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The above paper [1] was marred by a number of errors as remarked in Sect. 10 of [2]. I thank
G. Slade for bringing this to my attention. These occur in Sect. 3 of [1] where proofs are given
for Theorem 1.1 I take this opportunity to point them out and correct them. The references
to equations are to those in the above paper. Reference [3] cited in the above paper is cited
as Ref. [3] in this erratum. The statement of Theorem 1.1 in [1] has some modifications as
a result of these corrections. We also take this opportunity to correct errors about constants.
We first state them: If we follow the decomposition in [3], instead of [4], and this will be the
case here, then the constants cp which occur in Sect. 3 should read cL ,p . As a consequence
the constants cp,α which occur in Sect. 3 and Theorem 1.1 should read cL ,p,α .

The bounds (1.12) and (1.14) of [1] remain true but only for j ≥ 2 with 0 ≤ q ≤ j and
cp,α replaced by cL ,p,α . (1.13) obviously remains true. For j = 0, 1 with j ≥ q ≥ 0 we
have to add the additional bound

||∂ p
ε j

� j,α(·,m2)||L∞((εqZ)d ) ≤ cL ,p,α(1 + m2)−1 (1.1)

Corollary 1.2 (1.17) remains true (with cp,α replaced by cL ,p,α) but for j ≥ 2. For j = 0, 1
we now have an additional bound in the same Corollary

||∂ p
Zd �̃ j,α(·,m2)||L∞(Zd ) ≤ cL ,p,α(1 + L jαm2)−1L−(2 j[ϕ]+pj) (1.2)

Coarse graining In order to get scale independence in the constants we can pass to a coarser
scale L ′ and redefine fluctuation covariances by summing over the intermediate scales [5].
Let r be a positive integer and let L ′ = Lr be the coarse scale. For L fixed we can make L ′
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large by making r large. Now redefine for j ≥ 0 the coarse scale fluctuation covariance as
follows:

�̃′
j,α(·,m2) =

r−1∑

l=0

�̃l+ jr,α(·,m2) (1.3)

Then

�̃′
j,α(x − y,m2) = 0, |x − y| ≥ (L ′) j+1 (1.4)

Now it is easy to prove that for a fixed L the coarse grained fluctuation covariances satisfy
the same bounds as above with new constants c′

L ,p,α that are independent of the coarser
scale L ′ for 0 < α < 2 and all d ≥ 2. The essential reason is that the scaling dimension
[ϕ] = (d − α)/2 remains strictly positive in these cases. The coarse scale L ′ independence
with respect to the bounds in [3] was found earlier in R. Bauerschmidt (unpublished data)
for d ≥ 3 but in d = 2 an additional log L ′ dependence was found.

Remark I emphasise that the (1 + m2)−1 term in the bounds only occurs for the j = 0, 1
terms and not for j ≥ 2 in contrast to [2] where it occurs for all terms.
We now turn to the corrections to be made in the proof supplied in Sect. 3 of [1].

1. In Appendix A of [3] interior regularity estimates (like those of Nirenberg and Agmon
in the continuum) were obtained for the solution of a lattice Dirichlet problem for the
minus lattice laplacian plus a mass squared parameter (called a ≥ 0). This is called s in
the present paper. As part of this estimate a linear decay in the mass squared parameter
was given and this sufficed for the purposes of [3]. However at the end of Appendix A
[3] an exponential type decay in the mass parameter was sketched following an Agmon
type argument. However on a lattice this will not be true for an arbitrarily large mass

parameter. Therefore the bound e−cs
1
2 occuring in Eqs. (3.4), (3.6) and (3.7) of [1] cannot

be used when integrating over s up to infinity in (3.13), (3.14), (3.15) and (3.16) of [1].
However the exponential estimates are not necessary as wewill now see.We shall replace
it by a weaker power law decay which will suffice for our purpose.

2. For j ≥ 2 replace e−cs
1
2 in (3.4) by (1+ s)−2, so that (3.4), [1] now reads for j ≥ 2 with

0 ≤ q ≤ j

||∂ p
ε j

� j (·, s)||L∞((εqZ)d ) ≤ cL ,p(1 + s)−2 (1.5)

This is a slight improvement of (5.11), Theorem 5.5 of [3] plus Sobolev embedding. In
Theorem 5.5 of [3] the decay rate (1 + s)−1 was given. The symbol s above was called
a in [3].

For both j = 1 with 0 ≤ q ≤ j as well as j = q = 0 we use the bound in (3.5), [1]
namely

||∂ p
ε j

� j (·, s)||L∞(Z)d ≤ cL ,p
1

1 + s
(1.6)

Proof The bound (1.6) is part of Theorem 5.5 of [3]. So only the bound in (1.5) needs to be
considered.

The bounds (3.6) and (3.7) in [1] now read

||∂ p
c �c∗(·, s)||L∞(Rd ) ≤ cL ,p(1 + s)−2 (1.7)
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and for j ≥ 2

||∂ p
ε j

� j (·, s) − ∂
p
c �c∗(·, s)||L∞((εqZ)d ) ≤ cL ,p(1 + s)−2L− j

2 (1.8)

3. We will first prove (1.12) of Theorem 1.1 for j ≥ 2. In the sentence before (3.13) of [1]
replace j > q ≥ 0 by j ≥ 2 with 0 ≤ q ≤ j . In (3.13), (3.14), (3.15) and (3.16) replace

e−cs
1
2 by (1+ s)−2. Then all integrals converge for 0 < α < 2 and the argument leading

to (3.18) goes through and proves (1.12) of Theorem 1.1 for j ≥ 2, 0 ≤ q ≤ j with the
constant cp,α replaced by cL ,p,α . (1.14) of Theorem 1.1 is similarly proved for j ≥ 2
with the constant replaced as before.

4. For j = 0, 1 we proceed otherwise to prove the additional bound (1.1) stated at the
beginning of this erratum.
We replace (3.13) of [1] by

||∂ p
ε j

� j,α(·,m2)||L∞((εqZ)d ) ≤ cL ,pcα

∫ ∞

0
ds

sα/2

sα + m4

1

1 + s
(1.9)

Define the integral above as

F0(m
2) =

∫ ∞

0
ds

sα/2

sα + m4

1

1 + s
(1.10)

The integral converges for 0 < α < 2. This is a continuous monotonic decreasing
function for increasing m2 and is well defined for m2 = 0 in the above range of α. For
m2 �= 0 we obtain after some changes of variables

F0(m
2) = 1

m2 (m2)
2
α
2

α

∫ ∞

0
dx

e
2
α
x

ex + e−x

1

1 + ((m2)
2
α e

2
α
x

≤ 1

m2

2

α

∫ ∞

0
dx e−x

≤ 2

α

1

m2

By continuity at m2 = 0 we have for some constant cα

F0(m
2) ≤ cα

1

1 + m2

Using this bound in (1.9) proves the additional bound (1.2) for j = 0, 1. �	
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