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Abstract The main purpose of this paper is to introduce and establish basic results of a
natural extension of the classical Boolean percolation model (also known as the Gilbert
disc model). We replace the balls of that model by a positive non-increasing attenuation
function l : (0,∞) → [0,∞) to create the random field �(y) = ∑

x∈η l(|x − y|), where
η is a homogeneous Poisson process in R

d . The field � is then a random potential field
with infinite range dependencies whenever the support of the function l is unbounded. In
particular, we study the level sets �≥h(y) containing the points y ∈ R

d such that �(y) ≥ h.

In the case where l has unbounded support, we give, for any d ≥ 2, a necessary and sufficient
condition on l for �≥h(y) to have a percolative phase transition as a function of h. We also
prove that when l is continuous then so is � almost surely. Moreover, in this case and for
d = 2, we prove uniqueness of the infinite component of �≥h when such exists, and we also
show that the so-called percolation function is continuous below the critical value hc.

Keywords Continuous percolation · Phase-transition · Continuity of the field · Uniqueness

1 Introduction

In the classical Boolean continuum percolation model (see [14] for an overview), one con-
siders a homogeneous Poisson process η of rate λ > 0 in R

d , and around each point x ∈ η

one places a ball B(x, r) of radius r. The main object of study is then

C :=
⋃

x∈η

B(x, r), (1.1)

which is referred to as the occupied set. It is well known (see [14, Chap. 3]) that there exists
an rc = rc(d) ∈ (0,∞) such that

B Ronald Meester
r.w.j.meester@vu.nl

1 Chalmers University Gothenburg, Gothenburg, Sweden

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-017-1782-2&domain=pdf


Phase Transition and Uniqueness of Levelset Percolation 1377

rc := inf{r : P(C(r) contains an unbounded component) > 0}.
It is alsowell known thatP(C(r) contains an unbounded component) ∈ {0, 1}.An immediate
scaling argument shows that varying λ is equivalent to varying r, and so one can fix λ = 1.
This model was introduce by Gilbert in [8] and further studied in [2,3,15,17] (to name a
few), while a dynamical version of this model was studied in [1].

We consider a natural extension of this model. Let η be a Poisson process with rate λ in
R
d , and let x ∈ η denote a point in this process (here we use the standard abuse of notation

by writing x ∈ η instead of x ∈ supp(η)). Furthermore, let l : (0,∞) → [0,∞) be a non-
increasing function that we will call the attenuation function. We then define the random
field � = �(l, η) at any point y ∈ R

d by

�(y) :=
∑

x∈η

l(|x − y|). (1.2)

In order for this to be well defined at every point, we let l(0) := limr→0 l(r) (which can
possibly be infinite). One can think of � as a random potential field where the contribution
from a single point x ∈ η is determined by the function l.

For any 0 < h < ∞, we define

�≥h := {y ∈ R
d : �(y) ≥ h},

which is simply the part of the random field � which is at or above the level h. Sometimes
we also need

�>h := {y ∈ R
d : �(y) > h}.

We note that if we consider our general model with l(|x |) = I (|x | ≤ r) (where I is
an indicator function), we have that C and �≥1 have the same distribution, so the Boolean
percolation model can be regarded as a special case of our more general model.

When l has unbounded support, adding or removing a single point of η will affect the field
� at every point of Rd . Thus, our model does not have a so-called finite energy condition
which is the key to many standard proofs in percolation theory. This is what makes studying
� challenging (and in our opinion interesting). However, if we assume that l has bounded
support, a version of finite energy is recovered (see also the remark in Sect. 4 after the proof
of our uniqueness result, Theorem 1.4).

It is easy to see that varying h and varying λ is not equivalent. However, we will never-
theless restrict our attention to the case λ = 1. In fact, there are many different sub-cases
and generalizations that can be studied. For instance: We can let λ ∈ R, we can study l
having bounded or unbounded support, we can let l be a bounded or unbounded function, let
l be continuous or discontinuous and we can study �≥h or �>h , to name a few possibilities.
While some results (Theorems 2.3 and 2.1) include all or most of the cases listed, others
(Proposition 3.1 and Theorems 1.4 and 1.5) require more specialized proofs. The purpose of
this paper is not to handle all different cases. If l has bounded support, then our model is very
similar to the classical Boolean percolation model, and therefore we will (unless otherwise
stated) throughout make the following assumption.

Assumption 1.1 The attenuation function l is non-increasing and has unbounded support.

The assumption of l being non-increasing is certainly not necessary formost of our results.
However, this assumption is very convenient and removes the need for overly technical
statements. Se the last remark after the statement of Theorem 1.3. In addition to Assumption
1.1, we will also always assume that d ≥ 2.
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We will now proceed to state our main results, but first we have the following natural
definition.

Definition 1.2 If �≥h (�>h) contains an unbounded connected component, we say that �

percolates at (above) level h, or simply that �≥h (�>h) percolates.

One would of course expect that percolation occurs either with probability 0 or with prob-
ability 1, and indeed this can be proven through classical ergodicity arguments. Therefore, it
is natural to define

hc := sup{h : �≥h percolates with probability 1}.
If we define h̃c as above, but with �≥h replaced by �>h, then hc = h̃c. Indeed, h̃c ≤ hc is
clear. Conversely, if h < hc then for h < h′ < hc we have that �≥h′ percolates. Hence �>h

percolates and h ≤ h̃c.
One of the main efforts of this paper is to establish conditions under which hc is nontrivial.

Theorem 1.3 With l as in Assumption 1.1, 0 < hc < ∞ if and only if
∫∞
1 rd−1l(r)dr < ∞.

Remark • The choice of the lower integral boundary 1 in
∫∞
1 rd−1l(r)dr is somewhat

arbitrary, as replacing it with
∫∞
c rd−1l(r)dr for any 0 < c < ∞, would give the same

result.
• As we shall see in the proof of Theorem 1.3, if

∫∞
1 rd−1l(r)dr = ∞, then almost surely

�(y) = ∞ for every y ∈ R
d .

• Mere a.s. finiteness of the field � does not guarantee that there is a nontrivial phase
transition. Indeed, one can construct an example (following the examples of [14, Chap.
7.7]) of a stationary process together with a suitable attenuation function so that the
ensuing field is finite a.s., while hc = ∞.

• The result is qualitatively different when l has bounded support, see Theorem 2.3.
• Consider briefly the non-monotone attenuation function l(r) = |r − 1|−d . Obviously,

we then have that
∫∞
1 rd−1l(r)dr = ∞. However, the tail behaviour of l is such that a

suitably modified version of Theorem 1.3 would still hold for this case. This is the main
reason for including non-increasingness in Assumption 1.1.

We have the following uniqueness result.

Theorem 1.4 Let l be continuous and satisfy Assumption 1.1. If h is such that �≥h (�>h)
contains an unbounded component with probability one, then for d = 2, there is with prob-
ability one a unique such unbounded component.

Remark • We will prove this theorem first for �>h and then infer it for �≥h , see also the
discussion before the proof of the theorem.

• There are of course a number of possible generalizations of this statement, and perhaps
the most interesting/natural would be to investigate it for d ≥ 3. We discuss this in some
detail after the proof of Theorem 1.4.

• The statement is trivially true if
∫∞
1 rd−1l(r)dr = ∞ because of the second remark after

the statement of Theorem 1.3.

Let Co,≥(h) (Co,>(h)) be the connected component of �≥h (�>h) that contains the origin
o. Define the percolation function

θ≥(h) := P(Co,≥(h) is unbounded),

and similarly define θ>(h). Our last result of the introduction is the following.
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Theorem 1.5 If l is continuous and satisfies Assumption 1.1, the functions θ≥(h) and θ>(h)

are equal and continuous for h < hc.

The rest of the paper is organized as follows. In Sect. 2 we prove Theorem 1.3 along with
some related secondary results. In Sect. 3 we prove the continuity of the field � whenever l
is continuous, and this results is then used in Sect. 4 in order to prove Theorem 1.4. In turn,
Theorem 1.4 allows us to prove Theorem 1.5 which is also done in Sect. 4.

2 Proof of Theorem 1.3.

The proof of Theorem 1.3 is naturally divided into two parts (hc > 0 and hc < ∞ respec-
tively). For completeness,wewill briefly consider attenuation functions of (possibly) bounded
support. Thus, let rl := sup{r : l(r) > 0} and recall the definition of rc.

Theorem 2.1 For d ≥ 3, hc > 0 if rl > rc while hc = 0 if rl < rc. Furthermore, for d = 2,
then hc > 0 iff rl > rc.

Remark As is clear from the proof, the gap when rl = rc for d ≥ 3, is simply due to the
fact that for d ≥ 3 it is unknown whether P(C(rc) contains an unbounded component) is 0
(as when d = 2) or 1.

Proof of Theorem 2.1 Recall the constructions (1.1) and (1.2). Observe that by using the
same realization of η, we can couple � and C on the same probability space in the canonical
way. By using this coupling, we see that for any h > 0, �≥h ⊂ C(rl). In the case d = 2, it
is known (see [14, Theorem 4.5]) that C(rc) does not percolate, showing that hc = 0 when
d = 2 and rl ≤ rc. For d ≥ 3, the statement follows by observing that C(r) does not percolate
for r < rc by definition of rc.

Assume instead that rl > rc. Let rc < r < rl , and h = h(r) be any h such that

B(0, r) ⊂ {y : l(|y|) ≥ h}.
With this choice of h, we see that any point y within radius r from some x ∈ η will also
belong to �≥h so that

C(r) ⊂ �≥h .

Since r > rc, C(r) a.s. contains an unbounded component and hence so does �≥h . 	

We will make frequent use of the following theorem, both of whose statements are some-

times called “Campbell’s formula”.

Theorem 2.2 Let η be a (possibly non-homogeneous) Poisson process on Rd with intensity
measure μ. Then we have that for any g(x) : Rd → [0,∞) such that

∑
x∈η g(x) converges

a.s.,

E

[
∑

x∈η

g(x)

]

=
∫

Rd
g(x)μ(dx). (2.1)

Furthermore, we have that

E

[

exp

(

s
∑

x∈η

g(x)

)]

= exp

(∫

Rd
esg(x) − 1μ(dx)

)

. (2.2)
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For a proof of Theorem 2.2 we refer the reader to [11] page 28 or [5, Chaps. 5.5, 9.4 and
9.5].

We now return to Theorem 1.3, which will be proved once we have established the fol-
lowing result.

Theorem 2.3 If the attenuation function l satisfies
∫∞
1 rd−1l(r)dr < ∞ and Assumption

1.1, then hc < ∞. If instead
∫∞
1 rd−1l(r)dr = ∞, then almost surely �(y) = ∞ for every

y ∈ R
d , and so hc = ∞.

Remark Note also that if l has bounded support, we must have that
∫∞
1 rd−1l(r)dr < ∞.

As will be clear, the proof in fact also covers this case.
The proof of Theorem 2.3 is much more involved than the proof of Theorem 2.1, and

will require a number of preliminary lemmas to be established first. In order to see what
the purpose of these will be, we will start by giving an outline of the strategy of our proof
along with introducing some of the relevant notation. Let αZd denote the lattice with spacing
α > 0. For any z ∈ αZd , let B(z, α) denote the closed box of side length α centered at z, and
define Bα := {B(z, α) : z ∈ αZd}. For convenience, we assume from now on that α < 1.

Claim There exists an ε > 0 such that if for fixed 0 < α < 1 and 0 < h < ∞ we have that

P( sup
y∈B1

�(y) ≥ h, . . . , sup
y∈Bk

�(y) ≥ h) ≤ εk, (2.3)

for every k and every collection B1, . . . , Bk ∈ Bα , then �≥h does a.s. not contain an
unbounded component.

Of course, whether the condition (2.3) of the claim actually holds, will depend on the
specific choice of α and h.

This claim can be proved using standard percolation arguments as follows. Let Bo ∈ Bα

be the cube containing the origin o and letO denote the event that Bo intersects an unbounded
component of �≥h . IfO occurs, then for any k, there must exist a sequence B1, B2, . . . Bk ∈
Bα such that B1 = Bo, Bi �= Bj for every i �= j, Bi ∩ Bi+1 �= ∅ for every i = 1, . . . , k − 1
and with the property that supy∈Bi �(y) ≥ h for every i = 1, . . . , k.We note that the number
of such paths must be bounded by 3dk , as any box has fewer than 3d ’neighbors’. Thus, from
(2.3) we get that P(O) ≤ 3dkεk, and since this holds for arbitrary k this proves the claim by
taking ε < 3−d .

One issue when proving (2.3) is that we want to consider the supremum of the field within
the boxes B1, . . . , Bk . However, this is fairly easily dealt with by introducing an auxiliary
field �̃ with the property that for any B ∈ Bα �̃(yc(B)) ≥ supy∈B �(y) where yc(B)

denotes the center of B (see further (2.9)). This allows us to consider k fixed points of the
new field �̃ rather than the supremums involved in (2.3).

One of the main problems in proving (2.3) is the long range dependencies involved when-
ever l has unbounded support (as discussed in the introduction). The strategy to resolve this
issue is based on the simple observation that

{

sup
y∈B1

�(y) ≥ h, . . . , sup
y∈Bk

�(y) ≥ h

}

⊂
{

k∑

l=1

�̃(yc(Bl)) ≥ kh

}

. (2.4)

The event on the right hand side of (2.4) can be analyzed through the use of (2.2). An obvious
problem with this is that if l is unbounded and if a single point of η falls in

⋃k
l=1 Bl , then the

sum in (2.4) is infinite. However, by letting α above be very small, we can make sure that
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with very high probability, “most” of the boxes B1, . . . , Bk will not contain any points of η

(and in fact there will not even be a point in a certain neighborhood of the box). We then
use a more sophisticated version of (2.4) (i.e. (2.10)) where we condition on which of the
boxes B1, . . . , Bk have a point of η in their neighborhood, and then sum only over the boxes
whose neighborhoods are vacant of points. This in turn introduces another problem, namely
that we now have to deal with a Poisson process conditioned on the presence and absence of
points of η in the neighborhoods of the boxes B1, . . . , Bk . In particular, we have to control
the damage from knowing the presence of such points. This is the purpose of Lemmas 2.4
and 2.5, which will tell us that our knowledge is not worse than having no information at all
plus adding a few extra points to the process. Later, Lemma 2.6 will enable us to control the
effect of this addition of extra points.

We now start presenting the rigorous proofs. Our first lemma is elementary, and the result
is presumably folklore. However, we give a proof for sake of completeness.

Lemma 2.4 Let X be a Poisson distributed random variable with parameter λ.We have that
for any k ≥ 0,

P(X ≥ k|X ≥ 1) ≤ P(X ≥ k − 1). (2.5)

Proof We claim that for any Xn ∼ Bin(n, p) where np = λ, and any 0 ≤ k ≤ n, we have
that

P(Xn ≥ k|Xn ≥ 1) ≤ P(Xn ≥ k − 1). (2.6)

We observe that from (2.6) we get that

P(X ≥ k|X ≥ 1) = lim
n→∞P(Xn ≥ k|Xn ≥ 1) ≤ lim

n→∞P(Xn ≥ k − 1) = P(X ≥ k − 1).

This establishes (2.5), and so we need to prove (2.6).
We will prove (2.6) through induction, and we start by observing that it trivially holds for

n = 1 and k = 0, 1. Assume therefore that (2.6) holds for n and any k = 0, . . . , n. We will
write Xn = X1+· · ·+Xn where (Xi )i≥1 is an i.i.d. sequence with P(Xi = 1) = 1−P(Xi =
0) = p. Of course, (2.6) trivially holds for n + 1 and k = 0. Furthermore, we have that for
any k = 1, . . . , n,

P(Xn+1 ≥ k|Xn+1 ≥ 1)

= P(Xn+1 ≥ k|Xn+1 ≥ 1, Xn+1 = 1)P(Xn+1 = 1|Xn+1 ≥ 1)

+P(Xn+1 ≥ k|Xn+1 ≥ 1, Xn+1 = 0)P(Xn+1 = 0|Xn+1 ≥ 1)

= P(Xn ≥ k − 1)P(Xn+1 = 1|Xn+1 ≥ 1) + P(Xn ≥ k|Xn ≥ 1)P(Xn+1 = 0|Xn+1 ≥ 1)

≤ P(Xn ≥ k − 1),

where we use the induction hypothesis that P(Xn ≥ k|Xn ≥ 1) ≤ P(Xn ≥ k − 1) in the last
inequality. Finally,

P(Xn+1 = n + 1|Xn+1 ≥ 1) = P(Xn = n)P(Xn+1 = 1|Xn+1 ≥ 1) ≤ P(Xn = n),

and this establishes (2.6) for n + 1 and any k = 0, . . . , n + 1. 	

In what follows, we shall deal with a number of different point processes η, ξ, . . . on Rd ,

both Poisson and other. We will primarily view these as (random) counting measures on Rd

so that for instance η(A) is the number of points of η in the set A ⊂ R
d . However, we will

sometimes use a standard abuse of notation by identifying η with its support. For instance,
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1382 E. Broman, R. Meester

η ⊂ ξ simply means that the support of η is a subset of the support of ξ, or (somewhat more
informally) a point in η is also a point in ξ.

Let A1, A2, . . . , An be subsets of Rd , and let C1, . . . ,Cm be a partition of ∪n
i=1Ai such

that for any i,

Ai = ∪l
k=1Cik , (2.7)

for some collection Ci1 , . . . ,Cil . Let ηA be a homogeneous Poisson process of rate λ >

0 on ∪n
i=1Ai conditioned on the event ∩n

i=1{η(Ai ) ≥ 1}, and let η′
A be a homogeneous

(unconditioned) Poisson process of rate λ > 0 on ∪n
i=1Ai . Furthermore, let ξA be a point

process on ∪n
i=1Ai consisting of exactly one point in each of the sets C1, . . . ,Cm such that

the position of the point in Ci is uniformly distributed within the set, and so that this position
is independent between sets.

Our next step is to use Lemma 2.4 to prove a result relating the conditioned Poisson
process ηA to the sum η′

A + ξA, where η′
A and ξA are independent. For two point processes

η1, η2 in R
d , we write η1 � η2 if there exists a coupling of η1, η2 so that P(η1 ⊂ η2) = 1.

Lemma 2.5 Let ηA, η′
A and ξA be as above, and let η′

A and ξA be independent. We have that

ηA � η′
A + ξA.

Remark Informally, Lemma 2.5 tells us that if we consider a homogeneous Poisson process
conditioned on the presence of points in A1, . . . , Ak , it is not worse than taking an uncon-
ditioned process and adding single points to all the sets C1, . . . ,Cm (which are used as the
building blocks for the sets A1, . . . , Ak).

Proof of Lemma 2.5 We shall prove the lemma by giving an explicit coupling. We do this
by simultaneously constructing two point-processes η̄1 and η̄2 in such a way that η̄1 ⊂ η̄2.
We will then proceed to prove that η̄1 has the same distribution as ηA while η̄2 has the same
distribution as η′

A + ξA. Furthermore, we will assume that η̄1 and η̄2 are point processes
on

⋃n
i=1 Ai , since outside this set the processes ηA, η′

A are simply homogeneous Poisson
processes and so we can take them to be equal there. Of course, ξA has no points outside of⋃n

i=1 Ai .

In what follows, we will let J = ( j1, . . . , jm) ∈ {0, 1}m, and for any point process ξ, we
let L(ξ) ∈ {0, 1}m be such that L j (ξ) = 1 iff ξ(C j ) ≥ 1. Thus, L(ξ) tells us which of the
sets C1, . . . ,Cm that are empty. As usual, η denotes a homogeneous Poisson process in Rd .

For the coupling constructionwewill use the auxiliary randomvariables (Ul )
m
l=1 which are

independent and U ([0, 1]) distributed. We will also use the sequences (Vl,k)∞k=1 where l =
1, . . . ,m. These random variables are taken to bemutually independent and also independent
of (Ul)

m
l=1. The random variables (Vl,k)∞k=1 are uniformly distributed on the set Cl .

We start by constructing η̄1:

Step 1: Let X ∈ {0, 1}m be such that X = J with probability P(L(η) = J | ∩n
i=1 {η(Ai ) ≥

1}).
Step 2: Given that the result of Step 1 was that X = J , we let Yl = 0 if jl = 0. If instead

jl = 1, then we let Yl = kl if

P(η(Cl) ≥ kl + 1|η(Cl) ≥ 1) ≤ Ul < P(η(Cl) ≥ kl |η(Cl) ≥ 1),

where kl = 1, 2, . . .
Step 3: Given the numbers Y1, . . . , Ym from step 2, we let the restriction of η̄1 to Cl be∑Yl

k=1 δVl,k where δx denotes a point mass at x .
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We proceed by constructing η̄2:

Step 1′: We let Zl = kl if

P(η(Cl) ≥ kl) ≤ Ul < P(η(Cl) ≥ kl − 1),

where again kl = 1, 2, . . .
Step 2′: Given the numbers Z1, . . . , Zm from step 2, we let the restriction of η̄2 to Cl be∑Zl

k=1 δVl,k .

Clearly, if Yl = 0 we have that Yl ≤ Zl . Furthermore, according to Lemma 2.4 we have
that

P(η(Cl) ≥ kl |η(Cl) ≥ 1) ≤ P(η(Cl) ≥ kl − 1).

Therefore, if Ul < P(η(Cl) ≥ kl |η(Cl) ≥ 1) (so that Yl ≥ kl ) then Ul < P(η(Cl) ≥ kl − 1)
(so that Zl ≥ kl ), and therefore we have that Zl ≥ Yl . We conclude that for every l, Yl ≤ Zl .

Finally, since we are using the same random variables (Vl,k)∞k=1 in Step 3 and Step 2′ we
conclude that indeed η̄1 ⊂ η̄2.

What remains is to verify the distributions of η̄1, η̄2 and we start with η̄1. We say that
J ∈ {0, 1}m is admissible if

{L(η) = J } =
⋂

l: jl=1

{η(Cl) ≥ 1}
⋂

l: jl=0

{η(Cl) = 0} ⊂ ∩n
i=1{η(Ai ) ≥ 1}.

Then, we have that for any sequence k1, . . . , km

P(ηA(C1) = k1, . . . , ηA(Cm) = km)

= P(η(C1) = k1, . . . , η(Cm) = km | ∩n
i=1 {η(Ai ) ≥ 1})

=
∑

J admissible

P(η(C1) = k1, . . . , η(Cm) = km |L(η) = J )P(L(η) = J | ∩n
i=1 {η(Ai ) ≥ 1})

=
∑

J admissible

∏

l: jl=1

P(η(Cl) = kl |η(Cl) ≥ 1)
∏

l: jl=0

P(η(Cl) = kl |η(Cl) = 0)

×P(L(η) = J | ∩n
i=1 {η(Ai ) ≥ 1}).

The last equality follows since the conditioning L(η) = J , involves conditioning on events
concerning the disjoint sets C1, . . . ,Cm .

Turning to η̄1, we let βl,kl := P(η(Cl) ≥ kl |η(Cl) ≥ 1) and note that

P(βl,kl+1 ≤ Ul < βl,kl ) = P(η(Cl) = kl |η(Cl) ≥ 1). (2.8)

Furthermore, we observe that for J not admissible,

P(X = J ) = P(L(η) = J | ∩n
i=1 {η(Ai ) ≥ 1}) = 0.
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Therefore, we have that

P(η̄1(C1) = k1, . . . , η̄1(Cm) = km)

=
∑

J admissible

P(η̄1(C1) = k1, . . . , η̄1(Cm) = km |X = J )P(X = J )

=
∑

J admissible

P(βl,kl+1 ≤ Ul < βl,kl for l : jl = 1|η(Cl) ≥ 1)
∏

l: jl=0

I (kl = 0)P(X = J )

=
∑

J admissible

∏

l: jl=1

P(βl,kl+1 ≤ Ul < βl,kl |η(Cl) ≥ 1)
∏

l: jl=0

I (kl = 0)P(X = J )

=
∑

J admissible

∏

l: jl=1

P(η(Cl) = kl |η(Cl) ≥ 1)
∏

l: jl=0

P(η(Cl) = kl |η(Cl) = 0)

×P(L(η) = J | ∩n
i=1 {η(Ai ) ≥ 1}),

wherewe use Step 1, Step 2, the independence of theUl and finally (2.8) in the four equalities.
We conclude that for every k1, . . . , km we have that

P(ηA(C1) = k1, . . . , ηA(Cm) = km) = P(η̄1(C1) = k1, . . . , η̄1(Cm) = km).

The fact that ηA and η̄1 are equal in distribution follows since conditioned on the event
{ηA(C1) = k1, . . . , ηA(Cm) = km}, the distribution of the points of ηA in the disjoint sets
C1, . . . ,Cm are independent and uniform within their corresponding set Cl . To see this, let
ξ|Cl denote the restriction of a point process ξ to the set Cl , and let Al denote an event
measurable with respect to ξ|Cl . We then have that for k1, . . . , km such that P(ηA(C1) =
k1, . . . , ηA(Cm) = km) > 0 (so that {ηA(C1) = k1, . . . , ηA(Cm) = km} ⊂ ∩n

i=1{η(Ai ) ≥
1}),

P(ηA|C1 ∈ A1, . . . , ηA|Cm ∈ Am |ηA(C1) = k1, . . . , ηA(Cm) = km)

= P(η|C1 ∈ A1, . . . , η|Cm ∈ Am |η(C1) = k1, . . . , η(Cm) = km)

= P(η|C1 ∈ A1 ∩ η(C1) = k1, . . . , η|Cm ∈ Am, η(Cm) = km)

P(η(C1) = k1, . . . , η(Cm) = km)

=
∏m

l=1 P(η|Cl ∈ Al ∩ η(Cl) = kl)
∏m

l=1 P(η(Cl) = kl)
=

m∏

l=1

P(η|Cl ∈ Al |η(Cl) = kl)

where we use the independence property of Poisson processes on disjoint sets.
For η̄2, a straightforward calculation shows that

P(η̄2(C1) = k1, . . . , η̄2(Cm) = km) = P((η′
A + ξA)(C1) = k1, . . . , (η

′
A + ξA)(Cm) = km)

for every k1, . . . , km , from which the statement easily follows. 	

We now turn to the issue of taking the supremum of the field over a box. Therefore, let

0 < α < 1, and define the auxiliary attenuation function l̃α by

l̃α(r) =
{
l(0) if r ≤ α

√
d/2

l(r − α
√
d/2) if r ≥ α

√
d/2,

for every r ≥ 0. If yc(B) denotes the center of the box B ∈ Bα, we note that for any y ∈ B
and x ∈ R

d ,

l̃α(|x − yc(B)|) ≥ l̃α(|x − y| + |y − yc(B)|) ≥ l̃α(|x − y| + α
√
d/2) = l(|x − y|).
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Phase Transition and Uniqueness of Levelset Percolation 1385

Therefore, if we let �̃ be the field we get by using l̃ in place of l in (1.2), we get that

�̃(yc(B)) =
∑

x∈η

l̃α(|x − yc(B)|) ≥ sup
y∈B

∑

x∈η

l(|x − y|) = sup
y∈B

�(y). (2.9)

Our next lemma will be a central ingredient of the proof of Theorem 2.3. It will deal with
the effect to the field �̃ of adding extra points to η. To that end, let Ao be the box of side
length α(4�√d� + 1) centered around the origin o. For any box B ∈ Bα with B ∩ Ao = ∅,

place a point xB in B at the closest distance to the origin, and let ξ denote the corresponding
(deterministic) point set. Let

�̃Ao(y) :=
∑

x∈ξ

l̃α(|x − y|),

be the corresponding deterministic field.

Lemma 2.6 Let l satisfy Assumption 1.1 and
∫∞
1 rd−1l(r)dr < ∞. Then, there exists a

constant C < ∞ depending on d but not on α and such that for every 0 < α < 1,

�̃Ao(o) ≤ C

αd
Iα,

where

Iα =
∫ ∞

α/2
rd−1l(r)dr < ∞.

Proof Consider some B ∈ Bα such that B ∩ Ao = ∅. We have that

l̃α(|xB |) ≤ 1

Vol(B)

∫

B
l̃α(|x | − diam(B))dx = 1

αd

∫

B
l̃α(|x | − α

√
d)dx .

Therefore,

�̃Ao(o) ≤ 1

αd

∫

Rd\Ao

l̃α(|x | − α
√
d)dx

≤ C

αd

∫ ∞

α(2�√d�+1/2)
rd−1l(r − 2α

√
d)dr

≤ C

αd

∫ ∞

α/2
(r + α(2�√d�))d−1l(r)dr

≤ C

αd

∫ ∞

α/2
(r + r(4

√
d + 2))d−1l(r)dr

= C

αd

∫ ∞

α/2
rd−1l(r)dr

where the constantC = C(d) < ∞ is allowed to vary in the steps of the calculations. Finally,
the fact that Iα < ∞, follows easily from the fact that

∫∞
1 rd−1l(r)dr < ∞. 	


We have now established all necessary tools in order to prove Theorem 2.3. However,
since the proofs of the two statements of Theorem 2.3 are very different, we start by proving
the first one as a separate result.

Theorem 2.7 If l satisfies Assumption 1.1 and
∫∞
1 rd−1l(r) < ∞, then hc < ∞.
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1386 E. Broman, R. Meester

Proof We shall prove that for any ε > 0, (2.3) holds for α small enough and h large enough.
This will prove our result as explained just below (2.3).

For any B ∈ Bα, let A be the box concentric to B and with side length α(4�√d�+1). We
will say that a box B is good if η(A) = 0, and observe that P(η(A) = 0) → 1 as α → 0.
Goodness of the boxes B ∈ Bα naturally induces a percolation model on Z

d with a finite
range dependency. Since the marginal probability P(η(A) = 0) of being good can be made
to be arbitrarily close to 1 by taking α small enough, we can use the results in [12] (see
also Theorem B26 of [13]) to let the induced ”goodness-process” dominate an i.i.d. product
measure with density p = p(α) on the boxes B ∈ Bα. That is, Furthermore, by the same
theorem, we can take p(α) → 1 as α → 0.

Fix k, a collection of distinct cubes B1, B2, . . . , Bk ∈ Bα , and let Ai = A(Bi ). Let K (η) ∈
{0, 1}k be such that K j (η) = 1 iff Bj is good, and identify K (η) with the corresponding
subset of {1, . . . , k}. Thus we write j ∈ K (η) iff Bj is good. We then have that

P

(

sup
y∈B1

�(y) ≥ h, . . . , sup
y∈Bk

�(y) ≥ h

)

≤
∑

J∈{0,1}k
P(�̃(yc(B1)) ≥ h, . . . , �̃(yc(Bk)) ≥ h|K (η) = J )P(K (η) = J )

≤
∑

|J |≥k/2

P(�̃(yc(B1)) ≥ h, . . . , �̃(yc(Bk)) ≥ h|K (η) = J )P(K (η) = J )

+P(|K (η)| < k/2) (2.10)

by using (2.9) in the first inequality. 	


If we take � = |{(Bi )ki=1 : Bi is good}|, then by the above domination of a product
measure of density p, we see that � is stochastically larger than �′ ∼Bin(p, k). Therefore,
we have that

P(|K (η)| < k/2) ≤ P
(
�′ ≤ k/2

)

= P

(
e�′ log(1−p) ≥ e(k log(1−p))/2

)
≤ e−(k log(1−p))/2

E

[
e�′ log(1−p)

]
(2.11)

= e−(k log(1−p))/2
(
pelog(1−p) + 1 − p

)k ≤ 2kek log(1−p))/2 = e−d(α)k,

where we can take d(α) → ∞ as α → 0, by taking p(α) → 1.
For any J ∈ {0, 1}k, we let ηJ be a Poisson process on R

d of rate 1, conditioned on the
event K (η) = J. Furthermore, for j ∈ J c, let

Dj := A j\
⋃

i∈J

Ai .

We see that ηJ can be expressed as the sum of η̃ and ηD where η̃ is a Poisson process on
R
d\⋃k

n=1 An of unit rate, while ηD is a Poisson process on
⋃

j∈J c D j conditioned on the
event

⋂
j∈J c {η(Dj ) ≥ 1}. We let C1, . . . ,Cm ∈ Bα be a partition (up to sets of measure

zero) of
⋃

j∈J c D j , and use Lemma 2.5 to see that ηD � η′
D + ξD . Here of course, η′

D
is Poisson process on

⋃
j∈J c D j while ξD is a point process consisting of one point added

uniformly and independently to every box Ci for i = 1, . . . ,m. As in Lemma 2.5 η′
D and ξD

are independent (Fig. 1).
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Phase Transition and Uniqueness of Levelset Percolation 1387

Fig. 1 A picture with k = 5. The blue boxes are B1, B2, B3, B4 and B5, while the red boxes are
A1, A2, A3, A4 and A5. The two black dots are points in the Poisson process η. The solid red area is
D3 = A3\ (A4 ∪ A5) . In this picture, K (η) = (0, 0, 0, 1, 1) which is identified with K (η) = {4, 5}. Obvi-
ously, the goodness of B1 depends on the goodness of B2, but it is independent on the goodness of B3, B4
and B5 (Color figure online)

We conclude that ηJ = ηD + η̃ � η′
D + ξD + η̃, and observe that η′

D + η̃ is just a
homogeneous Poisson process onRd\AJ where AJ := ⋃

j∈J A j . Writing ηAc
J
for this sum,

we have that ηJ � ξD + ηAc
J
and by first using this, and then Markov’s inequality, we get

that

P
(
�̃(yc(B1)

) ≥ h, . . . , �̃(yc(Bk)) ≥ h|K (η) = J )

≤ PξD+ηAcJ
(�̃(yc(B1)) ≥ h, . . . , �̃(yc(Bk)) ≥ h) (2.12)

≤ PξD+ηAcJ

⎛

⎝s
∑

j∈J

�̃(yc(Bj )) ≥ h|J |s
⎞

⎠ ≤ e−h|J |s
EξD+ηAcJ

[
es

∑
j∈J �̃(yc(Bj ))

]
,

where PξD+ηAcJ
is the probability measure corresponding to ξD + ηAc

J
, and where EξD+ηAcJ

denotes expectation with respect to this probability measure. We have

�̃(yc(Bj )) =
∑

x∈ξD+ηAcJ

l̃α(|yc(Bj ) − x |)

=
∑

x∈ηAcJ

l̃α(|yc(Bj ) − x |) +
∑

x∈ξD

l̃α(|yc(Bj ) − x |)

= �̃ηAcJ
(yc(Bj )) + �̃ξD (yc(Bj )),
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1388 E. Broman, R. Meester

using obvious notation. Thus, using independence, we have that

EξD+ηAcJ

[
es

∑
j∈J �̃(yc(Bj ))

]
= EηAcJ

[

e
s
∑

j∈J �̃ηAcJ
(yc(Bj ))

]

EξD

[
es

∑
j∈J �̃ξD (yc(Bj ))

]
.

(2.13)

Consider the function gJ (y) := ∑
j∈J l̃α(|yc(Bj ) − y|), so that

∑

x∈ηAcJ

gJ (x) =
∑

x∈ηAcJ

∑

j∈J

l̃α(|yc(Bj ) − x |)

=
∑

j∈J

∑

x∈ηAcJ

l̃α(|yc(Bj ) − x |) =
∑

j∈J

�̃ηAcJ
(yc(Bj )),

and similarly
∑

x∈ξD

gJ (x) =
∑

j∈J

�̃ξD (yc(Bj )).

By (2.2) we get that

EηAcJ

[

e
s
∑

j∈J �̃η′
D+η̃(yc(Bj ))

]

= exp

(∫

Rd\AJ

esgJ (x) − 1dx

)

, (2.14)

since the intensity measure for ηAc
J
is simply 0 on AJ and Lebesgue measure outside of AJ .

We proceed by bounding the right hand side of this expression and start by noting that for
x ∈ R

d\AJ ,

gJ (x) ≤ �̃Ao(o) ≤ C Iαα−d

so that by Lemma 2.6, gJ (x) is uniformly bounded by C Iα/αd where C Iα < ∞ is as in that
lemma. We can therefore use that ex − 1 ≤ 2x for x ≤ 1, to see that for 0 < s ≤ αd/(C Iα),

we have esgJ (x) − 1 ≤ 2sgJ (x). Hence,
∫

Rd\AJ

esgJ (x) − 1dx ≤
∫

Rd\AJ

2sgJ (x)dx

= 2s
∫

Rd\AJ

∑

j∈J

l̃α(|yc(Bj ) − x |)dx (2.15)

≤ 2s
∑

j∈J

∫

Rd\A(Bj )

l̃α(|yc(Bj ) − x |)dx = 2sD|J |,

where by using that the side length of A(Bj ) is α(4�√d� + 1), we have that

D =
∫

Rd\A(Bj )

l̃α(|yc(Bj ) − x |)dx

=
∫

Rd\Ao

l̃α(|x |)dx ≤
∫

Rd\Ao

l̃α(|x | − α
√
d)dx ≤ C Iα

as in the proof of Lemma 2.6. Using (2.15) in (2.14), we get that

EηAcJ

[

e
s
∑

j∈J �̃ηAcJ
(yc(Bj ))

]

≤ e2sC Iα |J |. (2.16)
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We now turn to the second factor on the right hand side of (2.13). Observe that for any k,
J ∈ {0, 1}k and j ∈ J we have that

�̃ξD (yc(Bj )) ≤ �̃Ao(o).

Using Lemma 2.6, it follows that

EξD

[
es

∑
j∈J �̃ξD (yc(Bj ))

]
≤ e2sC Iα |J |/αd

. (2.17)

Using (2.16) and (2.17), with (2.13) we see from (2.12) that

P
(
�̃(yc(B1)

) ≥ h, . . . , �̃(yc(Bk)) ≥ h|L(η) = J ) ≤ e−h|J |se2sC Iα |J |e2s|J |C Iα/αd
.

Inserting this into (2.10), and using (2.11), we get

P

(

sup
y∈B1

�(y) ≥ h, . . . , sup
y∈Bk

�(y) ≥ h

)

≤
∑

|J |≥k/2

e−h|J |se2sC Iα |J |e2s|J |C Iα/αd
P(K (η) = J ) + e−d(α)k

≤ ke−shk/2e2skC Iα(1+α−d ) + e−d(α)k .

Then, by setting s = αd/(C Iα) (i.e. the largest possible s in order to use (2.15)) we get that

P

(

sup
y∈B1

�(y) ≥ h, . . . , sup
y∈Bk

�(y) ≥ h

)

≤ ke−αdh/(2C Iα)e2k(α
d+1) + e−d(α)k .

Finally, by first letting α be so small that e−d(α) ≤ ε/2, and then taking h large enough,
(2.3) follows. 	


We will now prove Theorem 2.3 in its entirety.

Proof of Theorem 2.3 The first statement is simply Theorem 2.7 and so we turn to the second
statement.

Consider the auxiliary attenuation function l ′(r) := l(r + 1), and let � ′ denote the
corresponding random field. We observe that for any y ∈ B(o, 1) and x ∈ R

d , l ′(|x |) =
l(|x | + 1) ≤ l(|x − y| − |y| + 1) ≤ l(|x − y|), so that

� ′(o) =
∑

x∈η

l ′(|x |) ≤ inf
y∈B(o,1)

∑

x∈η

l(|x − y|) = inf
y∈B(o,1)

�(y).

Weproceed to show thatP(� ′(o) = ∞) = 1, since then it follows thatP
(
inf y∈Rd �(y) = ∞)

= 1 by a standard countability argument. Therefore, let A0 := B(o, 1), and Ak :=
B(o, k + 1)\B(o, k) and note that Vol(Ak) = κd((k + 1)d − kd) ≥ dκdkd−1, where κd
denotes the volume of the unit ball in dimension d. Furthermore, letAk denote the event that
η(Ak) ≥ κdkd−1. For any X ∼ Poi(λ), a standard Chernoff type bound yields

P(X ≤ λ/2) ≤ e−λ (eλ)λ/2

(λ/2)λ/2 =
( e

2

)−λ/2 = e−cλ,

for some c > 0. Therefore,P(Ac
k) ≤ e−cdκd kd−1

so that P(Ac
k i.o.) = 0 by the Borell-Cantelli

lemma. Thus, for a.e. η, there exists a K = K (η) < ∞, so that Ak occurs for every k ≥ K .

Furthermore, we have that if Ak occurs, then for any k ≥ 3,
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∑

x∈η(Ak )

l ′(|x |) ≥ κdk
d−1l ′(k + 1)

= κdk
d−1l(k + 2) ≥ κd

kd−1

(k + 3)d−1

∫ k+3

k+2
rd−1l(r)dr ≥ κd

2

∫ k+3

k+2
rd−1l(r)dr.

Therefore we get that by letting K ≥ 3,

� ′(o) =
∑

x∈η

l ′(|x |) ≥
∞∑

k=K

κd

2

∫ k+3

k+2
rd−1l(r)dr = κd

2

∫ ∞

K+2
rd−1l(r)dr = ∞.

	


3 Continuity of the Field �

In this section, we turn to the everywhere continuity of the field �. This result will then be
of use when proving Theorem 1.4.

Of course, if l is not continuous, everywhere continuity of � cannot hold. However, if l is
continuous then everywhere continuity of the field � would be expected. We note that in the
case of l being unbounded (i.e. limr→0 l(r) = ∞), we simply define �(y) = ∞ for every
y ∈ η.

Proposition 3.1 If l satisfies Assumption 1.1,
∫∞
1 rd−1l(r)dr < ∞ and is continuous, then

the random field � is a.s. everywhere continuous.

Proof of Proposition 3.1 We start by proving the statement in the case when l is bounded.
Fix α, ε > 0, let gy,z(x) = |l(|x − y|) − l(|x − z|)|, and let {Dn}n≥1 be a sequence of
bounded subsets of Rd such that Dn ↑ R

d . Observe that for any δ > 0,

P

(

sup
y,z∈B(o,1):|y−z|<δ

|�(y) − �(z)| ≥ ε

)

≤ P

(

sup
y,z∈B(o,1):|y−z|<δ

∑

x∈η

gy,z(x) ≥ ε

)

≤ P

⎛

⎝ sup
y,z∈B(o,1):|y−z|<δ

∑

x∈η(Dn)

gy,z(x) ≥ ε/2

⎞

⎠

+ P

⎛

⎝ sup
y,z∈B(o,1):|y−z|<δ

∑

x∈η(Dc
n)

gy,z(x) ≥ ε/2

⎞

⎠ .

(3.1)

Wewill proceed by bounding the two terms on the right hand side of (3.1). Consider therefore
the second term

P

⎛

⎝ sup
y,z∈B(o,1):|y−z|<δ

∑

x∈η(Dc
n)

gy,z(x) ≥ ε/2

⎞

⎠

≤ P

⎛

⎝ sup
y,z∈B(o,1):|y−z|<δ

∑

x∈η(Dc
n)

l(|x − y|) + l(|x − z|) ≥ ε/2

⎞

⎠
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≤ P

⎛

⎝ sup
y∈B(o,1)

∑

x∈η(Dc
n)

l(|x − y|) + sup
z∈B(o,1)

∑

x∈η(Dc
n)

l(|x − z|) ≥ ε/2

⎞

⎠

= P

⎛

⎝ sup
y∈B(o,1)

∑

x∈η(Dc
n)

l(|x − y|) ≥ ε/4

⎞

⎠ . (3.2)

Furthermore, we have that for any ε > 0,

P

⎛

⎝ sup
y∈B(o,1)

∑

x∈η(Dc
n)

l(|x − y|) ≥ ε

⎞

⎠ ≤ 1

ε
E

⎡

⎣ sup
y∈B(o,1)

∑

x∈η(Dc
n)

l(|x − y|)
⎤

⎦

≤ 1

ε
E

⎡

⎣
∑

x∈η(Dc
n)

sup
y∈B(o,1)

l(|x − y|)
⎤

⎦ = 1

ε

∫

Rd\Dn

sup
y∈B(o,1)

l(|x − y|)dx (3.3)

≤ 1

ε

∫

Rd\Dn

l (max(|x | − 2, 0)) dx → 0 as n → ∞,

wherewe use (2.2) in the equality and the fact that the intensitymeasure of η(Dc
n) is Lebesgue

measure outside of Dn .Wealso use the integrability assumption
∫∞
0 rd−1l(r)dr < ∞ (which

follows from
∫∞
1 rd−1l(r)dr < ∞ and l being bounded)when taking the limit. By combining

(3.2) and (3.3), we see that by taking n large enough, the second term of (3.1) is smaller
than α.

For the first term, we get that

P

⎛

⎝ sup
y,z∈B(o,1):|y−z|<δ

∑

x∈η(Dn)

gy,z(x) ≥ ε/2

⎞

⎠

≤ 1

ε
E

⎡

⎣
∑

x∈η(Dn)

sup
y,z∈B(o,1):|y−z|<δ

|l(|x − y|) − l(|x − z|)|
⎤

⎦ (3.4)

= 1

ε

∫

Dn

sup
y,z∈B(o,1):|y−z|<δ

|l(|x − y|) − l(|x − z|)|dx .

Since Dn is bounded, we have that for any x ∈ Dn,

sup
y,z∈B(o,1):|y−z|<δ

|l(|x − y|) − l(|x − z|)| ≤ sup
(r1,r2)∈En

(l(r1) − l(r2))

where En = {(r1, r2) ∈ R
2 : 0 ≤ r1 < r2 ≤ 2 diam(Dn), |r1 − r2| < δ}. Since l(r) is

continuous, it is uniformly continuous on [0, 2 diam(Dn)]. Therefore, for any fixed n, the
right hand side of (3.4) is smaller than α for δ small enough.

We conclude that for any ε, α > 0, there exists δ > 0, small enough so that

P

(

sup
y,z∈B(o,1):|y−z|<δ

|�(y) − �(z)| ≥ ε

)

≤ 2α. (3.5)

To conclude the proof, assume that �(y) is not a.s. continuous everywhere. Then, with
positive probability, there exists ε > 0 and a point w ∈ B(o, 1/2) such that for any δ > 0
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sup
y:|y−w|<δ

|�(y) − �(w)| ≥ ε,

contradicting (3.5).
We now turn to the case where l is unbounded. Then, for any M < ∞, we let lM (r) =

min(l(r), M), and define �M (y) to be the random field obtained by using lM instead of l. If
we let

BM (x) = {y ∈ R
d : l(|x − y|) ≥ M},

we see that �M (y) = �(y) for every y ∈ R
d\ ∪x∈η BM (x). By the first case, �M (y) is

continuous everywhere, and so�(y) is continuous for any y ∈ R
d\∪x∈η BM (x). Since M <

∞ was arbitrary, the statement follows after observing that limy→x �(y) = ∞ whenever
x ∈ η. 	


4 Uniqueness

In this section we restrict ourselves to d = 2. We will first consider the case of �>h , and
then explain how the second case of Theorem 1.4 quickly follows from it. For convenience
we formulate the following separate statement.

Theorem 4.1 Let h be such that �>h contains an unbounded component. If l is continuous
and with unbounded support, then for d = 2, there is a unique such unbounded component.

Our strategy will be to adapt the argument in [7] which proves uniqueness for a class of
models on Z

d . In order to perform this adaptation it is much easier to work with arcwise
connectedness rather than connectedness. The reason for this is that we can easily form
new arcs from intersecting arcs, while the corresponding result for connectedness is rather
challenging topologically.

However, in our continuous context, we have defined percolation in terms of connected-
ness, as is usually done. But, since � is a.s. continuous by Proposition 3.1, the set �>h is
a.s. an open set. For open sets, connected and arcwise connected are the same thing, as is
well known. Hence, if x and y are in the same connected component of �>h , then there is a
continuous curve from x to y in �>h . This observation makes �>h easier to study than �≥h

directly, and is the reason for proving Theorem 4.1 separately.
In the sequel we try to balance between the fact that we do not want or need to repeat the

whole argument of [7] on the one hand, and the need to explain in detail what changes are to
be made and what these changes constitute on the other hand.

In [7], uniqueness of the infinite cluster in two-dimensional discrete site percolation is
proved under four conditions. Consider a probability measure μ on {0, 1}Z2

and let ω ∈
{0, 1}Z2

be a configuration. If ω(x) = 1 we call x ∈ Z
2 open and if ω(x) = 0 we call it

closed. The four conditions which together imply uniqueness of the infinite open component
are:

1. μ is invariant under horizontal and vertical translations and under axis reflections.
2. μ is ergodic (separately) under horizontal and vertical translations.
3. μ(E∩F) ≥ μ(E)μ(F) for events E and F which are both increasing or both decreasing

(The FKG inequality).
4. The probability that the origin is in an infinite cluster is non-trivial, that is, strictly between

0 and 1.
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In our context, conditions analogous to Conditions 1 and 2 clearly hold. Some care is
needed for Condition 3 though. We will say that an event E is increasing if a configuration
in E remains in E if we add additional points to the point process η (and adapt the field
accordingly). Furthermore, E is decreasing if Ec is increasing. With these definitions, one
can prove the analogue of the FKG inequality as in the proof of Theorem 2.2 in [14].

Condition 4 is natural in the discrete context. Indeed, if the probability that the origin is
in an infinite cluster is 0, then by translation invariance, no infinite cluster can exist a.s. The
case in which the probability that the origin is in an infinite cluster is 1 was excluded only for
convenience, and this assumption is not used in the proof in [7]. In our continuous context, we
need to be slightly more careful. Suppose that �>h contains an unbounded component with
positive probability. Since �>h is an open set by continuity of the field, any such unbounded
component must be open as well. Hence there must be an ε > 0 and an x ∈ R

2 so that
B(x, ε) is contained in an infinite component with positive probability, since a countable
collection of such balls covers the plane. By translation invariance, the same must then be
true for any x ∈ R

2. Hence, any point x ∈ R
2 is contained in an infinite component with

positive probability, and Condition 4 holds.
Gandolfi, Keane and Russo prove uniqueness by showing that there exists a δ > 0 such

that any box Bn = [−n, n]2 is surrounded by an open path with probability at least δ. Hence
the probability that all such boxes are surrounded by an open path is at least δ, and since the
latter event is translation invariant it must have probability one. This ensures uniqueness, as
is well known since 1960, see [10]. For the proof of Theorem 4.1, we can in principle follow
the structure of their argument, with a number of modifications, as follows.

Proof of Theorem 4.1 For any set A ⊂ R
d , we will let �A := supx∈A �(x).

The first step is to show that it is impossible to have percolation in a horizontal strip QM

of the form

QM := {(x, y) ∈ R
2;−M ≤ y ≤ M},

and similarly for vertical strips. In their case this claim simply follows from the fact that
closed sites exist (by virtue of Condition 4) and then it follows from Condition 3 that there
is a positive probability that a strip is blocked completely by closed sites. Finally, ergodicity
(or rather stationarity) shows that a strip is blocked infinitely many times in either direction.

Since we work in a continuous setting, this argument does not go through immediately.
However, we can adapt it to our context. To this end, consider the set C = C(N , M) :=
[N , N + 1] × [−M, M], that is, a vertical “strip” in QM . Since the field is a.s. finite, by
deleting points one by one from η, say in increasing order with respect to distance to C , we
have that upon deleting these points, �C ↓ 0. Hence, after deleting sufficiently many points
it must be the case that �C < h, for any given h > 0. If we let Do(L) denote the event
that the contribution of points outside the box BL to �C is at most h, we conclude that for
some (random) number L , Do(L) occurs. It then follows that for some deterministic L0,

P(Do(L0)) > 0. Note also that Do(L0) only depends on the points of η outside BL0 .
LetDi (L0) denote the event that there are no points of η in BL0 itself. ThenP(Di (L0)) > 0

and by independence of Di (L0) and Do(L0), it also follows that P(Di (L0) ∩ Do(L0)) > 0.
Furthermore, on the eventDi (L0)∩Do(L0), we have that �C < h, and we conclude that for
any h > 0 there is positive probability that the field� does not exceed h onC . So any vertical
strip in C(N , M) ⊂ QM has positive probability to satisfy �C < h and by stationarity there
must be infinitely many of such strips in both directions. So there can not be percolation in
QM .
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Having established this, we now turn to the second step of the argument. As mentioned
above, in [7], they construct open paths whose union, by virtue of their specific construction,
surround a given box. They show that for any given box, such a construction can be carried out
with a uniform positive probability. It is at this point of the argument that two-dimensionality
is crucial as the two-dimensional topology forces certain paths to intersect.

The remainder of the proof of uniqueness proceeds in two steps. First we prove uniqueness
under the assumption that the half-plane H+ := {(x, y); y ≥ 0} percolates. After that, we
prove uniqueness under the assumption that H+ does not percolate.

For x ∈ R
2, A, B ⊂ R

2,wewrite E(x, A, B) for the event that there is a continuous path in
�>h from x to Awhich is contained in B, and E(x,∞, B) if there is an unbounded continuous
path from x in B. We write LN := {(x, y); y = N }, L+

N := {(x, y); y = N , x ≥ 0} and
L−
N := {(x, y); y = N , x ≤ 0}. Finallywewrite H+

N := {(x, y); y ≥ N }, so that H+
0 = H+.

Let E := E(0,∞, H+), let D be a box centered at the origin, and let DN := D+ (0, N ).
Finally, let ẼN := E(0,∞, H+\DN ) and observe that while ẼN is clearly increasing in η,

the event �DN ≤ h is decreasing in η. Therefore, by the FKG inequality we have that

P(E)P(�D ≤ h) ≥ P(ẼN )P(�DN ≤ h) ≥ P
(
ẼN ∩ {

�DN ≤ h
} ) = P

(
E ∩ {

�DN ≤ h
} )

.

Since our system is mixing (see e.g. [14, p. 26] plus the fact that the field is a deterministic
function of the Poisson process), we have that limN→∞ P(E ∩{

�DN ≤ h
}
) = P(E)P(�D ≤

h). It follows that when N → ∞, P(ẼN ) → P(E). In words, if percolation occurs from
the origin in H+ with positive probability, then the conditional probability that there is an
unbounded path avoiding DN tends to 1 as N → ∞.

Hence, if the probability that y−N := (0,−N ) percolates in H+
−N is δ > 0, then for N

large enough,

P(E(y−N ,∞, H+
−N\D)) ≥ δ/2.

Since the strip QN does not percolate, if y−N percolates in H+
−N\D, we conclude that the

event E(y−N , LN , QN\D) must occur, so that P(E(y−N , LN , QN\D)) ≥ δ/2.
The endpoint of the curve in the event E(y−N , LN , QN\D) is either in L+

N or in L−
N , and

by reflection symmetry, both options have the same probability. Hence,

P(E(y−N , L+
N , QN\D)) ≥ δ/4.

By reflection symmetry, it then follows that also

P(E(yN , L+
−N , QN\D)) ≥ δ/4,

and by combining the curves in the last two displayed formulas and the FKG inequality, we
find that

P(E(yN , y−N , QN\D)) ≥ δ2/16. (4.1)

Any curve in the event E(yN , y−N , QN\D) either has D on the left or on the right (depending
whether it has positive or negative winding number) and again by reflection symmetry,
both possibilities must have probability at least δ2/32. Let J+ (J−) be the sub-event of
E(yN , y−N , QN\D)where there exists a curve with positive (negative) winding number. By
the FKG inequality, we have that P(J+ ∩ J−) ≥ δ4/1024. But on J+ ∩ J−, the box D is
surrounded by a continuous curve in �>h , and we are done.

Finally, we consider the case in which the half space does not percolate. We can modify
the argument in [7] similarly and we do not spell out all details. In the first case we showed
that if we have percolation from the origin in H+, the conditional probability that there is
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an unbounded path avoiding DN tends to 1 as N → ∞. In this second case it turns out that
we need to show that this remains true if we in addition also want to avoid D−N . For this,
the usual mixing property that we used above, does not suffice, and a version of 3-mixing is
necessary. As in [7], we use Theorem 4.11 in [6] for this, in which it is shown that ordinary
weak mixing implies 3-mixing along a sequence of density 1. Since our system is weakly
mixing, this application of Theorem 4.11 in [6] is somewhat simpler than in [7], but other
than that our argument is the same, and we do not repeat it here. 	


Finally we show how Theorem 4.1 implies Theorem 1.4.

Proof of Theorem 1.4 We first claim that �>h percolates with probability one if and only if
�≥h percolates with probability one. The “only if” is clear, since �>h ⊂ �≥h .

Next, suppose that �≥h percolates with probability one. By definition, this implies that
�≥h a.s. contains an unbounded connected component. Let us denote this event by Ch . Let
A be a bounded region with positive area. Since the probability of Ch is 1, it must be the case
that

P(Ch |η(A) = 0) = 1,

where η(A) is (as usual) the number of points of the Poisson process in A. Since we can
sample from the conditional distribution of the process given η(A) = 0 by first sampling
unconditionally and then simply remove all points in A, it follows that we cannot destroy the
event of percolation by removing all points in A.

Hence if we take all points out from A, the resulting field � A, say, will be such that � A≥h

percolates a.s. But if η(A) > 0, then it is the case that � A≥h ⊆ �>h , and it is precisely
here we assume that the attenuation function l has unbounded support. Hence, with positive
probability we have that �>h percolates, and by ergodicity this implies that �>h contains an
infinite component a.s.

We can now quickly finish the proof. Suppose that �≥h percolates. Then, as we just saw,
also �>h percolates. Hence we can apply the proof of Theorem 4.1, and conclude that �>h

does contain continuous curves around each box. Since �≥h is an even larger set, the same
must be true for �≥h and uniqueness for this latter set follows as before. 	


In light of Theorem 1.4, it is of course natural to expect that uniqueness should hold also
for d ≥ 3. The classical argument for uniqueness in various lattice models and continuum
percolation consists of two parts. Below we examine these separately.

Let Nh be the number of unbounded components in�≥h . Following the arguments of [16]
(which is for the lattice case but can easily be adapted to the setting ofBoolean percolation, see
[14] Proposition 3.3) one starts by observing that P(Nh = k) = 1 for some k ∈ {0, 1, . . .} ∪
{∞}. Assume for instance that P(Nh = 3) = 1, and proceed by taking a box [−n, n]d
large enough so that at least two of these infinite components intersect the box with positive
probability. Then, glue these two components together by the use of a finite energy argument.
That is, turn all sites in the box to state 1 in the discrete case, or add balls to the box
in the Boolean percolation case. In this way, we reduce Nh by (at least) 1, showing that
P(Nh = 3) < 1, a contradiction. If one attempts to repeat this procedure in our setting (with
the support of l being unbounded), one finds that by adding points to the field, the gluing
of two infinite components might at the same time result in the forming of a completely
new infinite component somewhere outside the box. Therefore, one cannot conclude that
P(Nh = 3) < 1.

The second difficulty occurs when attempting to rule out the possibility that P(Nh =
∞) = 1. For the Boolean percolation model one uses an argument by Burton and Keane in
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[4], adapted to the case of Boolean percolation (see [14] proof of Theorem 3.6). However this
argument hinges on the trivial but crucial fact that for this model any unbounded component
must contain infinitely many points of the Poisson process η. This is not the case in our
setting. An unbounded component can in principle contain only a finite number of points of
η, or indeed none at all.

We now turn to the last result of this paper, Theorem 1.5. In order to prove continuity,
we will give separate arguments for left- and right-continuity. The strategy to prove right-
continuity will be similar to the corresponding result (i.e. left-continuity) for discrete lattice
percolation (see [9, Sect. 8.3]).However,while the other case is trivial for discrete percolation,
this is where most of the effort in proving Theorem 1.5 lies. Before giving the full proof,
we will need to establish two lemmas that will be used to prove left-continuity. See also the
remark after the end of the proof of Theorem 1.5.

Let X0 ∼Poi(λ), and let X1 = X0 + 1. The following lemma provides a useful coupling.

Lemma 4.2 There exist random variables Y 0 d= X0 and Y 1 d= X1 coupled so that

P
(
Y 0 �= Y 1) = λ�λ� + 1

(�λ� + 1)!e
−λ.

Proof In what follows, sums of the form
∑M−1

l=M al is understood to be 0, and in order not to
introduce cumbersome notation, expressions such as λk/k!will be interpreted as 0 for k < 0.
Note also that

P(X0 = k)

P(X1 = k)
=

λk

k! e
−λ

λk−1

(k−1)!e−λ
= λ

k
≥ 1 iff k ≤ λ. (4.2)

We start by giving the coupling and then verify that it is well defined and has the correct
properties. Let U ∼ U [0, 1] and for 1 ≤ k ≤ λ let Y 0 = Y 1 = k if

k−2∑

l=0

λl

l! e
−λ < U ≤

k−1∑

l=0

λl

l! e
−λ (4.3)

while for k > λ we let Y 0 = Y 1 = k if

�λ�∑

l=0

λl

l! e
−λ +

k−1∑

l=�λ�+2

λl

l! e
−λ < U ≤

�λ�∑

l=0

λl

l! e
−λ +

k∑

l=�λ�+2

λl

l! e
−λ (4.4)

Furthermore, we let Y 0 = k if k ≤ λ and

1 − λk

k! e
−λ < U ≤ 1 − λk−1

(k − 1)!e
−λ (4.5)

while Y 1 = k if k > λ and

1 − λk−1

(k − 1)!e
−λ < U ≤ 1 − λk

k! e
−λ. (4.6)

Consider now (4.5). Since k ≤ λ it follows from (4.2) that

1 − λk

k! e
−λ ≤ 1 − λk−1

(k − 1)!e
−λ,
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with equality iff k = λ. It follows that (4.5) is well defined, and similarly we can verify that
(4.6) is also well defined.

We proceed to verify that (4.3)–(4.6) gives the correct distributions of Y 0 and Y 1. To this
end, observe that from (4.3) and (4.5) we have that for 0 ≤ k ≤ λ

P
(
Y 0 = k

) = λk−1

(k − 1)!e
−λ + λk

k! e
−λ − λk−1

(k − 1)!e
−λ = λk

k! e
−λ.

Furthermore, from (4.3) we get that for k > λ,

P(Y 0 = k) = λk

k! e
−λ

so that indeed Y 0 ∼Poi(λ).

Similarly, we see from (4.3) that for 1 ≤ k ≤ λ we have that

P
(
Y 1 = k

) = λk−1

(k − 1)!e
−λ,

while by summing the contributions from (4.4) and (4.6) we get that for k > λ

P(Y 1 = k) = λk

k! e
−λ + λk−1

(k − 1)!e
−λ − λk

k! e
−λ = λk−1

(k − 1)!e
−λ,

so that Y 1 has the desired distribution.
Finally, the lemma follows by observing that

P(Y 0 �= Y 1) = P

⎛

⎝U >

�λ�∑

l=0

λl

l! e
−λ +

∞∑

l=�λ�+2

λl

l! e
−λ

⎞

⎠ = λ�λ� + 1

(�λ� + 1)!e
−λ.

	

Let η0n be a homogeneous Poisson process in R2 with rate 1, and let η1n be a point process

such that η1n
d= η0n + δVn where Vn ∼U(Bn) and Bn = [−n, n]2. Thus η1n is constructed by

adding a point uniformly located within the box Bn to a homogeneous Poisson process in
R
2. Let Pi

n be the distribution of ηin for i = 0, 1 and let

dTV
(
P
0
n,P

1
n

) := sup
A

|P0
n(A) − P

1
n(A)|

be the total variation distance between P
0
n and P

1
n , where the supremum is taken over all

measurable events A.

Lemma 4.3 For any n ≥ 1 we have that

dT V
(
P
0
n,P

1
n

) ≤ (4n2)4n
2+1

(4n2 + 1)! e
−4n2 ≤ n−1.

Proof Let λ = 4n2 and pick Y 0, Y 1 as in Lemma 4.2. Furthermore, let η be a homogeneous
Poisson process in R

2, independent of Y 0 and Y 1, and let (Uk)k≥1 be an i.i.d. sequence
independent of Y 0, Y 1 and η and such that Uk ∼U(Bn). Then, define

η0n := η
(
Bc
n

) +
Y 0
∑

k=1

δUk ,
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and

η1n := η
(
Bc
n

) +
Y 1
∑

k=1

δUk .

It is easy to see that ηin ∼ P
i
n and that

P

(
η0n �= η1n

)
= P(Y 0 �= Y 1). (4.7)

Thus, for any measurable event A, we have that

|P0
n(A) − P

1
n(A)| = P(η0n ∈ A, η1n /∈ A) + P(η1n ∈ A, η0n /∈ A)

≤ P(η0n �= η1n) ≤ (4n2)4n
2+1

(4n2 + 1)! e
−4n2 ,

by using (4.7) and Lemma 4.2.
Furthermore, by Stirling’s approximation, we see that

(4n2)4n
2+1

(4n2 + 1)! e
−4n2 ≤ (4n2)4n

2

4n2! e−4n2 ≤ (4n2)4n
2

√
2π(4n2)4n2+1/2e−4n2

e−4n2 ≤ n−1.

	

Remark Although we choose to state and prove this only for d = 2, a version of this lemma
obviously holds for all d ≥ 1.

We are now ready to give the proof of our last result.

Proof of Theorem 1.4 We start by proving the left-continuity of θ>(h). We claim that

lim
g↑h θ>(g) = P(Co,>(g) is unbounded for every g < h) = P(Co,≥(h) is unbounded).

(4.8)

To see this, observe first that trivially
⎧
⎨

⎩
Co,≥(h) is unbounded} ⊂

⋂

g<h

{Co,>(g) is unbounded

⎫
⎬

⎭
.

Secondly, assume that Co,≥(h) is bounded. Since Co,≥(h) and�≥h\Co,≥(h) are disconnected,
there exist open sets G1,G2 such that G1 is connected, Co,≥(h) ⊂ G1, �≥h\Co,≥(h) ⊂ G2

and G1 ∩ G2 = ∅. Therefore, the set G3 = G1\Co,≥(h) is an open connected set separating
the origin o from ∞. Since G3 is then also arcwise connected, it follows that it must contain
a circuit surrounding the origin. That is, there exists a continuous function γ : [0, 1] →
R
2 such that γ (0) = γ (1) and γ separates o from ∞. Since γ is continuous, the image

of γ (Im(γ )) is compact, and so supt∈[0,1] �(γ (t)) is obtained, since � is continuous by
Proposition 3.1. By construction, G3 ⊂ R

2\�≥h and so Im(γ ) ⊂ R
2\�≥h . We conclude

that supt∈[0,1] �(γ (t)) < h. Therefore, for any g such that supt∈[0,1] �(γ (t)) < g < h we
must have that Co,>(g) is bounded. This proves (4.8).

Let n be any integer and take

η ∈ {Co,≥(h) is unbounded}\{Co,>(h) is unbounded}.
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Let η1n = η + δVn where Vn ∼U(Bn) and observe that since l has unbounded support,

η1n ∈ {Co,>(h) is unbounded}.
Using Lemma 4.3 we get that

P(Co,≥(h) is unbounded)

≤ P
1
n(Co,>(h) is unbounded) ≤ P

0
n(Co,>(h) is unbounded) + n−1 = θ>(h) + n−1.

This together with (4.8) yields

lim
g↑h θ>(g) ≤ lim

n→∞ θ>(h) + n−1 = θ>(h).

It remains to prove that

lim
g↓h θ>(g) = θ>(h), (4.9)

for h < hc, and we will use a similar approach as above. We note that

lim
g↓h P(Co,>(g) is unbounded) = P(Co,>(g) is unbounded for some g > h). (4.10)

Assume that Co,>(h) contains an unbounded component, and consider any h < g < hc.
Since �>g also must contain an unbounded component Ig, and since by Theorem 1.4 we
know that this is unique, we conclude that Ig ⊂ Co,>(h). As above, Co,>(h) is an open
set, and therefore arcwise connected. Thus, for z ∈ Ig, there exists a continuous function
φ : [0, 1] → R

2 such that φ(0) = o and φ(1) = z. Since φ is continuous, Im(φ) is
compact, and so inf t∈[0,1] �(φ(t)) is obtained, since � is continuous by Proposition 3.1.
Furthermore, since Im(φ) ⊂ Co,>(h), we conclude that inf t∈[0,1] �(φ(t)) > h. Therefore,
for some h < g′ < hc we also have that inf t∈[0,1] �(φ(t)) > g′, and so Co,>(g′) contains an
unbounded component. We conclude that

P(Co,>(g) is unbounded for some g > h) = P(Co,>(h) is unbounded). (4.11)

Combining Eqs. (4.10) and (4.11) we conclude that (4.9) holds.
In order to complete the proof, we simply observe that for any g < h we have that

θ>(h) ≤ θ≥(h) ≤ θ>(g) so that

θ>(h) ≤ θ≥(h) ≤ lim inf
g↑h θ>(g) = θ>(h),

so that indeed θ>(h) = θ≥(h) for every h < hc. 	

Remark Consider the event {o ↔ ∂Bn}, that the origin is connected to the boundary of Bn . In
the discrete case, it is trivial that Pp(o ↔ ∂Bn) is continuous as a function of the percolation
parameter p, since it is an event that depends on the state of only finitely many edges. This
then gives an easy proof of right-continuity (corresponding to left-continuity in our case).
In our model, points of η at any distance contribute to the field in Bn . Therefore, we cannot
claim immediate continuity of P(o ↔ ∂Bn), although our methods above can be used to
prove it.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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