Erratum to: On a Finite Range Decomposition of the Resolvent of a Fractional Power of the Laplacian

P. K. Mitter ${ }^{1}$

Published online: 27 December 2016
© Springer Science+Business Media New York 2016

Erratum to: J Stat Phys (2016) 163:1235-1246
 DOI 10.1007/s10955-016-1507-y

The above paper [1] was marred by a number of errors as remarked in Sect. 10 of [2]. I thank G. Slade for bringing this to my attention. These occur in Sect. 3 of [1] where proofs are given for Theorem 1.1 I take this opportunity to point them out and correct them. The references to equations are to those in the above paper. Reference [3] cited in the above paper is cited as Ref. [3] in this erratum. The statement of Theorem 1.1 in [1] has some modifications as a result of these corrections. We also take this opportunity to correct errors about constants. We first state them: If we follow the decomposition in [3], instead of [4], and this will be the case here, then the constants c_{p} which occur in Sect. 3 should read $c_{L, p}$. As a consequence the constants $c_{p, \alpha}$ which occur in Sect. 3 and Theorem 1.1 should read $c_{L, p, \alpha}$.

The bounds (1.12) and (1.14) of [1] remain true but only for $j \geq 2$ with $0 \leq q \leq j$ and $c_{p, \alpha}$ replaced by $c_{L, p, \alpha}$. (1.13) obviously remains true. For $j=0,1$ with $j \geq q \geq 0$ we have to add the additional bound

$$
\begin{equation*}
\left\|\partial_{\varepsilon_{j}}^{p} \Gamma_{j, \alpha}\left(\cdot, m^{2}\right)\right\|_{L^{\infty}\left(\left(\varepsilon_{q} \mathbb{Z}\right)^{d}\right)} \leq c_{L, p, \alpha}\left(1+m^{2}\right)^{-1} \tag{1.1}
\end{equation*}
$$

Corollary 1.2 (1.17) remains true (with $c_{p, \alpha}$ replaced by $c_{L, p, \alpha}$) but for $j \geq 2$. For $j=0,1$ we now have an additional bound in the same Corollary

$$
\begin{equation*}
\left\|\partial_{\mathbb{Z}^{d}}^{p} \tilde{\Gamma}_{j, \alpha}\left(\cdot, m^{2}\right)\right\|_{L^{\infty}\left(\mathbb{Z}^{d}\right)} \leq c_{L, p, \alpha}\left(1+L^{j \alpha} m^{2}\right)^{-1} L^{-(2 j[\varphi]+p j)} \tag{1.2}
\end{equation*}
$$

Coarse graining In order to get scale independence in the constants we can pass to a coarser scale L^{\prime} and redefine fluctuation covariances by summing over the intermediate scales [5]. Let r be a positive integer and let $L^{\prime}=L^{r}$ be the coarse scale. For L fixed we can make L^{\prime}

The online version of the original article can be found under doi:10.1007/s10955-016-1507-y.

[^0]large by making r large. Now redefine for $j \geq 0$ the coarse scale fluctuation covariance as follows:
\[

$$
\begin{equation*}
\tilde{\Gamma}_{j, \alpha}^{\prime}\left(\cdot, m^{2}\right)=\sum_{l=0}^{r-1} \tilde{\Gamma}_{l+j r, \alpha}\left(\cdot, m^{2}\right) \tag{1.3}
\end{equation*}
$$

\]

Then

$$
\begin{equation*}
\tilde{\Gamma}_{j, \alpha}^{\prime}\left(x-y, m^{2}\right)=0,|x-y| \geq\left(L^{\prime}\right)^{j+1} \tag{1.4}
\end{equation*}
$$

Now it is easy to prove that for a fixed L the coarse grained fluctuation covariances satisfy the same bounds as above with new constants $c_{L, p, \alpha}^{\prime}$ that are independent of the coarser scale L^{\prime} for $0<\alpha<2$ and all $d \geq 2$. The essential reason is that the scaling dimension $[\varphi]=(d-\alpha) / 2$ remains strictly positive in these cases. The coarse scale L^{\prime} independence with respect to the bounds in [3] was found earlier in R. Bauerschmidt (unpublished data) for $d \geq 3$ but in $d=2$ an additional $\log L^{\prime}$ dependence was found.
Remark I emphasise that the $\left(1+m^{2}\right)^{-1}$ term in the bounds only occurs for the $j=0,1$ terms and not for $j \geq 2$ in contrast to [2] where it occurs for all terms.
We now turn to the corrections to be made in the proof supplied in Sect. 3 of [1].

1. In Appendix A of [3] interior regularity estimates (like those of Nirenberg and Agmon in the continuum) were obtained for the solution of a lattice Dirichlet problem for the minus lattice laplacian plus a mass squared parameter (called $a \geq 0$). This is called s in the present paper. As part of this estimate a linear decay in the mass squared parameter was given and this sufficed for the purposes of [3]. However at the end of Appendix A [3] an exponential type decay in the mass parameter was sketched following an Agmon type argument. However on a lattice this will not be true for an arbitrarily large mass parameter. Therefore the bound $e^{-c s^{\frac{1}{2}}}$ occuring in Eqs. (3.4), (3.6) and (3.7) of [1] cannot be used when integrating over s up to infinity in (3.13), (3.14), (3.15) and (3.16) of [1]. However the exponential estimates are not necessary as we will now see. We shall replace it by a weaker power law decay which will suffice for our purpose.
2. For $j \geq 2$ replace $e^{-c s^{\frac{1}{2}}}$ in (3.4) by $(1+s)^{-2}$, so that (3.4), [1] now reads for $j \geq 2$ with $0 \leq q \leq j$

$$
\begin{equation*}
\left\|\partial_{\varepsilon_{j}}^{p} \Gamma_{j}(\cdot, s)\right\|_{L^{\infty}\left(\left(\varepsilon_{q} \mathbb{Z}\right)^{d}\right)} \leq c_{L, p}(1+s)^{-2} \tag{1.5}
\end{equation*}
$$

This is a slight improvement of (5.11), Theorem 5.5 of [3] plus Sobolev embedding. In Theorem 5.5 of [3] the decay rate $(1+s)^{-1}$ was given. The symbol s above was called a in [3].

For both $j=1$ with $0 \leq q \leq j$ as well as $j=q=0$ we use the bound in (3.5), [1] namely

$$
\begin{equation*}
\left\|\partial_{\varepsilon_{j}}^{p} \Gamma_{j}(\cdot, s)\right\|_{L^{\infty}(\mathbb{Z})^{d}} \leq c_{L, p} \frac{1}{1+s} \tag{1.6}
\end{equation*}
$$

Proof The bound (1.6) is part of Theorem 5.5 of [3]. So only the bound in (1.5) needs to be considered.

The bounds (3.6) and (3.7) in [1] now read

$$
\begin{equation*}
\left\|\partial_{c}^{p} \Gamma_{c *}(\cdot, s)\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \leq c_{L, p}(1+s)^{-2} \tag{1.7}
\end{equation*}
$$

and for $j \geq 2$

$$
\begin{equation*}
\left\|\partial_{\varepsilon_{j}}^{p} \Gamma_{j}(\cdot, s)-\partial_{c}^{p} \Gamma_{c *}(\cdot, s)\right\|_{L^{\infty}\left(\left(\varepsilon_{q} \mathbb{Z}\right)^{d}\right)} \leq c_{L, p}(1+s)^{-2} L^{-\frac{j}{2}} \tag{1.8}
\end{equation*}
$$

3. We will first prove (1.12) of Theorem 1.1 for $j \geq 2$. In the sentence before (3.13) of [1] replace $j>q \geq 0$ by $j \geq 2$ with $0 \leq q \leq j$. In (3.13), (3.14), (3.15) and (3.16) replace $e^{-c s^{\frac{1}{2}}}$ by $(1+s)^{-2}$. Then all integrals converge for $0<\alpha<2$ and the argument leading to (3.18) goes through and proves (1.12) of Theorem 1.1 for $j \geq 2,0 \leq q \leq j$ with the constant $c_{p, \alpha}$ replaced by $c_{L, p, \alpha}$. (1.14) of Theorem 1.1 is similarly proved for $j \geq 2$ with the constant replaced as before.
4. For $j=0,1$ we proceed otherwise to prove the additional bound (1.1) stated at the beginning of this erratum.
We replace (3.13) of [1] by

$$
\begin{equation*}
\left\|\partial_{\varepsilon_{j}}^{p} \Gamma_{j, \alpha}\left(\cdot, m^{2}\right)\right\|_{L^{\infty}\left(\left(\varepsilon_{q} \mathbb{Z}\right)^{d}\right)} \leq c_{L, p} c_{\alpha} \int_{0}^{\infty} d s \frac{s^{\alpha / 2}}{s^{\alpha}+m^{4}} \frac{1}{1+s} \tag{1.9}
\end{equation*}
$$

Define the integral above as

$$
\begin{equation*}
F_{0}\left(m^{2}\right)=\int_{0}^{\infty} d s \frac{s^{\alpha / 2}}{s^{\alpha}+m^{4}} \frac{1}{1+s} \tag{1.10}
\end{equation*}
$$

The integral converges for $0<\alpha<2$. This is a continuous monotonic decreasing function for increasing m^{2} and is well defined for $m^{2}=0$ in the above range of α. For $m^{2} \neq 0$ we obtain after some changes of variables

$$
\begin{aligned}
F_{0}\left(m^{2}\right)= & \frac{1}{m^{2}}\left(m^{2}\right)^{\frac{2}{\alpha}} \frac{2}{\alpha} \int_{0}^{\infty} d x \frac{e^{\frac{2}{\alpha} x}}{e^{x}+e^{-x}} \frac{1}{1+\left(\left(m^{2}\right)^{\frac{2}{\alpha}} e^{\frac{2}{\alpha} x}\right.} \\
& \leq \frac{1}{m^{2}} \frac{2}{\alpha} \int_{0}^{\infty} d x e^{-x} \\
& \leq \frac{2}{\alpha} \frac{1}{m^{2}}
\end{aligned}
$$

By continuity at $m^{2}=0$ we have for some constant c_{α}

$$
F_{0}\left(m^{2}\right) \leq c_{\alpha} \frac{1}{1+m^{2}}
$$

Using this bound in (1.9) proves the additional bound (1.2) for $j=0,1$.

References

1. Mitter, P.K.: On a finite range decomposition of the resolvent of a fractional power of the Laplacian. J. Stat. Phys. 163, 1235-1246 (2016)
2. Slade, G.: Critical exponents for long range $O(n)$ models below the upper critical dimension, arXiv:1611.06169
3. Brydges, D., Guadagni, G., Mitter, P.K.: Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415-449 (2004)
4. Bauerschmidt, Roland: A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817-845 (2013)
5. Brydges, D.C.: Lectures on the renormalisation group. Statistical Mechanics. IAS/Park City Mathematics Series, vol. 16, pp. 7-93. American Mathematical Society, Providence (2009)

[^0]: P. K. Mitter

 Pronob.Mitter@umontpellier.fr
 1 Laboratoire Charles Coulomb, CNRS-Université Montpellier- UMR5221, Place E. Bataillon, Case 070, 34095 Montpellier Cedex 05, France

