tmax). In particular, {μN
t } satisfies (21)

for all t ∈ [0, Tmax).

This theorem is proved in Sect. 4.2. We should note that, although the proof of the hydro-
dynamic limit relies strongly on the assumption that the classical solution ρ takes values
in the set R(Do

R) ∩ (0,∞)2 for all times t ≥ 0, and so in particular requires the sequence
of initial distributions {μN

0 } to be an entropy local equilibrium of some sub-critical and
strictly positive profile ρ0 ≡ ρ(0, ·), the one-block estimate does not require this assump-
tion. It only requires that {μN

0 } satisfies the O(Nd)-entropy assumption, which can hold even
for super-critical profiles, having a Dirac mass of order O(Nd) at some site x ∈ Td , e.g.,
μN
0 (dη) = δ[aNd ](dη[Nx])⊗

⊗
y �=[Nx] ν1ρ(y/N )(dηy)with a ∈ (0,∞)2, when R(DR) �= R2+.

We note also that the assumption that ρ([0, Tmax) × Td) ⊆ (0,+∞)2 is a technical
one, arising from the fact the �(ρt ) appears in the denominator. If one knew that the region
R2+ is strongly invariant for the parabolic system (1) in the sense that ρ1 ∧ ρ2 becomes
strictly positive (and sufficiently fast) for the solution ρ, then one can replace the assumption
ρ([0, Tmax) × Td) ⊆ (0,+∞)2 with the assumption ρ0 ≥ 0 as in [23, Remark 3.3] for
the one-species case. Secondly, if one knew that the region (0,+∞)2 is invariant for the
parabolic system (1), then starting from C2+θ non-negative initial data ρ0 : Td → R(Do

R)
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one could could choose small enough ε > 0 such that ρε
0(T

d) ⊆ R(Do
R)∩ (0,+∞)2 where

ρε
0,i = ρ0,i + ε, i = 1, 2, use the result for strictly positive data and try to pass to the limit

as ε → 0. Since we do not pursue the study of the quasilinear parabolic system (1) and its
invariant regions at the macroscopic level in this article, we consider only local solutions
which are strictly positive and sub-critical and whose existence is established by Amann [1].

The next result states that,when starting fromsufficiently regular subcritical initial profiles,
the species-blind system (26) has solutions defined globally in time.

Theorem 3.3 (Global existence for the species-blind parabolic system) Let ρ0 ∈ C2+θ (Td ;
R(Do

R) ∩ (0,∞)2), θ ∈ [0, 1), be an initial profile. Then the species-blind parabolic sys-
tem (26) has a unique classical solution ρ : R+ ×Td → R2 starting from ρ0 and

ρ ∈ C1+θ,2+θ
loc ([0,+∞)×Td ; R(Do

R) ∩ (0,∞)2).

The proof of this Theorem can be found in Subsect. 4.3 and it is obtained by taking into
account the fact that the sum ρ1 + ρ2 of the two variables of a solution ρ = (ρ1, ρ2) of the
species-blind parabolic system is a solution of the scalar parabolic equation ∂t (ρ) = ��̂(ρ).
Here, by using the strong maximum principle for scalar quasilinear parabolic equations and
by proving that classical solutions ρ of the species-blind parabolic system do not become
negative, we obtain that the the sub-critical region is an invariant region. We believe thatR2+
will be an invariant region of the species-blind parabolic system in general. Yet, since we do
not study this question in this article, in order to be rigorous we prove it in this particular
case. We should add that the arguments used strongly rely on the relation to the PDE of the
single species ZRP associated to the species-blind ZRP by “ignoring” the species, and thus
do not easily extend to the general case.

As a corollary, we find that the hydrodynamic limit for the species-blind process holds
globally in time; Subsect. 4.4 gives the proof.

Corollary 3.1 Let (SNt )t≥0 be the transition semigroup of the diffusively rescaled species-
blind symmetric n.n. ZRP on the torusTd

N corresponding to a one-species jump rate ĝ such

that ϕ̂c := lim infk→+∞ ĝ!(k) 1
k ∈ (0,+∞] exists as a limit. Assume further that ĝ is bounded

if the critical density ρ̂c of the one-species ZRP is finite. IfμN
0 ∈ P(Md;2

N ) is an entropy local
equilibrium of profile ρ0 ∈ C2+θ (Td ; R(Do

R) ∩ (0,∞)2), then μN
t := μN

0 SNt is an entropy

local equilibrium of profile ρ(t, ·) for all t ≥ 0, where ρ ∈ C1+θ,2+θ
loc (R+ ×Td ; R(Do

R) ∩
(0,∞)2) is the unique solution to the species-blind parabolic system (26) starting from ρ0.

4 Proofs

4.1 Proof of Theorem 3.1

The proof of the one-block estimate follows closely the proof for the one-species case found
in [19, Sect. 5.4]. The differences are twofold. In [19, Sect. 5.4], the one-species case is
treated, and we extend this result to two species. However, the main difference is that in [19]
the non-condensing case is treated, while we cover the condensing case as well. This is shown
by applying the equivalence of ensembles (19) as in [23].

The first step in the proof of the one-block estimate is to replace the jump rate g(η(x)) at
the site x with the spatial average g(η(x))� over a box of size � ∈ N0. This is based on the
following lemma which is also useful in the proof of Theorem 3.2. The proof is omitted as
it is a simple adaptation of the proof for the one-species case [19, Lemma 6.4.1].
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Lemma 4.1 If the sequence {μN
0 } of initial distributions satisfies the O(Nd)-entropy

assumption (28), then
∫
|η|1dμN

0 ≤ O(Nd),

where |η|1 := |η|N ,1 :=∑
x∈Td

N
|η(x)|1.

This lemma, a change of variables and the conservation of the number of particles allow
us to replace g(η(x)) with the spatial average g(η(x))� in the statement of the one-block
estimate, and thus the one-block estimate is reduced to proving that

lim
�→∞ lim sup

N→∞

∫
1

Nd

∑

x∈Td

τx V
�dμ̄N

T = 0, (30)

where μ̄N
T := 1

T

∫ T
0 μN

t dt and V � is the cylinder function V � := |g(η(0))� − �̄(η(0)�)|1.
We establish this identity in a sequence of steps. We first estimate the entropy and the

Dirichlet form of the density f̄ NT := dμ̄N
T /dνN

ρ∗ of μ̄
N
T with respect to an equilibrium state of

density ρ∗ ∈ A. Note that f̄ NT = 1
T

∫
f Nt dt , where f Nt := dμN

t /dνN
ρ∗ is the density of the

law μN
t of the ZRP at time t with respect to the product equilibrium state of density ρ∗ ∈ A.

By [19, Proposition A.9.1], for any initial probability measure μ the entropy H(μt |ν) of the
law μt := μPt of a Markov semigroup (Pt )t≥0 at time t with respect to an equilibrium state
π of (Pt ) is a non-increasing function of time. Here the equilibrium π need not be unique or
approached byμt as t →+∞. Therefore, sinceμN

0 satisfies the O(Nd)-entropy assumption,
we have for fixed ρ∗ ∈ A that H(μN

t |νN
ρ∗) ≤ C(ρ∗)Nd , which, by convexity of the entropy,

implies that H(μ̄N
T |νN

ρ∗) ≤ C(ρ∗)Nd . Furthermore, if DN : L1+(νN
ρ∗)→ [0,+∞] denotes the

functional defined by DN ( f ) = DN (
√

f ) whereDN : L2(νρ∗)→ [0,+∞] is the Dirichlet
form associated to the generator LN ,

DN ( f ) := −〈 f, LN f 〉νρ∗ = −
∫

f LN f dνρ∗ ,

then by [19, Proposition A.9.2] and the convexity of the functional DN , it follows that
DN ( f̄ NT ) ≤ 1

T

∫ T
0 DN ( f Nt )dt ≤ C(ρ∗)

2T Nd−2. Therefore, ifwe setHN ( f ) := H( f dνN
ρ∗ |νN

ρ∗),
in order to prove the one-block estimate, it suffices to prove that for some ρ∗ ∈ A

lim sup
�→∞

lim sup
N→∞

sup
HN ( f )≤C0Nd

DN ( f )≤C0Nd−2

∫
1

Nd

∑

x∈Td
N

τx V
� f dνN

ρ∗ ≤ 0, ∀ C0 > 0, (31)

where the supremum is taken among all densities f ∈ L1+(νN
ρ∗).

In a second step, following the proof of the one-species case [19, Sect. 5.4] we cut off
large densities. Since Lemma 4.1 requires only the O(Nd)-entropy assumption, it follows
that

lim sup
N→+∞

sup
HN ( f )≤CNd

1

Nd

∫
|η|1 f dνN

ρ∗ < +∞, for every C > 0. (32)

Similarly to the one-species case, under the assumption that g has sublinear growth at infinity
in the sense of (27) (which always holds when g is bounded), inequality (32) allows us to cut
off large densities, by restricting V � to the set of configurations ηwhich satisfy |η�(0)|1 ≤ C1
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for some constant C1 > 0. This way the one-block estimate is reduced to proving that for all
constants C0,C1 > 0

lim
�→+∞ lim sup

N→+∞
sup

DN ( f )≤C0Nd−2

∫
1

Nd

∑

x∈Td
N

τx V
�1{|η�(x)|1≤C1} f dνN

ρ∗ ≤ 0. (33)

In a third step, by adapting the steps 2 to 4 of [19, Sect. 5.4.1] to the two-species case, the
one-block-estimate is further reduced to showing that for all constants C1 > 0,

lim sup
�→+∞

max
K

∣∣|K |1≤(2�+1)dC1

∫
V �dν2�+1,K = 0, (34)

where the canonical measure ν2�+1,K is considered as a measure onMd∞ by identifying the
cube �d

� := {x ∈ Zd
∣∣ |x | ≤ �} ⊆ Zd with Td

2�+1.
The final step in the proof of the one-block estimate consists in applying the equivalence

of ensembles to prove (34). Since the measure ν2�+1,K is concentrated on configurations with
K particles, the integral appearing in (34) is equal to

∫
V �dν2�+1,K =

∫ ∣∣∣∣
1

(2�+ 1)d
∑

|x |≤�

g
(
ξ(x)

)− �̄
( K

(2�+ 1)d

)∣∣∣∣
1
dν2�+1,K .

As in the one-species case, by fixing a positive integer k which will tend to infinity after
taking the limit as �→+∞, and decomposing the cube �d

� in smaller cubes of side-length
2k + 1, the one-block estimate is reduced to showing that

lim
k→∞ lim

m→∞ S(m, k) = 0, (35)

where S(m, k) denotes the supremum

S(m, k) := sup
�≥m

|K |1≤(2�+1)dC1

∫ ∣∣∣
1

(2k + 1)d
∑

|x |≤k
g

(
ξ(x)

)− �̄
( K

(2�+ 1)d

)∣∣∣
1
dν2�+1,K .

This is the part of the proof where we need the boundedness and the regularity of the tails (18)
of the jump rate g as well as the continuity of the partition function Z on DZ ∩ ∂DZ . For
each fixed (m, k) ∈ N×N, we pick a sequence {(�m,k

n , Km,k
n )}n∈N such that �m,k

n ≥ m and
|Km,k

n |1 ≤ (2�m,k
n + 1)dC1 for all n ∈ N that achieves the supremum, i.e., such that

S(m, k) = lim
n→∞

∫ ∣∣∣
1

(2k + 1)d
∑

|x |≤k
g

(
ξ(x)

)− �̄
( Km,k

n

(2�m,k
n + 1)d

)∣∣∣
1
dν2�m,k

n +1,Km,k
n

.

Since the sequence {rm,k
n }n∈N defined by

rm,k
n := Km,k

n

(2�m,k
n + 1)d

, n ∈ N,

is contained in the compact triangular region B|·|1(0,C1) := {r ∈ R2+
∣∣ |r|1 ≤ C1}, for each

fixed (m, k) ∈ N×N, we can pick a sequence {n j } j∈N := {nm,k
j } such that rm,k

n j converges

to some rm,k ∈ B|·|1(0,C1) as j → ∞. Since we assume that g is bounded, it follows by
the equivalence of ensembles that

S(m, k) =
∫ ∣∣∣

1

(2k + 1)d
∑

|x |≤k
g

(
ξ(x)

)− �̄
(
rm,k)∣∣∣

1
dν∞Rc(rm,k )

.

123



Hydrodynamic Limit of Condensing… 811

Furthermore, since |Rc(ρ)|1 ≤ |ρ|1, for each fixed k ∈ N the sequence {ρm,k :=
Rc(rm,k)}m∈N, is also contained in B|·|1(0,C1) and thus we can choose a sequence

{m j } j∈N = {m(k)
j } such that {ρm j ,k}m∈N converges to some ρk ∈ B|·|1(0,C1) ∩ R(DR).

By the continuity assumption on Z , the grand canonical ensemble is weakly continuous. By
this fact, the continuity of Rc and the identity �̄ = � ◦ Rc,

lim
m→∞ S(m, k) =

∫ ∣∣∣
1

(2k + 1)d
∑

|x |≤k
g

(
ξ(x)

)−�
(
ρk)∣∣∣

1
dν∞

ρk .

Therefore

lim sup
k→+∞

lim
m→+∞ S(m, k) ≤ lim sup

k→∞
sup

ρ∈R(DR)

∫ ∣∣∣
1

(2k + 1)d
∑

|x |≤k
g

(
η(x)

)−�
(
ρ

)∣∣∣
1
dν∞ρ .

The random variables g
(
η(x)

)
, x ∈ Zd , are uniformly bounded by ‖g‖∞ and i.i.d. with

respect to ν∞ρ for all ρ ∈ R(DR) and thus they satisfy the L2-weak law of large numbers
uniformly over all parameters ρ ∈ R(DR), which shows that the term in the right hand side
above is equal to zero. This completes the proof of the one-block estimate and hence the
proof of Theorem 3.1. ��
4.2 Proof of Theorem 3.2

Let A be the interior of the set of all strictly positive sub-critical densities, i.e.,

A := R(Do
R) ∩ (0,∞)2,

and let ρ : [0, Tmax) ×Td → A be the maximal classical solution established in [1] of the
initial value problem (1) with ρ(0, ·) := ρ0 ∈ C2+θ (Td ; A). We fix a ∈ A and denote by
ψN
t the Radon-Nikodym derivative of νN

ρt (·) with respect to νN
a ,

ψN
t :=

dνN
ρt (·)

dνN
a

.

Let HN (t) := H(μN
t |νN

ρt (·)) be the relative entropy of μN
t with respect to νN

ρt (·). We have the
following upper bound on the entropy production, proved in [19, Lemma 6.1.4],

∂t HN (t) ≤
∫

1

ψN
t

{
N 2L∗NψN

t − ∂tψ
N
t

}
dμN

t (36)

for every t ∈ [0, Tmax), where L∗N is the adjoint of LN in L2(νN
a ). Denoting by

H(t) := lim sup
N→∞

1

Nd
HN (t), t ∈ [0, Tmax), (37)

the limiting entropy density, the main step in the application of the relative entropy method
is to use this upper bound on ∂t HN (t) to get an inequality of the form

H(t) ≤ H(0)+ 1

γ

∫ t

0
H(s)ds (38)

for some constant γ > 0. Since H(0) = 0 by assumption, this implies by Gronwall’s
inequality that H(t) = 0 for all t ∈ [0, Tmax) as required. Of course, in order for Gronwall’s
inequality to be applicable, H must belong at least in L1

loc([0, Tmax)]. This is the context of
the next two lemmas. The first is Remark 6.1.2 in [19] for single-species ZRPs.
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Lemma 4.2 If {μN
0 } is an entropy local equilibrium of profile ρ ∈ C(Td ; R(Do

R)), then
{μN

0 } satisfies the O(Nd)-entropy assumption (28).

Proof Indeed, for fixed a ∈ A := R(Do
R) ∩ (0,∞)2, by the relative entropy inequality [19,

Sect. A.1.8]

H(μN
0 |νN

a ) ≤
(
1+ 1

γ

)
H(μN

0 |νN
ρ(·))+

1

γ
log

∫
e
γ log

dνN
ρ(·)

dνNa dνN
ρ(·). (39)

Since νN
ρ(·), νN

a are product measures, the Radon-Nikodym derivative
dνN

ρ(·)
dνN

a
can be computed

explicitly. With the notation �a :=
(

�1
�1(a)

, �2
�2(a)

)
, Za := Z◦�

Z(�(a))

∫ (dνN
ρ(·)

dνN
a

)γ

dνN
ρ(·) =

∏

x∈Td
N

1

Za(ρ(x/N ))γ

∫
e〈k,γ log�a(ρ(x/N ))〉dν1ρ(x/N )(k).

Since Z ≥ 1, we have that 1
Za(ρ)

= Z(�(a))
Z(�(ρ))

≤ Z(�(a)) and therefore

1

γ Nd
log

∫ (dνN
ρ(·)

dνN
a

)γ

dνN
ρ(·) ≤ Z(�(a))+ 1

γ Nd

∑

x∈Td
N

�ρ(x/N )

(
γ log�a

(
ρ

(
x/N

)))

≤ Z(�(a))+ 1

γ Nd

∑

x∈Td
N

log Z
(
Fa(x/N , γ )

)
, (40)

where here Fa : Td ×[0, 1] → (0,∞)2 is the function given by Fa(u, γ ) = �(ρ(u))1+γ

�(a)γ and

for a ∈ R2+, b ∈ (0,∞)2, γ > 0, we have set aγ := (aγ
1 , aγ

2 ) and a
b := ( a1b1

, a2
b2

). Since

ρ(Td) ⊆ R(Do
R) by assumption, it follows that �(ρ(Td)) ⊆ Do

Z . Since Fa is uniformly
continuous on Td × [0, 1] and satisfies limγ→0 Fa(u, γ ) = �(ρ(u)) for all u ∈ Td , it
follows that its image is contained in Do

Z , i.e., {Fa(u, γ )|u ∈ Td} ⊆ Do
Z for sufficiently

small γ > 0. Then the function u �→ Z(Fa(u, γ )) is well defined and continuous on the
torus Td , so that its Riemannian sums converge. By (39), (40) and the fact that μN

0 is an
entropy local equilibrium, this yields that

C(a) ≤ Z(�(a))+ 1

γ

∫

Td
log Z

(
Fa(u, γ ))du < +∞

for small γ > 0, and the proof of Lemma 4.2 is complete. ��
Lemma 4.3 Let ρ : [0, T ] × Td → R(Do

R) ∩ (0,∞)2 be a continuous function and let
{μN

0 } be an entropy local equilibrium with respect to ρ0 := ρ(0, ·). Then the upper entropy
H : [0, T ] → [0,+∞] defined by

H(t) := sup
N∈N

1

Nd
H

(
μN
t |νN

ρt (·)
)

belongs to L∞([0, T ]).
Proof By the relative entropy inequality and [19, Proposition A.1.9.1], according to which
the function t �→ H(μN

t |νN
a ) is non-increasing,

HN (t) ≤
(
1+ 1

γ

)
H(μN

0 |νN
a )+ 1

γ
log

∫ ( dνN
a

dνN
ρt (·)

)γ

dνN
a (41)
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for all t ≥ 0 and all γ > 0. Since the proper domain of Za has interior Do
Za
= R(Do

R) and

since ρ([0, T ] × Td) ⊆ R(Do
R) ∩ (0,∞)2, the function Za ◦ ρ is a bounded continuous

function on the torus, and therefore, by a computation similar to the one in the proof of
Lemma 4.2, we obtain

1

γ Nd
log

∫ ( dνN
a

dνN
ρt (·)

)γ

dνN
a

= ‖Za ◦ ρ‖L∞([0,T ]×Td ) +
1

γ Nd

∑

x∈Td
N

�a

(
γ log

1

�a(ρt (x/N ))

)
,

where ‖Za ◦ ρ‖L∞([0,T ]×Td ) < +∞. For the second term, we have for every u ∈ Td that

�a

(
γ log

1

�a(ρt (u))

)
= log

{ 1

Z(�(a))
Z

( �(a)1+γ

�(ρt (u))γ

)}
. (42)

Since �(ρ)(Td) ⊆ (0,∞)2 and �(ρ) is continuous, there exists ϕ0 ∈ DZ such that ϕ0 <

�(ρ(t, u)) for all (t, u) ∈ [0, T ] ×Td . Then since Z is increasing,

Z
( �(a)1+γ

�(ρt (u))γ

)
≤ Z

(�(a)1+γ

ϕ
γ
0

)
,

and since �(a) ∈ Do
Z and �(a)1+γ /ϕ

γ
0 → �(a) as γ → 0, we can choose γ0 > 0

sufficiently small so that �(a)1+γ /ϕ
γ
0 ∈ Do

Z and Z
(
�(a)1+γ /ϕ

γ
0

) ≤ Z
(
�(a)

) + 1 for all
γ < γ0. Consequently, since by Lemma 4.2 {μN

0 } satisfies the O(Nd)-entropy assumption,
by (41) for some constant C ≥ 0 for all γ < γ0

‖H‖L∞([0,T ]) ≤
(
1+ 1

γ

)
C + ‖Za(ρ)‖L∞([0,T ]×Td ) +

1

γ
log

Z(�(a))+ 1

Z(�(a))
< +∞,

establishing the claim of Lemma 4.3. ��

The bound (36) on the entropy production can be estimated explicitly. Since νN
ρt (·), ν

N
a are

product measures, ψt can be computed explicitly. Then by differentiating, using the chain
rule, the fact thatρ is a solution of the hydrodynamic equation, the relations ϕi ∂i Z(ϕ)

Z(ϕ)
= Ri (ϕ),

i = 1, 2 and the relation (13) we obtain

∂tψ
N
t

ψN
t
=

∑

x∈Td
N

〈��(ρt (x/N ))

�(ρt (x/N ))
, D�

(
ρt (x/N )

)[η(x)− ρt (x/N )]
〉
. (43)

Wenote here that as in the asymmetric case treated in [16], at this point of the application of the
relative entropy method for two-species ZRPs one has to use the macroscopic analogue (13)
of the compatibility relations (6).

For the other term, by computations of the action of the generator on ψN
t similar to the

ones for the single-species case in [19],

L∗NψN
t

ψN
t
=

∑

i=1,2

∑

x,y∈Td
N

[�i
(
ρt (y/N )

)

�i
(
ρt (x/N )

) − 1
][
gi

(
η(x)

)−�i
(
ρt (x/N )

)]
p(y − x). (44)
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Since �(ρt ) is C
2+θ for some θ > 0 and the n.n. transition probability has mean zero, the

Taylor expansion for C2+θ functions yields (with the renormalisation p(Zd) = 2d) that

N 2L∗NψN
t

ψN
t

=
∑

x∈Td
N

〈�[�(ρt )]
�(ρt )

( x

N

)
, g(η(x))−�(ρt (x/N ))

〉
+ rN (t). (45)

Here, for any T ∈ [0, Tmax), the remainder rN (t) satisfies the bound

|rN (t)| ≤ CT g∗

N θ
|η|1 + CT MT

mT
Nd−θ

for all t ∈ [0, T ], where g∗ is the constant in (4),CT = C(d, p,�(ρ), T ) ≥ 0 is the constant

CT =
√
d sup
0≤t≤T

‖D2[�1(ρt )]‖Cθ ∨ ‖D2[�2(ρt )]‖Cθ

∑

y∈Zd

‖y‖2+θ p(y)

with ‖ · ‖Cθ denoting the θ -Hölder seminorm and

mT := inf
(t,u)∈[0,T ]×Td

min
i=1,2�i (ρt (u)) > 0, MT := sup

(t,u)∈[0,T ]×Td
|�(ρ(t, u))|1 < +∞.

By this bound on the remainder and the conservation of the number of particles it follows
that for all t ∈ [0, T ] ⊆ [0, Tmax), T > 0,

1

Nd

∫ t

0

∫
rN (t)dμN

t dt ≤
CT g∗t
Nd+θ

∫
|η|1dμN

0 +
CT MT t

mT

1

N θ
,

which according to Lemma 4.1 shows that
∫ t

0

∫
rN (s)dμN

s ds ≤ o(Nd). (46)

Since the function �[�(ρt )]
�(ρt )

is in Cloc([0, Tmax)×Td), a change of variables shows that

∫ t

0

∫ ∑

x∈Td
N

〈�[�(ρs)]
�(ρs)

( x

N

)
, η(x)− η�(x)

〉
dμN

s ds = o(Nd) (47)

for all t ∈ [0, Tmax). Integrating (36) in time, using the explicit expressions (43), (45), taking
into account (46) and the fact that {μN

0 } is an entropy local equilibrium (i.e., (20) holds) and
using (47) and the one-block estimate, one obtains that for all t ∈ (0, Tmax)

HN (t) ≤
∫ t

0

∫ ∑

x∈Td
N

〈�[�(ρs)]
�(ρs)

( x

N

)
,�

(
ρs(x/N ), η�(x)

)〉
dμN

s ds + o�(N
d), (48)

where � : R(Do
R)×R2+ → R2 is the quasi-potential

�(ρ,λ) = �̄(λ)−�(ρ)− D�(ρ)(λ− ρ) (49)

and the term o�(Nd) satisfies o�(Nd)/Nd → 0 as N and then � tend to infinity. In the
definition of the quasi-potential the second variable λ is in R2+ since it is to be substituted
by the large microscopic averages η�(x), x ∈ Td

N . Thus the extension �̄ of � must be used
in the quasi-potential. To simplify the notation, we set

Gt (u,λ) :=
〈
�[�(ρt )]

�(ρt )
(u),�

(
ρt (u),λ

)〉
. (50)
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By the relative entropy inequality, we have for all γ > 0 and all 0 ≤ s < Tmax that
∫ ∑

x∈Td
N

Gs
(
x/N , η�(x)

)
dμN

s ≤
1

γ
HN (s)+ 1

γ
log

∫
e
γ

∑
x∈Td

N
Gs (

x
N ,η�(x))

dνN
ρs (·).

By combining this inequality with the bound (48), dividing by Nd and taking the lim sup as
N →∞ and then �→∞, we get

H(t) ≤ 1

γ

∫ t

0
H(s)ds + lim sup

�,N→+∞
1

γ Nd

∫ t

0
log

∫
e
γ

∑
x∈Td

N
Gs (

x
N ,η�(x))

dνN
ρs (·)ds, (51)

where in order to obtain the term
∫ t
0 H(s)ds we used Lemma 4.3 to pass the limit inside the

integral and lim sup�,N→+∞ denotes the lim sup as N →+∞ and then �→+∞.
To complete the proof of Theorem 3.2, it remains to show that for each t ∈ [0, Tmax) we

can choose γ > 0 small enough so that the rightmost term in (51) vanishes. We begin by
noting that the function G : [0, Tmax)×Td ×R2+ → R defined in (50) satisfies

|Gt (u,λ)| ≤
∣∣∣
�[�(ρt )]

�(ρt )
(u)

∣∣∣∞

{
g∗

(|λ|1 + |(ρt (u))|1
)+ |D�(ρt (u))|∞

(|λ|1 + |ρt (u)|1
)}

for all (t, u,λ) ∈ [0, Tmax)×Td ×R2+, which for any t ∈ [0, Tmax) yields the inequality

sup
(s,u)∈[0,t]×Td

|Gs(u,λ)| ≤ Ct · (1+ |λ|1) for all λ ∈ R2+ (52)

for some constant Ct < +∞. Since for any t ∈ [0, Tmax) we have ρ([0, t] ×Td) ⊆ R(Do
R)

the set �(ρ)([0, T ] ×Td) is bounded away from the critical densities ϕc ∈ ∂DZ , and thus
there exists ε > 0 such that

sup
(t,u)∈[0,T ]×Td

�ρ(t,u)(λ) < +∞, ∀λ ∈ D(0, ε),

i.e., 0 ∈ (Dsup
(t,u)∈[0,T ]×Td �ρ(t,u)

)o = ( ⋂
(t,u)∈[0,T ]×Td D�ρ(t,u)

)o. It follows that by choosing
γt small enough so that γtCt < ε, we can pass the limit superior as N → +∞ and then
� → +∞ inside the time integral in the rightmost term in (51). Thus in order to complete
the proof it remains to show that for each t ∈ [0, Tmax) we can choose γt > 0 small enough
so that

lim sup
�,N→+∞

1

γt Nd
log

∫
e
γt

∑
x∈Td

N
Gt (

x
N ,η�(x))

dνN
ρt (·) ≤ 0. (53)

The proof of (53) relies on a corollary of the Laplace-Varadhan lemma [4, Sect. 4.3] for
the large deviations principle satisfied by the independent family of the occupation variables
{η(x)}x∈Zd with respect to the invariant measure ν∞ρ on the infinite lattice Zd for some

ρ ∈ A. Since the one-site marginal ν1ρ has some exponential moments for ρ ∈ A, by
Cramér’s theorem, the large deviations functional of the family {η(x)}x∈Zd is given by the
Legendre transform �∗ρ of the logarithmic moment-generating functional �ρ . Note that (15)
implies that modulo an affine function depending on ρ, the rate functional�∗ρ coincides with
the thermodynamic entropy S, that is

�∗ρ(λ) = S(λ)− 〈
λ, log�(ρ)

〉+ log Z
(
�(ρ)

)
. (54)
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Lemma 4.4 Let ρ : Td → R(Do
R) be a continuous profile and let G : Td ×R+ → R be a

continuous function such that

sup
u∈Td

|G(u,λ)| ≤ C(1+ |λ|1) for all λ ∈ R2+ (55)

for some constant C > 0 such that (2C, 2C) ∈ ( ⋂
u∈Td D�ρ(u)

)o
. Then

lim sup
�→∞

lim sup
N→∞

1

Nd
log

∫
e

∑
x∈Td

N
G( x

N ,η�(x))
dνN

ρ(·) ≤
∫

Td
sup

λ∈R2+

{
G(u,λ)− 1

2
�∗ρ(u)(λ)

}
du.

We omit the proof of this Lemma as it is a simple adaptation of the corresponding result
in the one-species case, [19, Lemma 6.1.10]. By the bound (52) the function G : [0, Tmax)×
Td ×R2+ → R defined in (50) satisfies

sup
u∈Td

|Gt (u,λ)| ≤ Ct (1+ |λ|1)

for each fixed t ∈ [0, Tmax). Therefore, if we choose γt > 0 small enough so that 2γtCt (e1+
e2) ∈

( ⋂
u∈Td �ρt (u)

)o, then for all γ ∈ (0, γt ) the function γGt satisfies the assumptions
of Lemma 4.4, and thus for γ ∈ (0, γt ) the term in (51) is bounded above by

∫

Td
sup

λ∈R2+

{
γGt (u,λ)− 1

2
�∗ρt (u)(λ)

}
du. (56)

To complete the application of the relative entropymethod, it remains to show that by reducing
γt > 0, t ∈ [0, Tmax), if necessary, this last term is non-positive.

We note that this would follow if we had a bound of the form

Bt := sup
ρ∈Kt
λ∈R2+

|�(ρ,λ)|
�∗ρ(λ)

< +∞, (57)

where Kt ⊆ A := R(Do
R)∩ (0,∞)2 is a compact set containing the image ρt (T

d). Indeed,
since �∗ρ(λ) = 0 iff λ = ρ, in which case �(ρ,λ) = 0, we would then have that

|�(ρ,λ)| ≤ Bt�
∗
ρ(λ) for all (ρ,λ) ∈ Kt ×R2+,

and so for γ ∈ (0, γt ) we would have

γ |Gt (u,λ)| ≤ γ

∥∥∥∥
�[�(ρt )]

�(ρt )

∥∥∥∥
L∞(Td ;�2∞)

Bt�
∗
ρt (u)(λ)

for all (u,λ) ∈ Td × R2+. Then by choosing γt > 0 small enough so that in addition
γt Bt

∥∥�[�(ρt )]/�(ρt )
∥∥
L∞(Td ;�2∞)

< 1
2 , it would follow that (56) is non-positive, and the

proof would be complete. The bound (57) is proved in Lemma 4.5. Before we proceed with
the proof of Lemma 4.5, we recall some facts on recession functions of convex functions.

Given a lower semicontinuous proper convex function ψ : Rd → (−∞,+∞] with 0 ∈
Dψ , its recession function ψ∞ : Rd → (−∞,+∞] is defined by

ψ∞(y) := lim
t→+∞

ψ(t y)

t
= lim

t→+∞
d

dt

∣∣∣+ψ(t y),

where d
dt |+ denotes differentiation from the right. The recession function ψ∞ is obviously

positively 1-homogeneous, ψ∞(λy) = λψ∞(y) for all y ∈ Rd , λ ≥ 0.
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It is well known [22, Theorem 8.5] that if ψ is a proper lower semi-continuous convex
function, then so is its recession function. Using the equivalent definition of recession func-
tions via the recession cone of their epigraphs [22, Sect. 8], one can express the recession
function by the formula

ψ∞(y) = inf
{
lim inf
k→+∞

ψ(tk yk)

tk

∣∣∣tk →+∞, yk → y
}

(58)

(see [10, (12.7.1)]). Particularly useful in the proof of the following lemma is the characteri-
sation of the interior of the proper domain of a convex function ψ via the recession function
of its Legendre transform, as stated in [10, (12.7.3)],

Do
ψ =

⋂

y �=0

{
x ∈ Rd

∣∣ 〈x, y〉 < (ψ∗)∞(y)
}
. (59)

Applying (59) to the thermodynamic pressure P := logZ, Z := Z ◦ exp, we get
log

(Do
Z ∩ (0,∞)2

) = Do
Z =

{
μ ∈ R2

∣∣ S∞(λ) > 〈λ,μ〉, ∀λ �= 0
}
. (60)

In other words, Do
Z is the intersection of all hyperplanes {μ ∈ R2|〈μ,υ〉 < S∞(υ)} for

υ ∈ S1 ∩ (0,∞)2. This implies that the function S1 ∩ (0,∞)2 � υ �→ S∞(υ)υ ∈ R2 is a
parametrisation of the boundary ∂DZ . Thismaybe comparedwith [13, (2.14)]. Consequently,
the part of the boundary ∂DZ on the strictly positive quadrant is given by the parametrisation
eS∞(υ)υ , υ ∈ S1∩ (0,∞)2. Along the two axes ϕ1 = 0 and ϕ2 = 0, there is only one-species
of particles and the critical fugacities in these directions are fugacities of one species ZRPs.

Lemma 4.5 For any compact K ⊆ A := R(Do
R) ∩ (0,∞)2,

sup
(ρ,λ)∈K×R2+

|�(ρ,λ)|
�∗ρ(λ)

< +∞. (61)

Proof For all (ρ,λ) ∈ K × (0,∞)2 we have that �∗(ρ,λ) := �∗ρ(λ) ≥ 0 and the functions

|�| : K × (0,∞)2 → R+ and �∗ : K × (0,∞)2 → R+ are continuous. Therefore the frac-
tion in the supremum can tend to infinity if the nominator goes to infinity or the denominator
goes to zero. Since � : K × (0,∞)2 → R2 is continuous and K is compact the nominator
can tend to infinity only as |λ|1 →+∞. In this case∗ρ also tends to+∞ as a rate functional
with compact level sets. Since�∗ρ is the rate functional of the i.i.d. occupation variables η(x),

x ∈ Zd , with common law ν1ρ we have that �∗(ρ,λ) = 0 iff ρ = λ for the denominator. But
obviously for ρ = λ we have �(ρ,λ) = 0, so the nominator vanishes as well. So in order to
prove the lemma we have to show that the nominator and the denominator are of the same
order as |ρ − λ| → 0 and |ρ − λ| → +∞.

Motivated by the previous sketch, we choose ε > 0 such that Kε := K (ε) ⊆ A, where
K (ε) := ⋃

x∈K D(x, ε), and for any M > 0 we separate the region K × (0,∞)2 as K ×
(0,∞)2 = Eε

0 ∪ EM
ε ∪ E∞M , where

Eε
0 := {(ρ,λ) ∈ K × (0,∞)2

∣∣ |ρ − λ| ≤ ε},
EM

ε := {(ρ,λ) ∈ K × (0,∞)2
∣∣ ε ≤ |ρ − λ| ≤ M},

E∞M := {(ρ,λ) ∈ K × (0,∞)2
∣∣ |ρ − λ| ≥ M}.

We prove the claim on each region individually. Obviously the set EM
ε is compact and so

since the functions � and �∗ are jointly continuous, the claim holds on the region EM
ε .

123



818 N. Dirr et al.

We turn to the region Eε
0 . By its definition, for any (ρ,λ) ∈ Eε

0 we have that λ ∈ D(ρ, ε) ⊆
Kε ⊆ A. So, since D(ρ, ε) is convex, for all (ρ,λ) ∈ Eε

0 the image of the constant speed
line segment γ ρ,λ : [0, 1] → R2 from ρ to λ is contained in Kε , i.e.,

γ ρ,λ([0, 1]) ⊆ Kε for all (ρ,λ) ∈ Eε
0 . (62)

By the first order Taylor expansion of �i , i = 1, 2 around the point ρ ∈ K ,

�i (ρ,λ) =
∫ 1

0
(1− t)

〈
λ− ρ, D2�i (γ ρ,λ(t))(λ− ρ)

〉
dt for all (ρ,λ) ∈ Eε

0 .

Since � is smooth on the set A, the matrix D2�i (ρ) is symmetric for all ρ ∈ A. Denoting
by λi±(ρ) the real eigenvalues of D2�i (ρ) we have

λi−(γ ρ,λ(t))|λ− ρ|2 ≤ 〈λ− ρ, D2�i (γ ρ,λ(t))(λ− ρ)
〉 ≤ λi+(γ ρ,λ(t))|λ− ρ|2.

Furthermore, by the continuity of the eigenvalues λi± as functions of ρ ∈ A,

Ai := sup
ρ∈Kε

|λi−| ∨ |λi+|(ρ) < +∞.

So by (62), we have that |λi−| ∨ |λi+|(γ ρ,λ(t)) ≤ Ai for all (t, ρ,λ) ∈ [0, 1] × Eε
0 and thus

|�i (ρ,λ)| ≤ Ai

2
|λ− ρ|2, i = 1, 2.

For the denominator in (61), we note that the rate functional �∗ρ is C1 on (0,∞)2 and C2 on
A with

∇�∗ρ(λ) = log
�̄(λ)

�(ρ)
, λ ∈ (0,∞)2,

D2�∗ρ(λ) = D log�(λ) = D2S(λ), λ ∈ A,

where S is the thermodynamic entropy. Since �∗ρ and its derivative vanish at ρ, by Taylor
expansion of �∗ρ around ρ ∈ K

�∗ρ(λ) =
∫ 1

0
(1− t)

〈
λ− ρ, D2S(γ ρ,λ(t))(λ− ρ)

〉
dt, λ ∈ A.

Denoting by λ−(ρ) > 0 the minimal eigenvalue of the strictly positive definite matrix
D2S(ρ), we have by continuity that

B := inf
ρ∈Kε

λ−(ρ) > 0.

Then �∗ρ(λ) ≥ B
2 |λ− ρ|2 for all (ρ,λ) ∈ Eε

0 , which shows that

sup
(ρ,λ)∈Eε

0

|�i (ρ,λ)|
�ρ(λ)

≤ Ai

B
< +∞, i = 1, 2

and yields the bound (61) in the region Eε
0 .

It remains to show that the supremum is finite in the region E∞M for some M > 0. On one
hand, it follows from (16) and the compactness of K that � satisfies a bound of the form

|�(ρ,λ)|1 ≤ C0 + C1|λ|1 ∀ (ρ,λ) ∈ K ×R2+

123



Hydrodynamic Limit of Condensing… 819

for some constants C0,C1 ≥ 0. So, to complete the proof, it suffices to show that �∗ has at
least linear growth in E∞M as |λ| → +∞, i.e.,

lim
M→+∞ inf

(ρ,λ)∈E∞M

�∗ρ(λ)

|λ| > 0,

where of course the limit as M → +∞ exists as an increasing limit. We begin by noting
that

lim
M→+∞ inf

(ρ,λ)∈E∞M

�∗ρ(λ)

|λ| ≥ lim inf|λ|→+∞ inf
ρ∈K

�∗ρ(λ)

|λ| =: a.

We choose a sequence {λn} ⊆ R2+ achieving the limit inferior,

|λn | → +∞ and lim
n→+∞ inf

ρ∈K
�∗ρ(λn)

|λn | = a.

Since { λn|λn | } is contained in the compact space S1+ := S1 ∩R2+, by passing to a subsequence
if necessary, we can assume that { λn|λn | } converges to some direction υ ∈ S1+. Then obviously

lim inf
n→+∞

S(λn)

|λn | ≥ lim inf|λ|→+∞
λ/|λ|→υ

S(λ)

|λ| = S∞(υ), (63)

where the equality in the right-hand side holds by (58). Since �(K ) ⊆ Do
Z ∩ (0,∞)2, we

have by (60) that S∞(υ) − 〈υ, log�(ρ)〉 > 0 for all ρ ∈ K . Thus, since � is continuous
and K is compact,

θ := inf
ρ∈K{S∞(υ)− 〈υ, log�(ρ)} > 0.

Then by (63) there exists n1 ∈ N such that

n ≥ n1 �⇒ S(λn)

|λn | ≥ S∞(υ)− θ

3
.

By (54) and taking into account the fact that Z ≥ 1, we have that for all n ≥ n1 and all
ρ ∈ K ,

�∗ρ(λn)

|λn | ≥ S∞(υ)−
〈 λn

|λn | , log�(ρ)
〉
+ 1

|λn | log Z
(
�(ρ)

)− θ

3

≥ S∞(υ)−
〈 λn

|λn | , log�(ρ)
〉
− θ

3
.

But by the compactness of K , we have that ‖ log�‖L∞(K ) := supρ∈K | log�(ρ)|2 < +∞
and therefore the sequence {〈 λn|λn | , log�(ρ)〉} converges to 〈υ, log�(ρ)〉 uniformly over all
ρ ∈ K ,

sup
ρ∈K

∣∣∣
〈 λn

|λn | , log�(ρ)
〉
− 〈

υ, log�(ρ)
〉∣∣∣ ≤ ‖ log�‖L∞(K )

∣∣∣
λn

|λn | − υ

∣∣∣
2
→ 0.

Therefore we can choose n2 ∈ N such that

n ≥ n2 �⇒ sup
ρ∈K

∣∣∣
〈 λn

|λn | , log�(ρ)
〉
− 〈

υ, log�(ρ)
〉∣∣∣ <

θ

3
,
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and then for all n ≥ n1 ∨ n2 and all ρ ∈ K

�∗ρ(λn)

|λn | ≥ S∞(υ)−
〈
υ, log�(ρ)

〉
− 2θ

3
≥ θ − 2θ

3
= θ

3
> 0.

This proves that

lim inf|λ|→+∞ inf
ρ∈K

�∗ρ(λ)

|λ| = lim
n→+∞ inf

ρ∈K
�∗ρ(λn)

|λn | > 0,

which completes the proof of Lemma 4.5. ��
SinceLemma4.5 establishes themissing bound (57), the proof ofTheorem3.2 is complete.

4.3 Proof of Theorem 3.3

By [1], it is known that quasilinear parabolic systems have uniquemaximal classical solutions
when starting from initial profiles of class C2+θ , θ ∈ [0, 1). To show that classical solutions
of the species-blind parabolic system (26) are global in time, we prove first a maximum
principle asserting that the region

A := R(Do
R) ∩ (0,∞)2 = {

ρ ∈ (0,∞)2
∣∣ ρ1 + ρ2 < ρ̂c

}

is invariant under the evolution of the species-blind parabolic system. Here ρ̂c ∈ (0,+∞] is
the critical density of the one-species ZRP associated with the species-blind ZRP. The proof
of this version of the maximum principle for systems of the form (26) relies on the maximum
principle for quasilinear PDEs in divergence form found in [2]. Since, as we will see, the
solution ρ cannot lose regularity, we will obtain the existence of global in time classical
solutions.

Lemma 4.6 (A maximum principle for the species-blind parabolic system) Let ρ =
(ρ1, ρ2) ∈ C1,2([0, T ) × Td ;R2), T > 0, be a classical solution of the species-blind
parabolic system (26) starting from an initial condition ρ0 ∈ C2(Td ;R2+) satisfying

ρ0(T
d) ⊆ A = {

ρ ∈ (0,∞)2
∣∣ ρ1 + ρ2 < ρ̂c

}
, (64)

where ρ̂c is the critical density corresponding to the one-species density function R̂. Then

0 < inf
(t,u)∈[0;T )×Td

ρ1(t, u) ∧ ρ2(t, u)

≤ sup
(t,u)∈[0,T )×Td

(
ρ1(t, u)+ ρ2(t, u)

) ≤ sup
u∈Td

(
ρ1(0, u)+ ρ2(0, u)

)
< ρ̂c. (65)

Proof By the continuity of ρ0 and the compactness of Td , there exists by assumption (64)
an ε > 0 such that

ρ0(T
d) ⊆ {(ρ1, ρ2) ∈ R2

∣∣ ρ1 ∧ ρ2 > ε, ρ1 + ρ2 < ρ̂c − ε}, (66)

where we replace ρ̂c − ε by 1
ε
when ρ̂c = +∞. Since ρ solves (26), by summing the two

equations we see that the function ρ1 + ρ2 solves the equation ∂tρ = ��̂(ρ). But since �̂

is the mean jump rate of a single species ZRP,

0 < c < �̂′(ρ) < C < +∞ for all ρ ∈ [0, ρ̂c − ε/2] (67)
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for some constants c,C ≥ 0 and therefore the equation ∂tρ = ��̂(ρ) is uniformly parabolic,
when considered for sub-critical initial conditions ρ0 ∈ C(Td , (0, ρ̂c)). Therefore it follows
by (66) and the maximum principle for scalar uniformly parabolic quasilinear equations that

2ε < inf
(t,u)∈[0;T )×Td

(ρ1 + ρ2)(t, u) ≤ sup
(t,u)∈[0;T )×Td

(ρ1 + ρ2)(t, u) < ρ̂c − ε. (68)

We consider now the family of the open domains

Bδ := {(ρ1, ρ2) ∈ R2|ε < ρ1 + ρ2 < ρ̂c − ε, ρ1 ∧ ρ2 > −δ}
for δ ∈ [0,+∞] and set

Dδ := {(t, u, r) ∈ [0, T )×Td ×R|(r, ρ2(t, u)) ∈ Bδ}.
Let � : D∞ → R denote the function given by the formula

�(t, u, r) = r
�̂(r + ρ2(t, u))

r + ρ2(t, u)
.

The sets Dδ are obviously open and the function � is well defined on D∞. Since the sum
ρ1 + ρ2 satisfies (68), we have that

(t, u, ρ1(t, u)) ∈ D∞ for all (t, u) ∈ [0, T )×Td ,

and since (ρ1, ρ2) is a solution of (26), we have that ρ1 solves

∂tρ1(t, u) = ��
(
t, u, ρ1(t, u)

)
.

In divergence form, the problem above is written as

∂tρ1(t, u) = divA�

(
t, u, ρ1(t, u),∇ρ1(t, u)

)
(69)

where A� : D∞ → Rd is the function given by the formula

A�(t, u, r, υ) = ∇u�(t, u, r)+ ∂r�(t, u, r)υ.

Since ρ2 is C1,2, it follows that the function A� is C1 and ∂υ A�(t, u, r, υ) = ∂r�(t, u, r)I
where I ∈ Rd×d denotes the identity matrix. By a simple calculation, ∂r�(t, u, r) =
H(r, ρ2(t, u)), where H : B∞ → R is given by

H(ρ1, ρ2) = ρ2

ρ1 + ρ2

�̂(ρ1 + ρ2)

ρ1 + ρ2
+ ρ1

ρ1 + ρ2
�̂′(ρ1 + ρ2).

We have that

inf
Bδ

H ≤ inf
Dδ

∂r� ≤ sup
Dδ

∂r� ≤ sup
Bδ

H (70)

for all δ ∈ [0,+∞] and it is obvious that

c ≤ inf
B0

H ≤ sup
B0

H ≤ C,

where c,C ≥ 0 are the constants in (67). By continuity of H , we obtain the existence of
δ0 > 0 such that

c

2
< inf

Bδ0

H ≤ sup
Bδ0

H < 2C, (71)
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which shows that the diagonal matrix ∂υ A� is positive definite on the set Dδ0 ×Rd . We set
now

T i := sup
{
t ∈ [0, T ]

∣∣∣ inf
(s,u)∈[0,t)×Td

ρi (s, u) > 0
}
, i = 1, 2.

By the assumptions on the initial condition ρ0, the set over which we take the supremum is
non-empty. By the continuity of the solution ρ, we have T i > 0 for i = 1, 2 and if T i < T
then there exists ui0 ∈ Td such that ρi (T i , ui0) = 0. In order to prove the claim of the lemma,
it suffices to show that T 1 = T 2 = T .

So we suppose that this is not true to obtain a contradiction. Without loss of generality it
suffices to consider the cases T 1 < T 2 < T and T 0 := T 1 = T 2 < T .

(a) T 1 < T 2 < T : Since ρ1(t, u) ≥ 0 for all (t, u) ∈ [0, T 1] ×Td and ρ1 is continuous in
[0, T )×Td , there exists t0 > 0 such that

inf
(t,u)∈[0,T 1+t0]×Td

ρ1(t, u) > −δ0.

But then (t, u, ρ1(t; u)) ∈ Dδ0 for all (t, u) ∈ [0, T 1 + t0] ×Td and so, since ρ1 and
0 are solutions of problem (69) in [0, T 1 + t0] × Td , which is uniformly parabolic in
this region by (70) and (71), and since ρ1(T 1, u10) = 0, we get from [2, Theorem 1] that
ρ1 ≡ 0 in [0, T 1)×Td , which contradicts the definition of T 1.

(b) T 0 := T 1 = T 2 < T : Again, since ρ1(t, u)∧ρ2(t, u) > 0 for all (t, u) ∈ [0, T 0]×Td ,
there exists t0 > 0 such that

inf
(t,u)∈[0,T 1+t0]×Td

[ρ1(t, u) ∧ ρ2(t, u)] ≥ −δ0.

But then again the problem (69) is uniformly parabolic in [0, T 0 + t0] ×Td and ρ1 and
0 are solutions with ρ1 ≥ 0 in [0, T 0], which again by [2, Theorem 1] yields ρ1 ≡ 0 in
[0, T 0)×Td and contradicts the definition of T 0. ��

Using this maximum principle and the global existence of scalar uniformly parabolic
equations, we obtain the global existence of solutions to the species-blind parabolic system
as follows. To derive a contradiction, we assume that ρ ∈ C1,2([0, Tmax)×Td ;R2), Tmax <

+∞, is the maximal classical solution of the species-blind parabolic system starting from
ρ0 ∈ C2+θ (Td). Here maximality of the solution means that ρ can not be extended to aC1,2-
solution on [0, T )×Td for T > Tmax. Since ρ̂0 := ρ01+ρ02 ∈ C1+θ;2+θ (Td ; (0, ρc)), there
exists a unique solution ρ̂ ∈ C1+θ,2+θ (R+×Td ; (0, ρc)) of the scalar quasilinear parabolic
equation ∂tρ = ��̂(ρ)with initial data ρ̂0. Then, ρ̂(R+×Td) ⊆ (ε, ρ̂c−ε) for some ε > 0

and the function φ(x) := �̂(x)
x is C∞ in [ε, ρ̂c − ε]. Thus the function a : R+ ×Td → R+

defined by a(t, u) := �̂(ρ̂(t,u))

ρ̂(t,u)
belongs to C1+θ,2+θ (R+ ×Td). Since �̂′ satisfies (67),

0 < c < a(t, u) ≤ C < +∞ for all (t, u) ∈ R+ ×Td (72)

for some constants c,C ≥ 0. Since the function ρ1 + ρ2 is also a solution of the scalar
equation ∂tρ = ��̂(ρ) with the same initial data ρ0, we have by the uniqueness of solutions
that

a ≡ �̂(ρ1 + ρ2)

ρ1 + ρ2
in [0, Tmax)×Td . (73)
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We consider the system

{
∂tρ1 = �

(
a(t, u)ρ1(t, u)

)

∂tρ2 = �
(
a(t, u)ρ2(t, u)

) , ρ(0, ·) = (ρ01, ρ02) in Td , (74)

which is obviously decoupled and can be solved by solving the scalar linear second order
parabolic equation

∂tρ = �
(
a(t, u)ρ(t, u)

)
(75)

twice with initial conditions ρ01 and ρ02. This scalar equation is given in general form by

∂tρ =
d∑

i, j=1
ai j∂2i jρ +

d∑

i=1
bi∂iρ + cρ,

where ai j = aδi j , bi = ∂i a and c = �a. We note that since a satisfies (72) and ai j = aδi j ,
the matrix (ai j ) is uniformly elliptic. Also, since a ∈ C1+θ,2+θ (R+ ×Td), the coefficients
ai j , bi , c are θ -Hölder continuous and so by the interpretation of [20, Theorem5.14] in the flat
torus with periodic boundary conditions, we find that for any ρ0 ∈ C2+θ (Td) there exists a
unique solution ρ ∈ C1+θ,2+θ

loc (R+×Td) to the scalar problem (75) with initial condition ρ0,

and thus there exists a unique solution ρ̃ ∈ C1+θ,2+θ
loc (R+ ×Td ;R2) of system (74) starting

from ρ0 = (ρ01, ρ02). Since by (73), we have that the solution ρ ∈ C1,2([0, Tmax)×Td ;R2)

of the system (26) also solves the system (74), it follows by the uniqueness of solutions that
ρ̃ = ρ in [0, Tmax)×Td . This, taking also into account the maximum principle, shows that

ρ ∈ C1+θ,2+θ ([0, Tmax)×Td ; A).

Now,we obviously have that ρ̃Tmax
∈ C2+θ (Td), and since ρ̃ solves (26) in [0, Tmax)×Td ,

we have by the maximum principle that

ρ̃([0, Tmax)×Td) ⊆ {r ∈ A|d(r, ∂A) > δ}
for some δ > 0. Consequently, by continuity, we also have that ρ̃Tmax

(Td) ⊆ A. We consider
then a solution r : [0, ε)×Td → A, ε > 0, of the problem (26) starting from r0 = ρ̃Tmax

and
extend ρ on [0, Tmax + ε)×Td by defining ρ(t, ·) := r(t − Tmax, ·) for t ∈ [Tmax, Tmax +
ε). This function is obviously of class C1+θ,2+θ and solves (26), which contradicts the
maximality of Tmax. ��
4.4 Proof of Corollary 3.1

By the global existence in time of solutions to the species-blind parabolic system, it suffices to
check that Theorem 3.2 applies. Since the the one-species partition function Ẑ is continuous
onDẐ , it follows by the formula Z(ϕ) = Ẑ(ϕ1+ϕ2) that the partition function is continuous.
It remains to check that in the case where the associated one-species ZRP has finite critical
density, g has regular tails, i.e., that for every υ ∈ S11,+

μc;1(υ) := logϕc;1(υ) := lim inf
|k|1→+∞
k/|k|1→υ

1

|k|1 log g!(k), υ ∈ S11,+ (76)
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exists as a limit and is a continuous function of the direction υ ∈ S11,+. By the formula of g!
we have that

1

|k|1 log g!(k) = 1

|k|1 log
k1!k2!
|k|1! +

1

|k|1 log ĝ!(|k|1). (77)

The second term in the right hand side of (77) converges as |k|1 →+∞ to the critical chem-
ical potential μ̂c = log ϕ̂c of the one-species jump rate ĝ. Since by Stirling’s approximation
limk→+∞ k!√

2πk(k/e)k
= 1, we can replace the liminf of the first term in the right hand side

of (77) by

lim inf
|k|1→+∞
k/|k|1→υ

1

|k|1 log
√
2π

√
k1k

k1
1

√
k2k

k2
2√|k|1|k||k|11

. (78)

This limit inferior exists as a limit and defines a continuous function of υ. Indeed, for all
k ∈ N2 we have that

1

|k|1 log

√
k1k

k1
1

√
k2k

k2
2√|k|1|k||k|11

= 1

|k|1 log

√
k1k2√|k|1 + log

( k1
|k|1

) k1|k|1 + log
( k2
|k|1

) k2|k|1 ,

and it is easy to check that lim|k|→+∞ 1
|k|1 log

√
k1k2√|k|1 = 0, so that

μc;1(υ) = lim
|k|1→+∞
k/|k|1→υ
k1,k2>0

[
log

( k1
|k|1

) k1|k|1 + log
( k2
|k|1

) k2|k|1 +log g!(|k|1)
1
|k|1

]
= 〈υ, logυ〉 + μc,

with the convention υi log υi = 0 if υi = 0 since x log x → 0 as x → 0. Finally, points
k ∈ N2

0 with ki = 0 for some i = 1, 2 contribute to the limit only if υ = ei for some i = 1, 2.
For such points k ∈ N2

0, we have k1!k2! = |k|1!, and so the first term in the right hand side
of (77) vanishes, which agrees with the fact that 〈υ, logυ〉 = 0 if υ = ei , i = 1, 2. This
is to be expected, since in the directions υ = ei with i = 1, 2 in the phase space we have
only one of the two species of particles, which when on their own perform the underlying
one-species ZRP with critical chemical potential μ̂c = log ϕ̂c. This completes the proof that
g has regular tails. ��
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